JP2012185038A - Prediction method for starch damage degree of rice powder and evaluation method for processing suitability - Google Patents

Prediction method for starch damage degree of rice powder and evaluation method for processing suitability Download PDF

Info

Publication number
JP2012185038A
JP2012185038A JP2011048213A JP2011048213A JP2012185038A JP 2012185038 A JP2012185038 A JP 2012185038A JP 2011048213 A JP2011048213 A JP 2011048213A JP 2011048213 A JP2011048213 A JP 2011048213A JP 2012185038 A JP2012185038 A JP 2012185038A
Authority
JP
Japan
Prior art keywords
rice flour
water absorption
water
starch damage
absorption coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011048213A
Other languages
Japanese (ja)
Other versions
JP5548958B2 (en
Inventor
Masaki Shoji
真樹 庄子
yukihiro Hanyu
幸弘 羽生
Sakiko Hatanaka
咲子 畑中
Satoru Mori
哲 毛利
Chiyuki Togashi
千之 富樫
Tomoyuki Fujii
智幸 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyagi Prefectural Government.
Original Assignee
Miyagi Prefectural Government.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyagi Prefectural Government. filed Critical Miyagi Prefectural Government.
Priority to JP2011048213A priority Critical patent/JP5548958B2/en
Publication of JP2012185038A publication Critical patent/JP2012185038A/en
Application granted granted Critical
Publication of JP5548958B2 publication Critical patent/JP5548958B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cereal-Derived Products (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simple and prompt prediction method for a starch damage degree of rice powder and to evaluate processing suitability of the rice powder by predicting the starch damage degree of the rice powder.SOLUTION: A prediction method for a starch degree of rice powder includes a first step of bringing rice powder in contact with water, letting the rice powder absorb water and measuring a change in a moisture content of the rice powder with respect to the lapse of time after contact, and a second step of determining water absorption coefficients (a), K, (n) and (b) by substituting the lapse of time after contact and the moisture content of the rice powder into an approximate expression (I): Y(t)=a[1-exp(-K×t)]+b, in which (t) is time.

Description

本発明は、米粉の澱粉損傷度の予測方法及び加工適性の評価方法に関する。   The present invention relates to a method for predicting starch damage of rice flour and a method for evaluating processability.

米粉は団子、餅、せんべいのような伝統的な米菓に利用されてきたが、近年、食糧自給率向上の観点から、米粉の新規用途開発による消費促進が図られている。   Rice flour has been used in traditional rice crackers such as dumplings, rice cakes, and rice crackers, but in recent years, from the viewpoint of improving food self-sufficiency, consumption has been promoted by developing new uses for rice flour.

従来の米粉は製法により粉の特性が異なり、目的に応じて上新粉や落雁粉のような多種の米粉が存在する。近年、新規の用途として、パン、洋菓子及び麺などに米粉を使用することが試みられている。しかし、従来の米粉では粒子径が大きすぎるため良質なパンが作れないという問題があった。そのため、製粉方法が改良され、従来よりも米粉の粒子径を小さくすることが可能となった。   Conventional rice flour has different flour characteristics depending on the production method, and there are various types of rice flour such as upper fresh powder and fallen rice flour depending on the purpose. In recent years, as a new application, attempts have been made to use rice flour for bread, confectionery, noodles and the like. However, conventional rice flour has a problem in that it cannot produce good quality bread because its particle size is too large. Therefore, the milling method has been improved, and it has become possible to make the particle size of rice flour smaller than before.

しかしながら、粒子径を小さくすると、粉砕による摩擦熱や物理的な衝撃によって米に含まれる澱粉が損傷し、澱粉損傷度の高い米粉が調製されやすくなる。米粉の澱粉損傷度は特に製パン適性に大きく関与すると言われており、米粉の特性として澱粉損傷度は重要な因子である(非特許文献1)。   However, when the particle size is reduced, starch contained in the rice is damaged by frictional heat and physical impact caused by pulverization, and rice flour having a high degree of starch damage is easily prepared. It is said that the starch damage degree of rice flour is particularly concerned with bread-making suitability, and starch damage degree is an important factor as a characteristic of rice flour (Non-patent Document 1).

現在、澱粉の損傷度を測定するための方法には、α−アミラーゼとアミログルコシダーゼを使用して澱粉損傷度を測定する酵素法(AACC法76−31)がある。この酵素法は、小麦粉の澱粉損傷度を評価する方法として用いられているものであるが、米粉にも適用されている。この方法は定量性があるものの、操作が煩雑であり、また、酵素反応が温度と時間に鋭敏であるため結果がばらつきやすい。そのため、再現性のある結果を得るには熟練した操作が必要である。また、吸光度測定をするため分光光度計が必要である。   Currently, as a method for measuring the degree of starch damage, there is an enzyme method (AACC method 76-31) for measuring the degree of starch damage using α-amylase and amyloglucosidase. This enzyme method is used as a method for evaluating the starch damage degree of wheat flour, but is also applied to rice flour. Although this method is quantitative, the operation is complicated and the results are likely to vary because the enzyme reaction is sensitive to temperature and time. Therefore, skilled operations are required to obtain reproducible results. In addition, a spectrophotometer is required to measure absorbance.

特許文献1には、澱粉の損傷度を迅速で簡便に測定する方法として、酵素処理する際の消費酸素量を溶存酸素電極で測定する方法が開示されている。この方法では、酸素消費量の測定時間は3分とされているが、酵素処理にかかる時間は測定時間に含まれておらず、実際は数時間の測定が必要である。したがって簡便ではあるものの迅速な測定とは言えない。   Patent Document 1 discloses a method of measuring the amount of oxygen consumed during enzyme treatment with a dissolved oxygen electrode as a method for quickly and easily measuring the degree of starch damage. In this method, the measurement time of the oxygen consumption is set to 3 minutes, but the time required for the enzyme treatment is not included in the measurement time and actually requires several hours of measurement. Therefore, although it is simple, it cannot be said to be a rapid measurement.

非特許文献2には、澱粉の糊化度を測定する方法として、β−アミラーゼとプルラナーゼを使用して澱粉損傷度を測定する酵素法(BAP法)が開示されている。澱粉損傷度と糊化度は密接な関係があるため、糊化度から澱粉損傷度を予測することは可能である。しかしながら、BAP法は特許文献1に開示されている測定方法と同様に、定量性はあるものの操作が煩雑で熟練を要する。   Non-Patent Document 2 discloses an enzyme method (BAP method) for measuring the degree of starch damage using β-amylase and pullulanase as a method for measuring the gelatinization degree of starch. Since the starch damage degree and the gelatinization degree are closely related, it is possible to predict the starch damage degree from the gelatinization degree. However, the BAP method, like the measuring method disclosed in Patent Document 1, is quantitative but requires complicated operations.

