JP2014162958A - Aluminum alloy, and method of producing the same - Google Patents

Aluminum alloy, and method of producing the same Download PDF

Info

Publication number
JP2014162958A
JP2014162958A JP2013035437A JP2013035437A JP2014162958A JP 2014162958 A JP2014162958 A JP 2014162958A JP 2013035437 A JP2013035437 A JP 2013035437A JP 2013035437 A JP2013035437 A JP 2013035437A JP 2014162958 A JP2014162958 A JP 2014162958A
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
less
content
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013035437A
Other languages
Japanese (ja)
Other versions
JP6063295B2 (en
Inventor
Koji Ichitani
幸司 一谷
Takahiro Kagawa
隆廣 鹿川
Akira Hibino
旭 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2013035437A priority Critical patent/JP6063295B2/en
Publication of JP2014162958A publication Critical patent/JP2014162958A/en
Application granted granted Critical
Publication of JP6063295B2 publication Critical patent/JP6063295B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy which can have sufficient heat resistance even in a case of a large-sized component without increasing hardening sensitivity, and to provide a method of producing the same.SOLUTION: An aluminum alloy includes Cu of 2.0 mass% or more and 3.7 mass% or less, Mg of 1.3 mass% or more and 2.2 mass% or less, Fe of 0.8 mass% or more and 2.0 mass% or less, Ni of 0.8 mass% or more and 2.0 mass% or less, Si of 0.31 mass% or more and 0.90 mass% or less, and Ti of 0.01 mass% or more and 0.20 mass% or less, and a content of Mn is restricted to less than 0.1 mass%, a content of Cr to less than 0.1 mass%, a content of Zr to less than 0.1 mass%, a content of Sc to less than 0.1 mass%, and a content of V to less than 0.1 mass%. The rest includes Al and inevitably included impurities.

Description

本発明は、アルミニウム合金およびその製造方法に関するものである。   The present invention relates to an aluminum alloy and a method for producing the same.

自動車、鉄道車両、船舶等の輸送分野においては、エンジン部品およびコンプレッサー等の機械部品において、省エネルギーを目的として軽量なアルミニウム合金材が多く使用されている。上記用途では、主に材料の耐熱性が要求されることから、アルミニウム合金種の中でも特に耐熱性に優れる2000系合金(Al−Cu系合金)が使用されている。   In the transportation field of automobiles, railway vehicles, ships, etc., lightweight aluminum alloy materials are often used for energy saving in mechanical parts such as engine parts and compressors. In the above applications, since heat resistance of the material is mainly required, 2000 series alloys (Al-Cu alloys) that are particularly excellent in heat resistance are used among aluminum alloy types.

最近の自動車における燃費規制強化に代表されるように、自動車・船舶等の輸送用機械においては、さらに強い省エネルギー化が求められ、それに応じて本用途におけるアルミニウム合金材が使用される温度条件や荷重負荷条件への要求が高まっており、さらなる耐熱性の向上が必要な状況にある。   As represented by the recent tightening of fuel efficiency regulations in automobiles, transportation machinery such as automobiles and ships requires further energy savings, and accordingly the temperature conditions and loads under which aluminum alloy materials are used in this application. The demand for load conditions is increasing, and it is necessary to further improve heat resistance.

本用途での耐熱性に優れたアルミニウム合金としては、従来から、JIS規格で規定されたJIS 2618合金(以下、2618合金)が広く使用されている。2618合金の成分は、Cu:1.9質量%〜2.7質量%、Mg:1.3質量%〜1.8質量%、Si:0.10質量%〜0.25質量%、Fe:0.9質量%〜1.3質量%、Ni:0.9質量%〜1.2質量%、Ti:0.04質量〜0.10質量%、Al残部で規定されているように、Al−Cu−Mg−Si−Fe−Ni合金であって、特に150〜200℃の温度範囲において、他の種々の2000系合金に比較して優れた耐熱性を有している。   As an aluminum alloy excellent in heat resistance in this application, JIS 2618 alloy (hereinafter referred to as 2618 alloy) defined in JIS standard has been widely used. The components of the 2618 alloy are Cu: 1.9 mass% to 2.7 mass%, Mg: 1.3 mass% to 1.8 mass%, Si: 0.10 mass% to 0.25 mass%, Fe: 0.9% by mass to 1.3% by mass, Ni: 0.9% by mass to 1.2% by mass, Ti: 0.04% by mass to 0.10% by mass, Al as defined by the balance of Al, -Cu-Mg-Si-Fe-Ni alloy, especially in the temperature range of 150-200 ° C, has superior heat resistance compared to other various 2000 series alloys.

この2618合金を改良して、耐熱性をさらに向上させた合金が、例えば特許文献1〜3に記載されている。特許文献1〜3に記載されている合金はいずれも、2618合金の基本成分であるAl、Cu、Mg、Si、Fe、Niに加えて、Mn、Cr、Zr、Sc、V等の遷移元素を必須元素として積極的に添加することによって耐熱性の向上を図っている。しかし、特許文献1〜3で記載されているような遷移元素を用いて耐熱性の向上を図った場合には、その付随的な影響として、焼入れ感受性が高まってしまい、部材の径、板厚、肉厚が大きくなって、溶体化処理後の焼入れにおいて冷却速度が不可避的に低下した場合に、耐熱性向上効果が得られなくなることがあった。とりわけ本用途においては、比較的大径・厚板・大肉厚の部材が多いため、これらの技術が適用できる部材は、比較的小型な部材に限定されることが多かった。   For example, Patent Documents 1 to 3 describe alloys in which the heat resistance is further improved by improving the 2618 alloy. All the alloys described in Patent Documents 1 to 3 are transition elements such as Mn, Cr, Zr, Sc, and V in addition to Al, Cu, Mg, Si, Fe, and Ni which are basic components of the 2618 alloy. The heat resistance is improved by positively adding as an essential element. However, when the heat resistance is improved by using a transition element as described in Patent Documents 1 to 3, as an incidental effect, the quenching sensitivity is increased, and the diameter and thickness of the member are increased. When the wall thickness increases and the cooling rate inevitably decreases during quenching after the solution treatment, the heat resistance improvement effect may not be obtained. In particular, in this application, since there are many members having a relatively large diameter, a thick plate, and a large thickness, members to which these techniques can be applied are often limited to relatively small members.

一方で、特許文献4には、2618合金と同じ構成のAl−Cu−Mg−Si−Fe−Ni合金であるが、Feの含有率を0.1〜0.7%に低く制限して、Cuの固溶量を高めて耐熱性を高める技術が記載されているが、Feの含有率を制限したことによって、FeおよびNiからなる晶出粒子の分布密度が低下することによって、これらの粒子による分散強化の耐熱性向上への寄与が低下して、現状要求されるに足る十分な耐熱性向上効果を得ることは困難であった。   On the other hand, Patent Document 4 is an Al—Cu—Mg—Si—Fe—Ni alloy having the same structure as the 2618 alloy, but the Fe content is limited to be as low as 0.1 to 0.7%. Although a technique for increasing the solid solution amount of Cu to increase heat resistance is described, by restricting the Fe content, the distribution density of crystallized particles composed of Fe and Ni decreases, so that these particles The contribution of the dispersion strengthening to the heat resistance improvement due to the decrease in the heat resistance, it was difficult to obtain a sufficient heat resistance improvement effect that is currently required.

また、一方で、特許文献5には、2618合金とおおよそ同じ範囲のAl−Cu−Mg−Si−Fe−Ni合金の溶体化処理温度条件を最適条件に限定することによって、耐熱性の向上を図る技術が記載されている。しかしながら、この技術によっても、現状要求されるに足る十分な耐熱性向上効果を得ることは困難であった。   On the other hand, Patent Document 5 discloses an improvement in heat resistance by limiting the solution treatment temperature condition of the Al—Cu—Mg—Si—Fe—Ni alloy in approximately the same range as the 2618 alloy to the optimum condition. The technology to plan is described. However, even with this technique, it has been difficult to obtain a sufficient heat resistance improvement effect that is currently required.

特開2011−122180号公報JP 2011-122180 A 特開2010−18854号公報JP 2010-18854 A 特開2008−202121号公報JP 2008-202121 A 特開平7−242976号公報Japanese Patent Laid-Open No. 7-242976 特開2008−101264号公報JP 2008-101264 A

上述のように、昨今の省エネルギー化を背景として、アルミニウム合金の耐熱性に対する要求が高まっており、従来の2618合金を常法に従って製造したり、また2618合金について溶体化処理条件等を最適化して製造したりする場合には、耐熱性に対する要求を満足させることが困難であった。また、特許文献1〜3に記載された技術にあるようにAl−Cu−Mg−Si−Fe−Ni合金に適宜遷移元素を添加して耐熱性を向上させる場合でもあっても、焼入れ感受性が高まるため、比較的大型の部材になると、耐熱性が不十分な場合が多かった。   As described above, against the background of recent energy savings, there is an increasing demand for heat resistance of aluminum alloys, and conventional 2618 alloys are manufactured according to ordinary methods, and solution treatment conditions and the like are optimized for 2618 alloys. When manufacturing, it was difficult to satisfy the requirements for heat resistance. Further, as in the techniques described in Patent Documents 1 to 3, even when a transition element is appropriately added to the Al—Cu—Mg—Si—Fe—Ni alloy to improve heat resistance, the quenching sensitivity is improved. In order to increase, when it became a comparatively large member, heat resistance was often insufficient.

本発明は上記事情に鑑みてなされたものであり、焼入れ感受性を高めることなく、比較的大型の部材の場合であっても十分な耐熱性を有することができるアルミニウム合金およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides an aluminum alloy that can have sufficient heat resistance even in the case of a relatively large member without increasing quenching sensitivity, and a method for producing the same. For the purpose.

本発明の第1の観点に係るアルミニウム合金は、
含有率が2.0質量%以上3.7質量%以下のCuと、
含有率が1.3質量%以上2.2質量%以下のMgと、
含有率が0.8質量%以上2.0質量%以下のFeと、
含有率が0.8質量%以上2.0質量%以下のNiと、
含有率が0.31質量%以上0.90質量%以下のSiと、
含有率が0.01質量%以上0.20質量%以下のTiと、
を含み、
Mnの含有率が0.1質量%未満、
Crの含有率が0.1質量%未満、
Zrの含有率が0.1質量%未満、
Scの含有率が0.1質量%未満、
Vの含有率が0.1質量%未満、
に規制され、
残部がAlおよび不可避的不純物からなる、
ことを特徴とする。
The aluminum alloy according to the first aspect of the present invention is:
Cu with a content of 2.0% by mass or more and 3.7% by mass or less,
Mg with a content of 1.3% by mass or more and 2.2% by mass or less;
Fe with a content of 0.8% by mass or more and 2.0% by mass or less;
Ni with a content of 0.8% by mass or more and 2.0% by mass or less;
Si with a content of 0.31 mass% or more and 0.90 mass% or less,
Ti with a content of 0.01% by mass or more and 0.20% by mass or less;
Including
The content of Mn is less than 0.1% by mass,
Cr content of less than 0.1% by mass,
The content of Zr is less than 0.1% by mass,
Sc content is less than 0.1% by mass,
The content of V is less than 0.1% by mass,
Regulated by
The balance consists of Al and inevitable impurities,
It is characterized by that.

マトリクス中に、Al、CuおよびMgを含む針状析出物を有し、
前記針状析出物の平均長さが150nm以上250nm以下であり、
前記針状析出物の分布密度が、200個/μm以上であってもよい。
In the matrix, it has acicular precipitates containing Al, Cu and Mg,
The average length of the acicular precipitate is 150 nm or more and 250 nm or less,
The distribution density of the acicular precipitates may be 200 / μm 2 or more.

本発明の第2の観点に係るアルミニウム合金の製造方法は、
上記アルミニウム合金の製造方法であって、
均質化処理工程において、鋳造工程において鋳造されたアルミニウム合金を、470℃以上、該鋳造されたアルミニウム合金の固相線温度以下の温度で1時間以上保持した後、
熱間加工された、または、熱間加工および冷間加工されたアルミニウム合金を、溶体化処理工程において、470℃以上、該熱間加工された、または、該熱間加工および冷間加工されたアルミニウム合金の固相線温度以下の温度で1秒間以上保持し、
人工時効処理工程において、前記溶体化処理工程において溶体化処理されたアルミニウム合金を、170℃以上210℃以下の温度で5時間以上保持する、
ことを特徴とする。
The method for producing an aluminum alloy according to the second aspect of the present invention,
A method for producing the aluminum alloy, comprising:
In the homogenization process, after the aluminum alloy cast in the casting process is held at a temperature of 470 ° C. or more and a temperature below the solidus temperature of the cast aluminum alloy for 1 hour or more,
An aluminum alloy that has been hot-worked or hot-worked and cold-worked has been hot-worked or hot-worked and cold-worked at 470 ° C. or higher in the solution treatment step. Hold for at least 1 second at a temperature below the solidus temperature of the aluminum alloy,
In the artificial aging treatment step, the aluminum alloy solution treated in the solution treatment step is held at a temperature of 170 ° C. or higher and 210 ° C. or lower for 5 hours or more.
It is characterized by that.

本発明によれば、焼入れ感受性を高めることなく、比較的大型の部材の場合であっても十分な耐熱性を有することができるアルミニウム合金およびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it is the case of a comparatively large member, without raising quenching sensitivity, the aluminum alloy which can have sufficient heat resistance, and its manufacturing method can be provided.

本発明の実施例に係る針状析出物S’の分布形態を模式的に示す図である。It is a figure which shows typically the distribution form of the acicular precipitate S 'which concerns on the Example of this invention. 本発明の実施例に係る回転曲げ疲労試験片の形状を模式的に示す図である。It is a figure which shows typically the shape of the rotation bending fatigue test piece which concerns on the Example of this invention.

本発明者は、Al−Cu−Mg−Si−Fe−Ni合金をベースとして、Cu、Mg、Si、FeおよびNiの添加量を最適化することによって耐熱性を大幅に向上できることを見出し、本発明をなすに至った。また、本発明者は、上記元素の含有率を最適化することによる耐熱性向上効果をさらに高めるために、製造工程において均質化処理を行い、その均質化条件を最適化した上で、加工後に行われる溶体化処理の条件および人工時効処理条件を最適に行うことが有効であることを見出して、本発明に係るアルミニウム合金の製造方法を見出すに至った。   The present inventor has found that heat resistance can be greatly improved by optimizing the amount of Cu, Mg, Si, Fe and Ni based on an Al—Cu—Mg—Si—Fe—Ni alloy. Invented the invention. In addition, in order to further enhance the heat resistance improvement effect by optimizing the content of the above elements, the present inventor performs a homogenization process in the manufacturing process, optimizes the homogenization conditions, and after processing. The inventors have found that it is effective to optimally perform the conditions for the solution treatment and the artificial aging treatment performed, and have found the method for producing an aluminum alloy according to the present invention.

(成分元素)
まず、本発明の実施形態に係る耐熱性に優れたアルミニウム合金について、以下に成分元素を説明する。なお、本発明の実施形態に係るアルミニウム合金の残部は、アルミニウムと、不可避不純物と、からなる。
(Component elements)
First, component elements of the aluminum alloy excellent in heat resistance according to the embodiment of the present invention will be described below. The balance of the aluminum alloy according to the embodiment of the present invention is made of aluminum and inevitable impurities.

(Cu、Mg)
CuおよびMgは、本発明の実施形態に係る耐熱性に優れたアルミニウム合金を構成する主要元素である。CuおよびMgは、本発明の実施形態に係るアルミニウム合金に対して、470℃以上の温度域に保持する溶体化処理を行った際にアルミニウムマトリクス中に一旦固溶し、その後、室温付近まで急冷すること(焼入れと呼ばれる)によって過飽和固溶体としてから、所定の温度で人工時効処理を行うことによって、Al、CuおよびMgからなる微細な析出物(本明細書において、以下、この微細な析出物をS’析出物と呼ぶ)をマトリクス中に形成することにより、本発明の実施形態に係るアルミニウム合金の室温強度および耐熱性の向上に寄与する。本発明の実施形態に係るアルミニウム合金においては、アルミニウム合金中のCuの含有率の下限を2.0質量%、Mgの含有率の下限を1.3質量%とする。Cu、Mgそれぞれの元素の添加量が、この値よりも低いと、CuおよびMgの固溶量が不足して、S’析出物の析出密度が低くなるため、アルミニウム合金が十分な耐熱性を得ることができない。また、本発明の実施形態に係るアルミニウム合金においては、アルミニウム合金中のCuの含有率の上限を3.7質量%、Mgの含有率の上限を2.2質量%とした。Cu、Mgそれぞれの元素の添加量が、この値よりも高いと、Cu、Mgの元素の固溶限を越えてしまうために、溶体化処理によって、これらの元素を完全に固溶させることができず、Al、CuおよびMgからなる晶出物としてマトリクス中に残存する。このような残存晶出粒子は、アルミニウム合金材料の高温延性を損なうだけでなく、高温での疲労特性を低下させてしまう。上述の理由により、本発明の実施形態に係るアルミニウム合金においては、アルミニウム合金中のCuの含有率を2.0質量%以上3.7質量%以下、Mgの含有率を1.3質量%以上2.2質量%以下とする。
(Cu, Mg)
Cu and Mg are main elements constituting the aluminum alloy having excellent heat resistance according to the embodiment of the present invention. Cu and Mg are once dissolved in the aluminum matrix when solution treatment is performed in the temperature range of 470 ° C. or higher for the aluminum alloy according to the embodiment of the present invention, and then rapidly cooled to near room temperature. By performing an artificial aging treatment at a predetermined temperature after making a supersaturated solid solution (called quenching), fine precipitates made of Al, Cu and Mg (hereinafter referred to as fine precipitates in this specification) (Referred to as S ′ precipitates) in the matrix contributes to the improvement in room temperature strength and heat resistance of the aluminum alloy according to the embodiment of the present invention. In the aluminum alloy according to the embodiment of the present invention, the lower limit of the Cu content in the aluminum alloy is 2.0 mass%, and the lower limit of the Mg content is 1.3 mass%. If the addition amount of each element of Cu and Mg is lower than this value, the amount of solid solution of Cu and Mg is insufficient, and the precipitation density of the S ′ precipitate is lowered, so that the aluminum alloy has sufficient heat resistance. Can't get. Moreover, in the aluminum alloy which concerns on embodiment of this invention, the upper limit of the content rate of Cu in an aluminum alloy was 3.7 mass%, and the upper limit of the content rate of Mg was 2.2 mass%. If the added amount of each element of Cu and Mg is higher than this value, the solid solubility limit of the elements of Cu and Mg will be exceeded, so that these elements can be completely dissolved by solution treatment. However, it remains in the matrix as a crystallized product composed of Al, Cu and Mg. Such residual crystallized particles not only impair the high-temperature ductility of the aluminum alloy material, but also deteriorate the fatigue properties at high temperatures. For the reasons described above, in the aluminum alloy according to the embodiment of the present invention, the Cu content in the aluminum alloy is 2.0 mass% or more and 3.7 mass% or less, and the Mg content is 1.3 mass% or more. 2.2% by mass or less.

(Fe、Ni)
FeおよびNiも、CuおよびMgと同様に、本発明の実施形態に係る耐熱性に優れたアルミニウム合金を構成する主要元素である。FeおよびNiは、溶解時や鋳造時に、Al、FeおよびNiからなる微細な晶出粒子をマトリクス中に生成する。溶解・鋳造後の熱間加工や冷間加工によって、この晶出粒子はさらに細かく分断されて、マトリクス中に比較的微細(1μm〜5μmサイズ)、かつ高密度に分散することによって、分散強化を発現させて、上述のCuおよびMgによる微細析出による強化と重畳して、本発明の実施形態に係るアルミニウム合金の室温強度および耐熱性向上に寄与する。また、これらのAl、FeおよびNiからなる微細な晶出粒子は、マトリクス中に高密度に分散することによって、アルミニウム合金の溶体化やアルミニウム合金材料の使用時など、高温で保持される際に、アルミニウム合金内の結晶粒組織の安定化に寄与して、結晶粒の成長・粗大化を抑制して、本発明の実施形態に係るアルミニウム合金の耐熱性向上に寄与する。アルミニウム合金中におけるFe、Niそれぞれの含有率が0.8質量%よりも低い場合、Al、FeおよびNiからなる晶出粒子の分布密度が低くなってしまい、十分な分散強化が得られない。また、アルミニウム合金中におけるFe、Niそれぞれの含有率が、2.0質量%よりも高い場合は、Al、FeおよびNiからなる晶出粒子の一部が、溶解時や鋳造時に著しく粗大化して、その後、熱間加工や冷間加工を行った後の最終状態においても非常に粗大な晶出粒子(100μm以上のサイズ)がマトリクス中に残存してしまう。このような場合、この粗大な晶出粒子が破壊の起点となるため、アルミニウム合金の高温延性が著しく低下したり、高温での疲労特性が大幅に低下したりするなどし、アルミニウム合金の材料特性が著しく低下してしまう。上述の理由により、本発明の実施形態に係るアルミニウム合金においては、アルミニウム合金中のFeの含有率を0.8質量%以上2.0質量%以下、Niの含有率を0.8質量%以上2.0質量%以下とする。
(Fe, Ni)
Fe and Ni, as well as Cu and Mg, are main elements constituting the aluminum alloy having excellent heat resistance according to the embodiment of the present invention. Fe and Ni generate fine crystallized particles composed of Al, Fe and Ni in the matrix during melting or casting. The crystallization particles are further finely divided by hot processing and cold processing after melting and casting, and dispersion is strengthened by being relatively fine (1 μm to 5 μm size) and dispersed at high density in the matrix. It is made to express and it contributes to the room temperature intensity | strength and heat resistance improvement of the aluminum alloy which concerns on embodiment of this invention, and superimposes with the strengthening by the fine precipitation by the above-mentioned Cu and Mg. In addition, these fine crystallized particles made of Al, Fe and Ni are dispersed at a high density in the matrix, so that when they are held at a high temperature, such as when an aluminum alloy solution or aluminum alloy material is used. This contributes to the stabilization of the crystal grain structure in the aluminum alloy, suppresses the growth and coarsening of the crystal grains, and contributes to the improvement of the heat resistance of the aluminum alloy according to the embodiment of the present invention. When the content ratios of Fe and Ni in the aluminum alloy are lower than 0.8% by mass, the distribution density of crystallized particles made of Al, Fe and Ni becomes low, and sufficient dispersion strengthening cannot be obtained. Further, when the content of each of Fe and Ni in the aluminum alloy is higher than 2.0% by mass, some of the crystallized particles made of Al, Fe and Ni are significantly coarsened during melting or casting. Thereafter, very coarse crystallized particles (size of 100 μm or more) remain in the matrix even in the final state after hot working or cold working. In such a case, the coarse crystallized particles are the starting point of fracture, so the high temperature ductility of the aluminum alloy is significantly reduced and the fatigue properties at high temperatures are greatly reduced. Will drop significantly. For the reasons described above, in the aluminum alloy according to the embodiment of the present invention, the Fe content in the aluminum alloy is 0.8 mass% or more and 2.0 mass% or less, and the Ni content is 0.8 mass% or more. 2.0 mass% or less.

(Si)
Siは、本発明の実施形態に係るアルミニウム合金を特徴付ける重要な必須添加元素である。従来技術においては、Siは多くの場合不純物元素と見なされて上限値が規制されるか、また積極的に添加される場合であっても、ほとんどの場合、0.3質量%未満の含有率とされてきた。また、2618合金では、合金中のSiの含有率は0.10質量%以上0.25質量%以下の範囲とされている。これに対して、本発明の実施形態に係るアルミニウム合金においては、アルミニウム合金中のSiの含有率を0.31質量%以上0.90質量%以下の範囲とする。この理由を以下に述べる。アルミニウム合金の溶体化処理を行う前の段階において、SiはMgとともにMgSi晶出物または析出物としてマトリクス中に存在し、溶体化処理として、470℃以上、アルミニウム合金の固相線温度以下の範囲に保持されると、MgSiが溶解して、Si原子はマトリクス中に固溶する。その後、アルミニウム合金を室温付近まで急冷する焼入れ処理を行うと、Si原子は、マトリクス中の原子空孔とペア(Si−空孔ペア)を形成し、溶体化処理温度で平衡的に多数存在した原子空孔を室温まで安定に持ち込み、結果として焼入れ後のマトリクス中には多量の過剰空孔が形成される。その後、180℃以上200℃以下の温度範囲で、5時間以上保持する人工時効処理を行うと、このSi−空孔ペアが分解され、フリー空孔がマトリクス中に形成される。このフリー空孔は、時効析出時に形成されるAl、CuおよびMgからなる微細析出物S’の核生成を助長して、結果としてS’析出物の析出が高密度となり、人工時効処理後のアルミニウム合金の室温強度と耐熱性が大幅に向上する。このような効果を得るための好ましいSiの含有率が、0.31質量%以上0.90質量%以下の範囲である。Siの含有率が0.31質量%未満では、溶体化処理時に形成されるSi−空孔ペア量が不十分で、室温付近まで急冷後の人工時効時のS’析出物の析出密度が低いために、得られる耐熱性が不十分である。またSiの含有率が0.90質量%を超えると、溶体化処理前の状態においてMgと形成されるMgSiの量が多くなり過ぎ、溶体化処理時に完全に固溶することができず、マトリクス中に粗大なMgSi粒子が残存してしまう。この粗大粒子は、アルミニウム合金の高温延性を大幅に低下させるとともに、高温疲労特性を低下させ、アルミニウム合金の特性が大幅に低下してしまう。
(Si)
Si is an important essential additive element that characterizes the aluminum alloy according to the embodiment of the present invention. In the prior art, Si is often regarded as an impurity element and the upper limit is regulated, or even if it is actively added, the content is less than 0.3% by mass in most cases. It has been said. In the 2618 alloy, the Si content in the alloy is in the range of 0.10% by mass to 0.25% by mass. On the other hand, in the aluminum alloy which concerns on embodiment of this invention, let the content rate of Si in an aluminum alloy be the range of 0.31 mass% or more and 0.90 mass% or less. The reason for this will be described below. In the stage before the solution treatment of the aluminum alloy, Si is present in the matrix as Mg 2 Si crystallized matter or precipitate together with Mg, and as a solution treatment, 470 ° C. or more and below the solidus temperature of the aluminum alloy If it is kept in the range, Mg 2 Si dissolves and Si atoms dissolve in the matrix. After that, when quenching treatment was performed in which the aluminum alloy was quenched to near room temperature, Si atoms formed pairs with atomic vacancies in the matrix (Si-vacancy pairs), and a large number existed in equilibrium at the solution treatment temperature. Atomic vacancies are stably brought to room temperature, and as a result, a large amount of excess vacancies are formed in the matrix after quenching. Thereafter, when an artificial aging treatment is performed in a temperature range of 180 ° C. or higher and 200 ° C. or lower for 5 hours or more, the Si-hole pair is decomposed and free holes are formed in the matrix. The free vacancies promote the nucleation of fine precipitates S ′ composed of Al, Cu and Mg formed during aging precipitation, resulting in a high density of precipitation of S ′ precipitates. The room temperature strength and heat resistance of aluminum alloys are greatly improved. A preferable Si content for obtaining such an effect is in the range of 0.31% by mass or more and 0.90% by mass or less. When the Si content is less than 0.31% by mass, the amount of Si-hole pairs formed during the solution treatment is insufficient, and the precipitation density of S ′ precipitates during artificial aging after rapid cooling to near room temperature is low. Therefore, the heat resistance obtained is insufficient. If the Si content exceeds 0.90% by mass, the amount of Mg 2 Si formed with Mg in the state before the solution treatment is too large, and cannot be completely dissolved during the solution treatment. Coarse Mg 2 Si particles remain in the matrix. The coarse particles greatly reduce the high temperature ductility of the aluminum alloy, lower the high temperature fatigue properties, and greatly reduce the properties of the aluminum alloy.

(Ti)
Tiは溶解・鋳造において、アルミニウム合金が凝固するに際して、凝固の核生成サイトとして機能することにより、鋳塊組織の微細化に寄与する。これによって、溶解・鋳造の後に引き続く熱間加工および冷間加工後の溶体化処理時に微細な結晶粒組織が形成され、アルミニウム合金の耐熱性の向上に寄与する。本発明の実施形態において、Tiは全量を単独で添加されてもよいし、その一部または全量をTi−Bの化合物の形態で添加されてもよい。なお、Ti−Bの化合物の形態で添加される場合、アルミニウム合金中の共添加されるBの含有率は、0.001質量%以上0.05質量%の範囲とすることが、より好ましい。アルミニウム合金中のTiの含有率が0.01質量%未満の場合は、鋳塊組織を微細にする効果が不十分である。また、アルミニウム合金中のTiの含有率が0.20質量%を超えると、鋳造時にAl−Tiからなる粗大な化合物が晶出し、材料の高温延性、高温疲労等の耐熱特性が大幅に低下する。また、Bを共添加する場合は、共添加されるBの含有率が0.001質量%以上であることによって、鋳塊を微細にする効果をより得られる。また、Bの含有率が0.05質量%以下であることによって、鋳造時におけるTi−Bからなる粗大な化合物の晶出が抑制され、高温延性、耐熱性をより高く維持することができる。
(Ti)
In melting and casting, Ti contributes to refinement of the ingot structure by functioning as a nucleation site for solidification when the aluminum alloy solidifies. As a result, a fine grain structure is formed during the hot working following the melting and casting and the solution treatment after the cold working, thereby contributing to the improvement of the heat resistance of the aluminum alloy. In the embodiment of the present invention, Ti may be added in its entirety, or a part or all of Ti may be added in the form of a Ti-B compound. In addition, when adding with the form of the compound of Ti-B, it is more preferable to make content rate of B co-added in an aluminum alloy into the range of 0.001 mass% or more and 0.05 mass%. When the Ti content in the aluminum alloy is less than 0.01% by mass, the effect of making the ingot structure fine is insufficient. Further, if the Ti content in the aluminum alloy exceeds 0.20 mass%, a coarse compound composed of Al-Ti crystallizes during casting, and the heat resistance characteristics such as high temperature ductility and high temperature fatigue of the material are greatly reduced. . Further, when B is co-added, the effect of making the ingot finer is further obtained when the content of B to be co-added is 0.001% by mass or more. Moreover, when the content rate of B is 0.05 mass% or less, crystallization of the coarse compound which consists of Ti-B at the time of casting is suppressed, and high temperature ductility and heat resistance can be maintained higher.

(Mn、Cr、Zr、Sc、V)
本発明の実施形態に係るアルミニウム合金においては、アルミニウム合金中のMnの含有率が0.1質量%未満(0質量%を含む)であり、アルミニウム合金中のCrの含有率が0.1質量%未満(0質量%を含む)であり、アルミニウム合金中のZrの含有率が0.1質量%未満(0質量%を含む)であり、アルミニウム合金中のScの含有率が0.1質量%未満(0質量%を含む)であり、アルミニウム合金中のVの含有率が0.1質量%未満(0質量%を含む)であることが好ましい。なお、本明細書において、含有率が「0質量%」とは、0質量%だけではなく、検出機器における当該元素の検出下限以下の微少な含有率をも含むものとする。遷移元素のより好ましい含有率の範囲は、Mn:0.001質量%以上0.1質量%未満、Cr:0.001質量%以上0.1質量%未満、Zr:0.001質量%以上0.1質量%未満、Sc:0.001質量%以上0.1質量%未満、V:0.001質量%以上0.1質量%未満である。より一層好ましい含有率の範囲は、Mn:0.001質量%以上0.05質量%未満、Cr:0.001質量%以上0.05質量%未満、Zr:0.001質量%以上0.05質量%未満、Sc:0.001質量%以上0.05質量%未満、V:0.001質量%以上0.05質量%未満である。また、さらに好ましい含有率の範囲は、Mn:0.001質量%以上0.035質量%未満、Cr:0.001質量%以上0.035質量%未満、Zr:0.001質量%以上0.035質量%未満、Sc:0.001質量%以上0.035質量%未満、V:0.001質量%以上0.035質量%未満である。
(Mn, Cr, Zr, Sc, V)
In the aluminum alloy according to the embodiment of the present invention, the Mn content in the aluminum alloy is less than 0.1% by mass (including 0% by mass), and the Cr content in the aluminum alloy is 0.1% by mass. % (Including 0% by mass), the Zr content in the aluminum alloy is less than 0.1% by mass (including 0% by mass), and the Sc content in the aluminum alloy is 0.1% by mass. % (Including 0% by mass), and the V content in the aluminum alloy is preferably less than 0.1% by mass (including 0% by mass). In the present specification, the content rate of “0% by mass” includes not only 0% by mass but also a minute content that is not more than the lower limit of detection of the element in the detection device. More preferable range of the content of the transition element is Mn: 0.001% by mass or more and less than 0.1% by mass, Cr: 0.001% by mass or more and less than 0.1% by mass, Zr: 0.001% by mass or more and 0 0.1% by mass or less, Sc: 0.001% by mass or more and less than 0.1% by mass, V: 0.001% by mass or more and less than 0.1% by mass. More preferable ranges of the content are Mn: 0.001% by mass or more and less than 0.05% by mass, Cr: 0.001% by mass or more and less than 0.05% by mass, Zr: 0.001% by mass or more and 0.05% by mass or less. Less than mass%, Sc: 0.001 mass% or more and less than 0.05 mass%, V: 0.001 mass% or more and less than 0.05 mass%. Further, the more preferable range of the content is Mn: 0.001% by mass or more and less than 0.035% by mass, Cr: 0.001% by mass or more and less than 0.035% by mass, Zr: 0.001% by mass or more and 0.0. Less than 035 mass%, Sc: 0.001 mass% or more and less than 0.035 mass%, V: 0.001 mass% or more and less than 0.035 mass%.

遷移元素であるMn、Cr、Zr、Sc、Vは、アルミニウム合金に添加されると、マトリクス中に各遷移元素(Mn、Cr、Zr、Sc、V)とAlとからなる微細な分散粒子(粒径1μm未満)を形成し、上述のAl、FeおよびNiからなる晶出粒子と同様に、アルミニウム合金内の結晶粒組織の一層の安定化に寄与する。これによって、アルミニウム合金を高温に保持した際の結晶粒組織を一層安定化する効果を有し、結晶粒の成長・粗大化を抑制して、耐熱性の一層の向上に寄与する。   When transition elements Mn, Cr, Zr, Sc, and V are added to an aluminum alloy, fine dispersed particles (Mn, Cr, Zr, Sc, V) and Al that are each composed of transition elements (Mn, Cr, Zr, Sc, and V) in the matrix ( The particle size is less than 1 μm), and contributes to further stabilization of the crystal grain structure in the aluminum alloy in the same manner as the crystallized particles made of Al, Fe and Ni described above. This has the effect of further stabilizing the crystal grain structure when the aluminum alloy is held at a high temperature, and suppresses the growth and coarsening of the crystal grains, thereby contributing to further improvement in heat resistance.

ここで、これらの遷移元素(Mn、Cr、Zr、Sc、V)とAlとからなる微細な分散粒子がマトリクス中に存在すると、溶体化処理後に急冷する焼入れ時に、主溶質元素であるCuとMgとからなる安定相のS相(CuMgAl)が、この分散粒子とマトリクスの界面上に不均一核生成して、比較的粗大に生成してしまうことがある。これによって、焼入れ後におけるマトリクス中のCuおよびMgの溶質濃度が低下して、その後の人工時効処理時のS’析出物の析出密度が低下して、アルミニウム合金の耐熱性が低下することがある。この焼入れ時の冷却途中におけるS相の析出は、冷却速度が小さいほど顕著となり、冷却速度の低下に伴って、人工時効処理後のアルミニウム合金の強度が大きく低下することがある。この場合のように、人工時効処理後のアルミニウム合金の強度が冷却速度の影響を受けやすいという傾向は一般に「焼入れ感受性が高い」として表現され、焼入れ感受性が高い傾向を有するアルミニウム合金は、部材のサイズが大きくなるにつれて、不可避的に焼入れ時の冷却速度が低下することがあるため、人工時効処理後の強度低下が大きくなり、アルミニウム合金の耐熱性の低下も大きく、比較的大型の部材では、高い耐熱性を確保できなくなってしまうことがある。しかしながら、遷移元素であるMn、Cr、Zr、Sc、Vのアルミニウム合金中の含有率を上述の範囲とすることによって、焼入れ感受性の過度の増大が抑制され、とりわけ溶体化処理後の焼入れ時の部材サイズが大きい場合でも、耐熱性の低下を抑制することができる。 Here, when fine dispersed particles composed of these transition elements (Mn, Cr, Zr, Sc, V) and Al are present in the matrix, Cu, which is a main solute element, is quenched during quenching after solution treatment. The S phase (CuMgAl 2 ), which is a stable phase composed of Mg, may be non-uniformly nucleated on the interface between the dispersed particles and the matrix to form relatively coarsely. As a result, the solute concentrations of Cu and Mg in the matrix after quenching decrease, the precipitation density of S ′ precipitates during the subsequent artificial aging treatment decreases, and the heat resistance of the aluminum alloy may decrease. . The precipitation of the S phase during cooling during quenching becomes more pronounced as the cooling rate is lower, and the strength of the aluminum alloy after the artificial aging treatment may be greatly reduced as the cooling rate decreases. As in this case, the tendency that the strength of the aluminum alloy after the artificial aging treatment is easily affected by the cooling rate is generally expressed as “high quenching sensitivity”. As the size increases, the cooling rate during quenching may inevitably decrease, so the strength decrease after artificial aging treatment increases, the heat resistance of the aluminum alloy decreases significantly, and relatively large members It may become impossible to ensure high heat resistance. However, by setting the content of the transition elements Mn, Cr, Zr, Sc, and V in the aluminum alloy within the above-mentioned range, excessive increase in quenching sensitivity is suppressed, especially during quenching after solution treatment. Even when the member size is large, a decrease in heat resistance can be suppressed.

一方で、上述のAl、FeおよびNiからなる晶出粒子による結晶粒組織安定化効果を利用した場合は、この晶出物粒子とマトリクス界面とが不均一核生成のサイトとならないため、溶体化後の急冷時の冷却途中におけるS相の不均一核生成が生じない。このため、上記遷移元素の含有率を上述の範囲とすることによって、アルミニウム合金部材のサイズが大きくなって焼入れ時の冷却速度が低下した場合でも、人工時効処理後のアルミニウム合金の強度低下が小さく(焼入れ感受性が低い)、アルミニウム合金の耐熱性の低下も小さいという特長を有する。   On the other hand, when the effect of stabilizing the crystal grain structure by the crystallized particles composed of Al, Fe and Ni described above is utilized, the crystallized particles and the matrix interface do not serve as sites for heterogeneous nucleation, so that the solution is formed. Inhomogeneous nucleation of the S phase does not occur during the subsequent quenching. Therefore, by setting the content of the transition element in the above range, even when the size of the aluminum alloy member is increased and the cooling rate during quenching is reduced, the strength reduction of the aluminum alloy after the artificial aging treatment is small. (Low quenching sensitivity) and low heat resistance degradation of aluminum alloy.

本発明の実施形態に係るアルミニウム合金においては、以上の理由により、遷移元素であるMn、Cr、Zr、Sc、Vの含有率を上述の範囲とすることが、より好ましい。これらの遷移元素は、積極的にアルミニウム合金に添加されない場合でも、リサイクルした二次合金を多く用いた場合に、多く混入する場合があるため、溶解・鋳造段階で溶湯の元素分析を行い、これらの遷移元素の混入を確認して、含有率が上述の範囲となるようにすることが、より好ましい。   In the aluminum alloy which concerns on embodiment of this invention, it is more preferable to make the content rate of Mn, Cr, Zr, Sc, and V which are transition elements into the above-mentioned range for the above reason. Even if these transition elements are not actively added to the aluminum alloy, they may be mixed in a large amount when a large amount of recycled secondary alloy is used. It is more preferable that the content of the transition element is confirmed to be within the above range.

(その他の元素)
上記の元素の他に、耐食性等を向上させることを目的として微量のZnを添加してもよい。本発明の実施形態に係るアルミニウム合金においては、アルミニウム合金中のZnの含有率を0.001質量%以上1.0質量%未満とすることが、より好ましい。
(Other elements)
In addition to the above elements, a small amount of Zn may be added for the purpose of improving the corrosion resistance and the like. In the aluminum alloy which concerns on embodiment of this invention, it is more preferable to make content rate of Zn in an aluminum alloy into 0.001 mass% or more and less than 1.0 mass%.

(製造方法)
以下、本発明の実施形態に係る耐熱性に優れたアルミニウム合金展伸材(アルミニウム合金)の製造方法について説明する。本発明の実施形態に係るアルミニウム合金展伸材は、圧延・押出・鍛造といったアルミニウム合金展伸材の常法に従って製造することができるが、その製造工程のうち、主に熱処理に関する工程の条件を適切に制御することによって、高い耐熱性を本発明の実施形態に係るアルミニウム合金に付与することができる。
(Production method)
Hereinafter, the manufacturing method of the aluminum alloy extended material (aluminum alloy) excellent in heat resistance which concerns on embodiment of this invention is demonstrated. The aluminum alloy wrought material according to the embodiment of the present invention can be manufactured in accordance with a conventional method of aluminum alloy wrought material such as rolling, extrusion, and forging. By appropriately controlling, high heat resistance can be imparted to the aluminum alloy according to the embodiment of the present invention.

以下、圧延・押出・鍛造といったアルミニウム合金展伸材に共通して行われる製造工程を含む本発明の実施形態に係るアルミニウム合金の製造方法の工程を簡単に述べる。はじめに、溶解・鋳造を行い、アルミニウム合金鋳塊を得る。その後、均質化処理を行ってから、熱間加工を行う。さらにその後、必要に応じて冷間加工を行う。また、この冷間加工の前または途中に必要に応じて中間焼鈍を行ってもよい。その後、溶体化処理を行ってから、室温付近の温度まで急冷する焼入れを行った後に、最終的に人工時効処理を行う。   Hereinafter, the process of the manufacturing method of the aluminum alloy which concerns on embodiment of this invention including the manufacturing process performed in common with aluminum alloy extended materials, such as rolling, extrusion, and forging, is described briefly. First, melting and casting are performed to obtain an aluminum alloy ingot. Then, after performing a homogenization process, hot processing is performed. Thereafter, cold working is performed as necessary. Further, intermediate annealing may be performed as necessary before or during the cold working. Then, after performing solution treatment, after quenching to a temperature near room temperature, artificial aging treatment is finally performed.

以下、主要な工程ごとに製造方法を詳述する。   Hereinafter, a manufacturing method is explained in full detail for every main process.

(溶解工程・鋳造工程)
本発明の実施形態に係るアルミニウム合金の成分範囲内に溶解調整されたアルミニウム合金溶湯を、たとえば、半連続鋳造法(DC鋳造法またはホットトップ鋳造法)によって鋳造して、アルミニウム合金鋳塊を製造する。鋳造後には、引き続き行われる熱間加工に備えて、必要に応じて鋳塊表面の鋳肌を削り取る面削を行ってもよい。面削は、後述する均質化処理後に行ってもよい。
(Melting process / Casting process)
An aluminum alloy ingot is manufactured by casting an aluminum alloy melt adjusted to be within the component range of the aluminum alloy according to the embodiment of the present invention, for example, by a semi-continuous casting method (DC casting method or hot top casting method). To do. After the casting, in preparation for the subsequent hot working, the surface of the ingot surface may be cut as necessary. The chamfering may be performed after a homogenization process described later.

(均質化処理工程)
次に、鋳造時に形成される凝固組織に特徴的な濃度偏析を解消することを目的として、アルミニウム合金に対して均質化処理を行う。均質化処理は、アルミニウム合金鋳塊を470℃以上の温度で1時間以上保持する条件で行う。この条件で均質化処理を行うことによって、濃度偏析が解消され、以降に行われる溶体化処理の温度を高く設定することが可能となり、アルミニウム合金に、より高い耐熱性を付与することが可能となる。均質化処理温度の上限は特に規定しないが、鋳造したままの状態での(鋳造工程後の)アルミニウム合金の固相線温度以下(たとえば、約530℃以下)に設定することが適切である。均質化処理の温度を470℃以上とすることによって、凝固組織の濃度偏析を十分に解消することが可能となり、耐熱性の低下を抑制することができる。均質化処理時間を1時間以上とすることによって、凝固組織の濃度偏析を十分に解消することが可能となり、耐熱性の低下を抑制することができる。均質化処理時間の上限は本発明の効果を奏する範囲で適宜設定され、以下に限定されるものではないが、10時間以上行っても均質化効果が飽和してほぼ一定となるので、経済的理由から、たとえば、10時間を上限とすることが、より好ましい。
(Homogenization process)
Next, a homogenization process is performed on the aluminum alloy for the purpose of eliminating concentration segregation characteristic of the solidified structure formed during casting. The homogenization treatment is performed under the condition that the aluminum alloy ingot is held at a temperature of 470 ° C. or higher for 1 hour or longer. By performing the homogenization treatment under these conditions, concentration segregation is eliminated, the temperature of the solution treatment performed thereafter can be set high, and higher heat resistance can be imparted to the aluminum alloy. Become. The upper limit of the homogenization treatment temperature is not particularly defined, but it is appropriate to set it below the solidus temperature of the aluminum alloy as it is cast (after the casting process) (for example, about 530 ° C. or less). By setting the temperature of the homogenization treatment to 470 ° C. or higher, it is possible to sufficiently eliminate concentration segregation of the solidified structure, and it is possible to suppress a decrease in heat resistance. By setting the homogenization treatment time to 1 hour or longer, it is possible to sufficiently eliminate concentration segregation of the solidified structure, and it is possible to suppress a decrease in heat resistance. The upper limit of the homogenization treatment time is set as appropriate within the range where the effects of the present invention are exerted, and is not limited to the following. However, the homogenization effect is saturated and becomes almost constant even after 10 hours or more. For the reason, for example, it is more preferable that the upper limit is 10 hours.

(熱間加工工程)
均質化処理後、アルミニウム合金を一旦室温まで冷却してから再度加熱して熱間加工を行うか、もしくは均質化処理後に、直接、熱間加工温度まで温度調節して熱間加工を行う。熱間加工は、板を製造する場合は熱間圧延により行い、管や棒などを製造する場合は熱間押出により行い、その他の形状に加工する場合は熱間鍛造によって行ってもよい。本発明の実施形態に係るアルミニウム合金はいずれの熱間加工も行うことができ、またその加工条件は、最終製品の耐熱特性に影響しないため、熱間加工条件は素材の熱間加工性を考慮して、本発明の効果を奏する範囲で適宜設定される。
(Hot processing process)
After the homogenization treatment, the aluminum alloy is once cooled to room temperature and then heated again to perform hot working, or after the homogenization treatment, the hot working is performed by directly adjusting the temperature to the hot working temperature. The hot working may be performed by hot rolling when manufacturing a plate, by hot extrusion when manufacturing a tube or a bar, and may be performed by hot forging when processing into other shapes. The aluminum alloy according to the embodiment of the present invention can perform any hot working, and since the working conditions do not affect the heat resistance characteristics of the final product, the hot working conditions consider the hot workability of the material. And it sets suitably in the range with the effect of this invention.

(冷間加工工程・中間焼鈍工程)
熱間加工の後、必要に応じて、最終製品の形状に精度良く仕上げるため、冷間加工を行う。冷間加工を行う前に、必要に応じて中間焼鈍を行ってもよい。また、冷間加工を2回以上に分けて行う場合は、冷間加工と冷間加工の間で適宜中間焼鈍を行ってもよい。冷間加工は、板を製造する場合は冷間圧延、管や棒などを製造する場合は冷間引抜き、その他の形状に加工する場合は冷間鍛造等によって行う。冷間加工および中間焼鈍の条件は最終的な耐熱特性に影響しないため本発明の効果を奏する範囲で適宜選択され、以下に限定されるものではないが、中間焼鈍については、たとえば、300℃〜450℃の温度範囲に1時間以上保持することによって行うことが、より好ましい。
(Cold working process / Intermediate annealing process)
After hot working, if necessary, cold work is performed to finish the shape of the final product with high accuracy. Before performing cold working, intermediate annealing may be performed as necessary. Moreover, when performing cold work in 2 steps or more, intermediate annealing may be appropriately performed between the cold work and the cold work. The cold working is performed by cold rolling when manufacturing a plate, cold drawing when manufacturing a tube or a rod, and cold forging when processing into other shapes. The conditions for cold working and intermediate annealing do not affect the final heat resistance characteristics, and therefore are appropriately selected within the scope of the effects of the present invention, and are not limited to the following. More preferably, it is carried out by keeping it in a temperature range of 450 ° C. for 1 hour or longer.

(溶体化処理工程)
熱間加工または冷間加工の後、CuおよびMgをマトリクス中に固溶させること、MgSiを分解固溶させてSiをマトリクス中に固溶させることを目的としてアルミニウム合金に対して溶体化処理が行われる。溶体化処理は、アルミニウム合金材料を、470℃以上、アルミニウム合金の固相線温度以下の温度範囲で、1秒間以上保持することによって行われることが、より好ましい。さらに好ましい溶体化処理温度の範囲は510℃以上、アルミニウム合金の固相線温度以下の範囲であり、さらに一層好ましい溶体化処理温度の範囲は、530℃以上、アルミニウム合金の固相線温度以下の範囲である。溶体化処理の温度を470℃以上とすることによって、固溶するCu、MgおよびSiの量を確保することができ、十分な耐熱性を得ることができる。溶体化処理温度が上記温度範囲内で高いほど、溶体化処理のために保持されている間のアルミニウム合金中の平衡空孔濃度が増大して、その後の急冷後に、アルミニウム合金材料中に、より多くのSi−空孔ペアを形成することができ、結果としてアルミニウム合金の耐熱性が向上する。保持時間を1秒間以上とすることによって、CuおよびMgが固溶するための時間を確保することができ、また、MgSiが分解してSiが固溶するための時間を確保することができるため、結果として十分な耐熱性を得ることができる。溶体化処理時間の上限は本発明の効果を奏する範囲で適宜設定され、以下に限定されるものではないが、10時間を超えて溶体化処理を行っても均質化効果が飽和してほぼ一定となるので、経済的理由から、たとえば、6時間以下とすることが、より好ましく、4時間以下とすることが、より一層好ましい。
(Solution treatment process)
After hot working or cold working, the solution is formed into an aluminum alloy for the purpose of dissolving Cu and Mg in the matrix and decomposing and dissolving Mg 2 Si to dissolve Si in the matrix. Processing is performed. It is more preferable that the solution treatment is performed by holding the aluminum alloy material in a temperature range of 470 ° C. or higher and lower than the solidus temperature of the aluminum alloy for 1 second or longer. A more preferable solution treatment temperature range is 510 ° C. or more and the solidus temperature of the aluminum alloy or less, and an even more preferred solution treatment temperature range is 530 ° C. or more and the aluminum alloy solidus temperature or less. It is a range. By setting the temperature of the solution treatment to 470 ° C. or higher, it is possible to ensure the amount of Cu, Mg and Si to be dissolved, and to obtain sufficient heat resistance. The higher the solution treatment temperature is within the above temperature range, the higher the equilibrium vacancy concentration in the aluminum alloy while it is held for solution treatment. Many Si-hole pairs can be formed, and as a result, the heat resistance of the aluminum alloy is improved. By setting the holding time to 1 second or longer, it is possible to secure time for Cu and Mg to dissolve, and to secure time for Mg 2 Si to decompose and Si to dissolve. As a result, sufficient heat resistance can be obtained. The upper limit of the solution treatment time is appropriately set within the range where the effects of the present invention are exerted, and is not limited to the following. However, even if the solution treatment is performed for more than 10 hours, the homogenization effect is saturated and almost constant. Therefore, for economic reasons, for example, it is more preferably 6 hours or less, and even more preferably 4 hours or less.

なお、展伸材の製造方法のうち、熱間押出による熱間加工の場合は、上述の熱間加工と溶体化処理とを兼ねて行うことができ、この場合は、溶体化処理を兼ねた熱間押出に引き続いて、後述する溶体化処理後の急冷を、たとえば、水焼入れ、ミスト吹きつけ等によって連続的に行うプレス焼入れと呼ばれる工程を採用してもよい。   Of the wrought material manufacturing methods, in the case of hot working by hot extrusion, the above-mentioned hot working and solution treatment can be performed together. In this case, the solution treatment is also performed. Subsequent to the hot extrusion, a step called press quenching in which rapid cooling after the solution treatment described later is continuously performed by water quenching, mist spraying, or the like may be employed.

(溶体化処理後の急冷(焼入れ))
溶体化後の急冷は、たとえば、アルミニウム合金材料を、たとえば、冷水や温水に浸漬したり、ミストを吹き付けたり、冷風を吹き付けたりすることによって行われる。冷却速度は本発明の効果を奏する範囲で適宜選択されるが、たとえば、実質的に耐熱性をアルミニウム合金に付与できる冷却速度として、溶体化処理温度から100℃までの平均冷却速度を1℃/秒以上で行うことが、より好ましい。冷却速度を1℃/秒以上とすることによって、焼入れ感受性が低い本発明の実施形態に係るアルミニウム合金における耐熱性の低下を抑制することができる。また、冷却を終了する温度についても本発明の効果を奏する範囲で適宜選択され、以下に限定されるものではないが、たとえば100℃〜室温の範囲で冷却を終了することがより好ましく、それによってアルミニウム合金の最終的な耐熱特性を高く維持することができる。
(Rapid cooling after solution treatment (quenching))
The rapid cooling after the solution treatment is performed, for example, by immersing the aluminum alloy material in, for example, cold water or hot water, spraying mist, or spraying cold air. The cooling rate is appropriately selected within the range where the effects of the present invention are exerted. For example, as a cooling rate that can substantially impart heat resistance to the aluminum alloy, an average cooling rate from the solution treatment temperature to 100 ° C. is 1 ° C. / More preferably, it is performed in seconds or more. By setting the cooling rate to 1 ° C./second or more, it is possible to suppress a decrease in heat resistance in the aluminum alloy according to the embodiment of the present invention having low quenching sensitivity. Further, the temperature at which the cooling is terminated is appropriately selected within the range in which the effects of the present invention are exhibited, and is not limited to the following, but for example, it is more preferable to terminate the cooling in the range of 100 ° C. to room temperature. The final heat resistance of the aluminum alloy can be kept high.

(人工時効処理工程)
溶体化処理と、それに続く急冷が完了した後に、人工時効処理を行って、アルミニウム合金の材料強度を高めて、耐熱性を向上させる。人工時効処理は、170℃以上210℃以下の温度範囲で、5時間以上保持して行うことが、より好ましい。この条件で処理を行うことによって、適度に時効析出が進み、高い耐熱性が得られる。人工時効処理温度を170℃以上とすることによって、時効効果が得られ、十分な耐熱性を得ることができる。人工時効処理温度を210℃以下とすることによって、析出物が過度に粗大になることが抑制され、アルミニウム合金の強度が維持され、アルミニウム合金の耐熱性を十分に得ることができる。また、人工時効処理時間を5時間以上とすることによって、析出を十分に進めることができ、アルミニウム合金の十分な耐熱性を得ることが可能になる。人工時効処理時間の上限は本発明の効果を奏する範囲で適宜選択され、以下に限定されるものではないが、たとえば、強度がほぼ上限に達する30時間を選択することが、より好ましい。
(Artificial aging treatment process)
After completing the solution treatment and the subsequent rapid cooling, an artificial aging treatment is performed to increase the material strength of the aluminum alloy and improve the heat resistance. It is more preferable that the artificial aging treatment is carried out in a temperature range of 170 ° C. or higher and 210 ° C. or lower and held for 5 hours or longer. By performing the treatment under these conditions, aging precipitation proceeds moderately and high heat resistance is obtained. By setting the artificial aging treatment temperature to 170 ° C. or higher, an aging effect can be obtained and sufficient heat resistance can be obtained. By setting the artificial aging treatment temperature to 210 ° C. or lower, it is possible to suppress the precipitates from becoming excessively coarse, maintain the strength of the aluminum alloy, and sufficiently obtain the heat resistance of the aluminum alloy. Moreover, by setting the artificial aging treatment time to 5 hours or longer, precipitation can be sufficiently advanced, and sufficient heat resistance of the aluminum alloy can be obtained. The upper limit of the artificial aging treatment time is appropriately selected within the range where the effects of the present invention are exerted, and is not limited to the following. For example, it is more preferable to select 30 hours when the strength almost reaches the upper limit.

以上の工程によって、本発明の実施形態に係るアルミニウム合金が製造される。   The aluminum alloy which concerns on embodiment of this invention is manufactured according to the above process.

(ミクロ組織の形態)
本発明の実施形態に係るアルミニウム合金には、以下で述べるようなミクロ組織的な特徴が認められる。すなわち、Al、CuおよびMgからなる針状析出物S’の平均長さが150nm以上250nm以下の範囲内であり、かつ、針状析出物S’の分布密度が200個/μm以上であるという特徴を有する。針状析出物S’の平均長さが150nm以上である場合、針状析出物の成長が十分であるため、強度が高く、耐熱性も十分である。また、針状析出物S’の平均長さが250nm以下である場合、針状析出物が過度に粗大になっていないため、強度が高く、耐熱性も十分である。針状析出物S’の分布密度が200個/μm以上である場合、針状析出物の分布密度が高いため、強度が高く、耐熱性も十分である。また、針状析出物S’の分布密度の上限は、Cu、Mgの固溶限度より見積もって500個/μm以下であると考えられる。
(Microstructure)
The aluminum alloy according to the embodiment of the present invention has the following microstructural characteristics. That is, the average length of the acicular precipitates S ′ made of Al, Cu, and Mg is in the range of 150 nm to 250 nm, and the distribution density of the acicular precipitates S ′ is 200 / μm 2 or more. It has the characteristics. When the average length of the acicular precipitate S ′ is 150 nm or more, since the acicular precipitate grows sufficiently, the strength is high and the heat resistance is sufficient. Further, when the average length of the acicular precipitate S ′ is 250 nm or less, the acicular precipitate is not excessively coarsened, so that the strength is high and the heat resistance is sufficient. When the distribution density of the acicular precipitates S ′ is 200 / μm 2 or more, the distribution density of the acicular precipitates is high, so that the strength is high and the heat resistance is sufficient. Further, the upper limit of the distribution density of the acicular precipitates S ′ is considered to be 500 pieces / μm 2 or less from the solid solution limit of Cu and Mg.

以下、上述の針状析出物S’の平均サイズおよび分布密度を測定する方法の一例を説明する。まず、人工時効処理が施されたアルミニウム合金を用いて、たとえば、精密加工装置の一つであるFIB(Focused Ion Beam)装置を用いて、TEM(Transmission Electron Microscope)観察用の薄膜試験片(たとえば、厚み0.1μm、縦5μm、横10μmサイズ)を切り出して、TEM観察を行う。この薄膜サンプルについて、TEMにより、Al格子に対して、電子線を[100]の方向より入射して、たとえば、撮影倍率20,000倍で撮像して、たとえば、5視野分のTEM像を得る。得られたTEM像において、図1に模式的に示すようにS’析出物を観察することができる。ここで、針状析出物S’は電子線の入射方向と平行方向および、入射方向と垂直面において互いに直行する2つの方向に伸びた形状で分布している。これらのうち、入射方向と垂直面において互いに直行する形で分布している針状析出物S’(S’1)の長さを、たとえば、任意の析出物30個について計測して、その平均値を求めることによって、針状析出物S’の平均長さを計測する。また、観察される針状析出物S’のうち、入射方向と平行方向に伸びているもの(S’2:粒子状に観察される)と入射方向と垂直面において互いに直行する形で分布している針状析出物S’(S’1)の数を、たとえば、5視野分で計測した合計数を計測した視野の面積で除することによって、針状析出物S’の分布密度を計測することができる。   Hereinafter, an example of a method for measuring the average size and distribution density of the above-described acicular precipitate S ′ will be described. First, using an aluminum alloy that has been subjected to artificial aging treatment, for example, using a FIB (Focused Ion Beam) apparatus, which is one of precision processing apparatuses, a thin film specimen for TEM (Transmission Electron Microscope) observation (for example, , 0.1 μm in thickness, 5 μm in length and 10 μm in width), and TEM observation is performed. With respect to this thin film sample, an electron beam is incident on the Al lattice from the direction of [100] by TEM, and is imaged at, for example, an imaging magnification of 20,000 times to obtain, for example, TEM images for five visual fields . In the obtained TEM image, S ′ precipitates can be observed as schematically shown in FIG. Here, the needle-like precipitates S ′ are distributed in a shape extending in two directions perpendicular to the incident direction and parallel to the incident direction of the electron beam. Among these, the length of the acicular precipitates S ′ (S′1) distributed perpendicularly to each other in the direction perpendicular to the incident direction is measured for, for example, 30 arbitrary precipitates, and the average thereof is measured. By determining the value, the average length of the acicular precipitate S ′ is measured. Further, among the observed acicular precipitates S ′, those that extend in a direction parallel to the incident direction (S′2: observed in the form of particles) are distributed in a form orthogonal to each other in the plane perpendicular to the incident direction. The distribution density of the needle-like precipitates S ′ is measured by dividing the number of the needle-like precipitates S ′ (S′1), for example, by the area of the field of view obtained by dividing the total number measured for five fields of view. can do.

以上に説明したように、本発明の実施形態に係るアルミニウム合金(アルミニウム合金展伸材)は、従来の耐熱アルミニウム合金よりも高い耐熱特性を有し、また、本発明の実施形態に係るアルミニウム合金(アルミニウム合金展伸材)は、溶体化処理後の急冷において、比較的小さい冷却速度であっても耐熱性の低下が小さく、その高い耐熱性を維持することができ、比較的大型の耐熱部材にも適用できるという特長を有している。すなわち、本発明の実施形態に係るアルミニウム合金は、種々の検討によって最適化されたAl−Cu−Mg−Si−Fe−Ni合金の成分範囲と、最適化された製造プロセスとを用いることによって、2618合金と比較して、より高い耐熱性を有するアルミニウム合金を得ることができる。また、本発明の実施形態に係るアルミニウム合金は、焼入れ感受性が低いことも特徴として有しており、省エネルギー化のために耐熱合金が必要な部材のうち比較的大型の部材としても使用することも可能である。   As described above, the aluminum alloy (aluminum alloy stretched material) according to the embodiment of the present invention has higher heat resistance characteristics than the conventional heat-resistant aluminum alloy, and the aluminum alloy according to the embodiment of the present invention. (Aluminum alloy wrought material) is a relatively large heat-resistant member that can maintain its high heat resistance with a small decrease in heat resistance even at a relatively low cooling rate in the rapid cooling after the solution treatment. It has the feature that it can be applied to. That is, the aluminum alloy according to the embodiment of the present invention uses the component range of the Al—Cu—Mg—Si—Fe—Ni alloy optimized by various studies and the optimized manufacturing process. Compared with 2618 alloy, an aluminum alloy having higher heat resistance can be obtained. The aluminum alloy according to the embodiment of the present invention is also characterized by low quenching sensitivity, and can be used as a relatively large member among members that require a heat-resistant alloy for energy saving. Is possible.

なお、本発明は上記実施の形態に限定されず、種々の変形及び応用が可能である。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation and application are possible.

以下、本発明を実施例に基づき、さらに詳細に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to this.

(実施例A)
表1に示す組成に調整した各アルミニウム合金を溶解して、ホットトップ鋳造法を用いて鋳造して、φ300mm×長さ800mmサイズの鋳塊(ビレット)を作製した。ビレットを500℃の加熱保持温度に加熱して、6時間保持する均質化処理を行った後、一旦室温まで冷却してから、ビレットの円周方向について表皮5mmを面削した。これらのビレットを480℃に加熱保持したのち、熱間押出を行い、φ80mmの丸棒とした。実施例Aにおけるアルミニウム合金材については、冷間加工と中間焼鈍はいずれも行わず、溶体化処理として、520℃にて20分間保持したのち、80℃の温水に投入する焼入れを行った。実施例Aにおける520℃から100℃までの平均冷却速度は、5℃/秒であった。その後、人工時効処理として190℃で12時間保持する処理を行って、合金番号1〜30のアルミニウム合金材を作製した。上述のアルミニウム合金材を、以下に詳細を示す耐熱性評価試験、および、針状析出物S’のTEM観察に用いた。表1中、「−」は検出下限以下の数値であったことを示す。
(Example A)
Each aluminum alloy adjusted to the composition shown in Table 1 was melted and cast using a hot top casting method to produce an ingot (billet) having a size of φ300 mm × length 800 mm. The billet was heated to a heating and holding temperature of 500 ° C. and homogenized for 6 hours. After cooling to room temperature, 5 mm of skin was faced in the circumferential direction of the billet. These billets were heated and held at 480 ° C. and then subjected to hot extrusion to obtain a round bar of φ80 mm. For the aluminum alloy material in Example A, neither cold working nor intermediate annealing was performed, and as a solution treatment, the aluminum alloy material was held at 520 ° C. for 20 minutes and then quenched into 80 ° C. hot water. The average cooling rate from 520 ° C. to 100 ° C. in Example A was 5 ° C./second. Then, the process which hold | maintains at 190 degreeC for 12 hours as an artificial aging treatment was performed, and the aluminum alloy material of the alloy numbers 1-30 was produced. The above-described aluminum alloy material was used for the heat resistance evaluation test described in detail below and the TEM observation of the needle-like precipitate S ′. In Table 1, “-” indicates that the value was below the lower limit of detection.

(耐熱性評価試験)
上述の工程で製造された各アルミニウム合金材(合金番号1〜30)について、高温での長時間使用を想定して、200℃で100時間保持する熱処理を行った後、押出棒の長手方向が引張方向となるように、押出棒の中心部より、JIS4号試験片形状の丸棒引張試験片を採取した。この丸棒引張試験片を200℃の試験雰囲気にて、引張のクロスヘッド速度5mm/分の条件で高温引張試験を行って、その際の引張強度(TS)を計測した。計測結果を表2に示す。
(Heat resistance evaluation test)
About each aluminum alloy material manufactured by the above-mentioned process (alloy numbers 1 to 30), assuming a long-term use at a high temperature, after performing a heat treatment for 100 hours at 200 ° C., the longitudinal direction of the extruded rod is A round bar tensile test piece in the shape of a JIS No. 4 test piece was collected from the center of the extruded bar so as to be in the tensile direction. This round bar tensile test piece was subjected to a high-temperature tensile test in a test atmosphere at 200 ° C. under the condition of a tensile crosshead speed of 5 mm / min, and the tensile strength (TS) at that time was measured. Table 2 shows the measurement results.

また、さらに押出棒の長手方向が引張・圧縮方向となるように、各アルミニウム合金材(合金番号1〜30)から、図2に示す回転曲げ疲労試験片を採取して、雰囲気温度200℃中において、回転曲げ疲労試験を行った。回転曲げ疲労試験の試験周波数は20Hzとして、最大最小応力比R=−1、応力振幅160MPaの条件で、破断までの繰り返し数を測定した。測定結果を表2に示す。   Further, the rotating bending fatigue test piece shown in FIG. 2 is sampled from each aluminum alloy material (alloy numbers 1 to 30) so that the longitudinal direction of the extruded bar is in the tension / compression direction, and the atmospheric temperature is 200 ° C. The rotating bending fatigue test was conducted. The test frequency of the rotating bending fatigue test was 20 Hz, and the number of repetitions until breakage was measured under the conditions of maximum and minimum stress ratio R = −1 and stress amplitude of 160 MPa. The measurement results are shown in Table 2.

(針状析出物S’分布状態評価)
上述の工程で製造された各アルミニウム合金材(合金番号1〜30)について、以下の方法でTEM観察用サンプルを作製して、TEM観察を行って、針状析出物S’の平均長さ、および分布密度を測定した。
(Evaluation of acicular precipitate S 'distribution)
About each aluminum alloy material (alloy numbers 1-30) manufactured at the above-mentioned process, the sample for TEM observation is produced with the following method, TEM observation is performed, and average length of acicular precipitate S ', And the distribution density was measured.

FIB精密加工装置(日本電子社製、機種名:JEM−9320FIB)を用いて、TEM観察用の薄膜試験片(厚み0.1μm、縦5μm、横10μmサイズ)を切り出して、透過電子顕微鏡(日本電子社製、機種名:JEM−2100F)を用いて、以下のようにTEM観察を行った。   Using a FIB precision processing apparatus (manufactured by JEOL Ltd., model name: JEM-9320FIB), a thin film test piece (thickness 0.1 μm, length 5 μm, width 10 μm size) was cut out, and a transmission electron microscope (Japan) TEM observation was performed as follows using the electronic company make, model name: JEM-2100F).

TEM観察は以下のように行われた。上述の薄膜試験片について、TEMにより、Al格子に対して、電子線を[100]の方向より入射して、撮影倍率20,000倍で撮像して、5視野分のTEM像を得た。得られたTEM像において、図1に模式的に示すようにS’析出物を観察した。針状析出物S’は電子線の入射方向と平行方向および、入射方向と垂直面において互いに直行する2つの方向に伸びた形状で分布していた。これらのうち、入射方向と垂直面において互いに直行する形で分布している針状析出物S’(S’1)の長さを、任意の析出物30個について計測して、その平均値を求めることによって、針状析出物S’の平均長さを計測した。また、観察される針状析出物S’のうち、入射方向と平行方向に伸びているもの(S’2:粒子状に観察される)と入射方向と垂直面において互いに直行する形で分布している針状析出物S’(S’1)の数を、5視野分で計測した合計数を計測した視野の面積で除することによって、針状析出物S’の分布密度を計測した。   TEM observation was performed as follows. About the above-mentioned thin film test piece, an electron beam was incident on the Al lattice from the direction of [100] by TEM and imaged at a photographing magnification of 20,000 times to obtain TEM images for five fields of view. In the obtained TEM image, S ′ precipitates were observed as schematically shown in FIG. The acicular precipitate S ′ was distributed in a shape extending in two directions perpendicular to each other in a direction parallel to the incident direction of the electron beam and a plane perpendicular to the incident direction. Among these, the length of the acicular precipitates S ′ (S′1) distributed in a form orthogonal to each other in the incident direction and the vertical plane is measured for 30 arbitrary precipitates, and the average value is obtained. By obtaining, the average length of the acicular precipitate S ′ was measured. Further, among the observed acicular precipitates S ′, those that extend in a direction parallel to the incident direction (S′2: observed in the form of particles) are distributed in a form orthogonal to each other in the plane perpendicular to the incident direction. The distribution density of the needle-like precipitates S ′ was measured by dividing the number of needle-like precipitates S ′ (S′1) by the area of the field of view obtained by dividing the total number measured in five fields.

各サンプル(合金番号1〜30)についての耐熱性評価試験の結果および針状析出物S’の分布状態評価結果を表2に示す。   Table 2 shows the results of the heat resistance evaluation test and the distribution state evaluation results of the acicular precipitates S ′ for each sample (alloy numbers 1 to 30).

(実施例Aの評価結果)
実施例1〜15(合金番号1〜15)の評価結果について説明する。合金番号1〜15は、含有率が2.0質量%以上3.7質量%以下のCuと、含有率が1.3質量%以上2.2質量%以下のMgと、含有率が0.8質量%以上2.0質量%以下のFeと、含有率が0.8質量%以上2.0質量%以下のNiと、含有率が0.31質量%以上0.90質量%以下のSiと、含有率が0.01質量%以上0.20質量%以下のTiとを含み、Mnの含有率が0.1質量%未満であり、Crの含有率が0.1質量%未満であり、Zrの含有率が0.1質量%未満であり、Scの含有率が0.1質量%未満であり、Vの含有率が0.1質量%未満であった。
(Evaluation result of Example A)
The evaluation results of Examples 1 to 15 (alloy numbers 1 to 15) will be described. Alloy Nos. 1 to 15 have a Cu content of 2.0% by mass or more and 3.7% by mass or less, a Mg content of 1.3% by mass or more and 2.2% by mass or less, and a content rate of 0.8%. 8 mass% or more and 2.0 mass% or less of Fe, Ni content of 0.8 mass% or more and 2.0 mass% or less, and Si content of 0.31 mass% or more and 0.90 mass% or less And Ti with a content of 0.01% by mass or more and 0.20% by mass or less, with a Mn content of less than 0.1% by mass and a Cr content of less than 0.1% by mass. The Zr content was less than 0.1% by mass, the Sc content was less than 0.1% by mass, and the V content was less than 0.1% by mass.

また、合金番号1〜15のアルミニウム合金はいずれも、針状析出物の平均長さが150nm以上250nm以下であり、針状析出物の分布密度が、200個/μm以上であった。 Moreover, as for all the aluminum alloys of alloy numbers 1-15, the average length of the acicular precipitate was 150 nm or more and 250 nm or less, and the distribution density of the acicular precipitate was 200 pieces / micrometer < 2 > or more.

表2に示すように、実施例1〜15(合金番号1〜15)は、いずれも、標準的な2618合金の成分に該当する比較例5(合金番号20)の高温引張強度(251MPa)、破断までの繰返し数(700,000回)と比較して高い高温引張強度(いずれの場合も270MPa以上)、および、高い破断までの繰返し数(いずれも900,000回以上)を示した。以上から、実施例1〜15のアルミニウム合金材は、高温強度および高温での疲労特性が、標準的な2618合金に比べて優れていることがわかった。   As shown in Table 2, Examples 1 to 15 (Alloy Nos. 1 to 15) all have the high temperature tensile strength (251 MPa) of Comparative Example 5 (Alloy No. 20) corresponding to the components of standard 2618 alloy, Compared with the number of repetitions until break (700,000 times), the high-temperature tensile strength (in each case 270 MPa or more) and the number of repetitions until high breaks (both 900,000 or more) were shown. From the above, it was found that the aluminum alloy materials of Examples 1 to 15 were superior in high-temperature strength and high-temperature fatigue properties to standard 2618 alloy.

一方、比較例1(合金番号16)は、Cuの含有率が2.0質量%未満であった。このため、Cuの固溶量が不足して、針状析出物S’の析出密度が低下して、十分な耐熱性が得られず、高温引張強度および高温疲労試験での破断までの繰返し数が小さかった。
比較例2(合金番号17)は、Cuの含有率が3.7質量%超過であった。このため、Cuの量が固溶限を超えてしまい、溶体化処理によって完全に固溶させることができず、Al、CuおよびMgからなる晶出物として、マトリクス中に残存したと考えられる。このような残存晶出粒子が高温疲労特性を著しく低下させ、比較例2における高温疲労試験での破断までの繰返し数が大幅に低下した。
On the other hand, Comparative Example 1 (Alloy No. 16) had a Cu content of less than 2.0 mass%. For this reason, the Cu solid solution amount is insufficient, the precipitation density of the acicular precipitate S ′ is lowered, and sufficient heat resistance cannot be obtained, and the number of repetitions until breakage in the high temperature tensile strength and high temperature fatigue tests. Was small.
In Comparative Example 2 (Alloy No. 17), the Cu content was more than 3.7% by mass. For this reason, it is considered that the amount of Cu exceeds the solid solution limit and cannot be completely dissolved by the solution treatment, and remains in the matrix as a crystallized product composed of Al, Cu and Mg. Such residual crystallized particles markedly lowered the high temperature fatigue properties, and the number of repetitions until fracture in the high temperature fatigue test in Comparative Example 2 was greatly reduced.

比較例3(合金番号18)は、Mgの含有率が1.3質量%未満であった。このため、Mgの固溶量が不足して、針状析出物S’の析出密度が低下して、十分な耐熱性が得られず、高温引張特性および高温疲労試験での破断までの繰返し数が小さかった。
比較例4(合金番号19)は、Mgの含有率が2.2質量%超過であった。このため、Mgの量が固溶限を超えてしまい、溶体化処理によって完全に固溶させることができず、Al、CuおよびMgからなる晶出物としてマトリクス中に残存したと考えられる。このような残存晶出粒子が高温疲労特性を著しく低下させ、比較例4における高温疲労試験での破断までの繰返し数が大幅に低下した。
In Comparative Example 3 (Alloy No. 18), the Mg content was less than 1.3% by mass. For this reason, the Mg solid solution amount is insufficient, the precipitation density of the acicular precipitate S ′ is lowered, and sufficient heat resistance cannot be obtained, and the number of repetitions until breakage in the high-temperature tensile properties and the high-temperature fatigue test. Was small.
In Comparative Example 4 (Alloy No. 19), the Mg content was more than 2.2% by mass. For this reason, it is considered that the amount of Mg exceeds the solid solution limit and cannot be completely dissolved by the solution treatment, and remains in the matrix as a crystallized product composed of Al, Cu and Mg. Such residual crystallized particles markedly lowered the high temperature fatigue properties, and the number of repetitions until fracture in the high temperature fatigue test in Comparative Example 4 was greatly reduced.

比較例5(合金番号20)は、Siの含有率が0.31質量%未満であった。合金番号20は、2618合金の標準的な成分であるが、Siの含有率が少ないため、溶体化処理時に形成されるSi−空孔ペア量が不十分だったと考えられる。このため、十分な耐熱性が得られず、高温引張強度および高温疲労試験での破断までの繰返し数が小さかった。
比較例6(合金番号21)は、Siの含有率が0.90質量%超過であった。このため、溶体化処理前の状態においてMgと形成されるMgSiの量が多くなり過ぎ、溶体化処理時に完全に固溶することができず、マトリクス中に粗大なMgSi粒子が残存してしまったと考えられる。この粗大粒子が高温疲労特性を著しく低下させ、比較例6における高温疲労試験での破断までの繰返し数が大幅に低下した。
In Comparative Example 5 (Alloy No. 20), the Si content was less than 0.31% by mass. Alloy No. 20 is a standard component of the 2618 alloy, but it is considered that the amount of Si-hole pairs formed during the solution treatment was insufficient because of the low Si content. For this reason, sufficient heat resistance was not obtained, and the number of repetitions until breakage in the high temperature tensile strength and high temperature fatigue test was small.
In Comparative Example 6 (Alloy No. 21), the Si content was more than 0.90 mass%. For this reason, the amount of Mg 2 Si formed with Mg in the state before the solution treatment is excessively large, and cannot be completely dissolved at the time of the solution treatment, and coarse Mg 2 Si particles remain in the matrix. It is thought that it has done. The coarse particles markedly lowered the high temperature fatigue properties, and the number of repetitions until breakage in the high temperature fatigue test in Comparative Example 6 was greatly reduced.

比較例7(合金番号22)は、Feの含有率が0.8質量%未満であって、Niの含有率が0.8質量%未満であった。このため、Al、FeおよびNiからなる晶出粒子の分布密度が低く、これらの粒子により十分な分散強化が得られず、十分な耐熱性が得られず、高温引張特性および高温疲労試験での破断までの繰返し数が小さかった。
比較例8(合金番号23)は、Feの含有率が2.0質量%超過、Niの含有率が2.0質量%超過であった。このため、Al、FeおよびNiからなる晶出粒子の一部が、溶解・鋳造時に著しく粗大化して、その後熱間加工や冷間加工を行った後の最終状態においても非常に粗大な晶出粒子(100μm以上)として残存していたと考えられる。このような非常に粗大な晶出粒子が高温疲労特性を著しく低下させ、比較例8における高温疲労試験での破断までの繰返し数が大幅に低下した。
In Comparative Example 7 (Alloy No. 22), the Fe content was less than 0.8 mass%, and the Ni content was less than 0.8 mass%. For this reason, the distribution density of the crystallized particles composed of Al, Fe and Ni is low, and sufficient dispersion strengthening cannot be obtained by these particles, and sufficient heat resistance cannot be obtained. The number of repetitions until breakage was small.
In Comparative Example 8 (Alloy No. 23), the Fe content was more than 2.0% by mass, and the Ni content was more than 2.0% by mass. For this reason, some of the crystallized particles composed of Al, Fe, and Ni become extremely coarse during melting / casting, and very coarse crystallize even in the final state after subsequent hot working or cold working. It is thought that it remained as particles (100 μm or more). Such very coarse crystallized particles markedly lowered the high temperature fatigue characteristics, and the number of repetitions until breakage in the high temperature fatigue test in Comparative Example 8 was greatly reduced.

比較例9(合金番号24)は、Tiの含有率が0.01質量%未満であった。このため、鋳塊組織を微細化する効果が不十分であり、鋳塊組織が粗く、結果として溶体化処理後に急冷した後の結晶粒組織が粗大であったと考えられる。このため十分な耐熱性が得られず、高温引張特性および高温疲労試験での破断までの繰返し数が小さかった。
比較例10(合金番号25)は、Tiの含有率が0.20質量%超過であった。このため、鋳造時にAlとTiとからなる粗大な化合物が晶出して、最終状態においても粗大晶出物として残存していたと考えられる。このような粗大な晶出物が高温疲労特性を著しく低下させ、比較例10における高温疲労試験での破断までの繰返し数が大幅に低下した。
In Comparative Example 9 (Alloy No. 24), the Ti content was less than 0.01% by mass. For this reason, it is considered that the effect of refining the ingot structure is insufficient, the ingot structure is coarse, and as a result, the crystal grain structure after rapid cooling after the solution treatment is coarse. For this reason, sufficient heat resistance was not obtained, and the high temperature tensile properties and the number of repetitions until breakage in the high temperature fatigue test were small.
In Comparative Example 10 (Alloy No. 25), the Ti content was more than 0.20% by mass. For this reason, it is thought that the coarse compound which consists of Al and Ti crystallized at the time of casting, and remained as a coarse crystallized substance also in the final state. Such a coarse crystallized product significantly deteriorated the high temperature fatigue characteristics, and the number of repetitions until breakage in the high temperature fatigue test in Comparative Example 10 was greatly reduced.

比較例11(合金番号26)はMnの含有率が0.1質量%以上であり、比較例12(合金番号27)はCrの含有率が0.1質量%以上であり、比較例13(合金番号28)はZrの含有率が0.1質量%以上であり、比較例14(合金番号29)はScの含有率が0.1質量%以上であり、比較例15(合金番号30)はVの含有率が0.1質量%以上であった。そのため、合金番号26〜合金番号30の合金はそれぞれ焼入れ感受性が高く、比較的小さい冷却速度(4℃/秒)で焼入れを行った場合は、焼入れ途中でMgとCuからなる安定相のS相が、分散粒子とマトリクスの界面で不均一核生成しやすく、結果としてCuとMgの溶質濃度が低下して、針状析出物S’の析出密度が小さくなり、十分な耐熱性が得られず、高温引張強度および高温疲労試験での破断までの繰返し数が小さかった。   Comparative Example 11 (Alloy No. 26) has a Mn content of 0.1% by mass or more, and Comparative Example 12 (Alloy No. 27) has a Cr content of 0.1% by mass or more. Alloy No. 28) has a Zr content of 0.1% by mass or more, Comparative Example 14 (Alloy No. 29) has an Sc content of 0.1% by mass or more, and Comparative Example 15 (Alloy No. 30). The V content was 0.1% by mass or more. Therefore, the alloys of Alloy No. 26 to Alloy No. 30 have high quenching sensitivity, and when quenched at a relatively low cooling rate (4 ° C./second), the S phase of the stable phase consisting of Mg and Cu during the quenching. However, heterogeneous nucleation is likely to occur at the interface between the dispersed particles and the matrix, resulting in a decrease in the solute concentration of Cu and Mg, resulting in a decrease in the precipitation density of the acicular precipitate S ′, and sufficient heat resistance cannot be obtained. In addition, the number of repetitions until fracture in the high temperature tensile strength and high temperature fatigue tests was small.

(実施例B)
表1に示す合金番号1の組成に調整したアルミニウム合金について、以下の製造プロセスで、サンプルとするアルミニウム合金材を作製した。
(Example B)
About the aluminum alloy adjusted to the composition of the alloy number 1 shown in Table 1, the aluminum alloy material used as a sample was produced with the following manufacturing processes.

まず、アルミニウム合金を溶解して、ホットトップ鋳造法によって鋳造して、φ300mm×長さ800mmサイズの鋳塊(ビレット)を作製した。このビレットについて、表3に示される条件でそれぞれ均質化処理を行った後、一旦室温まで冷却してから、ビレットの円周方向について表皮5mmを面削した。これらのビレットを440℃に加熱保持した後、熱間押出を行い、φ50mmのサイズの丸棒形状に押出した。その後、冷間引抜きにより冷間加工を行って、φ40mmサイズの丸棒形状とした。この状態における、この合金の固相線温度は550℃であった。この丸棒について、表3に示される条件でそれぞれ溶体化処理を行った後、急冷として、25℃の水で焼入れを行った。各溶体化処理温度から100℃までの冷却速度は、約10℃/秒であった。その後、表3に示される条件でそれぞれ人工時効処理を行い、実施例Aに記載した方法と同じ方法によって、耐熱性評価試験および針状析出物S’のTEM観察を行った、得られた評価結果を表4に示す。   First, an aluminum alloy was melted and cast by a hot top casting method to produce an ingot (billet) having a size of φ300 mm × length 800 mm. The billet was homogenized under the conditions shown in Table 3 and then cooled to room temperature, and then the 5 mm skin was chamfered in the circumferential direction of the billet. These billets were heated and held at 440 ° C., and then subjected to hot extrusion to extrude into a round bar shape having a size of φ50 mm. Thereafter, cold working was performed by cold drawing to obtain a round bar shape of φ40 mm size. The solidus temperature of this alloy in this state was 550 ° C. Each round bar was subjected to solution treatment under the conditions shown in Table 3, and then quenched with water at 25 ° C. as a rapid cooling. The cooling rate from each solution treatment temperature to 100 ° C. was about 10 ° C./second. Thereafter, artificial aging treatment was performed under the conditions shown in Table 3, and the heat resistance evaluation test and the TEM observation of the acicular precipitate S ′ were performed by the same method as that described in Example A. The obtained evaluation The results are shown in Table 4.

(実施例Bの評価結果)
まず、実施例16〜25(条件番号1〜10)の評価結果について説明する。実施例16〜25(条件番号1〜10)は、合金番号1の成分を有し、均質化処理工程において、470℃以上、かつ、アルミニウム合金の固相線温度以下の温度で1時間以上保持され、溶体化処理工程において、470℃以上、かつ、アルミニウム合金の固相線温度以下の温度で1秒間以上保持され、人工時効処理工程において、170℃以上210℃以下の温度で5時間以上保持されて製造された。
また、実施例16〜25のアルミニウム合金の針状析出物の平均長さは150nm以上250nm以下であり、針状析出物の分布密度が、200個/μm以上であった。
実施例16〜25のアルミニウム合金は、いずれも、高い高温引張強度(270MPa以上)および高い破断までの繰返し数(900,000回以上)を示し、高温強度および高温での疲労特性が優れていることがわかった。
(Evaluation result of Example B)
First, the evaluation results of Examples 16 to 25 (condition numbers 1 to 10) will be described. Examples 16 to 25 (Condition Nos. 1 to 10) have the components of Alloy No. 1 and are held for 1 hour or more at a temperature of 470 ° C. or higher and the solidus temperature of the aluminum alloy or lower in the homogenization step In the solution treatment step, it is held for 1 second or more at a temperature not lower than 470 ° C. and below the solidus temperature of the aluminum alloy. In the artificial aging treatment step, it is maintained at a temperature of 170 ° C. or higher and 210 ° C. or lower for 5 hours or longer. Has been manufactured.
Moreover, the average length of the acicular precipitates of the aluminum alloys of Examples 16 to 25 was 150 nm to 250 nm, and the distribution density of the acicular precipitates was 200 / μm 2 or more.
The aluminum alloys of Examples 16 to 25 all exhibit high high temperature tensile strength (270 MPa or more) and high repetition rate (900,000 times or more), and are excellent in high temperature strength and fatigue properties at high temperatures. I understood it.

一方、比較例16(条件番号11)は、均質化処理の温度が470℃未満であった。このため、凝固組織の濃度偏析を十分に解消できず、十分な耐熱性が得られず、高温引張特性および高温疲労試験での破断までの繰返し数が小さかった。
比較例17(条件番号12)は、均質化処理の時間が1時間未満であった。このため、凝固組織の濃度偏析を十分に解消できず、十分な耐熱性が得られず、高温引張特性および高温疲労試験での破断までの繰返し数が小さかった。
On the other hand, the temperature of the homogenization process was less than 470 degreeC in the comparative example 16 (condition number 11). For this reason, concentration segregation of the solidified structure could not be sufficiently eliminated, sufficient heat resistance could not be obtained, and high temperature tensile properties and the number of repetitions until fracture in a high temperature fatigue test were small.
In Comparative Example 17 (condition number 12), the time for the homogenization treatment was less than 1 hour. For this reason, concentration segregation of the solidified structure could not be sufficiently eliminated, sufficient heat resistance could not be obtained, and high temperature tensile properties and the number of repetitions until fracture in a high temperature fatigue test were small.

比較例18(条件番号13)は、溶体化処理の温度が470℃未満であった。このため、溶体化処理によって固溶するCu、MgおよびSi量が少ないため、十分な耐熱性が得られず、高温引張特性および高温疲労試験での破断までの繰返し数が小さかった。
比較例19(条件番号14)は、溶体化処理の保持時間が1秒間未満であった。このため、Cu、MgおよびSiが固溶するための時間が不十分であり、十分な耐熱性が得られず、高温引張特性および高温疲労試験での破断までの繰返し数が小さかった。
In Comparative Example 18 (condition number 13), the solution treatment temperature was less than 470 ° C. For this reason, since there are few amounts of Cu, Mg, and Si which form a solid solution by solution treatment, sufficient heat resistance was not obtained, and the number of repetitions until the fracture | rupture in a high temperature tensile characteristic and a high temperature fatigue test was small.
In Comparative Example 19 (condition number 14), the retention time of the solution treatment was less than 1 second. For this reason, the time for solid solution of Cu, Mg and Si is insufficient, sufficient heat resistance cannot be obtained, and the number of repetitions until breakage in the high temperature tensile property and the high temperature fatigue test is small.

比較例20(条件番号15)は、人工時効処理の温度が170℃未満であった。このため、人工時効がほとんど進まず、十分な耐熱性が得られず、高温引張特性および高温疲労試験での破断までの繰返し数が小さかった。
比較例21(条件番号16)は、人工時効処理の温度が210℃超過であった。このため、人工時効が進みすぎ、十分な耐熱性が得られず、高温引張特性および高温疲労試験での破断までの繰返し数が小さかった。
比較例22(条件番号17)は、人工時効処理の時間が5時間未満であった。このため人工時効が十分に進まず、十分な耐熱性が得られず、高温引張特性および高温疲労試験での破断までの繰返し数が小さかった。
In Comparative Example 20 (condition number 15), the temperature of the artificial aging treatment was less than 170 ° C. For this reason, artificial aging hardly progressed, sufficient heat resistance was not obtained, and high temperature tensile properties and the number of repetitions until breakage in a high temperature fatigue test were small.
In Comparative Example 21 (condition number 16), the temperature of the artificial aging treatment exceeded 210 ° C. For this reason, artificial aging progressed too much, sufficient heat resistance could not be obtained, and the number of repetitions until fracture in high temperature tensile properties and high temperature fatigue tests was small.
In Comparative Example 22 (condition number 17), the time for the artificial aging treatment was less than 5 hours. For this reason, artificial aging did not progress sufficiently, sufficient heat resistance could not be obtained, and the number of repetitions until fracture in high temperature tensile properties and high temperature fatigue tests was small.

Claims (3)

含有率が2.0質量%以上3.7質量%以下のCuと、
含有率が1.3質量%以上2.2質量%以下のMgと、
含有率が0.8質量%以上2.0質量%以下のFeと、
含有率が0.8質量%以上2.0質量%以下のNiと、
含有率が0.31質量%以上0.90質量%以下のSiと、
含有率が0.01質量%以上0.20質量%以下のTiと、
を含み、
Mnの含有率が0.1質量%未満、
Crの含有率が0.1質量%未満、
Zrの含有率が0.1質量%未満、
Scの含有率が0.1質量%未満、
Vの含有率が0.1質量%未満、
に規制され、
残部がAlおよび不可避的不純物からなる、
ことを特徴とするアルミニウム合金。
Cu with a content of 2.0% by mass or more and 3.7% by mass or less;
Mg with a content of 1.3% by mass or more and 2.2% by mass or less;
Fe with a content of 0.8% by mass or more and 2.0% by mass or less;
Ni with a content of 0.8% by mass or more and 2.0% by mass or less;
Si with a content of 0.31 mass% or more and 0.90 mass% or less,
Ti with a content of 0.01% by mass or more and 0.20% by mass or less;
Including
The content of Mn is less than 0.1% by mass,
Cr content of less than 0.1% by mass,
The content of Zr is less than 0.1% by mass,
Sc content is less than 0.1% by mass,
The content of V is less than 0.1% by mass,
Regulated by
The balance consists of Al and inevitable impurities,
An aluminum alloy characterized by that.
マトリクス中に、Al、CuおよびMgを含む針状析出物を有し、
前記針状析出物の平均長さが150nm以上250nm以下であり、
前記針状析出物の分布密度が、200個/μm以上である、
ことを特徴とする請求項1に記載のアルミニウム合金。
In the matrix, it has acicular precipitates containing Al, Cu and Mg,
The average length of the acicular precipitate is 150 nm or more and 250 nm or less,
The acicular precipitate has a distribution density of 200 pieces / μm 2 or more.
The aluminum alloy according to claim 1.
請求項1または2に記載のアルミニウム合金の製造方法であって、
均質化処理工程において、鋳造工程において鋳造されたアルミニウム合金を、470℃以上、該鋳造されたアルミニウム合金の固相線温度以下の温度で1時間以上保持した後、
熱間加工された、または、熱間加工および冷間加工されたアルミニウム合金を、溶体化処理工程において、470℃以上、該熱間加工された、または、該熱間加工および冷間加工されたアルミニウム合金の固相線温度以下の温度で1秒間以上保持し、
人工時効処理工程において、前記溶体化処理工程において溶体化処理されたアルミニウム合金を、170℃以上210℃以下の温度で5時間以上保持する、
ことを特徴とするアルミニウム合金の製造方法。
A method for producing an aluminum alloy according to claim 1 or 2,
In the homogenization process, after the aluminum alloy cast in the casting process is held at a temperature of 470 ° C. or more and a temperature below the solidus temperature of the cast aluminum alloy for 1 hour or more,
An aluminum alloy that has been hot-worked or hot-worked and cold-worked has been hot-worked or hot-worked and cold-worked at 470 ° C. or higher in the solution treatment step. Hold for at least 1 second at a temperature below the solidus temperature of the aluminum alloy,
In the artificial aging treatment step, the aluminum alloy solution treated in the solution treatment step is held at a temperature of 170 ° C. or higher and 210 ° C. or lower for 5 hours or more.
The manufacturing method of the aluminum alloy characterized by the above-mentioned.
JP2013035437A 2013-02-26 2013-02-26 Aluminum alloy and method for producing the same Expired - Fee Related JP6063295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013035437A JP6063295B2 (en) 2013-02-26 2013-02-26 Aluminum alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013035437A JP6063295B2 (en) 2013-02-26 2013-02-26 Aluminum alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014162958A true JP2014162958A (en) 2014-09-08
JP6063295B2 JP6063295B2 (en) 2017-01-18

Family

ID=51613865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013035437A Expired - Fee Related JP6063295B2 (en) 2013-02-26 2013-02-26 Aluminum alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP6063295B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107267825A (en) * 2017-06-09 2017-10-20 中国兵器科学研究院宁波分院 Casting Al-Cu alloy material and its preparation method and application
CN111074180A (en) * 2019-12-23 2020-04-28 安徽悦未科技有限公司 High-strength pressure-resistant aluminum alloy cast rod for heavy truck hub and preparation process thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152237A (en) * 1987-12-10 1989-06-14 Furukawa Alum Co Ltd Aluminum alloy material for engine member
JPH01272743A (en) * 1988-04-25 1989-10-31 Kobe Steel Ltd High tensile aluminum alloy having excellent heat resistance
JPH01290741A (en) * 1988-05-18 1989-11-22 Showa Alum Corp Aluminum alloy having excellent heat resistance
JPH01290738A (en) * 1988-05-18 1989-11-22 Showa Alum Corp Aluminum alloy having excellent heat resistance
JPH0452245A (en) * 1990-06-20 1992-02-20 Sumitomo Light Metal Ind Ltd High strength aluminum alloy excellent in heat resistance
JP2008101264A (en) * 2006-10-20 2008-05-01 Honda Motor Co Ltd Heat-resistant aluminum-alloy extruded material and heat treatment method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152237A (en) * 1987-12-10 1989-06-14 Furukawa Alum Co Ltd Aluminum alloy material for engine member
JPH01272743A (en) * 1988-04-25 1989-10-31 Kobe Steel Ltd High tensile aluminum alloy having excellent heat resistance
JPH01290741A (en) * 1988-05-18 1989-11-22 Showa Alum Corp Aluminum alloy having excellent heat resistance
JPH01290738A (en) * 1988-05-18 1989-11-22 Showa Alum Corp Aluminum alloy having excellent heat resistance
JPH0452245A (en) * 1990-06-20 1992-02-20 Sumitomo Light Metal Ind Ltd High strength aluminum alloy excellent in heat resistance
JP2008101264A (en) * 2006-10-20 2008-05-01 Honda Motor Co Ltd Heat-resistant aluminum-alloy extruded material and heat treatment method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107267825A (en) * 2017-06-09 2017-10-20 中国兵器科学研究院宁波分院 Casting Al-Cu alloy material and its preparation method and application
CN111074180A (en) * 2019-12-23 2020-04-28 安徽悦未科技有限公司 High-strength pressure-resistant aluminum alloy cast rod for heavy truck hub and preparation process thereof

Also Published As

Publication number Publication date
JP6063295B2 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
Zhu et al. Effects of T6 heat treatment on the microstructure, tensile properties, and fracture behavior of the modified A356 alloys
Jae-Ho et al. Effect of solution treatment and artificial aging on microstructure and mechanical properties of Al–Cu alloy
JP5421613B2 (en) High strength aluminum alloy wire rod excellent in softening resistance and manufacturing method thereof
JP5343333B2 (en) Method for producing high-strength aluminum alloy material with excellent resistance to stress corrosion cracking
KR101781669B1 (en) Aluminum alloy wire for use in bolts, bolt, and manufacturing method of these
JP6022882B2 (en) High strength aluminum alloy extruded material and manufacturing method thereof
JP2013209715A (en) Aluminum alloy forged material for automobile and production method of the material
KR102302032B1 (en) High-strength 6000-based alloy thick plate having uniform strength in plate thickness direction and method for manufacturing the same
KR20160051818A (en) Copper alloy sheet material and method for producing same, and current-carrying component
JP2009242895A (en) High-strength copper alloy of excellent bending processability
US10920306B2 (en) Aluminum alloy wire rod and producing method thereof
JP4498180B2 (en) Al-Zn-Mg-Cu-based aluminum alloy containing Zr and method for producing the same
WO2013180122A1 (en) Magnesium alloy, magnesium alloy member and method for manufacturing same, and method for using magnesium alloy
WO2009123084A1 (en) Magnesium alloy and process for producing the same
JP6063318B2 (en) Aluminum alloy and method for producing the same
JP2008075176A (en) Magnesium alloy excellent in strength and elongation at elevated temperature and its manufacturing method
JP6063295B2 (en) Aluminum alloy and method for producing the same
WO2018088351A1 (en) Aluminum alloy extruded material
JP2019196520A (en) Aluminum alloy wire and method for producing the same
JP2019196519A (en) Aluminum alloy wire and method for producing the same
JP2018141234A (en) Magnesium alloy and method for producing magnesium alloy
KR101680046B1 (en) Method for manufacturing high-strength wrought magnesium alloy by conducting aging treatment prior to plastic working and high-strength wrought magnesium alloy manufactured thereby
JP6694265B2 (en) Aluminum alloy foil for electrode current collector and method for manufacturing aluminum alloy foil for electrode current collector
JP2004002987A (en) Aluminum alloy material for forging superior in high-temperature property
JP2013104123A (en) Aluminum alloy wire for bolt, the bolt and methods for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161216

R150 Certificate of patent or registration of utility model

Ref document number: 6063295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees