JP2014163896A - Absorbability automatic measuring means of granules - Google Patents

Absorbability automatic measuring means of granules Download PDF

Info

Publication number
JP2014163896A
JP2014163896A JP2013037410A JP2013037410A JP2014163896A JP 2014163896 A JP2014163896 A JP 2014163896A JP 2013037410 A JP2013037410 A JP 2013037410A JP 2013037410 A JP2013037410 A JP 2013037410A JP 2014163896 A JP2014163896 A JP 2014163896A
Authority
JP
Japan
Prior art keywords
liquid
capacity pump
low
liquid level
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013037410A
Other languages
Japanese (ja)
Inventor
Tomoyuki Fujii
智幸 藤井
Masaki Shoji
真樹 庄子
Masaaki Ikeda
正明 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HATSURATSU CO Ltd
Tohoku University NUC
Miyagi Prefectural Government.
Original Assignee
HATSURATSU CO Ltd
Tohoku University NUC
Miyagi Prefectural Government.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HATSURATSU CO Ltd, Tohoku University NUC, Miyagi Prefectural Government. filed Critical HATSURATSU CO Ltd
Priority to JP2013037410A priority Critical patent/JP2014163896A/en
Publication of JP2014163896A publication Critical patent/JP2014163896A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide means for temporally measuring volume variation to time of a liquid naturally absorbed by an aggregate of granules by taking notice of an important factor when the granules are absorbed, to temporarily measure the volume variation to time of the liquid naturally absorbed by the aggregation of granules as precisely as possible, and to automatically perform the measurement from the beginning to the end without relying on human labor.SOLUTION: A measurement container filled with granules is arranged so as to contact a liquid, and a volume variation of the liquid naturally absorbed by an aggregate of granules to time is temporarily measured, and an absorption speed of the aggregation of granules or a change in the absorption speed or an absorption speed constant or an absorption volume or an absorption ratio are automatically calculated and recorded from this volume variation to time.

Description

本発明は、粉粒体が自然吸液する現象に着目し、粉粒体の性質が吸液速度、吸液速度の変化、吸液速度定数、吸液量、吸液率に顕著に顕れるとの知見に基づいてなされたものであって、吸液速度、吸液速度の変化、吸液速度定数、吸液量、吸液率を導き出す際に重要な鍵となる、粉粒体の集合が自然吸液した液体の時間に対する容積変化を、経時的に計測する手段に関するものである。   The present invention pays attention to the phenomenon in which the granular material naturally absorbs liquid, and the properties of the granular material are significantly manifested in the liquid absorption rate, the change in the liquid absorption rate, the liquid absorption rate constant, the liquid absorption amount, and the liquid absorption rate. It was made based on the knowledge of the above, and the collection of particles, which is an important key in deriving the liquid absorption rate, change in liquid absorption rate, liquid absorption rate constant, liquid absorption amount, liquid absorption rate, The present invention relates to a means for measuring a volume change with time of a naturally absorbed liquid over time.

粉粒体の一例として挙げられる米粉は団子、餅、せんべいのような伝統的な米菓に利用されてきたが、近年、食糧自給率向上の観点から、米粉の新規用途開発による消費推進が図られている。
従来の米粉は製法により粉の特性が異なり、目的に応じて上新粉や落雁粉のような多種の米粉が存在する。近年、新規の用途として、パン、洋菓子及び麺などに米粉を使用することが試みられている。しかし、従来の米粉では粒子径が大きすぎるため良質なパンが作れないという問題があった。そのため、製粉方法が改良され、従来よりも米粉の粒子径を小さくすることが可能となった。
しかしながら、粒子径を小さくすると、粉砕による摩擦熱や物理的な衝撃によって米に含まれる澱粉が損傷し、澱粉損傷度の高い米粉が調製されやすくなる。米粉の澱粉損傷度は特に製パン適性に大きく関与すると言われており、米粉の特性として澱粉損傷度は重要な因子である。
Rice flour, an example of a powdered granule, has been used in traditional rice crackers such as dumplings, rice cakes, and rice crackers. In recent years, from the viewpoint of improving the food self-sufficiency rate, efforts have been made to promote consumption by developing new uses for rice flour. It has been.
Conventional rice flour has different flour characteristics depending on the production method, and there are various types of rice flour such as upper fresh powder and fallen rice flour depending on the purpose. In recent years, as a new application, attempts have been made to use rice flour for bread, confectionery, noodles and the like. However, conventional rice flour has a problem in that it cannot produce good quality bread because its particle size is too large. Therefore, the milling method has been improved, and it has become possible to make the particle size of rice flour smaller than before.
However, when the particle size is reduced, starch contained in the rice is damaged by frictional heat and physical impact caused by pulverization, and rice flour having a high degree of starch damage is easily prepared. It is said that the starch damage degree of rice flour is particularly concerned with bread-making suitability, and starch damage degree is an important factor as a characteristic of rice flour.

このような中、特許文献1(特開2012−185038号公報)に記載される発明は、米粉を水と接触させて前記米粉に水を吸収させ、接触後の経過時間に対する米粉の含水率の変化を測定する第1の工程と、前記接触後の経過時間と米粉の含水率を近似式に当てはめ、吸水パラメータa、K、n、bを求める第2の工程と、を含む、米粉の澱粉損傷度の予測方法に関するものであり、米粉の澱粉損傷度を有効に予測することを教えるものである。
しかし、そのデータ取得時における作業は、一定時間毎に測定容器を取り出し、布で測定容器を拭いた後、測定容器の質量を測定し、再び測定容器をパッドに静置するという手作業を測定容器の質量変化がなくなるまで、およそ30分繰り返すという多大な人手と手間を要するという問題点を抱えている。
Under such circumstances, the invention described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2012-185038) makes the rice flour contact with water so that the rice flour absorbs water, and the water content of the rice flour with respect to the elapsed time after the contact is increased. A first step of measuring the change, and a second step of determining the water absorption parameters a, K, n, b by fitting the elapsed time after the contact and the moisture content of the rice flour to an approximate expression and determining the water absorption parameters a, K, n, b The present invention relates to a method for predicting the degree of damage, and teaches the effective prediction of the degree of starch damage in rice flour.
However, the work at the time of data acquisition is the manual work of taking out the measurement container at regular intervals, wiping the measurement container with cloth, measuring the mass of the measurement container, and placing the measurement container on the pad again. There is a problem that it takes a great deal of labor and labor to repeat approximately 30 minutes until there is no change in the mass of the container.

また、特許文献2(特開平8-85709号公報)には、吸水性樹脂の吸水量を計測する測定装置が記載されており、略U字管の一方に吸水性樹脂散布台2が設けられていて、生理食塩水Wの液面が等水位にセットされている。吸水性樹脂散布台2に吸水性樹脂Pを散布し、60秒後の吸水量を生理食塩水Wの水位の低下量を示すビュレットの目盛りから測定して、1分当たりの吸水速度を求めている。
しかし、この計測装置は水位の低下量を基にして吸水性樹脂Pの吸水量を求めているため、吸水に伴って水位が低下するにつれ吸水性樹脂Pと生理食塩水Wとの接触状態が時々刻々変化してしまうため、真の吸水量を知るうえで問題があった。また、60秒を超えるような吸水量の計測ができない惧れを内在していた。
Patent Document 2 (Japanese Patent Laid-Open No. 8-85709) describes a measuring device for measuring the amount of water absorption of a water absorbent resin, and a water absorbent resin sprinkler 2 is provided on one side of a substantially U-shaped tube. In addition, the liquid level of the physiological saline W is set at an equal water level. Water-absorbing resin P is sprayed on water-absorbing resin spray base 2, and the amount of water absorption after 60 seconds is measured from the scale of the buret indicating the amount of decrease in the level of physiological saline W to obtain the water absorption rate per minute. Yes.
However, since this measuring device obtains the water absorption amount of the water-absorbing resin P based on the amount of decrease in the water level, the contact state between the water-absorbing resin P and the physiological saline W is reduced as the water level decreases with water absorption. Since it changes every moment, there was a problem in knowing the true water absorption. Moreover, there was a possibility that the amount of water absorption exceeding 60 seconds could not be measured.

また、特許文献3(特開2005-98956号公報)には、同じく吸水性樹脂の吸水量を計測する測定装置が記載されており、濾過材(1)で底部を塞がれたシリンダー(2)とシリンダー(2)に自在に挿入でき、底部に液体注入口(3)を配してなるピストン(4)とからなっている。濾過材(1)の上面に吸液性粒子を載置した後、重り(5)を積載したピストン(4)により加圧しながら液体注入口(3)から液体を供給し、液体が濾過材(1)から漏れ出すまでの液体の供給量を測定するものである。
しかし、この計測装置は加圧が必須であるばかりでなく、重り(5)の重さや、濾過材(1)の濾過面積(S1)と液体注入孔(3)の開口面積(S2)との比(S1/S2)の選定により特性が変化してしまうため、真の吸水量を知る上で問題があった。
Patent Document 3 (Japanese Patent Laid-Open No. 2005-98956) also describes a measuring device for measuring the amount of water absorption of a water-absorbing resin, and a cylinder (2) whose bottom is closed with a filter medium (1). ) And a cylinder (2), and a piston (4) having a liquid inlet (3) at the bottom. After the liquid-absorbing particles are placed on the upper surface of the filter medium (1), liquid is supplied from the liquid inlet (3) while being pressurized by the piston (4) loaded with the weight (5). The supply amount of liquid from 1) to leakage is measured.
However, this measuring device not only requires pressurization, but also the weight of the weight (5), the filtration area (S1) of the filter medium (1) and the opening area (S2) of the liquid injection hole (3). Since the characteristics change depending on the selection of the ratio (S1 / S2), there is a problem in knowing the true water absorption amount.

特開2012−185038号公報JP 2012-185038 A 特開平8-85709号公報JP-A-8-85709 特開2005-98956号公報JP 2005-98956 A

本願発明は、粉粒体の吸液の際の重要なファクターに着目して為されたもので、粉粒体の集合が自然吸液した液体の時間に対する容積変化を経時的に計測する手段に関するものであり、できるだけ正確に粉粒体の集合が自然吸液した液体の時間に対する容積変化を経時的に計測すると共に、その計測を人手に頼らず計測開始から終了まで自動的に行うことを目的とする。   The present invention is made by paying attention to an important factor in liquid absorption of powder particles, and relates to a means for measuring a change in volume with respect to time of a liquid in which a collection of powder particles naturally absorbs liquid over time. The purpose of this is to measure the volume change over time of the liquid that has naturally absorbed liquid particles as accurately as possible and to automatically perform the measurement from the start to the end without relying on human hands. And

本発明に係る計測手段は、粉粒体を充填した測定容器を液体に接触するよう配置すると共に、粉粒体の集合が自然吸液した液体の時間に対する容積変化を経時的に計測し、この時間に対する容積変化から粉粒体の集合の吸液速度または吸液速度の変化または吸液速度定数または吸液量または吸液率を自動的に演算して記録することを最も主要な特徴とする。   The measuring means according to the present invention arranges the measurement container filled with the granular material so as to come into contact with the liquid, measures the volume change with time of the liquid that the aggregate of the granular material naturally absorbs, The main feature is to automatically calculate and record the liquid absorption rate or change in the liquid absorption rate, the liquid absorption rate constant, the liquid absorption rate or the liquid absorption rate from the volume change with time. .

また、本発明に係る計測手段は、大容量ポンプと低容量ポンプを用いて略U字状の容器に液体を所定量補給するに際し、略U字状の容器の一方の開放部に設置した第1の液位センサが液体の所定の液位を検知した時点で大容量ポンプの駆動を停止すると同時に低容量ポンプの駆動を開始し、第2の液位センサが液体の所定の液位を検知した時点で低容量ポンプの駆動を停止し、次いで略U字状の容器の他方の開放部に粉粒体を充填した測定容器を載置した後計測を開始し、液位低下により第2の液位センサの液位の検知が不検知となった時点で低容量ポンプの駆動を開始するものであって、低容量ポンプの駆動の停止と開始との動作を液位低下がなくなるまで繰り返すと共に、低容量ポンプの稼働により供給された液体の時間に対する容積変化をもって、上記粉粒体の集合が自然吸液した液体の時間に対する容積変化であると見なすことを特徴とする。   In addition, the measuring means according to the present invention is provided in the first open portion of the substantially U-shaped container when a predetermined amount of liquid is supplied to the approximately U-shaped container using the large capacity pump and the low capacity pump. When the first liquid level sensor detects the predetermined liquid level, the large-capacity pump is stopped and simultaneously the low-capacity pump is started. The second liquid level sensor detects the predetermined liquid level. At that time, the driving of the low-capacity pump is stopped, and then the measurement is started after placing the measurement container filled with the granular material in the other open portion of the substantially U-shaped container. Starts driving the low-capacity pump when the detection of the liquid level of the liquid level sensor is not detected, and repeats the operation of stopping and starting the driving of the low-capacity pump until there is no drop in the liquid level. The volume change with time of the liquid supplied by the operation of the low capacity pump With, characterized in that considered as a collection of the powder or granular material is volumetric change with respect to time of the liquid which naturally liquid absorption.

また、本発明に係る計測手段は、上記大容量ポンプと低容量ポンプを用いて略U字状の容器に液体を所定量補給するに際し、上記略U字状の容器の他方の開放部に粉粒体を充填した測定容器を載置した状態において、上記測定容器の一部が液体中に漬かる構成を採る場合には、上記大容量ポンプと低容量ポンプを用いて略U字状の容器に液体を所定量補給するに際し、予め上記測定容器と同型の有底ダミー測定容器を上記略U字状の容器の他方の開放部に載置して行うことを特徴とする。   In addition, the measuring means according to the present invention provides a powder to the other open portion of the substantially U-shaped container when a predetermined amount of liquid is supplied to the substantially U-shaped container using the large capacity pump and the low capacity pump. In a state where a measuring container filled with granules is placed, when taking a configuration in which a part of the measuring container is immersed in a liquid, the large capacity pump and the low capacity pump are used to form a substantially U-shaped container. When supplying a predetermined amount of liquid, a bottomed dummy measurement container of the same type as the measurement container is placed in advance on the other open portion of the substantially U-shaped container.

また、本発明に係る計測手段は、上記粉粒体が穀物粉であることを特徴とする。   Moreover, the measuring means according to the present invention is characterized in that the granular material is cereal powder.

また、本発明に係る計測手段は、上記粉粒体が米粉であることを特徴とする。   Moreover, the measuring means according to the present invention is characterized in that the granular material is rice flour.

本願発明は、粉粒体の性質が吸液速度、吸液速度の変化、吸液速度定数、吸液量、吸液率に顕著に顕れるとの知見に基づいてなされているので、粉粒体の集合が自然吸液した液体の時間に対する容積変化を経時的に計測することにより、この時間に対する容積変化から粉粒体の集合の吸液速度または吸液速度の変化または吸液速度定数または吸液量または吸液率を自動的に演算して記録するものであるから、特に質量計測にかける人手を全く費やすことなく、所望のデータを自動的に効率よく手に入れることができることに派生して、多種の粉粒体の特性分析を次々と効率よくこなすことができるという作用効果を奏する。
また、本願発明は、略U字状の容器を用いて計測するものであるから、該容器の一方の開放部と他方の開放部とを計測機器専用の部位と被計測器専用の部位とに分別しているので、該開放部同士が連通して両液面を等液位に保っているにも拘わらず、該開放部同士が干渉し合うことが少ない、という作用効果を奏する。
また、測定容器の一部が液体中に漬かる構成を採る場合には、上記大容量ポンプと低容量ポンプを用いて略U字状の容器に液体を所定量補給するに際し、予め上記測定容器と同型の有底ダミー測定容器を上記略U字状の容器の他方の開放部に載置して行うようにすれば、種々の粉粒体の濡れ性の良し悪し等に対応して液体の位置エネルギーを利用すると云ったきめの細かい分析をすることができるという作用効果を奏する。
また、粉粒体が穀物粉であるものに用いれば、これまであまり利用されてこなかったような作物の穀粒の分析にも人手を掛けずに手軽に着手することができるので、眠れる有用作物の再認識につながる作用効果が期待できる。
また、粉粒体が米粉であるものに適用すれば、日本国内においても多数の品種があり、外国産米を含めると膨大な品種を持つが故に、品種別の分析が決して広く浸透している訳ではないけれど、米粉の品種別の分析の推進と米粉の利用の促進とに大きく寄与し得るという作用効果が期待できる。
The present invention is based on the knowledge that the properties of the powder and the liquid absorption rate, the change in the liquid absorption rate, the liquid absorption rate constant, the amount of liquid absorption, and the liquid absorption rate are significantly manifested. By measuring the volume change over time of the liquid in which the aggregate of the liquid naturally absorbed, the change in the liquid absorption speed or the liquid absorption speed, the liquid absorption rate constant, or the Since the liquid volume or liquid absorption rate is automatically calculated and recorded, it is derived from the fact that the desired data can be obtained automatically and efficiently without any manual labor for mass measurement. Thus, there is an effect that it is possible to efficiently perform the characteristic analysis of various powder particles one after another.
In addition, since the invention of the present application measures using a substantially U-shaped container, the one open part and the other open part of the container are divided into a part dedicated to the measuring instrument and a part dedicated to the device to be measured. Since the separation is performed, there is an effect that the open portions hardly interfere with each other even though the open portions communicate with each other and both liquid surfaces are kept at the same liquid level.
In addition, when adopting a configuration in which a part of the measurement container is immersed in the liquid, when the predetermined amount of liquid is supplied to the substantially U-shaped container using the large capacity pump and the low capacity pump, the measurement container If a bottomed dummy measuring container of the same type is placed on the other open part of the above substantially U-shaped container, the position of the liquid corresponds to the wettability of various powders. This has the effect of being able to perform a detailed analysis that uses energy.
In addition, if the powder is used for cereal flour, it can be easily started without human intervention in the analysis of the grains of crops that have not been used so much so far, so it is a useful crop that can sleep The effect that leads to re-recognition can be expected.
In addition, if applied to rice flour that has a granular material, there are a large number of varieties in Japan, and there are numerous varieties including foreign rice. Although it is not a translation, it can be expected to have the effect of being able to greatly contribute to the promotion of analysis by rice flour varieties and the promotion of the use of rice flour.

図1は本発明に用いられる計測システムの一例の全体図である。FIG. 1 is an overall view of an example of a measurement system used in the present invention. 図2は本発明に用いられる略U字状の容器に計測容器を載置した一例の側断面図である。FIG. 2 is a side sectional view of an example in which a measurement container is placed on a substantially U-shaped container used in the present invention. 図3は本発明に用いられる略U字状の容器に計測容器を載置した他の一例の側断面図である。FIG. 3 is a side sectional view of another example in which a measurement container is placed on a substantially U-shaped container used in the present invention. 図4は本発明に用いられる計測容器の一例の側断面図である。FIG. 4 is a side sectional view of an example of the measurement container used in the present invention. 図5は本発明に用いられる大容量管と低容量管と第1の液位センサとの配置関係を示す一例の拡大側面図である。FIG. 5 is an enlarged side view of an example showing the positional relationship among the large capacity tube, the low capacity tube, and the first liquid level sensor used in the present invention.

本発明を実施するための形態としては、粉粒体を充填した測定容器を液体に接触するよう配置すると共に、粉粒体の集合が自然吸液した液体の時間に対する容積変化を経時的に計測し、この時間に対する容積変化から粉粒体の集合の吸液速度または吸液速度の変化または吸液速度定数または吸液量または吸液率を自動的に演算して記録することを特徴とする計測手段とすることが出来る。     As a form for carrying out the present invention, a measurement container filled with granular materials is arranged so as to come into contact with the liquid, and a change in volume with respect to time of the liquid in which the aggregate of the granular materials naturally absorbs liquid is measured over time. In addition, the liquid absorption rate or change in the liquid absorption rate, the liquid absorption rate constant, the liquid absorption amount, or the liquid absorption rate of the aggregate of particles is automatically calculated and recorded from the volume change with respect to this time. It can be used as a measuring means.

本発明を実施するための形態としては、大容量ポンプと低容量ポンプを用いて略U字状の容器に液体を所定量補給するに際し、略U字状の容器の一方の開放部に設置した第1の液位センサが液体の所定の液位を検知した時点で大容量ポンプの駆動を停止すると同時に低容量ポンプの駆動を開始し、第2の液位センサが液体の所定の液位を検知した時点で低容量ポンプの駆動を停止し、次いで略U字状の容器の他方の開放部に粉粒体を充填した測定容器を載置した後計測を開始し、液位低下により第2の液位センサの液位の検知が不検知となった時点で低容量ポンプの駆動を開始し、低容量ポンプの駆動の停止と開始との動作を液位低下がなくなるまで繰り返すと共に、低容量ポンプの稼働により供給された液体の時間に対する容積変化をもって、上記粉粒体の集合が自然吸液した液体の時間に対する容積変化であると見なすことを特徴とする請求項1に記載される計測手段、とすることが出来る。     As a mode for carrying out the present invention, when a predetermined amount of liquid is supplied to a substantially U-shaped container using a large-capacity pump and a low-capacity pump, it is installed in one open portion of the substantially U-shaped container. When the first liquid level sensor detects a predetermined liquid level, the driving of the large-capacity pump is stopped at the same time as the low-capacity pump is started, and the second liquid level sensor detects the predetermined liquid level of the liquid. At the time of detection, the driving of the low-capacity pump is stopped, and then measurement is started after placing the measurement container filled with the granular material in the other open portion of the substantially U-shaped container. When the liquid level sensor detects no liquid level, it starts driving the low-capacity pump and repeats the operation of stopping and starting the low-capacity pump until there is no drop in the liquid level. It has a volume change with time of the liquid supplied by operating the pump. , Measuring means as described in claim 1, characterized in that considered as a collection of the powder or granular material is volumetric change with respect to time of the liquid which naturally liquid absorption, that it is possible.

本発明を実施するための形態としては、上記大容量ポンプと低容量ポンプを用いて略U字状の容器に液体を所定量補給するに際し、上記略U字状の容器の他方の開放部に粉粒体を充填した測定容器を載置した状態において、上記測定容器の一部が液体中に漬かる構成を採る場合には、上記大容量ポンプと低容量ポンプを用いて略U字状の容器に液体を所定量補給するに際し、予め上記測定容器と同型の有底ダミー測定容器を上記略U字状の容器の他方の開放部に載置して行うことを特徴とする請求項2に記載される計測手段、とすることが出来る。     As a mode for carrying out the present invention, when a predetermined amount of liquid is supplied to the substantially U-shaped container using the large-capacity pump and the low-capacity pump, the other open portion of the substantially U-shaped container is used. In a state where a measurement container filled with powder is placed, in the case where a part of the measurement container is submerged in a liquid, a substantially U-shaped container is used by using the large-capacity pump and the low-capacity pump. 3. When a predetermined amount of liquid is replenished, a bottomed dummy measurement container of the same type as the measurement container is placed in advance on the other open portion of the substantially U-shaped container. Measurement means.

本発明を実施するための形態としては、上記粉粒体が穀物粉であることを特徴とする請求項1乃至3のいずれか1項に記載される計測手段、とすることができる。     As a form for implementing this invention, it can be set as the measuring means as described in any one of Claims 1 thru | or 3 characterized by the above-mentioned granular material being grain flour.

本発明を実施するための形態としては、上記粉粒体が米粉であることを特徴とする請求項1乃至3のいずれか1項に記載される計測手段、とすることができる。     As a form for implementing this invention, it can be set as the measuring means described in any one of Claims 1 thru | or 3 characterized by the above-mentioned granular material being rice flour.

図1は、本発明に用いられる計測システムの一例の全体図である。制御装置5からの指令が第1の配線6を介して大容量ポンプ用モータ2に与えられると、大容量ポンプ用モータ2が駆動されて大容量ポンプ1が稼働され、液体貯溜タンク3の液体は大容量管4を介して略U字状の容器20の第1の開放部21に送液される。同じく、制御装置5からの指令が第3の配線13を介して低容量ポンプ用モータ11に与えられると、低容量ポンプ用モータ11が駆動されて低容量ポンプ10が稼働され、フィーダタンク19の液体が低容量管12を介して略U字状の容器20の第1の開放部21に送液される。低容量管12を通って略U字状の容器20に送られた液体の、時間に対する容積変化は低容量管12に取り付けられた流量計15により計測されて、経時的に第5の配線16を介して制御装置5に送られて記憶される。また、低容量管12には第2の液位センサ9が取り付けてあり、第2の液位センサ9が所定の液位を検知すると検知信号は第4の配線14を介して制御装置5に送信される。第1の液位センサ7が液体の所定の液位を検知すると検知信号は第2の配線8を介して制御装置5に送信される。液体を略U字状の容器20の第1の開放部21に給液するための大容量管4および低容量管12の上下の位置は、図示しない調整装置により上下に調整が可能となっており、第1の液位センサ7も上下の位置調整が可能となっている。大容量管4および低容量管12そして第1の液位センサ7は、略U字状の容器20の第1の開放部21内に収容される構成となっている。略U字状の容器20の構成の詳細は図2を用いて説明する。   FIG. 1 is an overall view of an example of a measurement system used in the present invention. When a command from the control device 5 is given to the large capacity pump motor 2 via the first wiring 6, the large capacity pump motor 2 is driven to operate the large capacity pump 1, and the liquid in the liquid storage tank 3 is driven. Is fed to the first open portion 21 of the substantially U-shaped container 20 through the large capacity tube 4. Similarly, when a command from the control device 5 is given to the low-capacity pump motor 11 via the third wiring 13, the low-capacity pump motor 11 is driven to operate the low-capacity pump 10, and the feeder tank 19 The liquid is fed to the first open portion 21 of the substantially U-shaped container 20 through the low volume tube 12. The volume change of the liquid sent to the substantially U-shaped container 20 through the low-capacity tube 12 with respect to time is measured by the flow meter 15 attached to the low-capacity tube 12, and the fifth wiring 16 over time is measured. To be sent to the control device 5 and stored. Further, a second liquid level sensor 9 is attached to the low-capacity tube 12, and when the second liquid level sensor 9 detects a predetermined liquid level, the detection signal is sent to the control device 5 via the fourth wiring 14. Sent. When the first liquid level sensor 7 detects a predetermined liquid level, a detection signal is transmitted to the control device 5 via the second wiring 8. The upper and lower positions of the large capacity pipe 4 and the low capacity pipe 12 for supplying liquid to the first open portion 21 of the substantially U-shaped container 20 can be adjusted up and down by an adjusting device (not shown). The first liquid level sensor 7 can also be adjusted in the vertical position. The large-capacity tube 4, the low-capacity tube 12, and the first liquid level sensor 7 are configured to be accommodated in the first open portion 21 of the substantially U-shaped container 20. Details of the configuration of the substantially U-shaped container 20 will be described with reference to FIG.

図2は、本発明に用いられる略U字状の容器20に計測容器24を載置した一例の側断面図である。略U字状の容器20は左右に第1の開放部21と第2の開放部22とを有しており、第1の開放部21と第2の開放部22とは連通路23により繋がっている。第1の開放部21と第2の開放部22はそれぞれ周囲から立ち上がる等高の側壁により形成されており、当然底壁も有している。第1の開放部21と第2の開放部22を上面から見た形状は円形が好ましいが、方形、楕円形、多角形等を排除するものではない。また連通路23の形状も円管路に限らず、方形路等であってもよい。図2の状態は、略U字状の容器20に液体を注ぎ込んだ後、測定容器24の底部にセットしたろ紙28に粉粒体26を所定量載せタッピングした状態で測定容器24を液体に漬けた状態を示している。その時、液体は液面25を示していることを表している。   FIG. 2 is a side sectional view of an example in which the measurement container 24 is placed on the substantially U-shaped container 20 used in the present invention. The substantially U-shaped container 20 has a first open portion 21 and a second open portion 22 on the left and right, and the first open portion 21 and the second open portion 22 are connected by a communication path 23. ing. The first opening portion 21 and the second opening portion 22 are each formed by equal side walls rising from the periphery, and of course have a bottom wall. The shape of the first open portion 21 and the second open portion 22 as viewed from above is preferably circular, but does not exclude squares, ellipses, polygons, and the like. The shape of the communication path 23 is not limited to a circular pipe path, and may be a square path or the like. In the state of FIG. 2, after pouring the liquid into the substantially U-shaped container 20, the measurement container 24 is immersed in the liquid in a state where a predetermined amount of the granular material 26 is placed on the filter paper 28 set at the bottom of the measurement container 24 and tapped. Shows the state. At this time, the liquid indicates the liquid level 25.

図3は本発明に用いられる略U字状の容器20に計測容器24を載置した他の一例の側断面図である。基本的構成は図2のものと変わらないので、同一部材の説明は省略するが、特徴的な点は第2の開放部22の適当箇所に載置台27が設けられていることである。載置台27は例えば網状を呈しており、計測容器24を載置するに足って、液体が上方に通り抜けることができるような構造であれば材質をはじめとして種々のものが選定できる。   FIG. 3 is a side sectional view of another example in which a measurement container 24 is placed on a substantially U-shaped container 20 used in the present invention. Since the basic configuration is the same as that of FIG. 2, description of the same member is omitted, but a characteristic point is that a mounting table 27 is provided at an appropriate position of the second opening portion 22. The mounting table 27 has, for example, a net shape, and various materials including materials can be selected as long as the liquid can pass upward to mount the measurement container 24.

図4は本発明に用いられる計測容器24の一例の側断面図である。測定容器24は外周を形成する側壁部30と、底部の一部を構成し若干内方に伸びる止め部31とからなっている。止め部31は円周方向に連続してはいない。不連続の止め部同士の間には複数の切欠部32が存在していて、液体が測定容器24の底部領域に速やかに進入することを担保している。切欠部32の上にろ紙28の載置し、所定量(典型例.質量)の粉粒体を載せてタッピングして計測するのに好適な構成となっている。なお、測定容器24の止め部31と切欠部32とをそのままとして、側壁部30のみを若干下方に伸ばして足つき容器とすることもできる。   FIG. 4 is a side sectional view of an example of the measurement container 24 used in the present invention. The measurement container 24 includes a side wall portion 30 that forms the outer periphery, and a stopper portion 31 that constitutes a part of the bottom portion and extends slightly inward. The stop 31 is not continuous in the circumferential direction. There are a plurality of cutouts 32 between the discontinuous stops, ensuring that the liquid quickly enters the bottom region of the measurement container 24. The filter paper 28 is placed on the notch 32, and a predetermined amount (typically, mass) of powder particles is placed on the tapped portion and tapped and measured. Alternatively, the stopper 31 and the notch 32 of the measurement container 24 may be left as they are, and only the side wall 30 may be slightly extended downward to form a footed container.

図5は本発明に用いられる大容量管4と低容量管12と第1の液位センサ7との配置関係を示す一例の拡大側面図である。大容量管4から液体が供給されて、液位が第1の液位17に達したことを第1の液位センサ7が検知すると、その信号は制御装置5に送られて大容量ポンプ1の駆動は停止すると同時に低容量ポンプ10の駆動が開始されて低容量管12から液体が供給される。さらに、液体の液位が第2の液位18即ち、低容量管12の先端に達すると、低容量管12に取り付けられている第2の液位センサ9がこれを検知して、検知信号を制御装置5に送り低容量ポンプ10の駆動も停止される。ここまでは準備段階であって、実際の粉粒体の吸液に際しての作動については以下の作用の説明で詳しく述べることとする。   FIG. 5 is an enlarged side view of an example showing the positional relationship among the large capacity tube 4, the low capacity tube 12, and the first liquid level sensor 7 used in the present invention. When the liquid is supplied from the large capacity pipe 4 and the first liquid level sensor 7 detects that the liquid level has reached the first liquid level 17, the signal is sent to the control device 5 to send the large capacity pump 1. At the same time, the driving of the low capacity pump 10 is started and the liquid is supplied from the low capacity pipe 12. Further, when the liquid level reaches the second liquid level 18, that is, the tip of the low-capacity pipe 12, the second liquid level sensor 9 attached to the low-capacity pipe 12 detects this, and a detection signal To the control device 5 and the driving of the low-capacity pump 10 is also stopped. The operation up to this point is a preparation stage, and the actual operation of absorbing the granular material will be described in detail in the following description of the operation.

引き続き、計測システムの一例の作動に就き、位置エネルギーを利用した吸液と位置エネルギーを利用しない吸液とに分けて、添付図面を参照しながら以下に詳述する。
位置エネルギーを利用する場合は、図1を参照すれば、略U字状の容器20の第2の開放部22に測定容器24と同型の有底ダミー測定容器を載置する。その状態で制御装置5の図示しない準備スイッチを閉にすると、第1の配線6を介して大容量ポンプ用モータ2が駆動され、大容量ポンプ1の稼働が開始されるので、液体貯溜タンク3の液体は大容量管4を通って略U字状の容器20の第1の開放部21に注がれる。液面の上昇に伴い第1のセンサ7が液面17を検知すると、検知信号が直ちに制御装置5に送られるので、制御装置5は第1の配線6を介して大容量ポンプ用モータ2の駆動を停止すると同時に、第3の配線13を介して低容量ポンプ用モータ11の駆動を開始するので、低容量ポンプ10はフィーダタンク19の液体を低容量管12から略U字状の容器20の第1の開放部21に注ぎ始める。液位が上昇して第2の液位18に達すると、即ち、低容量管12の先端に達すると、第2の液位センサ9が液位を検知して制御装置5に検知信号を送る。制御装置5はこの信号に基づいて第3の配線13を介して低容量ポンプ用モータ11の駆動を直ちに停止するので、略U字状の容器20の第2の開放部22から有底ダミー測定容器を取り出すことにより、準備段階が終了する。
Subsequently, the operation of an example of the measurement system will be described in detail below with reference to the accompanying drawings by dividing into liquid absorption using positional energy and liquid absorption not using positional energy.
When using potential energy, referring to FIG. 1, a bottomed dummy measurement container of the same type as the measurement container 24 is placed on the second open portion 22 of the substantially U-shaped container 20. In this state, when a preparation switch (not shown) of the control device 5 is closed, the large capacity pump motor 2 is driven via the first wiring 6 and the operation of the large capacity pump 1 is started. The liquid is poured into the first opening 21 of the substantially U-shaped container 20 through the large capacity tube 4. When the first sensor 7 detects the liquid level 17 as the liquid level rises, a detection signal is immediately sent to the control device 5, so that the control device 5 is connected to the large capacity pump motor 2 via the first wiring 6. Since the driving of the low-capacity pump motor 11 is started via the third wiring 13 at the same time as the driving is stopped, the low-capacity pump 10 causes the liquid in the feeder tank 19 to flow from the low-capacity pipe 12 to a substantially U-shaped container 20. Pour into the first opening 21 of the. When the liquid level rises and reaches the second liquid level 18, that is, when the liquid level reaches the tip of the low-capacity tube 12, the second liquid level sensor 9 detects the liquid level and sends a detection signal to the control device 5. . The control device 5 immediately stops driving the low-capacity pump motor 11 via the third wiring 13 based on this signal, so that the bottomed dummy measurement is performed from the second opening 22 of the substantially U-shaped container 20. The preparation phase is completed by removing the container.

次に計測作業の説明をする。予め測定容器24の底部にセットしたろ紙28に所定量(質量)の粉粒体26を載せてタッピングしておいた測定容器24を、略U字状の容器20の第2の開放部22に静置して制御装置5の図示しない計測スイッチを閉にする。この状態は低容量管12の先端に液体が触れた状態、即ち液体が第2の液位18を示した状態を意味している。測定容器24内の粉粒体26が吸液を始めると、粉粒体26の吸液に伴って液面が低下して低容量管12と液面の接触が断たれることになる。これは低容量管12の先端に取り付けられた第2の液位センサ9により検知されて、直ちに検知信号が制御装置5に送信される。制御装置5はこの検知信号を受けて第3の配線13を介して低容量ポンプ用モータ11の駆動を開始する。低容量ポンプ用モータ11の駆動開始により低容量ポンプ10が稼働して、液体はフィーダタンク19から低容量管12を通って略U字状の容器20の第1の開放部21に注がれる。制御装置5の図示しない計測スイッチを閉にすると同時に流量計15が作動を開始する状態となっているので、低容量管12を流れる液体の時間に対する容積変化を経時的に計測して第5の配線16を介して制御装置5に送信する。制御装置5は計測して記憶させた液体の時間に対する容積変化から、吸液速度または吸液速度の変化または吸液速度定数または吸液量または吸液率を自動的に演算して記憶するのである。低容量ポンプ10の稼働により液面が上昇して第2の液位18に達すると、第2の液位センサ9が第2の液位18を検知した信号を制御装置5に送信するので、制御装置5は第3の配線13を介して低容量ポンプ用モータ11の駆動を停止する。液位の低下を第2の液位センサ9が検知すると再び低容量ポンプ10が稼働し、これらの動作は、測定容器24内の粉粒体26の吸液が終了するまで、即ち、第2の液位18の変動が無くなるまで繰り返し実行される。   Next, the measurement work will be described. The measurement container 24 that has been tapped by placing a predetermined amount (mass) of the granular material 26 on the filter paper 28 set in advance at the bottom of the measurement container 24 is placed in the second open portion 22 of the substantially U-shaped container 20. The measurement switch (not shown) of the control device 5 is closed by leaving it stationary. This state means a state where the liquid touches the tip of the low capacity tube 12, that is, a state where the liquid shows the second liquid level 18. When the granular material 26 in the measurement container 24 begins to absorb liquid, the liquid level decreases with the absorption of the granular material 26, and the contact between the low-capacity tube 12 and the liquid surface is cut off. This is detected by the second liquid level sensor 9 attached to the tip of the low-capacity tube 12, and a detection signal is immediately transmitted to the control device 5. Upon receiving this detection signal, the control device 5 starts driving the low-capacity pump motor 11 via the third wiring 13. When the low-capacity pump motor 11 is started to operate, the low-capacity pump 10 is operated, and the liquid is poured from the feeder tank 19 through the low-capacity pipe 12 to the first open portion 21 of the substantially U-shaped container 20. . Since the flow meter 15 is in a state of starting the operation at the same time as the measurement switch (not shown) of the control device 5 is closed, the volume change with respect to time of the liquid flowing through the low-capacity pipe 12 is measured over time, and the fifth The data is transmitted to the control device 5 via the wiring 16. Since the control device 5 automatically calculates and stores the liquid absorption speed or the change of the liquid absorption speed, the liquid absorption speed constant, the liquid absorption amount or the liquid absorption rate from the volume change with respect to the time of the liquid measured and stored. is there. When the liquid level rises due to the operation of the low-capacity pump 10 and reaches the second liquid level 18, the second liquid level sensor 9 transmits a signal indicating the detection of the second liquid level 18 to the control device 5. The control device 5 stops driving the low-capacity pump motor 11 via the third wiring 13. When the second liquid level sensor 9 detects the lowering of the liquid level, the low-capacity pump 10 is operated again, and these operations are performed until the liquid absorption of the granular material 26 in the measuring container 24 is completed, that is, the second pump. This is repeated until there is no fluctuation in the liquid level 18.

位置エネルギーを利用しない場合について、図1と図3とを参照して詳述する。図3に示されるように、測定容器24の底部にセットしたろ紙28に所定量(質量)の粉粒体26を載せてタッピングした測定容器24を、略U字状の容器20の第2の開放部22の適当箇所に設けた載置台27に載置しておく。その状態で制御装置5の図示しない準備スイッチを閉にすると、第1の配線6を介して大容量ポンプ用モータ2が駆動され、大容量ポンプ1の稼働が開始されるので、液体貯溜タンク3の液体は大容量管4を通って略U字状の容器20の第1の開放部21に注がれる。液面の上昇に伴い第1の液位センサ7が液面17を検知すると、検知信号が直ちに制御装置5に送られるので、制御装置5は第1の配線6を介して大容量ポンプ用モータ2の駆動を停止すると同時に、第3の配線13を介して低容量ポンプ用モータ11の駆動を開始するので、低容量ポンプ10はフィーダタンク19の液体を低容量管12から略U字状の容器20の第1の開放部21に注ぎ始める。液位が上昇してろ紙28と液体が接する液位に達すると、即ち、上下方向を調整した低容量管12の先端に達すると、第2の液位センサ9が液位を検知して制御装置5に検知信号を送る。制御装置5はこの信号に基づいて第3の配線13を介して低容量ポンプ用モータ11の駆動を直ちに停止することにより、準備段階が終了する。   The case where the potential energy is not used will be described in detail with reference to FIG. 1 and FIG. As shown in FIG. 3, the measurement container 24 in which a predetermined amount (mass) of the granular material 26 is placed on the filter paper 28 set at the bottom of the measurement container 24 and tapped is used as the second container of the substantially U-shaped container 20. It mounts on the mounting base 27 provided in the appropriate location of the open part 22. FIG. In this state, when a preparation switch (not shown) of the control device 5 is closed, the large capacity pump motor 2 is driven via the first wiring 6 and the operation of the large capacity pump 1 is started. The liquid is poured into the first opening 21 of the substantially U-shaped container 20 through the large capacity tube 4. When the first liquid level sensor 7 detects the liquid level 17 as the liquid level rises, a detection signal is immediately sent to the control device 5, so that the control device 5 is connected to the motor for a large capacity pump via the first wiring 6. Since the driving of the low-capacity pump motor 11 is started via the third wiring 13 simultaneously, the low-capacity pump 10 causes the liquid in the feeder tank 19 to flow from the low-capacity pipe 12 into a substantially U-shape. Begin pouring into the first opening 21 of the container 20. When the liquid level rises and reaches the liquid level where the liquid is in contact with the filter paper 28, that is, when the liquid level reaches the tip of the low-capacity tube 12 adjusted in the vertical direction, the second liquid level sensor 9 detects and controls the liquid level. A detection signal is sent to the device 5. Based on this signal, the control device 5 immediately stops driving the low-capacity pump motor 11 via the third wiring 13 to complete the preparation stage.

次に計測作業の説明をする。制御装置5の図示しない計測スイッチを閉にする。測定容器24内の粉粒体26が吸液を始めると、粉粒体26の吸液に伴って液面が低下して低容量管12と液面の接触が断たれることになる。これは低容量管12の先端に取り付けられた第2の液位センサ9により検知されて、直ちに検知信号が制御装置5に送信される。制御装置5はこの検知信号を受けて第3の配線13を介して低容量ポンプ用モータ11の駆動を開始する。低容量ポンプ用モータ11の駆動開始により低容量ポンプ10が稼働して、液体はフィーダタンク19から低容量管12を通って略U字状の容器20の第1の開放部21に注がれる。制御装置5の図示しない計測スイッチを閉にすると同時に流量計15が作動を開始する状態となっているので、低容量管12を流れる液体の時間に対する容積変化を経時的に計測して第5の配線16を介して制御装置5に送信する。制御装置5は計測して記憶させた液体の時間に対する容積変化から、吸液速度または吸液速度の変化または吸液速度定数または吸液量または吸液率を自動的に演算して記憶するのである。低容量ポンプ10の稼働により液面が上昇して第2の液位18に達すると、第2の液位センサ9が第2の液位18を検知した信号を制御装置5に送信するので、制御装置5は第3の配線13を介して低容量ポンプ用モータ11の駆動を停止する。液位の低下を第2の液位センサ9が検知すると再び低容量ポンプ10が稼働し、これらの動作は、測定容器24内の粉粒体26の吸液が終了するまで、即ち、第2の液位18の変動が無くなるまで繰り返し実行される。   Next, the measurement work will be described. A measurement switch (not shown) of the control device 5 is closed. When the granular material 26 in the measurement container 24 begins to absorb liquid, the liquid level decreases with the absorption of the granular material 26, and the contact between the low-capacity tube 12 and the liquid surface is cut off. This is detected by the second liquid level sensor 9 attached to the tip of the low-capacity tube 12, and a detection signal is immediately transmitted to the control device 5. Upon receiving this detection signal, the control device 5 starts driving the low-capacity pump motor 11 via the third wiring 13. When the low-capacity pump motor 11 is started to operate, the low-capacity pump 10 is operated, and the liquid is poured from the feeder tank 19 through the low-capacity pipe 12 to the first open portion 21 of the substantially U-shaped container 20. . Since the flow meter 15 is in a state of starting the operation at the same time as the measurement switch (not shown) of the control device 5 is closed, the volume change with respect to time of the liquid flowing through the low-capacity pipe 12 is measured over time, and the fifth The data is transmitted to the control device 5 via the wiring 16. Since the control device 5 automatically calculates and stores the liquid absorption speed or the change of the liquid absorption speed, the liquid absorption speed constant, the liquid absorption amount or the liquid absorption rate from the volume change with respect to the time of the liquid measured and stored. is there. When the liquid level rises due to the operation of the low-capacity pump 10 and reaches the second liquid level 18, the second liquid level sensor 9 transmits a signal indicating the detection of the second liquid level 18 to the control device 5. The control device 5 stops driving the low-capacity pump motor 11 via the third wiring 13. When the second liquid level sensor 9 detects the lowering of the liquid level, the low-capacity pump 10 is operated again, and these operations are performed until the liquid absorption of the granular material 26 in the measuring container 24 is completed, that is, the second pump. This is repeated until there is no fluctuation in the liquid level 18.

このように、これらの発明によれば、粉粒体の集合の吸液特性を計測手段により自動的に計測することができるので、種々の粉粒体の吸液特性の把握を人手のかかる質量測定作業から解放して、種々の粉粒体の特性把握の推進に貢献すると共に、種々の粉粒体の有効利用の拡大に大きく貢献することが期待される。   As described above, according to these inventions, the liquid absorption characteristics of the aggregates of the powder particles can be automatically measured by the measuring means. Therefore, it is difficult to grasp the liquid absorption characteristics of various powder particles. It is expected to contribute from the measurement work to the promotion of grasping the characteristics of various powders, and to greatly contribute to the expansion of effective use of various powders.

1 大容量ポンプ
2 大容量ポンプ用モータ
3 液体貯溜タンク
4 大容量管
5 制御装置
6 第1の配線
7 第1の液位センサ
8 第2の配線
9 第2の液位センサ
10 低容量ポンプ
11 低容量ポンプ用モータ
12 低容量管
13 第3の配線
14 第4の配線
15 流量計
16 第5の配線
17 第1の液位
18 第2の液位
19 フィーダタンク
20 略U字状の容器
21 第1の開放部
22 第2の開放部
23 連通路
24 測定容器
25 液面
26 粉粒体
27 載置台
28 ろ紙
30 側壁部
31 止め部
32 切欠部
1 Large capacity pump 2 Motor for large capacity pump 3 Liquid storage tank 4 Large capacity pipe
5 Control device
6 First wiring 7 First liquid level sensor
8 Second wiring 9 Second liquid level sensor 10 Low capacity pump 11 Low capacity pump motor 12 Low capacity pipe 13 Third wiring 14 Fourth wiring 15 Flow meter 16 Fifth wiring 17 First liquid level 18 Second liquid level 19 Feeder tank 20 Substantially U-shaped container 21 First open part 22 Second open part 23 Communication path 24 Measuring container 25 Liquid surface 26 Granule 27 Loading table 28 Filter paper 30 Side wall part 31 Stop 32 Notch

Claims (5)

粉粒体を充填した測定容器を液体に接触するよう配置すると共に、粉粒体の集合が自然吸液した液体の時間に対する容積変化を経時的に計測し、この時間に対する容積変化から粉粒体の集合の吸液速度または吸液速度の変化または吸液速度定数または吸液量または吸液率を自動的に演算して記録することを特徴とする計測手段。   The measurement container filled with the powder is placed in contact with the liquid, and the volume change with time of the liquid that the aggregate of powder naturally absorbed is measured over time. A measuring means for automatically calculating and recording a liquid absorption speed or a change in the liquid absorption speed, a liquid absorption speed constant, a liquid absorption amount or a liquid absorption rate. 大容量ポンプと低容量ポンプを用いて略U字状の容器に液体を所定量補給するに際し、略U字状の容器の一方の開放部に設置した第1の液位センサが液体の所定の液位を検知した時点で大容量ポンプの駆動を停止すると同時に低容量ポンプの駆動を開始し、第2の液位センサが液体の所定の液位を検知した時点で低容量ポンプの駆動を停止し、次いで略U字状の容器の他方の開放部に粉粒体を充填した測定容器を載置した後計測を開始し、液位低下により第2の液位センサの液位の検知が不検知となった時点で低容量ポンプの駆動を開始し、低容量ポンプの駆動の停止と開始との動作を液位低下がなくなるまで繰り返すと共に、低容量ポンプの稼働により供給された液体の時間に対する容積変化をもって、上記粉粒体の集合が自然吸液した液体の時間に対する容積変化であると見なすことを特徴とする請求項1に記載される計測手段。   When a predetermined amount of liquid is supplied to the substantially U-shaped container using the large-capacity pump and the low-capacity pump, the first liquid level sensor installed at one open portion of the approximately U-shaped container When the liquid level is detected, the large-capacity pump is stopped and simultaneously the low-capacity pump is started. When the second liquid level sensor detects the predetermined liquid level, the low-capacity pump is stopped. Then, after placing the measurement container filled with the granular material in the other open portion of the substantially U-shaped container, the measurement is started, and the liquid level of the second liquid level sensor is not detected due to the liquid level drop. The low-capacity pump starts to be driven at the point of detection, and the operation of stopping and starting the low-capacity pump is repeated until the liquid level does not drop and the time of the liquid supplied by the operation of the low-capacity pump Liquid that has spontaneously absorbed by the aggregate of the above-mentioned particles with volume change Measuring means described in claim 1, characterized in that considered as a volume change versus time. 上記大容量ポンプと低容量ポンプを用いて略U字状の容器に液体を所定量補給するに際し、上記略U字状の容器の他方の開放部に粉粒体を充填した測定容器を載置した状態において、上記測定容器の一部が液体中に漬かる構成を採る場合には、上記大容量ポンプと低容量ポンプを用いて略U字状の容器に液体を所定量補給するに際し、予め上記測定容器と同型の有底ダミー測定容器を上記略U字状の容器の他方の開放部に載置して行うことを特徴とする請求項2に記載される計測手段。   When a predetermined amount of liquid is supplied to a substantially U-shaped container using the large-capacity pump and the low-capacity pump, a measurement container filled with powder is placed in the other open portion of the substantially U-shaped container. In the state where a part of the measurement container is immersed in the liquid under the condition, a predetermined amount of liquid is supplied to the substantially U-shaped container using the large-capacity pump and the low-capacity pump. 3. The measuring means according to claim 2, wherein a bottomed dummy measuring container of the same type as the measuring container is placed on the other open portion of the substantially U-shaped container. 上記粉粒体が穀物粉であることを特徴とする請求項1乃至3のいずれか1項に記載される計測手段。   The measuring means according to any one of claims 1 to 3, wherein the granular material is a cereal powder. 上記粉粒体が米粉であることを特徴とする請求項1乃至3のいずれか1項に記載される計測手段。   The measuring means according to any one of claims 1 to 3, wherein the granular material is rice flour.
JP2013037410A 2013-02-27 2013-02-27 Absorbability automatic measuring means of granules Pending JP2014163896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013037410A JP2014163896A (en) 2013-02-27 2013-02-27 Absorbability automatic measuring means of granules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013037410A JP2014163896A (en) 2013-02-27 2013-02-27 Absorbability automatic measuring means of granules

Publications (1)

Publication Number Publication Date
JP2014163896A true JP2014163896A (en) 2014-09-08

Family

ID=51614614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013037410A Pending JP2014163896A (en) 2013-02-27 2013-02-27 Absorbability automatic measuring means of granules

Country Status (1)

Country Link
JP (1) JP2014163896A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107525745A (en) * 2017-09-14 2017-12-29 中国制浆造纸研究院 A kind of infiltration rate analyzer and infiltration rate measure control terminal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01209339A (en) * 1988-02-17 1989-08-23 Sankyo Dengyo Co Ltd Apparatus and method for measuring wetting of powdery granular material
JP2000300102A (en) * 1999-04-21 2000-10-31 Kunimine Industries Co Ltd Excreta treating agent for pet
JP2008007567A (en) * 2006-06-27 2008-01-17 Sumitomo Seika Chem Co Ltd Manufacturing process of water-absorbing resin particle and water-absorbing resin particle obtained by it
JP2012185038A (en) * 2011-03-04 2012-09-27 Miyagi Prefecture Prediction method for starch damage degree of rice powder and evaluation method for processing suitability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01209339A (en) * 1988-02-17 1989-08-23 Sankyo Dengyo Co Ltd Apparatus and method for measuring wetting of powdery granular material
JP2000300102A (en) * 1999-04-21 2000-10-31 Kunimine Industries Co Ltd Excreta treating agent for pet
JP2008007567A (en) * 2006-06-27 2008-01-17 Sumitomo Seika Chem Co Ltd Manufacturing process of water-absorbing resin particle and water-absorbing resin particle obtained by it
JP2012185038A (en) * 2011-03-04 2012-09-27 Miyagi Prefecture Prediction method for starch damage degree of rice powder and evaluation method for processing suitability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107525745A (en) * 2017-09-14 2017-12-29 中国制浆造纸研究院 A kind of infiltration rate analyzer and infiltration rate measure control terminal

Similar Documents

Publication Publication Date Title
CN104568693A (en) Indoor soil infiltration rate measuring device and method
CN204359656U (en) A kind of indoor soil infiltration rate measurement mechanism
CN204027965U (en) Powder fluidity and density measuring equipment
RU2012157781A (en) AUTOMATIC GRAIN MOVEMENT CONTROL SYSTEM BASED ON REAL TIME FILLING LEVEL FOR RECEIVING CONTAINER ZONES
JPH05245289A (en) Detection method for dry laundry mass, water level and washing liquid for drum type washing machine and washing machine
RU2013147913A (en) SYSTEM FOR ISSUING THE DOSED AMOUNT OF BULK MATERIAL AND METHOD OF ISSUING IT
DK1736091T3 (en) Apparatus for wetting a cleaning tool
JP2011519020A5 (en)
RU2014152001A (en) SYSTEM AND METHOD OF GRANULATING SLAG OF SOLID CONSISTENCY
JP2014163896A (en) Absorbability automatic measuring means of granules
CN206352917U (en) Ice machine and its condensate tank of dehumidifier
KR101192992B1 (en) Apparatus for detecting salinity of calcium chloride using snow removing
KR101061294B1 (en) Snow-depth gauge which is able to measure snow weight
CN105427465A (en) Flow metering type discharge liquid metering system of automatic liquid selling machine and metering method thereof
NL2007568A (en) MANUFACTURER DEVICE AND METHOD FOR AUTOMATICALLY REMOVAL OF MANURE.
RU2016111351A (en) DEVICE FOR DETERMINING THE AMOUNT OF BULK MATERIAL, DEVICE FOR DOWNLOADING BULK MATERIAL, MACHINE FOR CLEANING BULK MATERIAL AND THE RELATED METHOD
ES2898891T3 (en) Manufacture of disc-shaped molded parts
JP4759634B2 (en) Corrosion testing machine equipped with a resistance temperature detector cleaning device
WO2018104979A1 (en) Integrated system for the automatic correction of the viscosity of a ceramic mixture for a lost wax casting process
JP5162470B2 (en) Liquid injection device
JP3163164U (en) Liquid seasoning automatic metering device
CN201277872Y (en) Circulation flow-rate measuring device applied for circulating fluid bed
JP5380132B2 (en) Fixed quantity dispensing device
NL2013744B1 (en) Apparatus and method for the manufacture of a liquid additive.
US20240067372A1 (en) Concentrate filling system

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20151016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170403