JP2014163780A - Environmental resistance test method - Google Patents

Environmental resistance test method Download PDF

Info

Publication number
JP2014163780A
JP2014163780A JP2013034551A JP2013034551A JP2014163780A JP 2014163780 A JP2014163780 A JP 2014163780A JP 2013034551 A JP2013034551 A JP 2013034551A JP 2013034551 A JP2013034551 A JP 2013034551A JP 2014163780 A JP2014163780 A JP 2014163780A
Authority
JP
Japan
Prior art keywords
temperature
heat
pressure vessel
gas
test chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013034551A
Other languages
Japanese (ja)
Inventor
Yoshiharu Maruyama
吉春 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013034551A priority Critical patent/JP2014163780A/en
Publication of JP2014163780A publication Critical patent/JP2014163780A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of controlling the temperature and humidity while efficiently removing the heat generation load, when a heat generation sample body of a large calorific value is disposed in an environmental test device.SOLUTION: An environmental test device includes: a test room that reserves humidified water in a pressure vessel and allows a sample body to be installed; and a heat exchanger for controlling the temperature of gas. When the gas temperature in the test room is increased by the heat generation load of the sample body, the calory is transferred out of the pressure vessel or out of a constant temperature and humidity tank via the heat exchanger to decrease the gas temperature. Thus, the temperature and humidity are controlled.

Description

本発明は、電気部品、電子部品等の信頼性評価試験及び耐環境試験で用いる蒸気加圧式環境試験装置の温度湿度制御方法に関する。 The present invention relates to a temperature and humidity control method for a steam pressurization type environmental test apparatus used in reliability evaluation tests and environmental resistance tests of electrical parts, electronic parts and the like.

電気部品、電子部品やこれらの部品で組み立てられた製品の信頼性評価試験及び耐環境試験を行うために、温度と湿度が過酷な環境下に前記部品等を晒して、動作確認を実施したり寿命を推測する目的で、各種の環境試験装置が使用されている。この種の環境試験装置として、例えば、高度加速寿命試験装置(通称HAST装置)などの高温高湿の環境ができる環境試験装置がある。 In order to perform reliability evaluation tests and environmental resistance tests of electrical parts, electronic parts and products assembled with these parts, the above parts etc. are exposed to environments with severe temperature and humidity, and operation check is performed. Various environmental test devices are used for the purpose of estimating the service life. As this type of environmental test apparatus, there is an environmental test apparatus capable of creating a high-temperature and high-humidity environment such as a highly accelerated life test apparatus (commonly referred to as a HAST apparatus).

この高度加速寿命試験装置では、温度と湿度で制御された大気圧以上の試験環境を試験室内に形成することが多い。この場合、空気は排出され試験室内は水蒸気のみとなる。このときの湿度の定義は加湿水温度と試験室内温度のそれぞれの飽和蒸気圧の比としている。
相対湿度%=(加湿水温度の飽和水蒸気圧)/(試験室内温度の飽和水蒸気圧)×100 ・・・(1)
In this highly accelerated life test apparatus, a test environment of atmospheric pressure or higher controlled by temperature and humidity is often formed in the test chamber. In this case, air is discharged and only the water vapor is present in the test chamber. The definition of humidity at this time is the ratio of the saturated vapor pressure between the humidified water temperature and the test chamber temperature.
Relative humidity% = (saturated water vapor pressure at humidified water temperature) / (saturated water vapor pressure at laboratory temperature) x 100 (1)

この高度加速寿命試験装置には一槽式と二槽式の2タイプが知られている。一槽式は、一つの圧力容器内に水蒸気を発生する加湿水部と試験室があり、加湿水部からの水蒸気を加熱ヒータで再加熱し送風機により攪拌されるタイプである。二槽式は、一槽式の加湿水部と試験室を分離して、水蒸気を発生する加湿水槽と試験室槽が独立して接続されており、加湿水槽で発生した水蒸気を試験室槽に導入し加熱ヒータで再加熱するタイプである。 There are two types of high-acceleration life test equipment, one tank type and two tank type. The one-tank type is a type in which there are a humidified water section and a test chamber that generate water vapor in one pressure vessel, and the water vapor from the humidified water section is reheated by a heater and stirred by a blower. In the two-tank type, the humidifying water tank and the test chamber are separated from each other, and the humidifying water tank and the test chamber tank for generating water vapor are connected independently, and the water vapor generated in the humidifying water tank is supplied to the test chamber tank. This type is introduced and reheated with a heater.

これらの環境試験装置を利用して、環境試験装置の試験室内に設置された試料体の信頼性評価試験及び耐環境試験を行うために、所望の温度と湿度の環境下で試験をするとき、試験室内の気体を加熱制御する能力に対して試料体に通電しても試料体の発熱負荷が小さいか無い場合は、設定された温度と湿度に対して温湿度制御ができる。 When performing a test in a desired temperature and humidity environment in order to perform a reliability evaluation test and an environmental resistance test of a sample body installed in a test chamber of the environmental test apparatus using these environmental test apparatuses, If the heat generation load of the sample body is small or not even if the sample body is energized with respect to the ability to control the heating of the gas in the test chamber, the temperature and humidity can be controlled with respect to the set temperature and humidity.

しかしながら、これらの環境試験装置を利用して、試験室内に設置された試料体の発熱負荷が大きい場合は、試験室内の気体の温度が上昇して行き設定温度を保持するように温湿度制御ができなくなるという問題がある。 However, using these environmental test equipment, if the heat generation load of the specimen installed in the test chamber is large, the temperature and humidity control is performed so that the temperature of the gas in the test chamber rises and maintains the set temperature. There is a problem that it cannot be done.

そこで、試験室内の気体の温度を設定温度になるよう冷却する必要が生じる。 Therefore, it is necessary to cool the temperature of the gas in the test chamber to the set temperature.

図示はしないが、大気圧環境下で利用される冷却器が具備されていない環境試験装置では、自然放熱による冷却能力よりも試料体の発熱負荷が大きい場合は、試験室内の気体温度が上昇してしまうが、冷却器等の冷却装置を具備することで気体の冷却と除湿が可能となり、試料体の発熱負荷による試験室内の気体温度の上昇を抑えて温湿度制御が可能となる。 Although not shown, in an environmental test apparatus that is not equipped with a cooler that is used in an atmospheric pressure environment, the gas temperature in the test chamber increases if the heat generation load of the sample body is greater than the cooling capacity by natural heat dissipation. However, by providing a cooling device such as a cooler, it is possible to cool and dehumidify the gas, and it is possible to control the temperature and humidity by suppressing an increase in the gas temperature in the test chamber due to the heat generation load of the sample body.

一方、高度加速寿命試験装置は、通常25℃前後の室温雰囲気に置かれ、圧力容器内は水の沸点以上つまり100℃以上で使用されるため、この温度差による圧力容器の外壁からの伝熱による自然放熱を利用して放冷するのが一般的で、冷却器等の冷却装置を具備していない。 On the other hand, the advanced accelerated life test equipment is usually placed in a room temperature atmosphere of around 25 ° C, and the pressure vessel is used above the boiling point of water, that is, at 100 ° C or more. Therefore, heat transfer from the outer wall of the pressure vessel due to this temperature difference It is common to cool by using natural heat radiation by the heat sink, and it does not have a cooling device such as a cooler.

この高度加速寿命試験装置では、圧力容器内の空気を排出したのち気密にし、加湿水温度を上昇して加湿水温度に対応した飽和水蒸気圧となるよう圧力容器内の圧力を上げるとともに、試験室内の飽和水蒸気を加熱器で加熱することで、前記(1)式に示した相対湿度%の環境を作りだす。前記の自然放熱による放冷能力より試料体の発熱負荷が大きい場合、試験室内の気体温度は加熱器で制御できなくなり上昇してしまう。 In this advanced accelerated life test apparatus, the air in the pressure vessel is exhausted and airtight, and the pressure in the pressure vessel is increased to increase the humidified water temperature to a saturated water vapor pressure corresponding to the humidified water temperature. The saturated water vapor is heated with a heater to create an environment of relative humidity% shown in the above equation (1). When the heat generation load of the sample body is larger than the cooling capacity by natural heat radiation, the gas temperature in the test chamber cannot be controlled by the heater and rises.

そこで、高度加速寿命試験装置の圧力容器の缶体外壁面に冷却手段として冷却器を取り付けた方法や、圧力容器内に冷却手段として冷却器を設置した方法等で、温湿度制御されている圧力容器内の気体を冷却しようとした場合、冷却器の温度が加湿水温度より低いと、気体である水蒸気は冷却器の表面や加湿水温度より低い温度の部位で結露するとともに冷却される。水蒸気は結露すると瞬時的に凝縮するので圧力容器内の飽和水蒸気圧は急激に下がってしまうという問題があった。 Therefore, a pressure vessel whose temperature and humidity are controlled by a method in which a cooler is installed as a cooling means on the outer wall surface of the pressure vessel of the advanced accelerated life test apparatus, or a method in which a cooler is installed as a cooling means in the pressure vessel. When trying to cool the gas inside, if the temperature of the cooler is lower than the humidified water temperature, the water vapor, which is a gas, is condensed and condensed at the surface of the cooler or at a temperature lower than the humidified water temperature. When water vapor condenses, it condenses instantaneously, so that there is a problem that the saturated water vapor pressure in the pressure vessel drops rapidly.

そこで、加湿水温度に対応した飽和水蒸気圧に戻すように、加湿水の表面から加湿水温度の水蒸気が蒸発して圧力容器内に水蒸気を補充する。補充された水蒸気は、加熱器と試料体の発熱負荷により加熱される一方、同時に冷却器の表面で冷却され凝縮する。しかし、前記圧力容器内外に冷却手段を設置した高度加速寿命試験装置では、設定温度湿度になるよう気体温度と加湿水温度を用いて制御するが、飽和水蒸気を加熱器で加熱する顕熱に比べ、加湿水から蒸発した水蒸気が冷却器で凝縮される潜熱の熱エネルギーの方がはるかに大きく、気体温度を制御できないという問題があった。 Therefore, the steam at the humidifying water temperature evaporates from the surface of the humidifying water to replenish the steam into the pressure vessel so that the saturated steam pressure corresponding to the humidifying water temperature is restored. The replenished water vapor is heated by the heating load of the heater and the sample body, and at the same time is cooled and condensed on the surface of the cooler. However, in the advanced accelerated life test apparatus in which cooling means are installed inside and outside the pressure vessel, the gas temperature and the humidified water temperature are controlled so as to reach the set temperature and humidity, but compared to sensible heat in which saturated steam is heated by a heater. However, the heat energy of the latent heat in which the water vapor evaporated from the humidified water is condensed by the cooler is much larger, and the gas temperature cannot be controlled.

特開昭59−225336号公報JP 59-225336 A 特開昭62−269041号公報JP 62-269041 A 特開2011−252717号公報JP 2011-252717 A

本発明は、蒸気加圧式の環境試験装置において、試験室内に設置された試料体の発熱負荷による、試験室内の気体の温度上昇を効率的に取り除きながら温湿度制御する方法を提供することを目的とする。 An object of the present invention is to provide a method for controlling temperature and humidity in a steam pressurization type environmental test apparatus while efficiently removing a temperature rise of a gas in a test chamber due to a heat generation load of a sample body installed in the test chamber. And

本発明の課題の解決手段は、内部に加湿水を貯留するとともに試料体を設置可能な試験室を備えた密閉可能な圧力容器で構成されている環境試験装置において、この圧力容器内には気体の温度を制御できる熱交換器が設けられているとともに乾球温度センサと加湿水温度センサあるいは湿球温度センサか、加湿水温度センサと湿球温度センサ両方が備えられており、前記試験室内に設置された試料体の発熱負荷により試験室の気体温度が設定温度より高くもしくは予想されるとき、前記熱交換器の内部に加湿水温度以上の熱媒体または水を通流して、熱交換器の外表面に結露することなくこの圧力容器外に気体の熱量を移動して、試験室内の温度湿度制御する方法を提供することにある。 The means for solving the problems of the present invention is an environmental test apparatus comprising a sealable pressure vessel having a test chamber in which humidified water is stored and a sample body can be placed. A heat exchanger that can control the temperature of the water is provided, and a dry bulb temperature sensor and a humidified water temperature sensor or a wet bulb temperature sensor, or both a humidified water temperature sensor and a wet bulb temperature sensor are provided. When the gas temperature in the test chamber is higher than or is expected to be higher than the set temperature due to the heat generation load of the installed sample body, a heat medium or water above the humidified water temperature is passed through the heat exchanger, and the heat exchanger An object of the present invention is to provide a method for controlling the temperature and humidity in a test chamber by transferring the amount of heat of gas outside the pressure vessel without condensation on the outer surface.

高度加速寿命試験装置(通称HAST装置)による、試験温度(130,120,110℃)と試験湿度(85%)の過酷な環境下で被試料体の発熱負荷を発生する試験をするとき、従来技術の高度加速寿命試験に比べて、被試料体の発熱負荷量を多くできる。 Conventionally, when performing a test that generates a heat generation load on a specimen under a severe environment of test temperature (130, 120, 110 ° C) and test humidity (85%) using an advanced accelerated life test device (commonly called HAST device) Compared to the advanced accelerated life test of the technology, the heat load of the sample can be increased.

本発明の実施の形態における環境試験装置の簡略断面図及び簡略構成図である。1 is a simplified cross-sectional view and a simplified configuration diagram of an environmental test apparatus in an embodiment of the present invention. 本発明の他の実施の形態における環境試験装置の簡略断面図及び簡略構成図である。It is the simplified sectional view and simplified structure figure of the environmental testing device in other embodiments of the present invention.

以下、本発明の実施の形態を説明する。図1は本発明の温度湿度制御する方法を実施して高度加速寿命試験をする環境試験装置の簡略断面図及び簡略構成図である。 Embodiments of the present invention will be described below. FIG. 1 is a simplified cross-sectional view and a simplified configuration diagram of an environmental test apparatus that performs a highly accelerated life test by implementing the method for controlling temperature and humidity of the present invention.

図1に示す簡略断面図及び簡略構成図の高度加速寿命試験をする環境試験装置1は、一端を開口した圧力容器2と開口部を開閉できる開閉蓋3を備えている。 An environmental test apparatus 1 that performs a highly accelerated life test of a simplified cross-sectional view and a simplified configuration diagram shown in FIG. 1 includes a pressure vessel 2 having an open end and an open / close lid 3 that can open and close the opening.

圧力容器2の内部には圧力容器2の開口側と同一側が開放された内槽4が設置され、この内槽4の内側に試験室5が構成されている。この試験室5には図示しないが棚を設置して試料体13を載置できるよう構成されている。圧力容器2の内部の内槽4の外側の下部には加湿水9が貯留されている。この加湿水9に浸漬されるように加湿水9を加熱する加湿水加熱ヒータ7と加湿水9の温度を計測する加湿水温度センサ12が設けられている。 Inside the pressure vessel 2, an inner tank 4 that is open on the same side as the opening side of the pressure vessel 2 is installed, and a test chamber 5 is configured inside the inner vessel 4. Although not shown, the test chamber 5 is configured so that a sample body 13 can be placed by installing a shelf. The humidified water 9 is stored in the lower part outside the inner tank 4 inside the pressure vessel 2. A humidifying water heater 7 for heating the humidifying water 9 so as to be immersed in the humidifying water 9 and a humidifying water temperature sensor 12 for measuring the temperature of the humidifying water 9 are provided.

前記圧力容器2内の試験室5には気体の温度と湿球温度を計測するために乾球温度センサ10と湿球温度センサ11が設けられている。湿球温度センサ11の球部には加湿水9を毛細管現象により吸い上げることができる繊維体、例えばガーゼが被せられており、この繊維体の下端は加湿水9に浸漬するよう構成されている。また、前記内槽4の開口側の反対側には貫通口が形成されており、内槽4と圧力容器2の間に設置された加熱ヒータ6で気体を加熱するよう構成されている。気体は攪拌手段で循環させることができるようになっている。 The test chamber 5 in the pressure vessel 2 is provided with a dry bulb temperature sensor 10 and a wet bulb temperature sensor 11 for measuring the temperature of the gas and the wet bulb temperature. The bulb portion of the wet bulb temperature sensor 11 is covered with a fibrous body that can suck up the humidified water 9 by capillary action, for example, gauze, and the lower end of the fibrous body is configured to be immersed in the humidified water 9. Further, a through-hole is formed on the side opposite to the opening side of the inner tank 4, and the gas is heated by the heater 6 installed between the inner tank 4 and the pressure vessel 2. The gas can be circulated by a stirring means.

前記圧力容器2内には気体の熱を熱移動して冷却するように熱交換器8を備えている。この熱交換器8は熱伝導効率の良い物質で構成されていることが望ましい。図1の簡略配管構成は、高沸点温度のフッ素系の熱媒体15を圧力容器2の外部に設置された熱媒槽14の内部で加熱ヒータ16を用いて加温する。加温された熱媒体15は循環ポンプ17を経由して熱交換器8の一端に流量の入口として配管接続し、他の一端は流量の出口として放熱器19を経由して熱媒槽14に戻す配管系として構成されている。また、熱媒体15の温度制御をするために補助加熱ヒータ18と温度センサ20、21、22が設けられている。 A heat exchanger 8 is provided in the pressure vessel 2 so as to cool the gas heat by moving it. The heat exchanger 8 is preferably made of a material having a good heat conduction efficiency. In the simplified piping configuration of FIG. 1, a fluorine-based heat medium 15 having a high boiling point temperature is heated using a heater 16 inside a heat medium tank 14 installed outside the pressure vessel 2. The heated heat medium 15 is connected to one end of the heat exchanger 8 via a circulation pump 17 as a flow rate inlet, and the other end is connected to the heat medium tank 14 via a radiator 19 as a flow rate outlet. It is configured as a return piping system. Further, in order to control the temperature of the heat medium 15, an auxiliary heater 18 and temperature sensors 20, 21, and 22 are provided.

更に、圧力容器2には圧力容器2内を大気圧以上に気密にする制御弁23が備えられている。また、この図1の環境試験装置1には図示しないが制御装置が備えられており、この制御装置で環境試験装置1を制御する。 Further, the pressure vessel 2 is provided with a control valve 23 for making the inside of the pressure vessel 2 airtight at atmospheric pressure or higher. The environmental test apparatus 1 of FIG. 1 includes a control device (not shown), and the environmental test device 1 is controlled by this control device.

以上の構成において、実施例の代表設定温度湿度例として、設定温度130℃、設定湿度85%の設定値例として説明する。 In the above configuration, as a representative set temperature and humidity example of the embodiment, a set value example of a set temperature of 130 ° C. and a set humidity of 85% will be described.

試験室5に試料体13を載置して、加湿水9を100℃に沸騰させ圧力容器2内の空気を排出し水蒸気のみにした状態で制御弁23を閉じて圧力容器2を気密したのち、さらに加温して試験室5の環境が設定温度130℃、設定湿度85%に到達し安定している場合、前記(1)式の試験室内温度に対応する乾球温度センサ10の温度は130℃、加湿水温度に対応する加湿水温度センサ12の温度は約124.65℃(飽和水蒸気圧0.2296MPa換算値、日本機械学会蒸気表より)である。この時の湿球温度センサ11の球部の温度は、球部の繊維体が加湿水から毛細管現象により吸い上げて濡れておれば加湿水温度センサ12の温度と同値であると経験的にみなすことができる。 After placing the sample body 13 in the test chamber 5, boiling the humidified water 9 to 100 ° C., discharging the air in the pressure vessel 2 to make only water vapor, and closing the control valve 23 to make the pressure vessel 2 airtight. If the environment of the test chamber 5 reaches a set temperature of 130 ° C and a set humidity of 85% and is stable by further heating, the temperature of the dry bulb temperature sensor 10 corresponding to the test chamber temperature of the equation (1) is The temperature of the humidified water temperature sensor 12 corresponding to the humidified water temperature of 130 ° C. is about 124.65 ° C. (saturated water vapor pressure converted to 0.2296 MPa, from the Japan Society of Mechanical Engineers steam table). At this time, the temperature of the bulb portion of the wet bulb temperature sensor 11 is empirically regarded as the same value as the temperature of the humidified water temperature sensor 12 if the fibrous body of the bulb portion is sucked up by the capillary phenomenon from the humidified water and is wet. Can do.

試験室5の試料体13が発熱しない場合は、図1の簡略配管構成において、循環ポンプ17と熱交換器8の間の図示しない制御弁が閉じ、循環ポンプ17が停止し熱媒体15が熱交換器8内で停滞しているので、温度センサ21と温度センサ22の測定温度は等しく同温である。 If the sample body 13 in the test chamber 5 does not generate heat, in the simplified piping configuration of FIG. 1, a control valve (not shown) between the circulation pump 17 and the heat exchanger 8 is closed, the circulation pump 17 is stopped, and the heat medium 15 is heated. Since it is stagnant in the exchanger 8, the measured temperatures of the temperature sensor 21 and the temperature sensor 22 are equal and equal.

この時の圧力容器2内では、約124.65℃の加湿水9の水面から蒸発した水蒸気を加熱ヒータ6で加温して試験室5の気体(水蒸気)温度を130℃に制御している。つまり、試験室5の発熱していない試料体13を載置してある環境を設定温度130℃、設定湿度85%に維持するには、加湿水9を約124.65℃にして試験室5の気体を加熱ヒータ6で約5.35℃加熱して130℃に保持すればよいのである。 In the pressure vessel 2 at this time, water vapor evaporated from the surface of the humidified water 9 at about 124.65 ° C. is heated by the heater 6 to control the gas (water vapor) temperature in the test chamber 5 to 130 ° C. In other words, to maintain the environment in which the non-heated sample body 13 is placed in the test chamber 5 at the set temperature 130 ° C. and the set humidity 85%, the humidified water 9 is set to about 124.65 ° C. and the gas in the test chamber 5 Is heated at about 5.35 ° C. by the heater 6 and maintained at 130 ° C.

ここで、試料体13に電源を通電すると試料体13が発熱し気体の温度を加温し始める。すると試料体13の発熱量に相応して加熱ヒータ6の発熱量が減少して試験室5の気体の温度が一定になるよう制御する。しかし、試料体13の発熱する発熱量が試験室5の気体を約5.35℃以上加熱する発熱量になると、加熱ヒータ6の通電量を0%にしても試験室5の気体の温度は130℃以上になり、設定温度130℃、設定湿度85%を維持できなくなる。本発明を実施しないで高度加速寿命試験をする環境試験装置で設定温度130℃、設定湿度85%の環境試験をする時の試料体13の許容発熱負荷は、試験室5の気体を約5.35℃上昇するに必要な加熱ヒータ6の発熱量と同値以下であることになる。 Here, when the sample body 13 is energized, the sample body 13 generates heat and starts to warm the temperature of the gas. Then, the heat generation amount of the heater 6 is decreased in accordance with the heat generation amount of the sample body 13, and the temperature of the gas in the test chamber 5 is controlled to be constant. However, when the calorific value generated by the sample 13 becomes a calorific value that heats the gas in the test chamber 5 by about 5.35 ° C. or more, the gas temperature in the test chamber 5 is 130 ° C. even if the energization amount of the heater 6 is 0%. As a result, the set temperature of 130 ° C and the set humidity of 85% cannot be maintained. The allowable heat generation load of the sample body 13 when performing an environmental test at a set temperature of 130 ° C. and a set humidity of 85% with an environmental test device that performs an advanced accelerated life test without carrying out the present invention is approximately 5.35 ° C. for the gas in the test chamber 5 That is, it is equal to or less than the amount of heat generated by the heater 6 required to rise.

次に、本発明を実施した形態で、設定温度130℃、設定湿度85%の環境試験をする時、試料体13が前記許容発熱負荷以上の発熱した場合の説明をする。 Next, in the embodiment of the present invention, when an environmental test is performed at a set temperature of 130 ° C. and a set humidity of 85%, the case where the sample body 13 generates heat exceeding the allowable heat generation load will be described.

試験室5の環境が設定温度130℃、設定湿度85%に安定している場合、前記熱媒槽14内のフッ素系の熱媒油の熱媒体15は、約124.65℃以上130℃未満に加温に制御する。次に、図示しない前記制御弁を開いて循環ポンプ17を駆動する。この循環ポンプ17は回転制御することで熱媒体15の流量を調整できるように構成されている。温度センサ21の測定温度を約124.65℃以上130℃未満、出口部の温度センサ22の測定温度を130℃になるよう循環ポンプ17で回転制御する。循環ポンプ17で圧力容器2内の熱交換器8の一端の入口部位に液送される。熱媒体15の温度調整は主に熱媒槽14で行い、その設定温度は試料体13の発熱負荷による試験室5の気体の上昇温度を考慮して約124.65℃以上130℃未満内に設定する。液送時、配管からの放熱で、熱交換器8の入口部位に設置された温度センサ21の熱媒体15の測定温度が約124.65℃より低く計測あるいは予測される場合は、補助加熱ヒータ18により加湿水温度以上に加温する。 When the environment of the test chamber 5 is stable at a set temperature of 130 ° C. and a set humidity of 85%, the heat medium 15 of the fluorinated heat transfer oil in the heat medium tank 14 is heated to about 124.65 ° C. or more and less than 130 ° C. Control to temperature. Next, the control valve (not shown) is opened to drive the circulation pump 17. The circulation pump 17 is configured so that the flow rate of the heat medium 15 can be adjusted by controlling the rotation. The circulation pump 17 controls the rotation so that the measured temperature of the temperature sensor 21 is about 124.65 ° C. or higher and lower than 130 ° C., and the measured temperature of the temperature sensor 22 at the outlet is 130 ° C. The liquid is sent to the inlet portion of one end of the heat exchanger 8 in the pressure vessel 2 by the circulation pump 17. The temperature of the heat medium 15 is mainly adjusted in the heat medium tank 14, and the set temperature is set to about 124.65 ° C. or more and less than 130 ° C. in consideration of the rising temperature of the gas in the test chamber 5 due to the heat generation load of the sample body 13. . If the measured temperature of the heat medium 15 of the temperature sensor 21 installed at the inlet of the heat exchanger 8 is measured or predicted to be lower than about 124.65 ° C due to heat radiation from the pipe during liquid feeding, the auxiliary heater 18 Warm above the humidified water temperature.

始め圧力容器2内の熱交換器8の表面は圧力容器2内の気体(水蒸気)の温度に晒されているので130℃になっている。熱交換器8内を約124.65℃以上130℃未満の熱媒体15が通流するとき、圧力容器2内の気体(水蒸気)の熱量は熱交換器8を結露することなく伝熱し、さらに熱媒体15に伝熱して熱媒体15の温度を上げ、圧力容器2外へ交換した熱量として排出される。熱媒体15が熱交換器8を通流すると、入口部の温度センサ21の測定温度と出口部の温度センサ22の測定温度には(温度センサ21の測定温度)<(温度センサ22の測定温度)の関係が発生する。 At first, the surface of the heat exchanger 8 in the pressure vessel 2 is exposed to the temperature of the gas (water vapor) in the pressure vessel 2 and is therefore 130 ° C. When the heat medium 15 of about 124.65 ° C. or more and less than 130 ° C. flows through the heat exchanger 8, the heat quantity of the gas (water vapor) in the pressure vessel 2 is transferred without condensation in the heat exchanger 8, and further, the heat medium Heat is transferred to 15, the temperature of the heat medium 15 is raised, and the heat is exchanged out of the pressure vessel 2 and discharged. When the heat medium 15 flows through the heat exchanger 8, the measured temperature of the temperature sensor 21 at the inlet and the measured temperature of the temperature sensor 22 at the outlet are (measured temperature of the temperature sensor 21) <(measured temperature of the temperature sensor 22). ) Relationship occurs.

ここで、試験室5の環境が設定温度130℃、設定湿度85%に安定して、試料体13に試験室5の気体を10℃上昇する発熱量の発熱負荷が印加された場合、加熱ヒータ6の通電量を0%にしても試験室5の気体の温度は134.65℃(124.65℃+10℃)となり+4.65℃高くなる。試験室5の気体の温度を130℃にするには、熱交換器8の温度センサ21の測定温度を125.35℃、出口部の温度センサ22の測定温度を130℃になるよう循環ポンプ17で熱媒体15の流量を回転制御する。熱交換器8から出た熱媒体15は放熱器19で温度センサ21の測定温度以下になるよう冷却して熱媒槽14に戻される。そして、再び、熱媒槽14で熱交換器8の温度センサ21の測定温度が125.35℃になるよう温度調整するとともに循環ポンプ17で熱媒体15の流量を回転制御し循環する。 Here, when the environment of the test chamber 5 is stable at a set temperature of 130 ° C. and a set humidity of 85%, and a heat generation load of a calorific value that raises the gas in the test chamber 5 by 10 ° C. is applied to the sample body 13, the heater Even if the energization amount of 6 is 0%, the temperature of the gas in the test chamber 5 becomes 134.65 ° C. (124.65 ° C. + 10 ° C.), which is + 4.65 ° C. higher. To set the temperature of the gas in the test chamber 5 to 130 ° C., heat the circulation pump 17 so that the measurement temperature of the temperature sensor 21 of the heat exchanger 8 is 125.35 ° C. and the measurement temperature of the temperature sensor 22 at the outlet is 130 ° C. The flow rate of the medium 15 is controlled to rotate. The heat medium 15 coming out of the heat exchanger 8 is cooled by the radiator 19 so as to be equal to or lower than the temperature measured by the temperature sensor 21 and returned to the heat medium tank 14. Then, the temperature is adjusted again in the heat medium tank 14 so that the temperature measured by the temperature sensor 21 of the heat exchanger 8 becomes 125.35 ° C., and the circulation pump 17 rotates and circulates the flow rate of the heat medium 15.

または、熱交換器8の温度センサ21の測定温度を124.65℃以上、出口部の温度センサ22の測定温度を130℃未満になるよう熱媒槽14で熱媒体15を温度調整するとともに循環ポンプ17で熱媒体15の流量を回転制御する。熱交換器8から出た熱媒体15は放熱器19で温度センサ21の測定温度以下になるよう冷却して熱媒槽14に戻される。この時、試験室5で過冷却しすぎた熱交換器8の交換熱量に対応する温度の0.7℃(125.35℃−124.65℃)は加熱ヒータ6の通電量で補う温度制御をすることでもよい。 Alternatively, the temperature of the heat medium 15 is adjusted in the heat medium tank 14 so that the measurement temperature of the temperature sensor 21 of the heat exchanger 8 is 124.65 ° C. or more and the measurement temperature of the temperature sensor 22 of the outlet is less than 130 ° C., and the circulation pump 17 Thus, the flow rate of the heat medium 15 is rotationally controlled. The heat medium 15 coming out of the heat exchanger 8 is cooled by the radiator 19 so as to be equal to or lower than the temperature measured by the temperature sensor 21 and returned to the heat medium tank 14. At this time, the temperature corresponding to 0.7 ° C. (125.35 ° C.-124.65 ° C.) corresponding to the exchange heat amount of the heat exchanger 8 that has been overcooled in the test chamber 5 may be compensated by the energization amount of the heater 6.

次に、試料体13に試験室5の気体を20℃上昇する発熱量の発熱負荷が印加された場合は、加熱ヒータ6の通電量を0%にしても試験室5の気体の温度は144.65℃(124.65℃+20℃)となり+14.65℃高くなる。試験室5の気体の温度を130℃にするには、熱交換器8の温度センサ21の測定温度を124.65℃以上、出口部の温度センサ22の測定温度を130℃未満になるよう循環ポンプ17で熱媒体15の流量を増加して回転制御するとともに、放熱器19を経由して冷却した後、熱媒体15の温度を熱媒槽14で温度調整する。 Next, when a heat generation load of a heat generation amount that raises the gas in the test chamber 5 by 20 ° C. is applied to the sample body 13, the gas temperature in the test chamber 5 is 144.65 even if the energization amount of the heater 6 is 0%. It becomes ℃ (124.65 ℃ +20 ℃) and increases by +14.65 ℃. In order to set the temperature of the gas in the test chamber 5 to 130 ° C., the circulation pump 17 is set so that the measurement temperature of the temperature sensor 21 of the heat exchanger 8 is 124.65 ° C. or more and the measurement temperature of the temperature sensor 22 at the outlet is less than 130 ° C. Then, the flow rate of the heat medium 15 is increased to control the rotation, and after cooling through the radiator 19, the temperature of the heat medium 15 is adjusted in the heat medium tank 14.

更に、試料体13に試験室5の気体の温度を上昇する発熱量の発熱負荷が印加される場合、新たに、比熱の良い熱媒体に熱媒体15を交換、伝熱面積の大きく交換熱量の良い熱交換器8に交換、循環流量の大きい循環ポンプ17に交換、伝熱面積の大きく交換熱量の良い放熱器19に交換または放熱器19を図示しないファンで空冷することで、試料体13の発熱量を圧力容器2外に移動して試験室5の気体の温度の上昇を抑えることが可能となる。 Furthermore, when a heat generation load with a heat generation amount that raises the temperature of the gas in the test chamber 5 is applied to the sample body 13, the heat medium 15 is newly replaced with a heat medium with a good specific heat, and the heat transfer area is large and the heat exchange capacity is large. Replace with a good heat exchanger 8, replace with a circulation pump 17 with a large circulation flow rate, replace with a radiator 19 with a large heat transfer area and good exchange heat, or air-cool the radiator 19 with a fan (not shown). It is possible to suppress the rise in the temperature of the gas in the test chamber 5 by moving the calorific value outside the pressure vessel 2.

本発明の請求項1を実施した図1では、熱媒槽14、熱媒体15、加熱ヒータ16、温度センサ20を圧力容器2外に設置してあるが、他の実施例の図2の簡略構成図のように圧力容器2内の加湿水9を熱媒体として利用できるよう配管接続してもよい。 In FIG. 1 in which claim 1 of the present invention is implemented, the heat medium tank 14, the heat medium 15, the heater 16, and the temperature sensor 20 are installed outside the pressure vessel 2, but the simplified example of FIG. As shown in the configuration diagram, the humidified water 9 in the pressure vessel 2 may be connected by piping so that it can be used as a heat medium.

また、請求項1の本発明を実施せしめた、内部に加湿水を貯留するとともに試料体を設置可能な試験室を備えた密閉可能な圧力容器で構成されている環境試験装置において、試験室5の気体の温度を上昇する場合、熱交換器8内の熱媒体15の温度を試験室5の設定温度
以上にした温度で通流すると、試験室5の気体の温度は熱交換器8の表面で温度上昇する。気体の水蒸気は圧力容器2内の加熱ヒータ6に加えて熱交換器8内の熱媒体15の熱量で加熱できる。従って、従来の高度加速寿命試験をする環境試験装置に比べて、本発明を実施せしめた環境試験装置は短い時間で圧力容器2内を温度上昇することにも利用できる。
Further, in the environmental test apparatus constituted by the sealable pressure vessel having the test chamber in which the humidified water is stored and the sample body can be installed, in which the present invention of claim 1 is implemented, the test chamber 5 If the temperature of the heat medium 15 in the heat exchanger 8 is made to flow at a temperature equal to or higher than the set temperature of the test chamber 5, the temperature of the gas in the test chamber 5 will be the surface of the heat exchanger 8. The temperature rises. The gaseous water vapor can be heated by the heat quantity of the heat medium 15 in the heat exchanger 8 in addition to the heater 6 in the pressure vessel 2. Therefore, as compared with the conventional environmental test apparatus that performs the advanced accelerated life test, the environmental test apparatus that implements the present invention can be used to increase the temperature in the pressure vessel 2 in a short time.

本発明は、温度と湿度が過酷な環境下で、今までより多くの電気部品、電子部品等に電圧電流を印加して動作状態で行う寿命試験や高温高湿バイアス試験が可能となり、信頼性評価試験及び耐環境試験をする産業に有利に利用することができる。 The present invention enables a life test and a high-temperature and high-humidity bias test to be performed in an operating state by applying a voltage / current to more electrical parts and electronic parts in an environment where the temperature and humidity are severe. It can be advantageously used in industries that perform evaluation tests and environmental resistance tests.

・ 環境試験装置
・ 圧力容器
・ 蓋
・ 内槽
・ 試験室
・ 加熱ヒータ
・ 加湿水加熱ヒータ
・ 熱交換器
・ 加湿水
・ 乾球温度センサ
・ 湿球温度センサ
・ 加湿水温度センサ
・ 試料体
・ 熱媒槽
・ 熱媒体
・ 加熱ヒータ
・ 循環ポンプ
・ 補助加熱ヒータ
・ 放熱器
20、21、22 温度センサ
23 制御弁
































・ Environmental test equipment ・ Pressure vessel ・ Lid ・ Inner tank ・ Test room ・ Heating heater ・ Humidification water heater ・ Heat exchanger ・ Humidification water ・ Dry bulb temperature sensor ・ Wet bulb temperature sensor ・ Humidification water temperature sensor ・ Specimen ・ Heat Medium tank ・ Heat medium ・ Heater ・ Circulation pump ・ Auxiliary heater ・ Radiator
20, 21, 22 Temperature sensor
23 Control valve
































Claims (1)

内部に加湿水を貯留するとともに試料体を設置可能な試験室を備えた密閉可能な圧力容器で構成されている環境試験装置において、この圧力容器内には気体の温度を制御できる熱交換器が設けられているとともに乾球温度センサと加湿水温度センサあるいは湿球温度センサか、乾温度球センサと加湿水温度センサと湿球温度センサ両方が備えられており、前記試験室内に設置された試料体の発熱負荷により試験室の気体温度が設定温度より高くもしくは予想されるとき、前記熱交換器の内部に加湿水温度以上の熱媒体または加湿水温度以上の水を通流して、熱交換器の外表面に結露することなく気体の熱量をこの圧力容器外に移動して、試験室内の温湿度制御する方法。



In an environmental test apparatus composed of a sealable pressure vessel having a test chamber in which humidified water can be stored and a sample body can be placed, a heat exchanger capable of controlling the temperature of the gas is provided in the pressure vessel. A sample installed in the test chamber, provided with a dry bulb temperature sensor and a humidified water temperature sensor or a wet bulb temperature sensor, or both a dry temperature bulb sensor, a humidified water temperature sensor and a wet bulb temperature sensor. When the gas temperature in the test room is higher than the set temperature or is expected due to the heat generation load of the body, the heat exchanger passing the heat medium higher than the humidified water temperature or the water higher than the humidified water temperature is passed through the heat exchanger. A method of controlling the temperature and humidity in the test chamber by moving the amount of gas heat outside this pressure vessel without condensation on the outer surface of the test chamber.



JP2013034551A 2013-02-25 2013-02-25 Environmental resistance test method Pending JP2014163780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013034551A JP2014163780A (en) 2013-02-25 2013-02-25 Environmental resistance test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013034551A JP2014163780A (en) 2013-02-25 2013-02-25 Environmental resistance test method

Publications (1)

Publication Number Publication Date
JP2014163780A true JP2014163780A (en) 2014-09-08

Family

ID=51614522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013034551A Pending JP2014163780A (en) 2013-02-25 2013-02-25 Environmental resistance test method

Country Status (1)

Country Link
JP (1) JP2014163780A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105527219A (en) * 2016-01-26 2016-04-27 广东美的暖通设备有限公司 Moisture-proof testing device
CN106769126A (en) * 2016-11-28 2017-05-31 华南理工大学 A kind of controllable pressure herringbone corrugated lamella heat exchanger stress-strain test system
JP2017223652A (en) * 2016-04-21 2017-12-21 ザ・ボーイング・カンパニーThe Boeing Company System and method for evaluating possibility of bubble formation in structure
WO2018110780A1 (en) * 2016-12-12 2018-06-21 한전원자력연료 주식회사 Device for maintaining internal temperature of pressure vessel
CN108387606A (en) * 2018-05-28 2018-08-10 长沙理工大学 A kind of rock epidemic disaster Transport experimental rig
EP4368967A1 (en) * 2022-11-09 2024-05-15 Espec Corp. Dew condensation testing device and dew condensation testing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105527219A (en) * 2016-01-26 2016-04-27 广东美的暖通设备有限公司 Moisture-proof testing device
JP2017223652A (en) * 2016-04-21 2017-12-21 ザ・ボーイング・カンパニーThe Boeing Company System and method for evaluating possibility of bubble formation in structure
CN106769126A (en) * 2016-11-28 2017-05-31 华南理工大学 A kind of controllable pressure herringbone corrugated lamella heat exchanger stress-strain test system
WO2018110780A1 (en) * 2016-12-12 2018-06-21 한전원자력연료 주식회사 Device for maintaining internal temperature of pressure vessel
US10907770B2 (en) 2016-12-12 2021-02-02 Kepco Nuclear Fuel Co., Ltd. Device for maintaining internal temperature of pressure vessel
CN108387606A (en) * 2018-05-28 2018-08-10 长沙理工大学 A kind of rock epidemic disaster Transport experimental rig
EP4368967A1 (en) * 2022-11-09 2024-05-15 Espec Corp. Dew condensation testing device and dew condensation testing method

Similar Documents

Publication Publication Date Title
JP2014163780A (en) Environmental resistance test method
Rao et al. Experimental study of an OHP-cooled thermal management system for electric vehicle power battery
RU2767152C2 (en) Chamber for formaldehyde or voc release testing and pretreatment
US20090250202A1 (en) Hybrid Chuck
KR20150098210A (en) Integrated cooling system for electronics testing apparatus
JP2014163779A (en) Environment resistance test method
KR20100014634A (en) Humidity control equipment, environment test equipment and temperature/humidity controller
JP6401987B2 (en) Cultivation apparatus and humidity control method
JP2015118012A (en) Specific heat-measuring device and specific heat-measuring method of test body
WO2018131555A1 (en) Valve control device, cooling device, valve control method, and program storage medium
JP2016001147A (en) Dew condensation testing device and dew condensation testing method
JP6568889B2 (en) Temperature control method for space environment test apparatus and space environment test apparatus
JP2006343174A (en) Temperature control apparatus, electronic component handler, and method for controlling temperature of electronic component
Ghaffari et al. Two-phase closed-loop thermosyphon filled with a dielectric liquid for electronics cooling applications
JP6791911B2 (en) Humidifier and air conditioning method
CN110174400A (en) A kind of heat pipe capillary core test device and method
KR20190081999A (en) Loop Type Heat Pipe
JP4896911B2 (en) Volatile measuring device
JP2019070587A (en) Corrosion testing device and corrosion testing method
Hsieh et al. An experimental study on the compatibility of acetone with aluminum flat-plate heat pipes
CA2692229A1 (en) Thermoeletric 2-phase gravity condenser &amp; methods of improving existing heat pipe systems
JP4718427B2 (en) Environmental test equipment
JP2006343122A (en) Temperature control apparatus, electronic component handler, and method for controlling temperature of electronic component
Gül Experimental investigation of the effect of condenser channel dimensions on the condensation of air-steam mixture
Milani et al. Experimental investigation of the effect of copper electrodeposition on the aluminum surface and addition of ethylene glycol on boiling heat transfer coefficient