非特許文献3には、澱粉溶液の透明度で評価する濁度法が開示されている。濁度法は簡便であり、ある程度精度があるという利点を有する。しかしながら、この方法は広く知られておらず、米粉での適用事例は少ない。   Non-Patent Document 3 discloses a turbidity method for evaluating the transparency of a starch solution. The turbidity method has the advantage of being simple and accurate to some extent. However, this method is not widely known, and there are few application examples with rice flour.

その他、X線回折、示差走査熱量計による熱分析などにより澱粉の損傷度を測定する方法がある。また、米粒の炊飯時の糊化度を推定する方法としてFT−IRを用いた検討がされている(非特許文献4)。これらの方法は、それぞれ測定に高額な装置を必要とするため、汎用には適さないという問題がある。   In addition, there are methods for measuring the degree of starch damage by X-ray diffraction, thermal analysis using a differential scanning calorimeter, and the like. Moreover, the examination using FT-IR is performed as a method of estimating the gelatinization degree at the time of rice cooking of a rice grain (nonpatent literature 4). These methods each have a problem that they are not suitable for general use because they require expensive devices for measurement.

特開平8−242891号公報JP-A-8-242891

與座宏一、松木順子、岡留博司、岡部繭子、鈴木啓太郎、奥西智哉、北村義明、堀金彰、山田純代、松倉潮、「食総研報[技術報告]」、2010年、第74巻、p.37−44Kouichi Scorpio, Junko Matsuki, Hiroshi Okadome, Kyoko Okabe, Keitaro Suzuki, Tomoya Okuni, Yoshiaki Kitamura, Akira Hori, Junyo Yamada, Shio Matsukura, “The Institute of Food Research [Technical Report]”, 2010, Vol. 74, p. 37-44 貝沼圭二、松永暁子,枝川正秀,小林昭一,「澱粉科学」、1981年、第28巻、第4号、p.235−240Shinji Kakinuma, Atsuko Matsunaga, Masahide Edagawa, Shoichi Kobayashi, “Starch Science”, 1981, Vol. 28, No. 4, p. 235-240 渋川祥子、福場博保、「家政誌」、1973年、第24巻、第1号、p.45−48Shoko Shibukawa, Hiroho Fukuba, “Home Economics Magazine”, 1973, Vol. 24, No. 1, p. 45-48 綾部園子、田中京子、浜田陽子、香西みどり、畑江敬子、「日本食品科学工学会誌」、2006年、第53巻、第9号,p.481−488Sonoko Ayabe, Kyoko Tanaka, Yoko Hamada, Midori Kasai, Keiko Hatae, “The Journal of Japan Society for Food Science and Technology”, 2006, 53, 9, p. 481-488

本願発明は、簡便且つ迅速な米粉の澱粉損傷度の予測方法を提供することを目的とする。また、米粉の澱粉損傷度を予測することにより、米粉の加工適性を評価することを目的とする。   The object of the present invention is to provide a simple and quick method for predicting the degree of starch damage in rice flour. Moreover, it aims at evaluating the processability of rice flour by predicting the starch damage degree of rice flour.

本発明によれば、米粉の澱粉損傷度の予測方法が提供される。該方法は、米粉を水と接触させて前記米粉に水を吸収させ、接触後の経過時間に対する米粉の含水率の変化を測定する第1の工程と、前記接触後の経過時間と米粉の含水率を下記近似式(I)に当てはめ、吸水係数a、K、n、bを求める第2の工程とを含む。式(I)中のtは時間である。
Y(t)=a[1−exp(−K×t)]+b (I)
ADVANTAGE OF THE INVENTION According to this invention, the prediction method of the starch damage degree of rice flour is provided. The method comprises a first step of bringing rice flour into contact with water so that the rice flour absorbs water, and measuring a change in the moisture content of the rice flour with respect to the elapsed time after contact; the elapsed time after the contact and the moisture content of the rice flour; A second step of fitting the rate to the following approximate expression (I) to obtain the water absorption coefficients a, K, n, and b. T in the formula (I) is time.
Y (t) = a [1-exp (−K × t n )] + b (I)

本発明によれば、簡便且つ迅速な米粉の澱粉損傷度の予測方法を提供することができる。さらに、製パン適性や製菓子適性のような米粉の加工適性を評価することができ、用途に適した米粉を選択することができる。   ADVANTAGE OF THE INVENTION According to this invention, the prediction method of the starch damage degree of the rice flour simple and quick can be provided. Furthermore, the processability of rice flour, such as the ability to make bread and the confectionery, can be evaluated, and the rice flour suitable for the application can be selected.

含水率の測定方法の一態様を示す図である。It is a figure which shows the one aspect | mode of the measuring method of a moisture content. 実施例1における米粉の粒度分布を示すグラフである。It is a graph which shows the particle size distribution of the rice flour in Example 1. 実施例1における米粉の含水率の変化を示すグラフである。It is a graph which shows the change of the moisture content of the rice flour in Example 1. 実施例1における吸水係数Kと澱粉損傷度の相関を示すグラフである。It is a graph which shows the correlation of the water absorption coefficient K in Example 1, and a starch damage degree. 実施例1における吸水係数K/aと澱粉損傷度の相関を示すグラフである。It is a graph which shows the correlation of the water absorption coefficient K / a in Example 1, and a starch damage degree. 実施例1における吸水係数Kと食パンの比容積の相関を示すグラフである。It is a graph which shows the correlation of the water absorption coefficient K in Example 1, and the specific volume of bread. 実施例1における吸水係数K/aと食パンの比容積の相関を示すグラフである。It is a graph which shows the correlation of the water absorption coefficient K / a in Example 1, and the specific volume of bread. 実施例2における吸水係数Kと澱粉損傷度の相関を示すグラフである。It is a graph which shows the correlation of the water absorption coefficient K in Example 2, and a starch damage degree. 実施例2における吸水係数K/aと澱粉損傷度の相関を示すグラフである。It is a graph which shows the correlation of the water absorption coefficient K / a in Example 2, and a starch damage degree.

本発明の一つの態様において、新規の近似式(I)を用いた米粉の澱粉損傷度の予測方法が提供される。該方法では、米粉の含水率の時間変化を測定し、該測定結果を近似式(I)に当てはめることにより、近似式(I)の吸水係数を求める。なお、ここで澱粉損傷度とは、米粉に含まれる澱粉の全質量に対する損傷した澱粉の質量の割合を指す。   In one embodiment of the present invention, a method for predicting the starch damage degree of rice flour using the novel approximate formula (I) is provided. In this method, the time change of the moisture content of rice flour is measured, and the measurement result is applied to the approximate expression (I) to obtain the water absorption coefficient of the approximate expression (I). Here, the degree of starch damage refers to the ratio of the mass of damaged starch to the total mass of starch contained in rice flour.

以下、本態様における米粉の澱粉損傷度の予測方法について詳細に説明する。
まず、第1の工程において、米粉を水と接触させて、米粉に水を吸収させる。水を吸収した米粉の質量を測定し、米粉の含水率を算出する。質量の測定は、米粉を水と接触させてから例えば一定時間毎に行い、接触後の経過時間に対する米粉の含水率の変化を測定する。
Hereinafter, the method for predicting the starch damage degree of rice flour in this embodiment will be described in detail.
First, in the first step, the rice flour is brought into contact with water so that the rice flour absorbs water. The mass of the rice flour that has absorbed water is measured, and the moisture content of the rice flour is calculated. The mass is measured, for example, at regular intervals after the rice flour is brought into contact with water, and the change in the moisture content of the rice flour with respect to the elapsed time after the contact is measured.

ここで、米粉の含水率とは、測定開始前の米粉の質量(初期米粉質量)に対する、米粉が含有する水分量の割合を指す。米粉が含有する水分量は、測定開始前の米粉が含有する水分(初期含水量)と測定中に米粉に吸収された水分の合計である。即ち、
米粉の含水率=初期含水量+吸水量/初期米粉質量
である。
Here, the moisture content of rice flour refers to the ratio of the amount of water contained in rice flour to the mass of rice flour before the start of measurement (initial rice flour mass). The amount of water contained in the rice flour is the sum of the moisture contained in the rice flour before the start of measurement (initial moisture content) and the moisture absorbed in the rice flour during the measurement. That is,
Water content of rice flour = initial water content + water absorption / initial rice powder mass.

なお、測定開始前の米粉の質量(乾燥質量)と、米粉が含有する水分又は含水率(初期含水量又は初期含水率)は予め測定しておく。   In addition, the mass (dry mass) of the rice flour before the start of measurement and the moisture or moisture content (initial moisture content or initial moisture content) contained in the rice flour are measured in advance.

次いで、第2の工程において、測定された前記米粉の含水率と接触後の経過時間を下記近似式(I)に当てはめ、吸水係数a、K、n、bを求める。なお、式(I)においてtは時間である。
Y(t)=a[1−exp(−K×t)]+b (I)
この4種の吸水係数を有する近似式(I)は、その吸水係数が米粉の澱粉損傷度と高い相関を有するものであり、本発明者らが鋭意研究によって見出した新規な式である。
Next, in the second step, the measured moisture content of the rice flour and the elapsed time after contact are applied to the following approximate expression (I) to obtain the water absorption coefficients a, K, n, and b. In the formula (I), t is time.
Y (t) = a [1-exp (−K × t n )] + b (I)
Approximation formula (I) having these four kinds of water absorption coefficients has a high correlation with the starch damage degree of rice flour, and is a novel expression found by the present inventors through earnest research.

近似式(I)において、吸水係数aは測定開始後に米粉が吸水して水分が飽和した際の、初期米粉質量に対する水分量の比、即ち、飽和吸水率を反映する。吸水係数bは初期含水率を反映する。吸水係数aとbを加算した値は飽和含水率を反映する。   In the approximate expression (I), the water absorption coefficient a reflects the ratio of the amount of water to the initial rice flour mass, that is, the saturated water absorption rate when the rice flour absorbs water after the measurement is started and the water is saturated. The water absorption coefficient b reflects the initial moisture content. The value obtained by adding the water absorption coefficients a and b reflects the saturated water content.

吸水係数Kは吸水速度を反映する。吸水係数Kの値が大きいほど、米粉の吸水速度は速く、飽和含水率に至る時間が短い。一方、吸水係数Kの値が小さいほど、米粉の吸水速度は遅く、飽和含水率に至る時間が長い。   The water absorption coefficient K reflects the water absorption speed. The larger the value of the water absorption coefficient K, the faster the water absorption rate of rice flour and the shorter the time to reach the saturated water content. On the other hand, the smaller the value of the water absorption coefficient K, the slower the water absorption speed of the rice flour and the longer it takes to reach the saturated moisture content.

吸水係数nは吸水速度の変化を反映する。吸水係数nの値が大きいほど、米粉の初期の吸水速度の変化が鋭敏で、吸水係数nの値が小さいほど、米粉の吸水速度の変化が緩慢である。   The water absorption coefficient n reflects the change in the water absorption speed. The larger the value of the water absorption coefficient n, the sharper the change in the initial water absorption rate of the rice flour. The smaller the value of the water absorption coefficient n, the slower the change in the water absorption rate of the rice flour.

本発明者らによって、近似式(I)の吸水係数K、及び、吸水係数K/aが、澱粉損傷度と高い逆相関を有することが明らかとなった。吸水係数K及び吸水係数K/aが澱粉損傷度と高い逆相関を有することは、米粉の澱粉損傷度を酵素法によって測定し、その結果と比較することにより実証されている。よって、吸水係数K又はK/aの値に基づいて、米粉の澱粉損傷度を予測することができる。   The present inventors have revealed that the water absorption coefficient K and the water absorption coefficient K / a in the approximate formula (I) have a high inverse correlation with the starch damage degree. It has been demonstrated that the water absorption coefficient K and the water absorption coefficient K / a have a high inverse correlation with the starch damage degree by measuring the starch damage degree of rice flour by an enzymatic method and comparing it with the result. Therefore, the starch damage degree of rice flour can be predicted based on the value of the water absorption coefficient K or K / a.

吸水係数K又はK/aが大きいほど澱粉損傷度が低く、吸水係数K又はK/aが小さいほど澱粉損傷度が高い。澱粉損傷度の予測には、吸水係数KとK/aの何れを用いてもよいが、K/aを用いることがより好ましい。通常、澱粉損傷度が大きいほど水分の吸収量が大きいが、aは飽和吸水率を反映する吸水係数であるため、吸水係数K/aは澱粉損傷度との相関性がより高くなると考えられる。   The greater the water absorption coefficient K or K / a, the lower the starch damage degree, and the smaller the water absorption coefficient K or K / a, the higher the starch damage degree. Either the water absorption coefficient K or K / a may be used for the prediction of the starch damage degree, but K / a is more preferable. Normally, the greater the starch damage, the greater the amount of moisture absorbed, but since a is a water absorption coefficient reflecting the saturated water absorption, the water absorption coefficient K / a is considered to have a higher correlation with the starch damage degree.

また、近似式(I)に吸水係数nが含まれることにより、あらゆる種類の米粉の吸水パターンを反映することが可能である。それ故、本態様による澱粉損傷度の予測方法は、例えば、初期の吸水量変化は大きいもののその後はほとんど吸水しない米粉や、小麦粉と同様に徐々に吸水する吸水パターンを有する米粉など、何れの吸水パターンを有する米粉にも適用することが可能である。   Moreover, by including the water absorption coefficient n in the approximate expression (I), it is possible to reflect the water absorption patterns of all kinds of rice flour. Therefore, the method for predicting the degree of starch damage according to this embodiment is any water absorption, for example, rice flour that has a large initial water absorption change but hardly absorbs water thereafter, and rice flour that has a water absorption pattern that gradually absorbs water like wheat flour. It can also be applied to rice flour having a pattern.

なお、測定された米粉の含水率と接触後の経過時間を近似式(I)に当てはめ、吸水係数a、K、n、bを求める工程は、一般的な表計算ソフトによって行うことができる。例えば、マイクロソフト社製エクセルに実測値を入力し、近似式の係数をソルバー機能による繰り返し計算で求めることができる。   In addition, the process of calculating | requiring the water absorption coefficient a, K, n, and b by applying the measured moisture content of rice flour and the elapsed time after contact to approximate expression (I) can be performed by general spreadsheet software. For example, an actual measurement value is input to Microsoft Excel, and the coefficient of the approximate expression can be obtained by repeated calculation using a solver function.

上記第1の工程における測定は、これに限定されないが、底部に開孔を有する容器内部にろ紙を敷き、その上に米粉を載せ、該容器の底部を水中に静置することにより行うことができる。   The measurement in the first step is not limited to this, but can be performed by placing a filter paper inside a container having an opening at the bottom, placing rice flour on it, and allowing the bottom of the container to stand in water. it can.

含水率の測定の一態様を、図1を参照して説明する。まず、円筒状の測定容器1にろ紙2を敷き、その上に、初期含水率をあらかじめ測定した米粉3を置き、該容器の質量を測定する。これを初期質量とする。なお、測定容器1の底部4には、予め開孔5を設けておく。   One mode of measuring the moisture content will be described with reference to FIG. First, the filter paper 2 is laid on the cylindrical measurement container 1, and the rice flour 3 whose initial moisture content is measured in advance is placed thereon, and the mass of the container is measured. This is the initial mass. An opening 5 is provided in advance in the bottom 4 of the measurement container 1.

次いで、測定容器1を、浅く水を張った水槽6内に置くことにより、測定容器1の底部4を水中に静置する。これにより、測定容器1内に底部4の開孔5を通して水が浸入し、米粉3と接触し、米粉3に水が吸収される。測定開始後、例えば一定時間毎に、測定容器の質量を測定する。   Next, the measurement container 1 is placed in a shallow water tank 6 so that the bottom 4 of the measurement container 1 is left in water. As a result, water enters the measuring container 1 through the opening 5 in the bottom 4, comes into contact with the rice flour 3, and the rice flour 3 absorbs water. After the measurement is started, for example, the mass of the measurement container is measured at regular intervals.

測定容器1は、吸水しない材料で形成された容器を用いる。例えばアルミ製の缶を用いることができるが、これに限定されない。容器形状は、底を有し内部に米粉を充填できれば、円筒状に限定されず、任意の形状であってよい。   As the measurement container 1, a container formed of a material that does not absorb water is used. For example, an aluminum can can be used, but is not limited thereto. The container shape is not limited to a cylindrical shape as long as it has a bottom and can be filled with rice flour inside, and may be any shape.

測定容器1の底部4には、水が浸入可能なように開孔5が設けられる。開孔5の大きさは特に限定されないが、例えば、直径が1〜4mmとすることができる。開孔5の数は、開孔5が容器の底部4に均等に配置され、且つ、水が円滑に測定容器1内に浸入するのに十分な数であることが好ましい。   An opening 5 is provided in the bottom 4 of the measurement container 1 so that water can enter. Although the magnitude | size of the opening 5 is not specifically limited, For example, a diameter can be 1-4 mm. It is preferable that the number of the apertures 5 be a sufficient number so that the apertures 5 are evenly arranged in the bottom 4 of the container and water smoothly enters the measurement container 1.

水槽6内の水深は、測定容器1の高さより低ければよいが、水深が深すぎると米粉3への水の浸透が速くなるため、浅い方が好ましい。水深が5〜20mmの範囲であればより正確な測定が可能である。また、水槽6内に入れられる水の量は、米粉3の最大吸収量より十分に多い量であることが好ましい。   Although the water depth in the water tank 6 should just be lower than the height of the measurement container 1, since the water penetration to the rice flour 3 will become quick if the water depth is too deep, the shallower one is preferable. If the water depth is in the range of 5 to 20 mm, more accurate measurement is possible. Moreover, it is preferable that the amount of water put in the water tank 6 is an amount sufficiently larger than the maximum absorption amount of the rice flour 3.

測定は、米粉を水と接触させてから米粉の含水率が飽和するまで行うことが好ましく、例えば30分から1時間程度行うことが好ましい。   The measurement is preferably performed after bringing the rice flour into contact with water until the moisture content of the rice flour is saturated, for example, it is preferably performed for about 30 minutes to 1 hour.

本態様における澱粉損傷度の予測方法に供される米粉は、例えば、精白米、玄米及び発芽玄米の粉、並びに白糠及び赤糠のような種々の米粉であってよく、精白米の粉であることがより好ましい。   The rice flour used in the method for predicting the degree of starch damage in this embodiment may be, for example, polished rice, brown rice and germinated brown rice flour, and various rice flours such as birch and red rice bran, and is a polished rice flour. It is more preferable.

以上説明したように、本態様によれば、近似式(I)を用いることにより、米粉の澱粉損傷度を簡便、迅速、且つ、安価に測定することが可能である。   As described above, according to this aspect, by using the approximate expression (I), the starch damage degree of rice flour can be measured easily, quickly, and inexpensively.

