JP2014162207A - Foamed resin molding mold, foamed resin molding device, foamed resin-molded article, and method for producing the article - Google Patents

Foamed resin molding mold, foamed resin molding device, foamed resin-molded article, and method for producing the article Download PDF

Info

Publication number
JP2014162207A
JP2014162207A JP2013037939A JP2013037939A JP2014162207A JP 2014162207 A JP2014162207 A JP 2014162207A JP 2013037939 A JP2013037939 A JP 2013037939A JP 2013037939 A JP2013037939 A JP 2013037939A JP 2014162207 A JP2014162207 A JP 2014162207A
Authority
JP
Japan
Prior art keywords
mold
foamed resin
heat insulating
steam
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013037939A
Other languages
Japanese (ja)
Inventor
Atsushi Watanabe
篤史 渡辺
Masaki Saito
正樹 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Plastics Hokkaido Co Ltd
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Sekisui Plastics Hokkaido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd, Sekisui Plastics Hokkaido Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2013037939A priority Critical patent/JP2014162207A/en
Publication of JP2014162207A publication Critical patent/JP2014162207A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a foamed resin molding mold in which the amount of steam to be used when a preliminarily-foamed resin is foam-molded can be reduced and the thermal-insulating material of which is hardly degraded or peeled off even when used for a long time.SOLUTION: The foamed resin molding mold includes: a first mold having a hollow steam chamber comprising a frame 6, a bracket-side back plate, and a first mold body having a plurality of steam holes; and a second mold having another steam chamber comprising the frame 6, a die plate, and a second mold body having a plurality of steam holes and is used for: charging a preliminarily-foamed rasin particle, which is obtained by preliminarily foaming a foamable thermoplastic resin particle, in a cavity 9 formed by joining the first mold body to the second mold body; and bringing steam into contact with the preliminarily-foamed rasin particle through the plurality of steam holes to produce a foamed resin-molded article. At least a part of the outside surface of the frame and the outside surface of the bracket-side back plate of the first mold, and the outside surface of the frame and the outside surface of the die plate of the second mold is covered with a thermal-insulating layer.

Description

本発明は、ポリスチレン系樹脂発泡成形体などの熱可塑性樹脂発泡成形体を型内発泡成形によって製造する型内発泡成形型及びそれを備えた発泡成形装置に関し、特に、加熱媒体として使用する蒸気の使用量を従来方法よりも低減可能な発泡樹脂成形型及び発泡樹脂成形装置に関する。また、発泡樹脂成形品及びその製造方法に関する。   The present invention relates to an in-mold foam-molding mold for producing a thermoplastic resin foam-molded article such as a polystyrene-based resin foam-molded article by in-mold foam molding, and a foam molding apparatus including the same, and more particularly, to a steam used as a heating medium. The present invention relates to a foamed resin mold and a foamed resin molding apparatus that can reduce the amount used compared to conventional methods. The present invention also relates to a foamed resin molded product and a method for producing the same.

従来、ポリスチレン系樹脂発泡成形体などの熱可塑性樹脂発泡成形体を型内発泡成形によって製造する型内発泡成形装置において、発泡成形体の製造時に使用する蒸気を削減して、製造コストの削減や省エネルギー化を企図した技術が種々提案されている(例えば、特許文献1〜4参照。)。   Conventionally, in an in-mold foam molding apparatus for producing a thermoplastic resin foam molded article such as a polystyrene-based resin foam molded article by in-mold foam molding, the steam used during the production of the foam molded article can be reduced to reduce the manufacturing cost. Various techniques for energy saving have been proposed (see, for example, Patent Documents 1 to 4).

特許文献1には、複数部を有する金型の中の過熱蒸気を使って予備発泡ポリマービーズを焼結することによって発泡成形体を製造する装置であって、金型が過熱蒸気の導入される蒸気室の中に配置されており、過熱蒸気が蒸気室からノズルを通って金型の中に押し入り、蒸気室の内壁が断熱のために硬化したエポキシ樹脂でコーティングされている、発泡成形体の製造装置が開示されている。   Patent Document 1 discloses an apparatus for producing a foamed molded body by sintering pre-expanded polymer beads using superheated steam in a mold having a plurality of parts, and the mold is introduced with superheated steam. The foam molded body is placed in a steam chamber, where superheated steam enters the mold from the steam chamber through the nozzle, and the inner wall of the steam chamber is coated with a cured epoxy resin for thermal insulation. A manufacturing apparatus is disclosed.

特許文献2には、複数の蒸気穴が設けられた第1の成形型と第2の成形型とを備え、これら第1と第2の成形型を合わせて形成されるキャビティに発泡性樹脂粒子を充填し、前記複数の蒸気穴を介して該発泡性樹脂粒子に蒸気を接触させ、発泡樹脂成形品を作製する発泡樹脂成形型において、成形型のサポートとバックプレートとの間に、耐湿性の硬質材料からなる保護材と耐圧縮性断熱材料からなる断熱材とを積層したことを特徴とする発泡樹脂成形型が開示されている。   Patent Document 2 includes a first mold and a second mold provided with a plurality of steam holes, and expandable resin particles in a cavity formed by combining the first and second molds. In a foamed resin mold for producing a foamed resin molded product by contacting the foamable resin particles with vapor through the plurality of vapor holes, moisture resistance is provided between the mold support and the back plate. There is disclosed a foamed resin mold characterized by laminating a protective material made of a hard material and a heat insulating material made of a compression-resistant heat insulating material.

特許文献3には、発泡性熱可塑性樹脂粒子を、金型中に一対の凹凸中型で構成された成形室空間内に導入し、ついで成形室空間背面に設けられた蒸気室より成形室空間内に蒸気を導入し成形室空間内の発泡熱可塑性樹脂粒子を加熱し発泡融着させた後冷却し、金型より取出し、所望形状の成形品を得る発泡成形に用いる発泡成形用金型であって、蒸気室を形成するところのフレーム側蒸気室内面、バックプレート側蒸気室内面、およびセンタープレート側蒸気室内面から選ばれる1以上の蒸気室内面の一部もしくは全面を、中空シリカ粒子を含有するシリコーン樹脂で被覆したことを特徴とする発泡成形用金型が開示されている。   In Patent Document 3, expandable thermoplastic resin particles are introduced into a molding chamber space constituted by a pair of concave and convex middle molds in a mold, and then in the molding chamber space from a steam chamber provided at the back of the molding chamber space. This is a foam molding die used for foam molding in which steam is introduced into the molding chamber to heat and foam the thermoplastic resin particles in the molding chamber space, foam and fuse, and then cooled and taken out of the mold to obtain a molded product of a desired shape. In addition, a part or the whole of one or more steam chamber surfaces selected from the frame-side steam chamber surface, the back plate-side steam chamber surface, and the center plate-side steam chamber surface that form the steam chamber contains hollow silica particles. A foam molding die characterized by being coated with a silicone resin is disclosed.

特許文献4には、発泡性熱可塑性樹脂粒子を、金型中に一対の中型で構成された成形室空間内に導入し、ついで成形室空間背面側に設けられた蒸気室より成形室空間内に蒸気を導入して成形室空間内の発泡性熱可塑性樹脂粒子を加熱し、発泡融着させた後、冷却し、金型より取出し、所望形状の成形品を得る発泡成形に用いる発泡成形用金型であって、前記中型における蒸気室内面側を除く蒸気室内面の一部又は全面に、中空ビーズ構造のアルミノ珪酸ソーダガラスを含む熱硬化型水溶性樹脂を熱硬化させてなる被覆層を形成したことを特徴とする発泡成形用金型が開示されている。   In Patent Document 4, expandable thermoplastic resin particles are introduced into a molding chamber space constituted by a pair of middle molds in a mold, and then the molding chamber space is formed from a steam chamber provided on the back side of the molding chamber space. For foam molding to be used for foam molding, which introduces steam to heat the foamable thermoplastic resin particles in the molding chamber space, foam and fuse, then cool and take out from the mold A coating layer formed by thermosetting a thermosetting water-soluble resin containing aluminosilicate soda glass having a hollow bead structure on a part or the entire surface of the steam chamber except for the steam chamber surface in the middle mold A foam molding die characterized by being formed is disclosed.

特開2003−236872号公報JP 2003-236872 A 特開2004−90368号公報JP 2004-90368 A 特開2004−148779号公報JP 2004-148777 A 特開2006−212814号公報JP 2006-212814 A

前述した特許文献1〜4に開示されている発泡樹脂成形型は、発泡成形体の製造時に使用する蒸気を削減するための手段として、蒸気室の内側に断熱材を設けることにより、蒸気室内の熱エネルギーがフレーム外部に漏れ出すのを防ぎ、型内発泡成形時の使用蒸気量を削減することを図っていた。
しかしながら、特許文献1〜4に開示されているように、成形型の蒸気室の内側に断熱材を設ける構造では、成形型を長時間使用する場合、断熱材自体、或いは接着剤が蒸気との接触によって劣化し、剥がれてしまうという問題がある。
The foamed resin molds disclosed in Patent Documents 1 to 4 described above are provided with a heat insulating material inside the steam chamber as a means for reducing the steam used at the time of manufacturing the foam molded body. It was intended to prevent heat energy from leaking outside the frame and reduce the amount of steam used during in-mold foam molding.
However, as disclosed in Patent Documents 1 to 4, in the structure in which the heat insulating material is provided inside the steam chamber of the molding die, when the molding die is used for a long time, the heat insulating material itself or the adhesive is vaporized. There is a problem that the contact deteriorates and peels off.

本発明は、前記事情に鑑みてなされ、型内発泡成形時の使用蒸気量を削減でき、長時間の使用であっても断熱材の劣化や剥離を生じ難い発泡樹脂成形型の提供を課題とする。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a foamed resin molding die that can reduce the amount of steam used during foam molding in a mold and that does not easily cause deterioration or peeling of a heat insulating material even when used for a long time. To do.

前記課題を達成するため、本発明は、フレームとブラケット側バックプレートと複数の蒸気穴が設けられた第1の型本体とで構成された中空の蒸気室を有する第1の型と、フレームとダイプレートと複数の蒸気穴が設けられた第2の型本体とで構成された中空の蒸気室を有する第2の型とを備え、これら第1と第2の型本体を合わせて形成されるキャビティに発泡性熱可塑性樹脂粒子を予備発泡させてなる予備発泡樹脂粒子を充填し、前記複数の蒸気穴を介して該予備発泡樹脂粒子に蒸気を接触させ、発泡樹脂成形品を作製する発泡樹脂成形型において、前記第1の型のフレーム外面とブラケット側バックプレート外面、前記第2の型のフレーム外面とダイプレート外面の少なくとも一部が、断熱層で被覆されていることを特徴とする発泡樹脂成形型を提供する。
本発明の発泡樹脂成形型において、前記断熱層は、熱抵抗値(R)が0.05〜0.25m・K/Wの範囲内であることが好ましい。
本発明の発泡樹脂成形型において、前記断熱層の厚さが8mm以下であることが好ましい。
本発明の発泡樹脂成形型において、前記断熱層が、アルミフィルムラミネート耐熱不織布を含むものであってもよい。
本発明の発泡樹脂成形型において、前記断熱層が、断熱塗料の塗膜を含むことが好ましい。
また本発明は、前記発泡樹脂成形型を有する発泡樹脂成形装置を提供する。
また本発明は、前記発泡成形装置を用いて発泡樹脂成形品を製造する発泡樹脂成形品の製造方法を提供する。
また本発明は、前記発泡成形品の製造方法から得られた発泡樹脂成形品を提供する。
To achieve the above object, the present invention provides a first mold having a hollow steam chamber constituted by a frame, a bracket-side back plate, and a first mold body provided with a plurality of steam holes, and a frame. A second mold having a hollow steam chamber composed of a die plate and a second mold body provided with a plurality of steam holes, and is formed by combining these first and second mold bodies. Foamed resin in which foamed thermoplastic resin particles are produced by filling the cavity with prefoamed resin particles obtained by prefoaming foamable thermoplastic resin particles, and bringing the vapor into contact with the prefoamed resin particles through the plurality of vapor holes. In the molding die, the foam is characterized in that at least a part of the outer surface of the frame of the first die and the outer surface of the bracket side back plate and the outer surface of the frame of the second die and the outer surface of the die plate are covered with a heat insulating layer. Tree Providing a mold.
In the foamed resin mold of the present invention, the heat insulating layer preferably has a thermal resistance value (R) in the range of 0.05 to 0.25 m 2 · K / W.
In the foamed resin mold of the present invention, it is preferable that the heat insulating layer has a thickness of 8 mm or less.
In the foamed resin mold of the present invention, the heat insulating layer may include an aluminum film laminated heat-resistant nonwoven fabric.
In the foamed resin mold of the present invention, it is preferable that the heat insulating layer includes a coating film of a heat insulating paint.
The present invention also provides a foamed resin molding apparatus having the foamed resin mold.
Moreover, this invention provides the manufacturing method of the foamed resin molded product which manufactures a foamed resin molded product using the said foam molding apparatus.
Moreover, this invention provides the foamed resin molded product obtained from the manufacturing method of the said foamed molded product.

本発明の発泡樹脂成形型は、第1の型のフレーム外面とブラケット側バックプレート外面、第2の型のフレーム外面とダイプレート外面の少なくとも一部が断熱層で被覆されている構成としたものなので、型内発泡成形時の使用蒸気量を削減でき、長時間の使用であっても断熱層の劣化や剥離を生じ難い。   The foamed resin molding die of the present invention has a structure in which at least a part of the outer surface of the frame of the first mold and the outer surface of the bracket side back plate, and the outer surface of the frame of the second die and the outer surface of the die plate are covered with a heat insulating layer. Therefore, the amount of steam used during in-mold foam molding can be reduced, and even when used for a long time, the heat insulating layer is unlikely to deteriorate or peel off.

本発明の発泡樹脂成形型を備えた発泡樹脂成形装置の一例を示す構成図である。It is a block diagram which shows an example of the foamed resin molding apparatus provided with the foamed resin molding die of this invention. 断熱層の第1例を示す断面図である。It is sectional drawing which shows the 1st example of a heat insulation layer. 断熱層の第2例を示す断面図である。It is sectional drawing which shows the 2nd example of a heat insulation layer. 断熱層の第3例を示す断面図である。It is sectional drawing which shows the 3rd example of a heat insulation layer. 断熱層の第4例を示す断面図である。It is sectional drawing which shows the 4th example of a heat insulation layer. 断熱層の第5例を示す断面図である。It is sectional drawing which shows the 5th example of a heat insulation layer.

以下、図面を参照して本発明の型内発泡成形方法の実施形態を説明する。
図1は、本発明の発泡樹脂成形型(以下、成形型と記す)を備えた発泡樹脂成形装置(以下、成形装置と記す)の一例を示す構成図である。
Hereinafter, an embodiment of an in-mold foam molding method of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram showing an example of a foamed resin molding apparatus (hereinafter referred to as a molding apparatus) provided with a foamed resin molding die (hereinafter referred to as a molding mold) of the present invention.

この成形装置1は、第1の型である凹型2と、第2の型である凸型3とを備え、これらの型が接近・離間することで型閉め・型開きが可能な成形型4を有している。
凹型2は、フレーム6とブラケット側バックプレート8aと複数の蒸気穴が設けられた凹型本体5とで構成された中空の蒸気室10を有している。また凸型3は、フレーム6とダイプレート8bと複数の蒸気穴が設けられた凸型本体7とで構成された中空の蒸気室11を有している。フレーム6は、図1に示す型閉め状態において略長方体形状をなす成形型4の4つの側面を構成し、ブラケット側バックプレート8aとダイプレート8bとは上下の面を構成している。図1に示す型閉め状態において、凹型本体5と凸型本体7との間には、魚箱など、製造しようとする発泡成形体の外形に合致したキャビティ9が形成される。
The molding apparatus 1 includes a concave mold 2 that is a first mold and a convex mold 3 that is a second mold, and a mold 4 that can be closed and opened when these molds approach and separate from each other. have.
The concave mold 2 has a hollow steam chamber 10 composed of a frame 6, a bracket side back plate 8a, and a concave main body 5 provided with a plurality of steam holes. The convex mold 3 has a hollow steam chamber 11 composed of a frame 6, a die plate 8b, and a convex main body 7 provided with a plurality of steam holes. The frame 6 constitutes four side surfaces of the molding die 4 having a substantially rectangular shape when the die is closed as shown in FIG. 1, and the bracket side back plate 8a and the die plate 8b constitute upper and lower surfaces. In the mold closed state shown in FIG. 1, a cavity 9 is formed between the concave mold body 5 and the convex mold body 7 so as to match the outer shape of the foamed molded product to be manufactured, such as a fish box.

凹型2側の蒸気室10には、凹型側調圧蒸気弁12を介して蒸気供給管路が接続され、その対向位置には凹型側ドレン弁13を介してドレン管路が接続され、このドレン管路には、真空弁14を介して真空排気管路が接続されている。また凹型2側の蒸気室10には、冷却水弁15を介して冷却水供給管路が挿入され、さらに適所には圧力計16が接続されている。   A steam supply line is connected to the steam chamber 10 on the concave side 2 via a concave side pressure regulating steam valve 12, and a drain line is connected to the opposite position via a concave side drain valve 13. A vacuum exhaust pipe line is connected to the pipe line via a vacuum valve 14. Further, a cooling water supply pipe line is inserted into the steam chamber 10 on the concave mold 2 side via a cooling water valve 15, and a pressure gauge 16 is connected to an appropriate place.

同様に、凸型3側の蒸気室11には、凸型側調圧蒸気弁17を介して蒸気供給管路が接続され、その対向位置には凸型側ドレン弁18を介してドレン管路が接続され、このドレン管路には、真空弁19を介して真空排気管路が接続されている。また凸型3側の蒸気室11には、冷却水弁20を介して冷却水供給管路が挿入され、さらに適所には圧力計21が接続されている。なお、図示していないが、この成形型4の適所には、キャビティ9内に予備発泡粒子を充填するための供給管路が接続した予備発泡粒子供給口や成形を終えた成形品を型から押し出すためのピンが設けられている。   Similarly, a steam supply conduit is connected to the steam chamber 11 on the convex 3 side via a convex pressure regulating steam valve 17, and a drain conduit is connected to the opposite position via a convex drain valve 18. And a vacuum exhaust line is connected to the drain line via a vacuum valve 19. In addition, a cooling water supply pipe line is inserted into the steam chamber 11 on the convex mold 3 side via a cooling water valve 20, and a pressure gauge 21 is connected to an appropriate place. Although not shown in the drawing, the pre-foamed particle supply port connected to the supply pipe for filling the pre-foamed particles in the cavity 9 and the molded product after the molding are removed from the mold at appropriate positions of the mold 4. A pin for extruding is provided.

この成形型4のフレーム6外面とブラケット側バックプレート8a外面とダイプレート8b外面のうちの少なくとも一部は、断熱層で被覆されている。   At least a part of the outer surface of the frame 6, the outer surface of the bracket side back plate 8 a and the outer surface of the die plate 8 b of the mold 4 is covered with a heat insulating layer.

本発明の発泡樹脂成形型において、断熱層は、熱抵抗値(R)が0.05〜0.25m・K/Wの範囲内であることが好ましく、0.08〜0.20m・K/Wの範囲内であることがより好ましい。
ここで、熱抵抗値(R)[m・K/W]は、 断熱層の材料の厚み(d)[m]÷断熱層の材料の熱伝導率(λ)[W/(m・K)]で計算される値である。断熱層が複数の断熱材により構成されている場合、熱抵抗値は、各断熱材の熱抵抗値の合計で表される。
In the foamed resin mold of the present invention, the heat insulating layer preferably has a thermal resistance value (R) in the range of 0.05 to 0.25 m 2 · K / W, and 0.08 to 0.20 m 2 ·. More preferably, it is within the range of K / W.
Here, the thermal resistance value (R) [m 2 · K / W] is the thickness (d) [m] of the material of the heat insulating layer ÷ the thermal conductivity (λ) [W / (m · K) of the material of the heat insulating layer. )]. When the heat insulation layer is composed of a plurality of heat insulating materials, the heat resistance value is represented by the sum of the heat resistance values of the heat insulating materials.

(熱伝導率λの測定方法)
発泡成形体から、縦200mm×横200mm×厚さ10〜25mmの直方体形状の試験片を切り出し試験片Aとし、その試験片Aの熱伝導率をλとする。次に、試験片Aの片面(200mm×200mm)の全面に、断熱層Bを均一な厚みで厚さ0.5〜8mm設けて試験片Cとし、その試験片Cの熱伝導率をλとする。
試験片Aの熱伝導率λは、次のようにして算出する。英弘精機産業社から商品名「HC−074/200」にて市販されている測定装置を用い、測定装置の低温板を試験片Aの平均温度より15℃低く且つ高温板を試験片Aの平均温度よりも15℃高く設定した上で、試験片Aの熱伝導率λをJIS A 1412−2:1999「熱絶縁材の熱抵抗及び熱伝導率の測定方法−第2部:熱流計法(HFM法)」記載の方法に準拠して測定する。なお、試験片Aの平均温度は、0、20、30℃の3点とする。得られた熱伝導率に基づいて、横軸を温度、縦軸を熱伝導率とした回帰直線を描き、試験片Aの23℃における熱伝導率λを算出する。また、試験片Cの場合は、断熱層Bを測定装置の低温板に接触させた場合の23℃における熱伝導率と、断熱層Bを測定装置の高温板に接触させた場合の23℃における熱伝導率の平均値から、試験片Cの熱伝導率λを算出する。
この時、試験片Cに単位時間当たりに流れる熱量Qは、次式で表わされる。
Q=λ・(T−T)/d
=λ・(T−T)/d
=λ・(T−T)/d
ここで、Q:試験片Cに単位時間当たりに流れる熱量(W/m
λ:試験片Cの熱伝導率(W/(m・K))
:試験片Cの厚さ(m)
λ:試験片Aの熱伝導率(W/(m・K))
:試験片Aの厚さ(m)
λ:断熱層Bの熱伝導率(W/(m・K))
:断熱層Bの厚さ(m) (ここで、d=d−d
、T、T:試験片Cの内部の温度分布(K) (ここで、T>T>T
よって、断熱層Bの熱伝導率λは、次式で算出される。
λ=(d−d)/〔(d/λ)−(d/λ)〕
試験片Aに用いる発泡成形体としては、測定中に熱伝導率が変化しないものであれば特に限定しないが、ダウ化工社製スタイロフォームIB、厚さ20mm、熱伝導率λ=0.040(W/(m・K))を好適に用いることができる。
試験片Aの片面に設ける断熱層Bの厚さとしては、0.5〜8mm程度の範囲であれば特に限定しないが、厚さ3mm程度を好適に用いることができる。
以上、断熱層の厚さが0.5〜8mm程度の薄い場合における熱伝導率の測定方法を述べたが、断熱層の厚さが元々10〜25mmある場合には、縦200mm×横200mm×厚さ10〜25mmの直方体形状の試験片を、英弘精機産業社から商品名「HC−074/200」にて市販されている測定装置を用いてJIS A 1412−2:1999に準拠して熱伝導率を測定する。
(Measurement method of thermal conductivity λ)
Foam moldings, and vertical 200 mm × horizontal 200 mm × thickness test piece A test piece was cut out of the rectangular parallelepiped 10 to 25 mm, the thermal conductivity of the test piece A with lambda A. Next, a heat insulating layer B is provided on the entire surface of one side (200 mm × 200 mm) of the test piece A to provide a test piece C with a uniform thickness of 0.5 to 8 mm, and the thermal conductivity of the test piece C is λ C And
Thermal conductivity lambda A test piece A is calculated as follows. Using a measuring device commercially available from EKO SEIKI under the trade name “HC-074 / 200”, the low temperature plate of the measuring device is 15 ° C. lower than the average temperature of the test piece A, and the high temperature plate is the average of the test piece A After setting the temperature 15 ° C. higher than the temperature, the thermal conductivity λ A of the test piece A is measured according to JIS A 1412-2: 1999 “Measurement Method of Thermal Resistance and Thermal Conductivity of Thermal Insulation Material—Part 2: Heat Flow Meter Method (HFM method) "is measured according to the method described. In addition, the average temperature of the test piece A shall be 3 points | pieces, 0, 20, and 30 degreeC. Based on the obtained thermal conductivity, a regression line with the horizontal axis representing temperature and the vertical axis representing thermal conductivity is drawn, and the thermal conductivity λ A of the test piece A at 23 ° C. is calculated. Moreover, in the case of the test piece C, the heat conductivity in 23 degreeC when the heat insulation layer B is made to contact the low temperature board of a measuring apparatus, and 23 degreeC in the case where the heat insulation layer B is made to contact the high temperature board of a measurement apparatus. From the average value of the thermal conductivity, the thermal conductivity λ C of the test piece C is calculated.
At this time, the amount of heat Q flowing through the test piece C per unit time is expressed by the following equation.
Q = λ C · (T 1 −T 3 ) / d C
= Λ A · (T 1 −T 2 ) / d A
= Λ B · (T 2 −T 3 ) / d B
Here, Q: the amount of heat flowing in the test piece C per unit time (W / m 2 )
λ C : Thermal conductivity of test piece C (W / (m · K))
d C : thickness of test piece C (m)
λ A : Thermal conductivity of test piece A (W / (m · K))
d A : thickness of test piece A (m)
λ B : thermal conductivity of heat insulating layer B (W / (m · K))
d B : the thickness (m) of the heat insulating layer B (where d B = d C −d A )
T 1 , T 2 , T 3 : Temperature distribution inside the test piece C (K) (where T 1 > T 2 > T 3 )
Thus, the thermal conductivity lambda B of the heat insulating layer B is calculated by the following equation.
λ B = (d C −d A ) / [(d C / λ C ) − (d A / λ A )]
The foamed molded body used for the test piece A is not particularly limited as long as the thermal conductivity does not change during the measurement, but is a Styrofoam IB manufactured by Dow Kako Co., Ltd., thickness 20 mm, thermal conductivity λ = 0.040 (W / (M · K)) can be preferably used.
The thickness of the heat insulating layer B provided on one side of the test piece A is not particularly limited as long as it is in the range of about 0.5 to 8 mm, but a thickness of about 3 mm can be suitably used.
As described above, the method for measuring the thermal conductivity when the thickness of the heat insulation layer is as thin as about 0.5 to 8 mm has been described, but when the thickness of the heat insulation layer is originally 10 to 25 mm, the length is 200 mm × width 200 mm × A test piece having a rectangular parallelepiped shape having a thickness of 10 to 25 mm was heated in accordance with JIS A 1412-2: 1999 using a measuring device commercially available from EKO SEIKI under the trade name “HC-074 / 200”. Measure conductivity.

(熱抵抗値Rの測定方法)
断熱層の熱抵抗値Rは、次式で算出する。
R=d/λ
ここで、R:断熱層の熱抵抗値(m・K/W)
d:断熱層の厚さ(m)
λ:断熱層の熱伝導率(W/(m・K))
断熱層として、異なる断熱層をn層設けた場合の熱抵抗値Rは、次式で算出する。
=d/λ+d/λ+・・・+d/λ
(Measurement method of thermal resistance value R)
The thermal resistance value R of the heat insulation layer is calculated by the following formula.
R = d / λ
Here, R: thermal resistance value of the heat insulating layer (m 2 · K / W)
d: thickness of heat insulating layer (m)
λ: thermal conductivity of the heat insulating layer (W / (m · K))
The thermal resistance value R n when n different heat insulating layers are provided as the heat insulating layer is calculated by the following equation.
R n = d 1 / λ 1 + d 2 / λ 2 +... + D n / λ n

本発明の発泡樹脂成形型において、前記断熱層の厚さが8mm以下であることが好ましく、7mm以下であることがより好ましく、0.5〜6mmの範囲が最も好ましい。断熱層の厚さが8mm以下であれば、フレーム6外面、あるいはフレーム6外面、ブラケット側バックプレート8a外面及びダイプレート8b外面に断熱層を形成した場合に、断熱層が過度に嵩張らず、成形作業に与える影響が少なくなる。   In the foamed resin mold of the present invention, the heat insulating layer preferably has a thickness of 8 mm or less, more preferably 7 mm or less, and most preferably in the range of 0.5 to 6 mm. If the thickness of the heat insulating layer is 8 mm or less, when the heat insulating layer is formed on the outer surface of the frame 6, or the outer surface of the frame 6, the outer surface of the bracket side back plate 8a, and the outer surface of the die plate 8b, the heat insulating layer is not excessively bulky and molded. Less impact on work.

図2は、断熱層の第1例を示す図である。
本例では、成形型4のフレーム6の外面全域に、接着剤層33を介して断熱シート32を接着している。接着剤層33及び断熱シート32によって断熱層34を構成している。
前記断熱シート32としては、特に限定されず、各種の市販の断熱シートの中から適宜選択して使用することができる。本発明において好ましい市販の断熱シート32としては、例えば、耐熱不織布の片面にアルミニウム層32aを積層した耐熱シートである、菊池シート工業社製、商品名「片面アルミラミネート耐熱フェルト」を挙げることができる。
また、断熱シート32の接着に用いる接着剤は、フレーム6外面に耐熱シート32を強固且つ安定して接着固定することができればよく、特に限定されないが、耐熱性や耐水性などの点から、シリコーン樹脂系接着剤が好ましい。
FIG. 2 is a diagram illustrating a first example of a heat insulating layer.
In this example, the heat insulating sheet 32 is bonded to the entire outer surface of the frame 6 of the mold 4 via the adhesive layer 33. A heat insulating layer 34 is constituted by the adhesive layer 33 and the heat insulating sheet 32.
The heat insulating sheet 32 is not particularly limited, and can be appropriately selected from various commercially available heat insulating sheets. Examples of the commercially available heat insulating sheet 32 that is preferable in the present invention include a product name “single-sided aluminum laminated heat-resistant felt” manufactured by Kikuchi Sheet Kogyo Co., Ltd., which is a heat-resistant sheet in which an aluminum layer 32a is laminated on one side of a heat-resistant nonwoven fabric. .
The adhesive used for adhering the heat insulating sheet 32 is not particularly limited as long as it can firmly and stably adhere and fix the heat resistant sheet 32 to the outer surface of the frame 6, but from the viewpoint of heat resistance and water resistance, it is silicone. Resin-based adhesives are preferred.

本例の断熱層34は、薄い断熱シート32が主体であるので、成形型4が嵩張って成形作業の邪魔になることがなく、成形作業に与える影響が少ない。また、本例の断熱層34を形成した成形型4は、断熱性能が付与されることで、型内発泡成形時の使用蒸気量を削減でき、長時間の使用であっても断熱層34の劣化や剥離を生じ難い。   Since the heat insulating layer 34 of this example is mainly the thin heat insulating sheet 32, the molding die 4 is not bulky and does not obstruct the molding operation, and has little influence on the molding operation. In addition, the mold 4 formed with the heat insulating layer 34 of the present example is provided with heat insulating performance, so that the amount of steam used during foam molding in the mold can be reduced. It is difficult to cause deterioration and peeling.

図3は、断熱層の第2例を示す図である。
本例では、成形型4のフレーム6の外面全域に、接着剤層33を介して断熱シート32が接着され、さらに断熱シート32の外面に、断熱塗料の塗膜35が積層されている。接着剤層33、断熱シート32及び断熱塗料の塗膜35によって断熱層36を構成している。
この断熱塗料としては、断熱性能を付与するための非結晶体シリカ、シリカ中空ビーズなどのセラミック中空ビーズと、塗膜形成用の合成樹脂成分とを含むものが挙げられる。断熱塗料は、溶剤希釈タイプの塗料であってもよいし、光や熱などのエネルギー硬化型の塗料であってもよい。この塗膜35の形成に用いる断熱塗料としては、非結晶体シリカ、シリカ中空ビーズなどの適当なセラミック中空ビーズと、合成樹脂成分と、溶剤や硬化剤などの添加剤とを混合して調製した塗料組成物を用いてもよいし、市販されている各種の断熱塗料の中から適宜選択して使用してもよい。このような市販品の断熱塗料としては、例えば、非結晶体シリカを含有する断熱塗料である日本テレニクス社製の商品名「セラミック・カバーCC100」などを挙げることができる。
FIG. 3 is a diagram illustrating a second example of the heat insulating layer.
In this example, a heat insulating sheet 32 is bonded to the entire outer surface of the frame 6 of the mold 4 via an adhesive layer 33, and a heat insulating coating film 35 is laminated on the outer surface of the heat insulating sheet 32. A heat insulating layer 36 is constituted by the adhesive layer 33, the heat insulating sheet 32, and the coating film 35 of the heat insulating paint.
Examples of the heat insulating paint include those containing ceramic hollow beads such as amorphous silica and silica hollow beads for imparting heat insulating performance, and a synthetic resin component for forming a coating film. The heat insulating paint may be a solvent dilution type paint or an energy curable paint such as light or heat. The heat insulating paint used for forming the coating film 35 was prepared by mixing suitable ceramic hollow beads such as amorphous silica and silica hollow beads, a synthetic resin component, and additives such as a solvent and a curing agent. A coating composition may be used, and may be used by appropriately selecting from various commercially available heat insulating coatings. Examples of such commercially available heat-insulating paints include the product name “Ceramic Cover CC100” manufactured by Nippon Telenics Co., Ltd., which is a heat-insulating paint containing amorphous silica.

本例の断熱層36は、前述した第1例の断熱層35と同様の効果が得られ、さらに、断熱シート32外面に断熱塗料の塗膜35を積層したことによって、成形型4の断熱性能をより向上させることができ、型内発泡成形時の使用蒸気量をより削減できる。   The heat insulating layer 36 of this example has the same effect as the heat insulating layer 35 of the first example described above, and furthermore, the heat insulating performance of the mold 4 is obtained by laminating the coating film 35 of the heat insulating paint on the outer surface of the heat insulating sheet 32. Can be further improved, and the amount of steam used during in-mold foam molding can be further reduced.

図4は、断熱層の第3例を示す図である。
本例では、成形型4のフレーム6の外面全域に、接着剤層33を介してグラスウール37を接着している。接着剤層33及びグラスウール37によって断熱層38を構成している。
前記グラスウール37としては、各種の市販品の中から適宜選択して使用することができ、このような市販品としては、例えば、旭ファイバーグラス社製の商品名「グラスロンウールGW32」などを挙げることができる。
また接着剤層33に用いる接着剤は、フレーム6外面にグラスウール37を強固且つ安定して接着固定することができればよく、特に限定されないが、耐熱性や耐水性などの点から、シリコーン樹脂系接着剤が好ましい。
FIG. 4 is a diagram illustrating a third example of the heat insulating layer.
In this example, glass wool 37 is bonded to the entire outer surface of the frame 6 of the mold 4 via an adhesive layer 33. The heat insulating layer 38 is constituted by the adhesive layer 33 and the glass wool 37.
The glass wool 37 can be used by appropriately selecting from various commercially available products. Examples of such commercially available products include “Glaslon Wool GW32” manufactured by Asahi Fiber Glass Co., Ltd. be able to.
The adhesive used for the adhesive layer 33 is not particularly limited as long as it can firmly and stably adhere and fix the glass wool 37 to the outer surface of the frame 6. However, from the viewpoints of heat resistance and water resistance, it is a silicone resin adhesive. Agents are preferred.

本例の断熱層38は、厚いグラスウール37が主体であるので、成形型4が嵩張って成形作業に支障が生じるおそれがある。   Since the heat insulating layer 38 of this example is mainly made of thick glass wool 37, there is a possibility that the molding die 4 is bulky and hinders the molding operation.

図5は、断熱層の第4例を示す図である。
本例では、成形型4のフレーム6の外面全域にわたって、前記断熱塗料の塗膜35からなる断熱層35aを形成した構成になっている。
FIG. 5 is a diagram illustrating a fourth example of the heat insulating layer.
In this example, a heat insulating layer 35 a made of the heat insulating coating film 35 is formed over the entire outer surface of the frame 6 of the mold 4.

この断熱層35aは、成形型4のフレーム6の外面全域にわたって、断熱塗料を塗布し、乾燥させて合成樹脂成分を硬化することによって、あるいはエネルギー硬化型塗料の場合には、塗布後に光や熱などのエネルギーを照射することによって合成樹脂成分を硬化することによって形成される。前記塗料を成形型4のフレーム6の外面全域にわたって塗布する方法は、特に限定されず、例えば、スプレー塗装などの従来周知の塗装方法により行うことができる。
この断熱層35aの厚さは、8mm以下であることが好ましく、5mm以下であることがより好ましく、3mm以下であることがより好ましい。
The heat insulating layer 35a is formed by applying a heat insulating paint over the entire outer surface of the frame 6 of the mold 4 and drying it to cure the synthetic resin component. It is formed by curing the synthetic resin component by irradiating energy such as. The method of applying the paint over the entire outer surface of the frame 6 of the mold 4 is not particularly limited, and can be performed by a conventionally known coating method such as spray coating.
The thickness of the heat insulating layer 35a is preferably 8 mm or less, more preferably 5 mm or less, and even more preferably 3 mm or less.

本例の断熱層35aは、薄い塗膜35であるので、成形型4が嵩張って成形作業の邪魔になることがなく、成形作業に与える影響が少ない。また、本例の断熱層35aを形成した成形型4は、断熱性能が付与されることで、型内発泡成形時の使用蒸気量を削減でき、長時間の使用であっても断熱層35aの劣化や剥離を生じ難い。   Since the heat insulating layer 35a of this example is a thin coating film 35, the molding die 4 is not bulky and does not obstruct the molding operation, and has little influence on the molding operation. In addition, the mold 4 formed with the heat insulating layer 35a of this example can reduce the amount of steam used during in-mold foam molding by providing heat insulating performance, and the heat insulating layer 35a can be used even for a long time. It is difficult to cause deterioration and peeling.

図6は、断熱層の第5例を示す図である。
本例では、成形型4のフレーム6の外面全域のほかに、ブラケット側バックプレート8a外面とダイプレート8b外面に、セラミック中空ビーズなどを含有する断熱塗料の塗膜35からなる断熱層35aを形成した構成になっている。
FIG. 6 is a diagram illustrating a fifth example of the heat insulating layer.
In this example, in addition to the entire outer surface of the frame 6 of the mold 4, a heat insulating layer 35 a composed of a coating film 35 of heat insulating paint containing ceramic hollow beads is formed on the outer surface of the bracket side back plate 8 a and the outer surface of the die plate 8 b. It has a configuration.

本例の断熱層35aは、第4例と同様の効果が得られ、成形型4のフレーム6の外面全域だけでなく、ブラケット側バックプレート8a外面とダイプレート8b外面にも断熱塗料の塗膜35からなる断熱層35aを形成した構成としたことによって、成形型4の断熱性能をより向上させることができ、型内発泡成形時の使用蒸気量をより削減できる。   The heat insulating layer 35a of this example has the same effect as that of the fourth example, and the heat insulating paint film is applied not only to the entire outer surface of the frame 6 of the mold 4 but also to the outer surface of the bracket side back plate 8a and the outer surface of the die plate 8b. With the configuration in which the heat insulating layer 35a made of 35 is formed, the heat insulating performance of the molding die 4 can be further improved, and the amount of steam used during in-mold foam molding can be further reduced.

前述したように構成された成形装置を用い、ポリスチレン系樹脂発泡成形体などの熱可塑性樹脂発泡成形体を製造するには、凹型2と凸型3とを接近させて成形型4を閉じ、そのキャビティ9内に予備発泡粒子を充填し、次いで成形型4を蒸気加熱して発泡させながら予備発泡粒子同士を融着させて型内発泡成形し、次いで成形型4を冷却し、次いで成形型4を開き、発泡成形体を離型して取り出すことにより行われる。   In order to produce a thermoplastic resin foam molded article such as a polystyrene-based resin foam molded article using the molding apparatus configured as described above, the concave mold 2 and the convex mold 3 are brought close to each other and the mold 4 is closed. The pre-expanded particles are filled in the cavity 9, and then the pre-expanded particles are fused together while being foamed by steam heating of the mold 4, then the in-mold foam molding is performed, and then the mold 4 is cooled, and then the mold 4 Is performed, and the foamed molded product is released from the mold.

型内発泡成形方法において用いる予備発泡粒子は、発泡剤を含有させた合成樹脂粒子を予備発泡させて得られるものであり、この合成樹脂粒子を構成する合成樹脂としては、従来から発泡樹脂成形品製造のために用いられている樹脂材料の中から適宜選択して用いることができ、特に限定されず、例えば、ポリスチレン、ハイインパクトポリスチレン、スチレン−無水マレイン酸共重合体、スチレン−アクリロニトリル共重合体等のポリスチレン系樹脂、ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体等のポリオレフィン系樹脂、ポリエチレンテレフタレート等のポリエステル系樹脂等を挙げることができ、強度と成形性の良さからポリスチレン系樹脂が好ましい。   The pre-foamed particles used in the in-mold foam molding method are obtained by pre-foaming synthetic resin particles containing a foaming agent. As the synthetic resin constituting the synthetic resin particles, conventionally, foamed resin molded products are used. The resin material used for production can be appropriately selected and used, and is not particularly limited. For example, polystyrene, high impact polystyrene, styrene-maleic anhydride copolymer, styrene-acrylonitrile copolymer Polystyrene resins such as polyethylene, polypropylene, and ethylene-vinyl acetate copolymer, polyester resins such as polyethylene terephthalate, and the like. Polystyrene resins are preferred because of their strength and moldability.

また、前記発泡剤としては、沸点が合成樹脂の軟化点以下であって、常圧でガス状もしくは液状の有機化合物が適しており、例えば、プロパン、ブタン、ペンタン、シクロペンタン、シクロペンタジエン、ヘキサン、石油エーテル等の炭化水素、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、メチルエチルエーテル等の低沸点のエーテル化合物、炭酸ガス、窒素等の無機ガス等が用いられる。これらの発泡剤は、一種のみを使用してもよく、また、二種以上を併用してもよい。発泡剤の含有率としては、合成樹脂粒子質量に対して1〜20質量%、好ましくは2〜10質量%である。発泡剤の含有量が前記範囲を下回ると、発泡成形品の発泡倍率が不十分で軽量発泡体が得られない。一方、発泡剤の含有量が前記範囲を超えても、発泡倍率の更なる上昇は実質的に見込めず、また発泡が不安定になり好ましくない。   Further, as the foaming agent, organic compounds that have a boiling point below the softening point of the synthetic resin and are gaseous or liquid at normal pressure are suitable. For example, propane, butane, pentane, cyclopentane, cyclopentadiene, hexane Further, hydrocarbons such as petroleum ether, low boiling point ether compounds such as dimethyl ether, diethyl ether, dipropyl ether, and methyl ethyl ether, inorganic gases such as carbon dioxide and nitrogen, and the like are used. These foaming agents may use only 1 type and may use 2 or more types together. As a content rate of a foaming agent, it is 1-20 mass% with respect to the synthetic resin particle mass, Preferably it is 2-10 mass%. When the content of the foaming agent is less than the above range, the foaming ratio of the foamed molded product is insufficient and a lightweight foam cannot be obtained. On the other hand, even if the content of the foaming agent exceeds the above range, a further increase in the expansion ratio cannot be substantially expected, and foaming becomes unstable, which is not preferable.

型内発泡成形方法では、成形型4のキャビティ9内に予備発泡粒子を充填した後、次の各加熱工程(a)〜(e)、
(a)凹型側調圧蒸気弁12、凸型側調圧蒸気弁17、凹型側ドレン弁13及び凸型側ドレン弁18を開き、成形型4に蒸気を流す金型加熱工程、
(b)次いで、凹型側調圧蒸気弁12と凸型側ドレン弁18を開き、凸型側調圧蒸気弁17と凹型側ドレン弁13を閉じて凹型2側から凸型3側に、或いは凸型側調圧蒸気弁17と凹型側ドレン弁13を開き、凹型側調圧蒸気弁12と凸型側ドレン弁18を閉じて凸型3側から凹型2側に蒸気を流す一方加熱工程、
(c)次いで、凸型側調圧蒸気弁17を開き、凹型側調圧蒸気弁12を閉じて凸型3側から凹型2側に、或いは凹型側調圧蒸気弁12を開き、凸型側調圧蒸気弁17を閉じて凹型2側から凸型3側に蒸気を流す逆一方加熱工程、
(d)次いで、凹型側調圧蒸気弁12と凸型側調圧蒸気弁17を開き、凹型側ドレン弁13と凸型側ドレン弁18を閉じて成形型4を加熱する両面加熱工程、
(e)次いで、凹型側調圧蒸気弁12、凸型側調圧蒸気弁17、凹型側ドレン弁13及び凸型側ドレン弁18を閉じ、保持された蒸気で成形型4内を保熱する保熱工程、
を行う。
In the in-mold foam molding method, after filling the pre-expanded particles in the cavity 9 of the mold 4, the following heating steps (a) to (e),
(A) a mold heating step of opening the concave side pressure regulating steam valve 12, the convex side pressure regulating steam valve 17, the concave side drain valve 13 and the convex side drain valve 18 and allowing the steam to flow into the mold 4;
(B) Next, the concave side pressure regulating steam valve 12 and the convex side drain valve 18 are opened, and the convex side pressure regulating steam valve 17 and the concave side drain valve 13 are closed and the concave mold 2 side is shifted to the convex mold 3 side, or Opening the convex pressure regulating steam valve 17 and the concave drain valve 13, closing the concave pressure regulating steam valve 12 and the convex drain valve 18, and allowing the steam to flow from the convex 3 side to the concave 2 side while heating,
(C) Next, the convex side pressure regulating steam valve 17 is opened, the concave side pressure regulating steam valve 12 is closed, and the convex side is opened from the convex mold 3 side, or the concave side pressure regulating steam valve 12 is opened. A reverse heating process in which the pressure regulating steam valve 17 is closed and the steam flows from the concave mold 2 side to the convex mold 3 side;
(D) Next, a double-sided heating step in which the concave side pressure regulating steam valve 12 and the convex side pressure regulating steam valve 17 are opened, the concave side drain valve 13 and the convex side drain valve 18 are closed, and the mold 4 is heated.
(E) Next, the concave-side pressure regulating steam valve 12, the convex-side pressure regulating steam valve 17, the concave-side drain valve 13 and the convex-side drain valve 18 are closed, and the inside of the mold 4 is kept warm with the retained steam. Heat retention process,
I do.

さらに、前記(e)保熱工程の終了後、
(f)冷却水弁15,20を開いて冷却水を成形装置1内に導入し、凹型2と凸型3に向けて流し、型を冷却する水冷工程、
(g)前記水冷工程後、凹型側ドレン弁13と凸型側ドレン弁18、冷却水弁15,20を閉じ、真空弁14,19を開くことによって成形型4内を真空排気して凹型2と凸型3を放冷する放冷工程、
を行う。
Furthermore, after the end of the (e) heat retention step,
(F) A water cooling step of opening the cooling water valves 15 and 20 to introduce cooling water into the molding apparatus 1 and flowing it toward the concave mold 2 and the convex mold 3 to cool the mold,
(G) After the water cooling step, the concave side drain valve 13, the convex side drain valve 18, the cooling water valves 15 and 20 are closed, and the vacuum valves 14 and 19 are opened to evacuate the inside of the molding die 4. And a cooling process for cooling the convex mold 3,
I do.

放冷後、凹型2と凸型3とを離間する方向に移動させて型開きし、型内発泡成形により得られた発泡成形体を取り出す。
その後、再び型閉めし、キャビティ9内に予備発泡粒子を充填し、前記各工程を繰り返し行う。
After standing to cool, the concave mold 2 and the convex mold 3 are moved away from each other to open the mold, and the foam molded body obtained by in-mold foam molding is taken out.
Thereafter, the mold is closed again, pre-expanded particles are filled into the cavity 9, and the above steps are repeated.

[比較例]
比較例では、成形型外面に断熱層を設けていない成形装置を用い、ポリスチレン系樹脂発泡成形体を製造した。
成形装置は、笠原工業社製AD1313を使用した。この成形装置に、外寸法480mm×310mm×120 mm)、内寸法435mm×265mm×100mm)の角形箱状の魚箱を成形可能な凹型と凸型を取り付けた。
型閉め後、キャビティ内にポリスチレン系樹脂予備発泡粒子を充填した。予備発泡粒子としては、積水化成品工業社製HDMF(嵩発泡倍数60倍)を用いた。
次に、凹型側調圧蒸気弁12、凸型側調圧蒸気弁17から0.065MPaの蒸気を成形型4に導入し、(a)〜(e)の各加熱工程を連続して実施した。
[Comparative example]
In the comparative example, a polystyrene-based resin foam molded article was manufactured using a molding apparatus in which a heat insulating layer was not provided on the outer surface of the mold.
As the molding apparatus, AD1313 manufactured by Kasahara Kogyo Co., Ltd. was used. A concave mold and a convex mold capable of molding a square box-shaped fish box having an outer dimension of 480 mm × 310 mm × 120 mm) and an inner dimension of 435 mm × 265 mm × 100 mm) were attached to this molding apparatus.
After closing the mold, polystyrene resin pre-expanded particles were filled in the cavity. As the pre-expanded particles, HDMF (bulk expansion ratio 60 times) manufactured by Sekisui Plastics Co., Ltd. was used.
Next, 0.065 MPa of steam was introduced into the molding die 4 from the concave side pressure regulating steam valve 12 and the convex side pressure regulating steam valve 17, and the respective heating steps (a) to (e) were continuously performed. .

(a)凹型側調圧蒸気弁12、凸型側調圧蒸気弁17、凹型側ドレン弁13及び凸型側ドレン弁18を開き、成形型4に蒸気を流す金型加熱工程、
(b)次いで、凹型側調圧蒸気弁12と凸型側ドレン弁18を開き、凹型側ドレン弁13と凸型側調圧蒸気弁17とを閉じ、凹型2側から凸型3側に蒸気を流す一方加熱工程、
(c)次いで、凸型側調圧蒸気弁17と凹型側ドレン弁13とを開き、凹型側調圧蒸気弁12と凸型側ドレン弁18を閉じ、凸型3側から凹型2側に蒸気を流す逆一方加熱工程、
(d)次いで、凹型側調圧蒸気弁12と凸型側調圧蒸気弁17を開き、凹型側ドレン弁13と凸型側ドレン弁18を閉じて成形型4を加熱する両面加熱工程、
(e)次いで、凹型側調圧蒸気弁12、凸型側調圧蒸気弁17、凹型側ドレン弁13及び凸型側ドレン弁18を閉じ、保持された蒸気で成形型4内を保熱する保熱工程。
(A) a mold heating step of opening the concave side pressure regulating steam valve 12, the convex side pressure regulating steam valve 17, the concave side drain valve 13 and the convex side drain valve 18 and allowing the steam to flow into the mold 4;
(B) Next, the concave side pressure regulating steam valve 12 and the convex side drain valve 18 are opened, the concave side drain valve 13 and the convex side pressure regulating steam valve 17 are closed, and the steam is transferred from the concave mold 2 side to the convex mold 3 side. While heating process,
(C) Next, the convex side pressure regulating steam valve 17 and the concave side drain valve 13 are opened, the concave side pressure regulating steam valve 12 and the convex side drain valve 18 are closed, and the steam is transferred from the convex type 3 side to the concave type 2 side. Reverse one-side heating process,
(D) Next, a double-sided heating step in which the concave side pressure regulating steam valve 12 and the convex side pressure regulating steam valve 17 are opened, the concave side drain valve 13 and the convex side drain valve 18 are closed, and the mold 4 is heated.
(E) Next, the concave-side pressure regulating steam valve 12, the convex-side pressure regulating steam valve 17, the concave-side drain valve 13 and the convex-side drain valve 18 are closed, and the inside of the mold 4 is kept warm with the retained steam. Thermal insulation process.

(f)前記(e)保熱工程の後、成形型を冷却水によって冷却する水冷工程、
(g)次いで、放冷工程、
を行い、その後成形型を開き、魚箱を得た。
この比較例で得られた魚箱について、外観検査と内部融着検査によって発泡成形体としての品質を調べた結果、品質は良好(○)であった。
この比較例における各工程の所要時間、総加熱時間、ショット当たり蒸気量、燃料原単位(成形時)を表1に記す。
(F) A water cooling step of cooling the mold with cooling water after the heat retaining step (e),
(G) Next, a cooling step,
After that, the mold was opened to obtain a fish box.
About the fish box obtained in this comparative example, as a result of investigating the quality as a foam-molded product by appearance inspection and internal fusion inspection, the quality was good (◯).
Table 1 shows the time required for each process, the total heating time, the amount of steam per shot, and the fuel consumption rate (at the time of molding) in this comparative example.

[実施例1]
図2に示す断熱層の第1例と同じく、成形型4のフレーム6の外面に、シリコーン樹脂系接着剤(セキスイフーラー社製、商品名「変成シリコーン HM−NEW」)を用いた接着剤層33を介して、厚さ2.0mmの断熱シート32(菊池シート工業社製、商品名「片面アルミラミネート耐熱フェルト」)を接着した。接着剤層33及び断熱シート32によって断熱層34を形成した。その断熱層34を設けた成形装置を用い、比較例1における前記(a)〜(g)の各工程の所要時間を表1に示すように変更し、ポリスチレン系樹脂発泡成形体製の魚箱を製造した。
この際、断熱シート32のアルミニウム層32aを、接着剤層33側(フレーム6側)に向けて接着した。
使用した(1)断熱シート32、(2)接着剤層33、及びこれらが積層されてなる(3)断熱層34の熱伝導率、厚さ、及び熱抵抗値は以下の通りである。
[Example 1]
As in the first example of the heat insulating layer shown in FIG. 2, an adhesive layer using a silicone resin adhesive (trade name “modified silicone HM-NEW” manufactured by Sekisui Fuller) on the outer surface of the frame 6 of the mold 4. A heat-insulating sheet 32 having a thickness of 2.0 mm (manufactured by Kikuchi Sheet Industry Co., Ltd., trade name “single-sided aluminum laminated heat-resistant felt”) was bonded through 33. A heat insulating layer 34 was formed by the adhesive layer 33 and the heat insulating sheet 32. Using the molding apparatus provided with the heat insulating layer 34, the time required for each of the steps (a) to (g) in Comparative Example 1 was changed as shown in Table 1, and a fish box made of polystyrene resin foam molded body was used. Manufactured.
At this time, the aluminum layer 32a of the heat insulating sheet 32 was bonded toward the adhesive layer 33 side (frame 6 side).
The thermal conductivity, thickness, and thermal resistance value of the used (1) heat insulating sheet 32, (2) the adhesive layer 33, and (3) the heat insulating layer 34 formed by laminating them are as follows.

(1)断熱シート
熱伝導率(λ)=0.0143W/(m・K)
厚さ(d)=0.002m(=2.0mm)
熱抵抗値(R)=0.140m・K/W
(2)接着剤層
熱伝導率(λ)=0.90W/(m・K)
厚さ(d)=0.003m(=3.0mm)
熱抵抗値(R)=0.003m・K/W
(3)断熱層(前記(1)と(2)の合計)
厚さ(d)=0.005m(=5.0mm)
熱抵抗値(R)=0.143m・K/W
(1) Thermal insulation sheet Thermal conductivity (λ) = 0.0143 W / (m · K)
Thickness (d) = 0.002m (= 2.0mm)
Thermal resistance value (R) = 0.140 m 2 · K / W
(2) Adhesive layer Thermal conductivity (λ) = 0.90 W / (m · K)
Thickness (d) = 0.003m (= 3.0mm)
Thermal resistance (R) = 0.003m 2 · K / W
(3) Thermal insulation layer (total of (1) and (2) above)
Thickness (d) = 0.005m (= 5.0mm)
Thermal resistance value (R) = 0.143m 2 · K / W

この実施例1で得られた魚箱の品質は良好(○)であった。
この実施例1における各工程の所要時間、総加熱時間、ショット当たり蒸気量、燃料原単位(成形時)、及び熱抵抗値を表1に記す。
The quality of the fish box obtained in Example 1 was good (◯).
Table 1 shows the time required for each step, the total heating time, the amount of steam per shot, the fuel consumption rate (during molding), and the thermal resistance value in Example 1.

[実施例2]
図3に示す断熱層の第2例と同じく、成形型4のフレーム6の外面に、シリコーン樹脂系接着剤(セキスイフーラー社製、商品名「変成シリコーン HM−NEW」)を用いた接着剤層33を介して、厚さ2.0mmの断熱シート32(菊池シート工業社製、商品名「片面アルミラミネート耐熱フェルト」)を接着し、さらにその外面に断熱塗料の塗膜35を積層した。接着剤層33、断熱シート32及び断熱塗料の塗膜35によって断熱層36を形成した。その断熱層36を設けた成形装置を用い、比較例1における前記(a)〜(g)の各工程の所要時間を表1に示すように変更し、ポリスチレン系樹脂発泡成形体製の魚箱を製造した。
この際、断熱シート32のアルミニウム層32aを、接着剤層33側(フレーム6側)に向けて接着した。
使用した(1)断熱シート32、(2)接着剤層33、(3)非結晶体シリカを含有する断熱塗料(日本テレニクス社製、商品名「セラミック・カバーCC100」)の塗膜35及びこれらが積層されてなる(4)断熱層36の熱伝導率、厚さ、及び熱抵抗値は以下の通りである。
[Example 2]
Similar to the second example of the heat insulating layer shown in FIG. 3, an adhesive layer using a silicone resin adhesive (trade name “modified silicone HM-NEW” manufactured by Sekisui Fuller) on the outer surface of the frame 6 of the mold 4. A heat insulating sheet 32 (made by Kikuchi Sheet Industry Co., Ltd., trade name “single-sided aluminum laminated heat-resistant felt”) having a thickness of 2.0 mm was bonded through 33, and a coating film 35 of heat insulating paint was laminated on the outer surface. A heat insulating layer 36 was formed by the adhesive layer 33, the heat insulating sheet 32, and the heat insulating coating film 35. Using the molding apparatus provided with the heat insulating layer 36, the time required for each step (a) to (g) in Comparative Example 1 was changed as shown in Table 1, and a fish box made of polystyrene resin foam molded body Manufactured.
At this time, the aluminum layer 32a of the heat insulating sheet 32 was bonded toward the adhesive layer 33 side (frame 6 side).
Used coating film 35 of (1) heat insulating sheet 32, (2) adhesive layer 33, (3) heat insulating paint containing non-crystalline silica (manufactured by Nippon Telenics, trade name “Ceramic Cover CC100”), and these (4) The thermal conductivity, thickness, and thermal resistance value of the heat insulating layer 36 are as follows.

(1)断熱シート
熱伝導率(λ)=0.0143W/(m・K)
厚さ(d)=0.002m(=2.0mm)
熱抵抗値(R)=0.140m・K/W
(2)接着剤層
熱伝導率(λ)=0.90W/(m・K)
厚さ(d)=0.003m(=3.0mm)
熱抵抗値(R)=0.003m・K/W
(3)断熱塗料の塗膜
熱伝導率(λ)=0.0185W/(m・K)
厚さ(d)=0.001m(=1.0mm)
熱抵抗値(R)=0.054m・K/W
(4)断熱層(前記(1)、(2)、及び(3)の合計)
厚さ(d)=0.0065m(=6.0mm)
熱抵抗値(R)=0.197m・K/W
(1) Thermal insulation sheet Thermal conductivity (λ) = 0.0143 W / (m · K)
Thickness (d) = 0.002m (= 2.0mm)
Thermal resistance value (R) = 0.140 m 2 · K / W
(2) Adhesive layer Thermal conductivity (λ) = 0.90 W / (m · K)
Thickness (d) = 0.003m (= 3.0mm)
Thermal resistance (R) = 0.003m 2 · K / W
(3) Thermal insulating coating film Thermal conductivity (λ) = 0.0185 W / (m · K)
Thickness (d) = 0.001m (= 1.0mm)
Thermal resistance value (R) = 0.054m 2 · K / W
(4) Thermal insulation layer (total of (1), (2) and (3) above)
Thickness (d) = 0.0065m (= 6.0mm)
Thermal resistance value (R) = 0.197m 2 · K / W

この実施例2で得られた魚箱の品質は良好(○)であった。
この実施例2における各工程の所要時間、総加熱時間、ショット当たり蒸気量、燃料原単位(成形時)、及び熱抵抗値を表1に記す。
The quality of the fish box obtained in Example 2 was good (◯).
Table 1 shows the time required for each step, the total heating time, the amount of steam per shot, the fuel consumption rate (during molding), and the thermal resistance value in Example 2.

[実施例3]
図4に示す断熱層の第3例と同じく、成形型4のフレーム6の外面に、シリコーン樹脂系接着剤(セキスイフーラー社製、商品名「変成シリコーン HM−NEW」)を用いた接着剤層33を介して、グラスウール37(旭ファイバーグラス社製の商品名「グラスロンウールGW32」、密度32kg/m、厚さ25mm)を接着した。接着剤層33及びグラスウール37によって断熱層38を形成した。その断熱層38を設けた成形装置を用い、比較例1における前記(a)〜(g)の各工程の所要時間を表1に示すように変更し、ポリスチレン系樹脂発泡成形体製の魚箱を製造した。
使用した(1)グラスウール37、(2)接着剤層33、及びこれらが積層されてなる(3)断熱層38の熱伝導率、厚さ、及び熱抵抗値は以下の通りである。
[Example 3]
As in the third example of the heat insulating layer shown in FIG. 4, an adhesive layer using a silicone resin adhesive (trade name “modified silicone HM-NEW” manufactured by Sekisui Fuller) on the outer surface of the frame 6 of the mold 4. Glass wool 37 (trade name “Glaslon Wool GW32” manufactured by Asahi Fiber Glass Co., Ltd., density 32 kg / m 3 , thickness 25 mm) was bonded through 33. A heat insulating layer 38 was formed by the adhesive layer 33 and the glass wool 37. Using the molding apparatus provided with the heat insulating layer 38, the time required for each step (a) to (g) in Comparative Example 1 was changed as shown in Table 1, and a fish box made of polystyrene resin foam molded body Manufactured.
The thermal conductivity, thickness, and thermal resistance value of the used (1) glass wool 37, (2) the adhesive layer 33, and (3) the heat insulating layer 38 formed by laminating them are as follows.

(1)グラスウール
熱伝導率(λ)=0.046W/(m・K)
厚さ(d)=0.025m(=25.0mm)
熱抵抗値(R)=0.543m・K/W
(2)接着剤層
熱伝導率(λ)=0.90W/(m・K)
厚さ(d)=0.003m(=3.0mm)
熱抵抗値(R)=0.003m・K/W
(3)断熱層(前記(1)と(2)の合計)
厚さ(d)=0.028m(=28.0mm)
熱抵抗値(R)=0.546m・K/W
(1) Glass wool Thermal conductivity (λ) = 0.046 W / (m · K)
Thickness (d) = 0.025m (= 25.0mm)
Thermal resistance (R) = 0.543m 2 · K / W
(2) Adhesive layer Thermal conductivity (λ) = 0.90 W / (m · K)
Thickness (d) = 0.003m (= 3.0mm)
Thermal resistance (R) = 0.003m 2 · K / W
(3) Thermal insulation layer (total of (1) and (2) above)
Thickness (d) = 0.028m (= 28.0mm)
Thermal resistance value (R) = 0.546m 2 · K / W

この実施例3で得られた魚箱の品質は良好(○)であった。
この実施例3における各工程の所要時間、総加熱時間、ショット当たり蒸気量、燃料原単位(成形時)、及び熱抵抗値を表1に記す。
The quality of the fish box obtained in Example 3 was good (◯).
Table 1 shows the time required for each step, the total heating time, the amount of steam per shot, the fuel consumption rate (during molding), and the thermal resistance value in Example 3.

[実施例4]
実施例3のグラスウールをロックウールフェルト(ニチアス社製の商品名「フェルトN」、密度40kg/m、厚さ25mm)に変更した以外は実施例3と同様にして断熱層38を形成した。そして、その断熱層38を設けた成形装置を用い、比較例1における前記(a)〜(g)の各工程の所要時間を表1に示すように変更し、ポリスチレン系樹脂発泡成形体製の魚箱を製造した。
使用した(1)ロックウールフェルト37、(2)接着剤層33、及びこれらが積層されてなる(3)断熱層38の熱伝導率、厚さ、及び熱抵抗値は以下の通りである。
[Example 4]
A heat insulating layer 38 was formed in the same manner as in Example 3 except that the glass wool of Example 3 was changed to rock wool felt (trade name “Felt N” manufactured by NICHIAS Corporation, density 40 kg / m 3 , thickness 25 mm). And using the shaping | molding apparatus which provided the heat insulation layer 38, the required time of each process of said (a)-(g) in the comparative example 1 was changed as shown in Table 1, and the product made from a polystyrene-type resin foam molding is used. A fish box was manufactured.
The thermal conductivity, thickness, and thermal resistance value of the used (1) rock wool felt 37, (2) the adhesive layer 33, and (3) the heat insulating layer 38 formed by laminating them are as follows.

(1)ロックウールフェルト
熱伝導率(λ)=0.049W/(m・K)
厚さ(d)=0.025m(=25.0mm)
熱抵抗値(R)=0.510m・K/W
(2)接着剤層
熱伝導率(λ)=0.90W/(m・K)
厚さ(d)=0.003m(=3.0mm)
熱抵抗値(R)=0.003m・K/W
(3)断熱層(前記(1)と(2)の合計)
厚さ(d)=0.028m(=28.0mm)
熱抵抗値(R)=0.513m・K/W
(1) Rock wool felt Thermal conductivity (λ) = 0.049 W / (m · K)
Thickness (d) = 0.025m (= 25.0mm)
Thermal resistance value (R) = 0.510 m 2 · K / W
(2) Adhesive layer Thermal conductivity (λ) = 0.90 W / (m · K)
Thickness (d) = 0.003m (= 3.0mm)
Thermal resistance (R) = 0.003m 2 · K / W
(3) Thermal insulation layer (total of (1) and (2) above)
Thickness (d) = 0.028m (= 28.0mm)
Thermal resistance value (R) = 0.513 m 2 · K / W

この実施例4で得られた魚箱の品質は良好(○)であった。
この実施例4における各工程の所要時間、総加熱時間、ショット当たり蒸気量、燃料原単位(成形時)、及び熱抵抗値を表1に記す。
The quality of the fish box obtained in Example 4 was good (◯).
Table 1 shows the time required for each step, the total heating time, the amount of steam per shot, the fuel consumption rate (during molding), and the thermal resistance value in Example 4.

[実施例5]
実施例3のグラスウールをケイ酸カルシウム板(チヨダセラ製の商品名「チヨダセラボード」、密度0.6g/cm、厚さ5mm)に変更した以外は実施例3と同様にして断熱層38を形成した。そして、その断熱層38を設けた成形装置を用い、比較例1における前記(a)〜(g)の各工程の所要時間を表1に示すように変更し、ポリスチレン系樹脂発泡成形体製の魚箱を製造した。
使用した(1)ケイ酸カルシウム板37、(2)接着剤層33、及びこれらが積層されてなる(3)断熱層38の熱伝導率、厚さ、及び熱抵抗値は以下の通りである。
[Example 5]
A heat insulating layer 38 was formed in the same manner as in Example 3 except that the glass wool of Example 3 was changed to a calcium silicate plate (trade name “Chiyoda Sera Board” manufactured by Chiyoda Sera, density 0.6 g / cm 3 , thickness 5 mm). Formed. And using the shaping | molding apparatus which provided the heat insulation layer 38, the required time of each process of said (a)-(g) in the comparative example 1 was changed as shown in Table 1, and the product made from a polystyrene-type resin foam molding is used. A fish box was manufactured.
The thermal conductivity, thickness, and thermal resistance value of the used (1) calcium silicate plate 37, (2) the adhesive layer 33, and (3) the heat insulating layer 38 formed by laminating them are as follows. .

(1)ケイ酸カルシウム板
熱伝導率(λ)=0.18W/(m・K)
厚さ(d)=0.005m(=5.0mm)
熱抵抗値(R)=0.028m・K/W
(2)接着剤層
熱伝導率(λ)=0.90W/(m・K)
厚さ(d)=0.003m(=3.0mm)
熱抵抗値(R)=0.003m・K/W
(3)断熱層(前記(1)と(2)の合計)
厚さ(d)=0.008m(=8.0mm)
熱抵抗値(R)=0.031m・K/W
(1) Calcium silicate plate Thermal conductivity (λ) = 0.18 W / (m · K)
Thickness (d) = 0.005m (= 5.0mm)
Thermal resistance value (R) = 0.028 m 2 · K / W
(2) Adhesive layer Thermal conductivity (λ) = 0.90 W / (m · K)
Thickness (d) = 0.003m (= 3.0mm)
Thermal resistance (R) = 0.003m 2 · K / W
(3) Thermal insulation layer (total of (1) and (2) above)
Thickness (d) = 0.008m (= 8.0mm)
Thermal resistance value (R) = 0.031 m 2 · K / W

この実施例5で得られた魚箱の品質は良好(○)であった。
この実施例5における各工程の所要時間、総加熱時間、ショット当たり蒸気量、燃料原単位(成形時)、及び熱抵抗値を表1に記す。
The quality of the fish box obtained in this Example 5 was good (◯).
Table 1 shows the time required for each step, the total heating time, the amount of steam per shot, the fuel consumption rate (during molding), and the thermal resistance value in Example 5.

[実施例6]
実施例3のグラスウールをノンアスベストジョイントシート(日本バルカー製の商品名「V/6500パッキン」、密度18kg/cm、厚さ3mm)に変更した以外は実施例3と同様にして断熱層38を形成した。そして、その断熱層38を設けた成形装置を用い、比較例1における前記(a)〜(g)の各工程の所要時間を表1に示すように変更し、ポリスチレン系樹脂発泡成形体製の魚箱を製造した。
使用した(1)ノンアスベストジョイントシート37、(2)接着剤層33、及びこれらが積層されてなる(3)断熱層38の熱伝導率、厚さ、及び熱抵抗値は以下の通りである。
[Example 6]
A heat insulating layer 38 was formed in the same manner as in Example 3 except that the glass wool of Example 3 was changed to a non-asbestos joint sheet (trade name “V / 6500 packing” manufactured by VALQUA Japan, density 18 kg / cm 2 , thickness 3 mm). Formed. And using the shaping | molding apparatus which provided the heat insulation layer 38, the required time of each process of said (a)-(g) in the comparative example 1 was changed as shown in Table 1, and the product made from a polystyrene-type resin foam molding is used. A fish box was manufactured.
The thermal conductivity, thickness, and thermal resistance value of the used (1) non-asbestos joint sheet 37, (2) the adhesive layer 33, and (3) the heat insulating layer 38 obtained by laminating them are as follows. .

(1)ノンアスジョイントシート
熱伝導率(λ)=0.22W/(m・K)
厚さ(d)=0.003m(=3.0mm)
熱抵抗値(R)=0.014m・K/W
(2)接着剤層
熱伝導率(λ)=0.90W/(m・K)
厚さ(d)=0.003m(=3.0mm)
熱抵抗値(R)=0.003m・K/W
(3)断熱層(前記(1)と(2)の合計)
厚さ(d)=0.006m(=6.0mm)
熱抵抗値(R)=0.017m・K/W
(1) Non-ass joint sheet thermal conductivity (λ) = 0.22 W / (m · K)
Thickness (d) = 0.003m (= 3.0mm)
Thermal resistance value (R) = 0.014 m 2 · K / W
(2) Adhesive layer Thermal conductivity (λ) = 0.90 W / (m · K)
Thickness (d) = 0.003m (= 3.0mm)
Thermal resistance (R) = 0.003m 2 · K / W
(3) Thermal insulation layer (total of (1) and (2) above)
Thickness (d) = 0.006m (= 6.0mm)
Thermal resistance value (R) = 0.017m 2 · K / W

この実施例6で得られた魚箱の品質は良好(○)であった。
この実施例6における各工程の所要時間、総加熱時間、ショット当たり蒸気量、燃料原単位(成形時)、及び熱抵抗値を表1に記す。
The quality of the fish box obtained in Example 6 was good (◯).
Table 1 shows the time required for each step, the total heating time, the amount of steam per shot, the fuel consumption rate (during molding), and the thermal resistance value in Example 6.

[実施例7]
図5に示す断熱層の第4例と同じく、成形型4のフレーム6外面全域に、セラミック中空ビーズなどを含有する断熱塗料の塗膜35からなる断熱層35aを設けた成形装置を用い、比較例1における前記(a)〜(g)の各工程の所要時間を表1に示すように変更し、ポリスチレン系樹脂発泡成形体製の魚箱を製造した。
断熱層は、非結晶体シリカを含有する断熱塗料(日本テレニクス社製、商品名「セラミック・カバーCC100」)を乾燥後の膜厚1.5mmとなるように成形型のフレーム外面全域に塗布し、乾燥させて形成した。
形成した断熱層の熱伝導率(λ)=0.0185W/(m・K)(=0.0159kcal/mh℃)、
厚さ(d)=0.0015m(=1.5mm)、
熱抵抗値(R)=0.081m・K/W、
であった。
この実施例7で得られた魚箱の品質は良好(○)であった。
この実施例7における各工程の所要時間、総加熱時間、ショット当たり蒸気量、燃料原単位(成形時)、及び熱抵抗値を表1に記す。
[Example 7]
Similar to the fourth example of the heat insulating layer shown in FIG. 5, a molding apparatus in which a heat insulating layer 35a made of a heat insulating paint film 35 containing ceramic hollow beads or the like is provided on the entire outer surface of the frame 6 of the mold 4 is compared. The time required for each of the steps (a) to (g) in Example 1 was changed as shown in Table 1, to produce a fish box made of polystyrene resin foam.
For the heat insulating layer, a heat insulating paint containing amorphous silica (manufactured by Nippon Telenics Co., Ltd., trade name “Ceramic Cover CC100”) is applied to the entire outer surface of the mold frame so that the film thickness after drying is 1.5 mm. , Dried to form.
Thermal conductivity (λ) of the formed heat insulating layer = 0.0185 W / (m · K) (= 0.159 kcal / mh ° C.),
Thickness (d) = 0.015 m (= 1.5 mm),
Thermal resistance value (R) = 0.081 m 2 · K / W,
Met.
The quality of the fish box obtained in Example 7 was good (◯).
Table 1 shows the time required for each process, the total heating time, the amount of steam per shot, the fuel consumption rate (during molding), and the thermal resistance value in Example 7.

[実施例8]
図6に示す断熱層の第5例と同じく、成形型4のフレーム6の外面全域のほかに、ブラケット側バックプレート8a外面全域とダイプレート8b外面全域に、セラミック中空ビーズなどを含有する断熱塗料の塗膜35からなる断熱層35aを形成した。その断熱層35aを設けた成形装置を用い、比較例1における前記(a)〜(g)の各工程の所要時間を表1に示すように変更し、ポリスチレン系樹脂発泡成形体製の魚箱を製造した。
断熱層の熱伝導率、厚さ、及び熱抵抗値は、実施例7の断熱層と同じである。
この実施例8で得られた魚箱の品質は良好(○)であった。
この実施例8における各工程の所要時間、総加熱時間、ショット当たり蒸気量、燃料原単位(成形時)、及び熱抵抗値を表1に記す。
[Example 8]
As in the fifth example of the heat insulating layer shown in FIG. 6, in addition to the entire outer surface of the frame 6 of the mold 4, the heat insulating paint containing ceramic hollow beads etc. on the entire outer surface of the bracket side back plate 8 a and the entire outer surface of the die plate 8 b. The heat insulation layer 35a consisting of the coating film 35 was formed. Using the molding apparatus provided with the heat insulating layer 35a, the time required for each step (a) to (g) in Comparative Example 1 was changed as shown in Table 1, and a fish box made of polystyrene resin foam molded body Manufactured.
The heat conductivity, thickness, and thermal resistance value of the heat insulating layer are the same as those of the heat insulating layer of Example 7.
The quality of the fish box obtained in Example 8 was good (◯).
Table 1 shows the time required for each step, the total heating time, the amount of steam per shot, the fuel consumption rate (during molding), and the thermal resistance value in Example 8.

Figure 2014162207
Figure 2014162207

表1の結果から、成形型4のフレーム6の外面全域、又は成形型4のフレーム6の外面全域のほかに、ブラケット側バックプレート8a外面全域とダイプレート8b外面全域に断熱層を形成した本発明に係る実施例1〜8の成形型を用いた場合、断熱層を設けていない比較例の成形型と比べ、ショット当たり蒸気量を削減することができ、また成形サイクルの所要時間を削減することができた。
実施例1〜8の成形型において、約20ショットの連続生産終了時に断熱層を観察した結果、いずれの断熱層も剥がれや劣化の兆候は見られなかった。
実施例3の断熱層としてグラスウールを用いた成形型と、実施例4の断熱層としてロックウールフェルトを用いた成形型は、断熱層が厚く成形型4が嵩張って成形作業に支障が生じるおそれがあった。また、成形時の蒸気や水がグラスウールやロックウールフェルトの内部に入り、断熱層の熱抵抗値が変化するおそれがあった。
From the results shown in Table 1, a heat insulating layer is formed over the entire outer surface of the frame 6 of the mold 4 or the entire outer surface of the frame 6 of the mold 4 as well as the entire outer surface of the bracket-side back plate 8a and the outer surface of the die plate 8b. When the molds of Examples 1 to 8 according to the invention are used, the amount of steam per shot can be reduced and the time required for the molding cycle can be reduced as compared with the mold of the comparative example in which the heat insulating layer is not provided. I was able to.
In the molds of Examples 1 to 8, the heat insulating layer was observed at the end of continuous production of about 20 shots. As a result, no signs of peeling or deterioration were observed in any of the heat insulating layers.
The mold using glass wool as the heat insulation layer of Example 3 and the mold using rock wool felt as the heat insulation layer of Example 4 are likely to cause trouble in the molding operation because the heat insulation layer is thick and the mold 4 is bulky. was there. Further, steam and water during molding may enter the inside of glass wool or rock wool felt, which may change the heat resistance value of the heat insulating layer.

<フレーム温度変化の測定>
図1に示す成形装置において、フレーム6の上部測温部30と、下部測温部31に温度検出器を配置し、比較例及び実施例1〜8の成形型を用いて魚箱を製造する際のフレーム温度を測定した。なお、フレーム温度の測定は、魚箱の連続生産開始から20ショット目の一方加熱工程時の最高温度を測定した。その結果を表2に記す。
<Measurement of flame temperature change>
In the molding apparatus shown in FIG. 1, temperature detectors are arranged in the upper temperature measuring unit 30 and the lower temperature measuring unit 31 of the frame 6, and a fish box is manufactured using the molds of the comparative example and Examples 1 to 8. The flame temperature was measured. In addition, the measurement of flame | frame temperature measured the highest temperature at the time of the one heating process of the 20th shot from the start of continuous production of a fish box. The results are shown in Table 2.

Figure 2014162207
Figure 2014162207

表2の結果から、本発明に係る実施例1〜8の成形型を用いた場合、断熱層を設けていない比較例の成形型と比べ、フレーム温度が低くなっていた。   From the results of Table 2, when the molds of Examples 1 to 8 according to the present invention were used, the frame temperature was lower than that of the comparative mold having no heat insulating layer.

ポリスチレン系樹脂発泡成形体などの熱可塑性樹脂発泡成形体を型内発泡成形によって製造する型内発泡成形型及びそれを備えた型内発泡成形装置に関し、特に、加熱媒体として使用する蒸気の使用量を従来方法よりも低減可能な型内発泡成形型及び型内発泡成形装置に関する。   The present invention relates to an in-mold foam-molding mold for producing a thermoplastic resin foam-molded article such as a polystyrene-based resin foam-molded article by in-mold foam molding and an in-mold foam molding apparatus equipped with the same, and in particular, the amount of steam used as a heating medium The present invention relates to an in-mold foam-molding mold and an in-mold foam-molding apparatus capable of reducing the amount of the conventional method.

1…成形装置、2…凹型、3…凸型、4…成形型、5…凹型本体、6…フレーム、7…凸型本体、8a…、8b…、9…キャビティ、10,11…蒸気室、12…凹型側調圧蒸気弁、13…凹型側ドレン弁、14,19…真空弁、15,20…冷却水弁、16,21…圧力計、17…凸型側調圧蒸気弁、18…凸型側ドレン弁、30…上部測温部、31…下部測温部、32…断熱シート、32a…アルミニウム層、33…接着剤層、34…断熱層、35…断熱塗料の塗膜、35a…断熱層、36…断熱層、37…グラスウール、38…断熱層。   DESCRIPTION OF SYMBOLS 1 ... Molding apparatus, 2 ... Concave mold, 3 ... Convex mold, 4 ... Mold, 5 ... Concave body, 6 ... Frame, 7 ... Convex body, 8a ..., 8b ..., 9 ... Cavity, 10, 11 ... Steam chamber , 12 ... concave side pressure regulating steam valve, 13 ... concave side drain valve, 14, 19 ... vacuum valve, 15, 20 ... cooling water valve, 16, 21 ... pressure gauge, 17 ... convex side pressure regulating steam valve, 18 DESCRIPTION OF SYMBOLS ... Convex side drain valve, 30 ... Upper temperature measurement part, 31 ... Lower temperature measurement part, 32 ... Heat insulation sheet, 32a ... Aluminum layer, 33 ... Adhesive layer, 34 ... Heat insulation layer, 35 ... Coating film of heat insulation paint, 35a ... heat insulation layer, 36 ... heat insulation layer, 37 ... glass wool, 38 ... heat insulation layer.

Claims (8)

フレームとブラケット側バックプレートと複数の蒸気穴が設けられた第1の型本体とで構成された中空の蒸気室を有する第1の型と、フレームとダイプレートと複数の蒸気穴が設けられた第2の型本体とで構成された中空の蒸気室を有する第2の型とを備え、これら第1と第2の型本体を合わせて形成されるキャビティに発泡性熱可塑性樹脂粒子を予備発泡させてなる予備発泡樹脂粒子を充填し、前記複数の蒸気穴を介して該予備発泡樹脂粒子に蒸気を接触させ、発泡樹脂成形品を作製する発泡樹脂成形型において、
前記第1の型のフレーム外面とブラケット側バックプレート外面、前記第2の型のフレーム外面とダイプレート外面の少なくとも一部が、断熱層で被覆されていることを特徴とする発泡樹脂成形型。
A first mold having a hollow steam chamber composed of a frame, a bracket-side back plate, and a first mold body provided with a plurality of steam holes, a frame, a die plate, and a plurality of steam holes. And a second mold having a hollow steam chamber composed of a second mold body, and pre-foaming foamable thermoplastic resin particles in a cavity formed by combining the first and second mold bodies. In the foamed resin mold for filling the pre-foamed resin particles formed, contacting the pre-foamed resin particles with the vapor through the plurality of vapor holes, and producing a foamed resin molded product,
A foamed resin mold characterized in that at least a part of the outer surface of the frame of the first mold and the outer surface of the bracket-side back plate and the outer surface of the frame of the second mold and the outer surface of the die plate are covered with a heat insulating layer.
前記断熱層は、熱抵抗値(R)が0.05〜0.25m・K/Wの範囲内であることを特徴とする請求項1に記載の発泡樹脂成形型。 2. The foamed resin mold according to claim 1, wherein the heat insulating layer has a thermal resistance value (R) in a range of 0.05 to 0.25 m 2 · K / W. 前記断熱層の厚さが8mm以下であることを特徴とする請求項1又は2に記載の発泡樹脂成形型。   The foamed resin mold according to claim 1 or 2, wherein the heat insulating layer has a thickness of 8 mm or less. 前記断熱層が、アルミフィルムラミネート耐熱不織布を含むことを特徴とする請求項1〜3のいずれか1項に記載の発泡樹脂成形型。   The said heat insulation layer contains an aluminum film laminated heat-resistant nonwoven fabric, The foaming resin molding die of any one of Claims 1-3 characterized by the above-mentioned. 前記断熱層が、断熱塗料の塗膜を含むことを特徴とする請求項1〜4のいずれか1項に記載の発泡樹脂成形型。   The said heat insulation layer contains the coating film of a heat insulation paint, The foaming resin molding die of any one of Claims 1-4 characterized by the above-mentioned. 請求項1〜5のいずれか1項に記載の発泡樹脂成形型を有する発泡樹脂成形装置。   The foamed resin molding apparatus which has a foamed resin molding die of any one of Claims 1-5. 請求項6に記載の発泡成形装置を用いて発泡樹脂成形品を製造することを特徴とする発泡樹脂成形品の製造方法。   A method for producing a foamed resin molded product, comprising producing a foamed resin molded product using the foam molding apparatus according to claim 6. 請求項7に記載の発泡成形品の製造方法から得られた発泡樹脂成形品。   A foamed resin molded product obtained from the method for producing a foamed molded product according to claim 7.
JP2013037939A 2013-02-27 2013-02-27 Foamed resin molding mold, foamed resin molding device, foamed resin-molded article, and method for producing the article Pending JP2014162207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013037939A JP2014162207A (en) 2013-02-27 2013-02-27 Foamed resin molding mold, foamed resin molding device, foamed resin-molded article, and method for producing the article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013037939A JP2014162207A (en) 2013-02-27 2013-02-27 Foamed resin molding mold, foamed resin molding device, foamed resin-molded article, and method for producing the article

Publications (1)

Publication Number Publication Date
JP2014162207A true JP2014162207A (en) 2014-09-08

Family

ID=51613270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013037939A Pending JP2014162207A (en) 2013-02-27 2013-02-27 Foamed resin molding mold, foamed resin molding device, foamed resin-molded article, and method for producing the article

Country Status (1)

Country Link
JP (1) JP2014162207A (en)

Similar Documents

Publication Publication Date Title
CN105874259B (en) For the microcell carbon material of thermal insulation
JP2018536896A5 (en)
CN107323878A (en) A kind of manufacture method of cold chain heat insulation box and cold chain heat insulation box
WO2001000385A1 (en) Blow molding method and blow molded product
WO2018101198A1 (en) Foamable resin multilayer molded board and method for manufacturing same
JP3707779B2 (en) Method for producing foam molded body and foam molded body
CN104403171A (en) LDPE(Low-Density Polyethylene) high-foaming sheet and packing material
KR101645988B1 (en) Method for fitting internal heat insulation into architectural frame and architectural frame thereby
JP2014162207A (en) Foamed resin molding mold, foamed resin molding device, foamed resin-molded article, and method for producing the article
JP2007083717A (en) Multilayer foam molded body and its manufacturing method
KR102281962B1 (en) Core material for fiber-reinforced composite, and fiber-reinforced composite using same
US9545739B2 (en) Method for producing a composite body comprising a particle foam molded part connected to a hollow body in a force-closed manner
KR101842601B1 (en) Heat resisting material having improved appearance, manufacturing method of the same and packaging container comprising the same
CN108819368A (en) A kind of heat insulation composite board and preparation method thereof
KR101887897B1 (en) Heat resisting material having gas barrier property and packaging container comprising the same
CN104177964B (en) The preparation method of porous plated film resin expanded particle, reflection heat insulation coating for outer wall and preparation method thereof
US20200324445A1 (en) Method of making a construction panel
JP7074568B2 (en) Method for manufacturing polystyrene resin foam sheet, polystyrene resin foam sheet, polystyrene resin foam sheet roll, and microwave oven heating container
US20130256317A1 (en) In-situ foam core thermal management system and method of manufacture
JP2011056882A (en) Method for manufacturing vacuum foam heat insulating body and core material using beads method polystyrene foam, and the vacuum foam heat insulating body by the method
JP3874708B2 (en) Foamed resin mold
CN108060751A (en) A kind of EPS heat insulation decoration integrated plates
JP2013202799A (en) Foamed resin molding die and foam molded article
JP4227683B2 (en) Plastic foam composite
JP7404704B2 (en) Method of manufacturing non-combustible sheet and non-combustible sheet