本発明のさらなる態様おいて、上記近似式(I)の吸水係数に基づいて、製パン適性や製菓子適性のような米粉の加工適性を評価する方法が提供される。ここで、加工適性の高い米粉とは、生地の吸水性が高い米粉や、発酵時及び焼成時の膨張性が高い米粉を指す。   In a further aspect of the present invention, there is provided a method for evaluating the processing aptitude of rice flour such as breadmaking aptitude and confectionery aptitude based on the water absorption coefficient of the approximate formula (I). Here, the rice flour having high processability refers to rice flour having a high water absorbency of dough and rice flour having high expansibility during fermentation and baking.

本発明者らは、上記の近似式(I)の吸水係数K、及び、吸水係数K/aが、加工適性と相関を有することを明らかにした。よって、吸水係数K又はK/aの値に基づいて、米粉の加工適性を評価することができる。例えば、吸水係数K又はK/aが大きい米粉は、加工適性が高く、そのような米粉を用いて製造されたパンは比容積が大きい。一方、吸水係数K又はK/aが小さい米粉は、加工適性が低く、そのような米粉を用いて製造されたパンは比容積が小さい。   The present inventors have clarified that the water absorption coefficient K and the water absorption coefficient K / a in the above approximate formula (I) have a correlation with workability. Therefore, the processability of rice flour can be evaluated based on the value of the water absorption coefficient K or K / a. For example, rice flour having a large water absorption coefficient K or K / a has high processability, and bread produced using such rice flour has a large specific volume. On the other hand, rice flour having a small water absorption coefficient K or K / a has low processability, and bread produced using such rice flour has a small specific volume.

また、吸水係数K又はK/aの値に基づいて、加工に適した米粉を選択することができる。例えば、良好な気泡性を必要とするパンや菓子を製造するためには、吸水係数K又はK/aの値が大きい米粉を選択すればよい。   Moreover, based on the value of the water absorption coefficient K or K / a, rice flour suitable for processing can be selected. For example, in order to produce bread or confectionery that requires good foamability, rice flour having a large water absorption coefficient K or K / a may be selected.

またさらに、吸水係数K又はK/aの値に基づいて、米粉を用いて生地を調製する際の適正な吸水量を予測することができる。これにより、パンや菓子などの発酵時や焼成時のふくらみを良好にすることも可能である。   Furthermore, based on the value of the water absorption coefficient K or K / a, it is possible to predict an appropriate amount of water absorption when preparing the dough using rice flour. Thereby, it is also possible to improve the swelling at the time of fermentation or baking of bread or confectionery.

(含水率の測定)
平均粒子径の異なる試料1〜5の米粉を用いて、含水率の経時変化を測定した。測定容器として、直径約40mmのアルミ缶を用いた。アルミ缶の底に直径約2mmの穴を等間隔に7箇所設けた。測定容器の底に、同じ直径を有する円状のガラス製ろ紙を敷いた後、測定容器の質量を測定した。
(Measurement of moisture content)
Using rice flour of samples 1 to 5 having different average particle diameters, the change in moisture content with time was measured. An aluminum can having a diameter of about 40 mm was used as a measurement container. Seven holes with a diameter of about 2 mm were provided at equal intervals on the bottom of the aluminum can. After placing circular glass filter paper having the same diameter on the bottom of the measurement container, the mass of the measurement container was measured.

次に、ろ紙の上に、予め含水率を測定した米粉5gをのせ、容器底部に均一に広げた。次いで、質量を測定した(初期質量)。   Next, 5 g of rice flour whose moisture content was measured in advance was placed on the filter paper and spread evenly on the bottom of the container. The mass was then measured (initial mass).

測定容器を、水深10mmの水を張ったバットに静置した。静置したときの時間を測定時間0分とした。一定時間毎に測定容器を取り出し、布で容器を拭いた後、質量を測定し、再びバットに静置した。この作業を、質量変化が無くなるまで、およそ30分繰り返した。   The measurement container was left still on a bat filled with water having a depth of 10 mm. The time when allowed to stand was defined as a measurement time of 0 minutes. The measurement container was taken out at regular intervals, wiped with a cloth, measured for mass, and placed on the bat again. This operation was repeated for about 30 minutes until there was no change in mass.

得られた含水率の経時変化を、近似式(I)に当てはめ、吸水係数a、K、n、bを求めた。   The obtained water content change with time was applied to the approximate expression (I) to obtain the water absorption coefficients a, K, n, and b.

(酵素法による澱粉損傷度の測定)
試料1〜5の米粉について、酵素法により澱粉損傷度を測定した。15mlのサンプルチューブに米粉試料50mgとα−アミラーゼ溶液100μlを加え、ボルテックスミキサーで撹拌し、40℃の温槽中で10分間、酵素反応を行った。その後、0.2%v/v希硫酸4mlを加えて酵素反応を止め、遠心分離(2,000g、5分)した後、上澄液を採取した。上澄液100μlとアミログルコシダーゼ溶液100μlを10mlガラス試験管に加え、ボルテックスミキサーで5秒間撹拌し、40℃の温槽中で10分間、酵素反応を行った。その後、グルコース発色溶液4mlを加え、40℃の温槽中で20分間、反応させた後、分光光度計で510nmの吸光度を測定した。
(Measurement of starch damage by enzymatic method)
About the rice flour of samples 1-5, the starch damage degree was measured by the enzyme method. A rice powder sample (50 mg) and an α-amylase solution (100 μl) were added to a 15 ml sample tube, stirred with a vortex mixer, and subjected to an enzyme reaction in a warm bath at 40 ° C. for 10 minutes. Thereafter, 4 ml of 0.2% v / v dilute sulfuric acid was added to stop the enzyme reaction, followed by centrifugation (2,000 g, 5 minutes), and then the supernatant was collected. 100 μl of the supernatant and 100 μl of the amyloglucosidase solution were added to a 10 ml glass test tube, stirred for 5 seconds with a vortex mixer, and subjected to an enzyme reaction in a warm bath at 40 ° C. for 10 minutes. Thereafter, 4 ml of a glucose coloring solution was added and reacted in a warm bath at 40 ° C. for 20 minutes, and then the absorbance at 510 nm was measured with a spectrophotometer.

1.5mg/mlグルコース溶液100μlと酢酸緩衝液100μlとグルコース発色溶液4mlをガラス試験管に加え、20分後の510nmの吸光度を求めて検量線を作成した。この検量線に基づいて、試料1〜5の米粉の澱粉損傷度を算出した。   A calibration curve was prepared by adding 100 μl of a 1.5 mg / ml glucose solution, 100 μl of acetate buffer and 4 ml of a glucose coloring solution to a glass test tube, and determining the absorbance at 510 nm after 20 minutes. Based on this calibration curve, the starch damage degree of the rice flour of Samples 1 to 5 was calculated.

(パン生地の粘性測定)
試料1〜5の米粉を用いて、パン生地を調製し、その粘性を測定した。米粉試料192gと、グルテン48gと、水216g(粉に対して90%)を混練して生地を調製した。試料1〜5の米粉を用いて作製したそれぞれの生地について、機械的剪断力に対する抵抗力(Nm)を温度30℃、回転数63rpmの条件で測定した。生地の粘性は、小麦粉の粘度測定で比較基準値として広く用いられている単位である、ブラベンダーユニット(BU)により表した。
(Measure the viscosity of bread dough)
Bread dough was prepared using the rice flour of Samples 1 to 5, and its viscosity was measured. A dough was prepared by kneading 192 g of a rice flour sample, 48 g of gluten, and 216 g of water (90% based on the flour). About each dough produced using the rice flour of Samples 1 to 5, the resistance (Nm) to the mechanical shearing force was measured under the conditions of a temperature of 30 ° C. and a rotational speed of 63 rpm. The viscosity of the dough was expressed by the Brabender unit (BU), which is a unit widely used as a comparative reference value in measuring the viscosity of flour.

(食パンの調製)
試料1〜5の米粉を用いて食パンを調製した。材料の配合は以下の通りとした。
(Preparation of bread)
Bread was prepared using the rice flour of Samples 1-5. The composition of the materials was as follows.

米粉試料 240g
グルテン 60g
水 234g
食塩 5g
上白糖 15g
スキムミルク 6g
ショートニング 15g
ドライイースト 5g
米粉とグルテンを混合し、これに食塩、上白糖、スキムミルク、ショートニング、ドライイースト、水を加えて混合し、生地を調製した。調製した生地を型に入れ、40℃、湿度80%の環境で50分間、発酵させた。その後、180℃のオーブンで30分間、焼成した。室温で一晩放冷した後、高さ、質量、比容積を測定した。比容積は菜種法により測定した。
240g rice flour sample
60g gluten
234g of water
5g salt
Super white sugar 15g
Skim milk 6g
Shortening 15g
5g dry yeast
Rice flour and gluten were mixed, and salt, super white sugar, skim milk, shortening, dry yeast and water were added and mixed to prepare a dough. The prepared dough was put in a mold and fermented in an environment of 40 ° C. and 80% humidity for 50 minutes. Then, it baked for 30 minutes in 180 degreeC oven. After allowing to cool overnight at room temperature, the height, mass, and specific volume were measured. The specific volume was measured by the rapeseed method.

(測定結果)
表1に、試料1〜5の米粉の吸水係数a、K、n、bと、初期含水率(%)、平均粒子径(μm)、酵素法により測定した澱粉損傷度(%)、生地粘性(BU)、食パン高さ(cm)、食パン質量(g)、食パン比容積(ml/g)を示した。なお、平均粒子径は、一般的な粒度分布測定機を用いて測定した。

Figure 2012185038
(Measurement result)
Table 1 shows the water absorption coefficients a, K, n, and b of the rice flour samples 1 to 5, initial moisture content (%), average particle diameter (μm), starch damage degree (%) measured by the enzyme method, and dough viscosity. (BU), bread height (cm), bread mass (g), bread bread specific volume (ml / g). The average particle size was measured using a general particle size distribution measuring machine.
Figure 2012185038

表1から、澱粉損傷度が高い程、生地粘性が高くなる傾向があり、また、食パンの高さと比容積が小さくなる傾向があることが分かる。このように、澱粉損傷度は生地粘性、パンの高さと比容積と高い相関を示しており、製パン適性に影響する因子であることが分かる。   From Table 1, it can be seen that the higher the degree of starch damage, the higher the dough viscosity tends to be and the lower the bread breadth and specific volume. Thus, the starch damage degree shows a high correlation with the dough viscosity, bread height and specific volume, and it can be seen that it is a factor affecting bread making aptitude.

図2に、試料1〜5の米粉の粒度分布のグラフを示した。試料1は、粒度分布が広く、粒子径の小さい米粉が多く含まれている。よって、澱粉損傷度が大きいと予測される。一方、試料5は粒度分布が最も狭かった。   In FIG. 2, the graph of the particle size distribution of the rice flour of the samples 1-5 was shown. Sample 1 has a wide particle size distribution and contains a large amount of rice flour with a small particle size. Therefore, it is predicted that the degree of starch damage is large. On the other hand, Sample 5 had the narrowest particle size distribution.

図3に、試料1〜5の米粉の含水率の時間変化を示した。試料1は、吸水速度の変化が緩慢であり、含水率が飽和するまでの時間が長かった。一方、試料5は吸水速度の変化が鋭敏であり、含水率が飽和するまでの時間が短かった。このことから、粒度分布が広いほど吸水速度の変化が緩慢であり、また、含水率が飽和するまでの時間が長い傾向があると考えられる。   In FIG. 3, the time change of the moisture content of the rice flour of samples 1-5 was shown. Sample 1 had a slow change in water absorption rate, and it took a long time until the water content was saturated. On the other hand, Sample 5 had a sharp change in water absorption rate, and the time until the water content was saturated was short. From this, it is considered that the wider the particle size distribution, the slower the change in the water absorption rate and the longer the time until the water content is saturated.

図4及び5に、試料1〜5の米粉の吸水係数K及びK/aのそれぞれと、澱粉損傷度との関係を示した。図に示された通り、近似式の吸水係数K及びK/aはそれぞれ、澱粉損傷度と高い逆相関を有することが分かる。従って、吸水係数K又はK/aから、澱粉損傷度が推定できることが示された。   4 and 5 show the relationship between the water absorption coefficients K and K / a of the rice flours of Samples 1 to 5 and the degree of starch damage. As shown in the figure, it can be seen that the water absorption coefficients K and K / a in the approximate expression have a high inverse correlation with the starch damage degree. Therefore, it was shown that the starch damage degree can be estimated from the water absorption coefficient K or K / a.

図6及び7に、試料1〜5の米粉の吸水係数K及びK/aのそれぞれと、食パンの比容積との関係を示した。図に示された通り、近似式の吸水係数K及びK/aはそれぞれ、食パンの比容積と高い相関性を有することが分かる。従って、吸水係数K又はK/aから、米粉の製パン適性が評価できることが示された。   6 and 7 show the relationship between the water absorption coefficients K and K / a of the rice flours of Samples 1 to 5 and the specific volume of bread. As shown in the figure, it can be seen that the water absorption coefficients K and K / a of the approximate expression have a high correlation with the specific volume of bread. Therefore, it was shown that the bread-making ability of rice flour can be evaluated from the water absorption coefficient K or K / a.

市販の米粉を用いて、近似式(I)の吸水係数を求め、澱粉損傷度との相関性を調べた。試料6〜10は、ひとめぼれを乾式粉砕した市販の米粉を5分画に分級したものである。試料11〜15は、ひとめぼれを湿式粉砕した市販の米粉を5分画に分級したものである。試料16、17、18、19はそれぞれ、ササニシキ、あきたこまち、国産米、ひとめぼれを原料とした市販の米粉である。   Using commercially available rice flour, the water absorption coefficient of the approximate formula (I) was determined, and the correlation with the degree of starch damage was examined. Samples 6 to 10 are obtained by classifying commercially available rice flour obtained by dry-grinding a dip into five fractions. Samples 11 to 15 are obtained by classifying commercially available rice flour obtained by wet-grinding the dip into five fractions. Samples 16, 17, 18, and 19 are commercially available rice flour made from Sasanishiki, Akitakomachi, domestic rice, and Hitomebore, respectively.

試料6〜19のそれぞれについて、実施例1で記載したとおりに含水率を測定し、近似式(I)の吸水係数a、K、n、bを求めた。また、実施例1で記載したとおりに、酵素法による澱粉損傷度の測定を行った。   About each of the samples 6-19, the moisture content was measured as described in Example 1, and the water absorption coefficients a, K, n, and b of the approximate formula (I) were obtained. Further, as described in Example 1, the degree of starch damage was measured by an enzymatic method.

表2に、吸水係数a、K、n、b、平均粒子径(pm)、澱粉損傷度(%)を示した。また、図8及び9に、吸水係数K及びK/aのそれぞれと、澱粉損傷度との関係を示した。

Figure 2012185038
Table 2 shows the water absorption coefficient a, K, n, b, average particle diameter (pm), and starch damage degree (%). 8 and 9 show the relationship between the water absorption coefficients K and K / a and the degree of starch damage.
Figure 2012185038

図8及び9から、吸水係数K及びK/aはそれぞれ、澱粉損傷度と高い逆相関を有することが分かる。従って、吸水係数K又はK/aから、澱粉損傷度が推定できることが示された。   8 and 9, it can be seen that the water absorption coefficients K and K / a have a high inverse correlation with the starch damage degree, respectively. Therefore, it was shown that the starch damage degree can be estimated from the water absorption coefficient K or K / a.

本発明によれば、簡便且つ迅速に米粉の澱粉損傷度を予測することができる。また、米粉の澱粉損傷度を予測することによって、米粉の製パン適性や製菓子適性を評価することができ、目的に応じた適切な米粉を選択することができる。   According to the present invention, the starch damage degree of rice flour can be predicted easily and quickly. Moreover, by predicting the starch damage degree of rice flour, it is possible to evaluate the suitability of rice flour for baking and confectionery, and it is possible to select an appropriate rice flour according to the purpose.

1…測定容器、2…ろ紙、3…米粉試料、4…測定容器の底部、5…開孔、6…水槽。   DESCRIPTION OF SYMBOLS 1 ... Measuring container, 2 ... Filter paper, 3 ... Rice flour sample, 4 ... Bottom part of measuring container, 5 ... Open hole, 6 ... Water tank.

Claims (6)

米粉を水と接触させて前記米粉に水を吸収させ、接触後の経過時間に対する米粉の含水率の変化を測定する第1の工程と、
前記接触後の経過時間と米粉の含水率を下記近似式(I)に当てはめ、吸水係数a、K、n、bを求める第2の工程と、
を含む、米粉の澱粉損傷度の予測方法:
Y(t)=a[1−exp(−K×t)]+b (I)
式中、tは時間である。
A first step of bringing the rice flour into contact with water and absorbing the water into the rice flour, and measuring a change in the moisture content of the rice flour with respect to the elapsed time after the contact;
Applying the elapsed time after the contact and the moisture content of the rice flour to the following approximate formula (I) to obtain a water absorption coefficient a, K, n, b;
Method for predicting starch damage of rice flour, including:
Y (t) = a [1-exp (−K × t n )] + b (I)
In the formula, t is time.
前記吸水係数K及びK/aの少なくとも一つの値に基づいて、米粉の澱粉損傷度を予測することを特徴とする、請求項1に記載の予測方法。   The prediction method according to claim 1, wherein the starch damage degree of rice flour is predicted based on at least one value of the water absorption coefficient K and K / a. 前記第1の工程において、底部に開孔を有する容器内部にろ紙を敷き、その上に米粉を載せ、該容器の底部を水中に静置することにより、測定が行われることを特徴とする、請求項1又は2に記載の予測方法。   In the first step, the measurement is performed by laying filter paper inside a container having an opening at the bottom, placing rice flour thereon, and allowing the bottom of the container to stand in water, The prediction method according to claim 1 or 2. 前記米粉が精白米の粉であることを特徴とする、請求項1〜3の何れか一項に記載の予測方法。   The prediction method according to claim 1, wherein the rice flour is milled rice flour. 米粉の加工適性を評価するために、請求項1に従って得られた近似式(I)の吸水係数を用いることを特徴とする、米粉の加工適性の評価方法。   In order to evaluate the processability of rice flour, the water absorption coefficient of the approximate formula (I) obtained according to claim 1 is used. 前記吸水係数K及びK/aの少なくとも一つの値に基づいて、米粉の加工適性を評価することを特徴とする、請求項5に記載の評価方法。   The evaluation method according to claim 5, wherein the processability of rice flour is evaluated based on at least one value of the water absorption coefficient K and K / a.
JP2011048213A 2011-03-04 2011-03-04 Prediction method of starch damage degree of rice flour and evaluation method of processability Expired - Fee Related JP5548958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011048213A JP5548958B2 (en) 2011-03-04 2011-03-04 Prediction method of starch damage degree of rice flour and evaluation method of processability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011048213A JP5548958B2 (en) 2011-03-04 2011-03-04 Prediction method of starch damage degree of rice flour and evaluation method of processability

Publications (2)

Publication Number Publication Date
JP2012185038A true JP2012185038A (en) 2012-09-27
JP5548958B2 JP5548958B2 (en) 2014-07-16

Family

ID=47015247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011048213A Expired - Fee Related JP5548958B2 (en) 2011-03-04 2011-03-04 Prediction method of starch damage degree of rice flour and evaluation method of processability

Country Status (1)

Country Link
JP (1) JP5548958B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021181A1 (en) * 2012-07-31 2014-02-06 昭和産業株式会社 Hardening inhibitor for baked good, method for inhibiting hardening of baked good, method for producing baked good, mix flour for baked good, and baked good
JP2014163896A (en) * 2013-02-27 2014-09-08 Hatsuratsu Co Ltd Absorbability automatic measuring means of granules
WO2015011813A1 (en) * 2013-07-25 2015-01-29 昭和産業株式会社 Hardening inhibitor for baked goods, method for inhibiting hardening of baked goods, method for manufacturing baked goods, mix flour for baked goods, and baked goods
JP2015023811A (en) * 2013-07-25 2015-02-05 昭和産業株式会社 Hardening inhibitor of bread, hardening inhibiting method of bread, manufacturing method of bread, mix powder for bread, and bread
CN109759163A (en) * 2019-01-29 2019-05-17 杭州佩克昂科技有限公司 A kind of farinograph Special constant temperature priming apparatus
CN112461701A (en) * 2020-12-04 2021-03-09 中国航空工业集团公司成都飞机设计研究所 Composite material durability-oriented post-impact water seepage test method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230424A (en) * 1988-03-09 1989-09-13 Shiraishi Chuo Kenkyusho:Kk Calcium carbonate, calcium carbonate pigment, production thereof, coating composition therefrom for information recording paper and information recording paper coated therewith
JPH08242891A (en) * 1994-03-01 1996-09-24 Nisshin Flour Milling Co Ltd Determination of damage of starch
JP2004159536A (en) * 2002-11-12 2004-06-10 Knorr Foods Co Ltd Dried potato powder, method for producing the powder, soup or sauce using the powder
JP2005287365A (en) * 2004-03-31 2005-10-20 Hokkaido Method for producing rice flour

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230424A (en) * 1988-03-09 1989-09-13 Shiraishi Chuo Kenkyusho:Kk Calcium carbonate, calcium carbonate pigment, production thereof, coating composition therefrom for information recording paper and information recording paper coated therewith
JPH08242891A (en) * 1994-03-01 1996-09-24 Nisshin Flour Milling Co Ltd Determination of damage of starch
JP2004159536A (en) * 2002-11-12 2004-06-10 Knorr Foods Co Ltd Dried potato powder, method for producing the powder, soup or sauce using the powder
JP2005287365A (en) * 2004-03-31 2005-10-20 Hokkaido Method for producing rice flour

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021181A1 (en) * 2012-07-31 2014-02-06 昭和産業株式会社 Hardening inhibitor for baked good, method for inhibiting hardening of baked good, method for producing baked good, mix flour for baked good, and baked good
JP5547857B1 (en) * 2012-07-31 2014-07-16 昭和産業株式会社 Bread curing inhibitor, bread curing suppression method, bread manufacturing method, bread mix powder and bread
JP2014163896A (en) * 2013-02-27 2014-09-08 Hatsuratsu Co Ltd Absorbability automatic measuring means of granules
WO2015011813A1 (en) * 2013-07-25 2015-01-29 昭和産業株式会社 Hardening inhibitor for baked goods, method for inhibiting hardening of baked goods, method for manufacturing baked goods, mix flour for baked goods, and baked goods
JP2015023811A (en) * 2013-07-25 2015-02-05 昭和産業株式会社 Hardening inhibitor of bread, hardening inhibiting method of bread, manufacturing method of bread, mix powder for bread, and bread
JP5666750B1 (en) * 2013-07-25 2015-02-12 昭和産業株式会社 Bread curing inhibitor, bread curing suppression method, bread manufacturing method, bread mix powder and bread
CN109759163A (en) * 2019-01-29 2019-05-17 杭州佩克昂科技有限公司 A kind of farinograph Special constant temperature priming apparatus
CN109759163B (en) * 2019-01-29 2024-06-11 杭州佩克昂科技有限公司 Special constant temperature water adding device for powder instrument
CN112461701A (en) * 2020-12-04 2021-03-09 中国航空工业集团公司成都飞机设计研究所 Composite material durability-oriented post-impact water seepage test method

Also Published As

Publication number Publication date
JP5548958B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5548958B2 (en) Prediction method of starch damage degree of rice flour and evaluation method of processability
Koksel et al. Potential utilization of Mixolab for quality evaluation of bread wheat genotypes
Kahraman et al. Utilization of Mixolab® to predict the suitability of flours in terms of cake quality
Cappa et al. Influence of Psyllium, sugar beet fibre and water on gluten-free dough properties and bread quality
Han et al. Rice varieties in relation to rice bread quality
Zhu et al. Insight into the effect of gluten-starch ratio on the properties of Chinese steamed bread (Mantou)
Delcour et al. Fractionation and reconstitution experiments provide insight into the role of gluten and starch interactions in pasta quality
Zhang et al. Comparison of dextran molecular weight on wheat bread quality and their performance in dough rheology and starch retrogradation
Dabčević et al. Evaluation of the possibility to replace conventional rheological wheat flour quality control instruments with the new measurement tool–Mixolab
Miś Interpretation of mechanical spectra of carob fibre and oat wholemeal-enriched wheat dough using non-linear regression models
Wang et al. Effect of whole wheat flour on the quality of traditional Chinese Sachima
Defloor et al. Emulsifiers and/or extruded starch in the production of breads from cassava
Jiang et al. Effect of the thermostable xylanase B (XynB) from Thermotoga maritima on the quality of frozen partially baked bread
Doǧan Dynamic rheological properties of dough as affected by amylases from various sources
Jian et al. Use of two-stage dough mixing process in improving water distribution of dough and qualities of bread made from wheat–potato flour
Stojceska et al. A comparison of the ability of several small and large deformation rheological measurements of wheat dough to predict baking behaviour
Pastukhov et al. Studying of mixing speed and temperature impacts on rheological properties of wheat flour dough using Mixolab.
Nemar et al. Bread quality substituted by potato starch instead of wheat flour
JP6472001B2 (en) Evaluation method and apparatus for rice
Bettge Low falling numbers in the Pacific Northwest wheat growing region: Preharvest sprouting, late maturity amylase, falling number instrument, or low protein
Indrani et al. Influence of surfactants on rheological characteristics of dough and quality of parotta
Salehifar et al. Effect of wheat flour protein variations on sensory attributes, texture and staling of Taftoon bread
Meng et al. Effects of different hydrocolloids on physicochemical properties of high‐moisture fermented rice cake during storage
Vukić et al. Alveograph and bread making quality of wheat dough as affected by added glucose oxidase
Arif et al. Effect of pentosans addition on pasting properties of flours of eight hard white spring wheat cultivars

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131112

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140326

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R150 Certificate of patent or registration of utility model

Ref document number: 5548958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees