JP2014161766A - Method of manufacturing substrate with coating - Google Patents

Method of manufacturing substrate with coating Download PDF

Info

Publication number
JP2014161766A
JP2014161766A JP2013033112A JP2013033112A JP2014161766A JP 2014161766 A JP2014161766 A JP 2014161766A JP 2013033112 A JP2013033112 A JP 2013033112A JP 2013033112 A JP2013033112 A JP 2013033112A JP 2014161766 A JP2014161766 A JP 2014161766A
Authority
JP
Japan
Prior art keywords
liquid
film
viscosity
temperature
forming composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013033112A
Other languages
Japanese (ja)
Other versions
JP5998981B2 (en
Inventor
Hirokazu Kodaira
広和 小平
Yutaka Hayami
裕 速水
Takashige Yoneda
貴重 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2013033112A priority Critical patent/JP5998981B2/en
Publication of JP2014161766A publication Critical patent/JP2014161766A/en
Application granted granted Critical
Publication of JP5998981B2 publication Critical patent/JP5998981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a substrate with a coating by using a hydrolyzable silane compound which can easily manufacture the same with high productivity while maintaining quality and a yield by efficiently preparing a coating film-forming composition while suppressing generation of precipitates or the like.SOLUTION: A method of manufacturing a substrate with a coating includes: an A liquid preparing process of preparing an A liquid containing a nonionic surfactant; a B liquid preparing process of preparing a B liquid which contains a hydrolyzable silane compound and/or partial hydrolytic condensate, and silica fine particles, but does not contain the nonionic surfactant; a mixing process of mixing the A liquid and the B liquid stored at a storage temperature of -5°C or lower immediately after the B liquid preparing process at a temperature which does not generate precipitation to obtain a coating film-forming composition; and a coating film-forming process of applying and curing the coating film-forming composition on a substrate to form a coating.

Description

本発明は、基板上に被膜を有する被膜付き基板の製造方法に関する。   The present invention relates to a method for producing a coated substrate having a coating on a substrate.

従来から、各種目的でガラスや樹脂等の基板上に被膜を形成させた被膜付き基板が広く使用されている。被膜を形成させる方法として、例えば、条件が緩和なゾルゲル法により、加水分解可能な官能基(以下、「加水分解性基」ともいう。)を有するシラン化合物(以下、「加水分解性シラン化合物」ともいう。)の加水分解反応を利用してシリカ系の被膜を形成させる方法が知られている(例えば、特許文献1参照)。シリカ系の被膜を形成する場合、加水分解性シラン化合物と好ましくは触媒を含有する被膜形成用組成物を調製し、該組成物を基板上に塗布後、基板上で組成物中の加水分解性シラン化合物を反応、硬化させて被膜とする方法が一般的に採られている。   Conventionally, a coated substrate in which a coating is formed on a substrate such as glass or resin has been widely used for various purposes. As a method for forming a film, for example, a silane compound having a hydrolyzable functional group (hereinafter also referred to as “hydrolyzable group”) by a sol-gel method with mild conditions (hereinafter referred to as “hydrolyzable silane compound”). Also known is a method of forming a silica-based film using the hydrolysis reaction (see, for example, Patent Document 1). In the case of forming a silica-based film, a film-forming composition containing a hydrolyzable silane compound and preferably a catalyst is prepared, and the composition is applied to the substrate, and then the hydrolyzable in the composition on the substrate. A method of forming a film by reacting and curing a silane compound is generally employed.

また、被膜付き基板の被膜には各種特性が要求され、各種機能性添加剤が添加されることが多い。例えば、機械的特性向上のためのシリカ微粒子等のフィラーや紫外線吸収剤、ITO微粒子等の赤外線吸収剤等である。シリカ系の被膜において、これら機能性添加剤は、上記加水分解性シラン化合物を含む被膜形成用組成物に添加され被膜形成に用いられる。均質な被膜を得るためには、これら添加剤は該組成物中に均一に溶解または分散した状態で存在することが必要とされる。   In addition, various properties are required for the coating of a substrate with a coating, and various functional additives are often added. For example, fillers such as silica fine particles for improving mechanical properties, ultraviolet absorbers, infrared absorbers such as ITO fine particles, and the like. In the silica-based film, these functional additives are added to the film-forming composition containing the hydrolyzable silane compound and used for film formation. In order to obtain a uniform film, these additives are required to be present in the composition in a uniformly dissolved or dispersed state.

さらに、このような被膜形成用組成物を用いて基板上へ被膜を形成させる場合に、組成物の基板への塗工性向上の目的で、界面活性剤、消泡剤、粘性調整剤等の添加剤を組成物に配合することや、得られる被膜の基板への密着性向上の目的で密着性付与剤等の添加剤を組成物に配合することがよく行われる。   Furthermore, when forming a film on a substrate using such a film-forming composition, for the purpose of improving the coating property of the composition on the substrate, a surfactant, an antifoaming agent, a viscosity modifier, etc. An additive such as an adhesion-imparting agent is often blended with the composition for the purpose of blending the additive into the composition or improving the adhesion of the resulting coating to the substrate.

ここで、上記加水分解性シラン化合物を含む被膜形成用組成物を用いて被膜付き基板を製造する場合に、生産効率を考慮すれば、該組成物は加水分解性シラン化合物に加えて触媒や上記機能性添加剤、その他の添加剤等の原料成分の全てが配合された状態で大量に準備され、必要量を順次被膜形成のために使用されることが好ましい。またこの場合、全原料成分を含む被膜形成用組成物は、加水分解性シラン化合物の加水分解縮合反応が進行しないように冷凍保管することが好ましい。   Here, in the case of producing a substrate with a film using the composition for forming a film containing the hydrolyzable silane compound, in consideration of production efficiency, the composition contains the catalyst and the above-mentioned in addition to the hydrolyzable silane compound. It is preferable that a large amount of raw material components such as a functional additive and other additives are mixed and prepared, and necessary amounts are sequentially used for film formation. In this case, the film-forming composition containing all raw material components is preferably stored frozen so that the hydrolysis condensation reaction of the hydrolyzable silane compound does not proceed.

国際公開第2005/095101号International Publication No. 2005/095101

本発明者は、非イオン系界面活性剤とシリカ微粒子を共存させた状態で冷凍保存をすると、シリカ微粒子が沈殿してしまうことを見出した。
このような沈殿の発生は、品質や歩留まりの点で問題であった。
本発明の目的は、加水分解性シラン化合物を用いて被膜付き基板を製造する方法において、被膜形成用組成物を沈殿等の発生を抑えながらかつ効率よく準備することにより、品質や歩留まりを維持しながら簡便で生産効率よく製造が可能な被膜付き基板の製造方法を提供することにある。
The present inventor has found that silica particles are precipitated when stored in a frozen state in the presence of a nonionic surfactant and silica particles.
Such precipitation has been a problem in terms of quality and yield.
It is an object of the present invention to maintain quality and yield by preparing a film-forming composition in a method for producing a film-coated substrate using a hydrolyzable silane compound while efficiently suppressing the occurrence of precipitation and the like. An object of the present invention is to provide a method for producing a coated substrate that is simple and can be produced with high production efficiency.

本発明は、以下[1]〜[11]の構成を有する被膜付き基板の製造方法を提供する。
[1]非イオン系界面活性剤を含むA液を準備するA液準備工程、
加水分解可能な官能基を有するシラン化合物および/またはその部分加水分解縮合物、およびシリカ微粒子を含み非イオン系界面活性剤を含まないB液を準備するB液準備工程、
前記A液と、前記B液準備工程の直後から−5℃以下の保管温度で保管されたB液を、沈殿物が発生しない温度で混合し被膜形成用組成物を得る混合工程、および
前記被膜形成用組成物を基板上に塗布し硬化させて被膜とする被膜形成工程
を有する被膜付き基板の製造方法。
The present invention provides a method for producing a coated substrate having the following configurations [1] to [11].
[1] A liquid preparation step of preparing A liquid containing a nonionic surfactant
A B liquid preparation step of preparing a B liquid containing a silane compound having a hydrolyzable functional group and / or a partial hydrolysis condensate thereof, and silica fine particles and not containing a nonionic surfactant;
The mixing step of mixing the liquid A and the liquid B stored at a storage temperature of −5 ° C. or less immediately after the step of preparing the liquid B at a temperature at which no precipitate is generated, and obtaining the film forming composition, and the film The manufacturing method of the board | substrate with a film which has a film formation process which apply | coats the composition for formation on a board | substrate, and makes it a film by making it harden | cure.

[2]前記B液準備工程直後のB液の粘度と前記混合工程に供するB液の粘度の差、および前記混合工程直後の被膜形成用組成物の粘度と前記塗布に供する被膜形成用組成物の粘度の差(ただし、前記粘度は全て25℃における粘度である。)がともに1.5mPa・s未満である[1]に記載の製造方法。
[3]前記B液準備工程が、前記シラン化合物と前記シリカ微粒子を含む溶液を前記シラン化合物が部分加水分解縮合する条件下で反応させる操作を含む[1]または[2]に記載の製造方法。
[2] The difference between the viscosity of the B liquid immediately after the B liquid preparing process and the viscosity of the B liquid used in the mixing process, and the viscosity of the film forming composition immediately after the mixing process and the coating forming composition used in the coating The production method according to [1], in which the difference in viscosity (all the viscosities are those at 25 ° C.) is less than 1.5 mPa · s.
[3] The production method according to [1] or [2], wherein the liquid B preparation step includes an operation of reacting the solution containing the silane compound and the silica fine particles under conditions in which the silane compound is partially hydrolyzed and condensed. .

[4]前記シラン化合物が、主として前記加水分解可能な官能基として炭素原子数1〜10のアルコキシ基を有するシラン化合物である[1]〜[3]のいずれかに記載の製造方法。
[5]前記保管温度が、前記B液準備工程直後から2カ月間の保管で前記B液の25℃で測定される粘度変化を1.5mPa・s未満とできる温度である[1]〜[4]のいずれかに記載の製造方法。
[6]前記保管温度が、−40〜−5℃である[1]〜[5]のいずれかに記載の製造方法。
[4] The production method according to any one of [1] to [3], wherein the silane compound is a silane compound mainly having an alkoxy group having 1 to 10 carbon atoms as the hydrolyzable functional group.
[5] The storage temperature is a temperature at which a change in viscosity of the B solution measured at 25 ° C. after storage for 2 months immediately after the B solution preparing step can be made less than 1.5 mPa · s [1] to [ [4] The production method according to any one of [4].
[6] The production method according to any one of [1] to [5], wherein the storage temperature is −40 to −5 ° C.

[7]前記混合工程における混合の温度が、0〜30℃である[1]〜[6]のいずれかに記載の製造方法。
[8]前記被膜形成用組成物における前記非イオン系界面活性剤の含有量が前記組成物全量に対して0.001〜1.0質量%である、[1]〜[7]のいずれかに記載の製造方法。
[9]前記被膜形成用組成物における前記シラン化合物および/またはその部分加水分解縮合物の含有量が前記組成物全量に対して5.0〜50.0質量%である、[1]〜[8]のいずれかに記載の製造方法。
[10]前記被膜形成用組成物における前記シリカ微粒子の含有量が前記シラン化合物および/またはその部分加水分解縮合物100質量部に対して0.5〜50質量部である[1]〜[9]のいずれかに記載の製造方法。
[11]前記シリカ微粒子の平均粒子径は1〜100nmである、[1]〜[10]のいずれかに記載の製造方法。
[7] The manufacturing method according to any one of [1] to [6], wherein the mixing temperature in the mixing step is 0 to 30 ° C.
[8] Any of [1] to [7], wherein the content of the nonionic surfactant in the film-forming composition is 0.001 to 1.0% by mass with respect to the total amount of the composition. The manufacturing method as described in.
[9] The content of the silane compound and / or the partial hydrolysis condensate thereof in the film forming composition is 5.0 to 50.0% by mass with respect to the total amount of the composition. [8] The production method according to any one of [8].
[10] The content of the silica fine particles in the film forming composition is 0.5 to 50 parts by mass with respect to 100 parts by mass of the silane compound and / or a partial hydrolysis-condensation product thereof. ] The manufacturing method in any one of.
[11] The production method according to any one of [1] to [10], wherein the silica fine particles have an average particle diameter of 1 to 100 nm.

本発明によれば、加水分解性シラン化合物を用いて被膜付き基板を製造する方法において、被膜形成用組成物を沈殿等の発生を抑えながらかつ効率よく準備することにより、品質や歩留まりを維持しながら簡便で生産効率よく製造が可能な被膜付き基板の製造方法を提供することができる。   According to the present invention, in the method for producing a substrate with a film using a hydrolyzable silane compound, the quality and yield can be maintained by preparing the film forming composition efficiently while suppressing the occurrence of precipitation or the like. However, it is possible to provide a method for producing a coated substrate that is simple and can be produced with high production efficiency.

以下に本発明の実施の形態を説明する。なお、本発明は、下記説明に限定して解釈されるものではない。
本発明の製造方法は、基板上に被膜を有する、被膜付き基板を製造する方法であって、以下の(1)〜(4)の工程を含むことを特徴とする。
(1)非イオン系界面活性剤を含むA液を準備するA液準備工程(以下、(1)工程ともいう。)
(2)加水分解可能な官能基を有するシラン化合物および/またはその部分加水分解縮合物、およびシリカ微粒子を含み非イオン系界面活性剤を含まないB液を準備するB液準備工程(以下、(2)工程ともいう。)
(3)前記A液と、前記B液準備工程の直後から−5℃以下の保管温度で保管されたB液を、沈殿物が発生しない温度で混合し被膜形成用組成物を得る混合工程(以下、(3)工程ともいう。)
(4)前記被膜形成用組成物を基板上に塗布し硬化させて被膜とする被膜形成工程(以下、(4)工程ともいう。)
Embodiments of the present invention will be described below. In addition, this invention is limited to the following description and is not interpreted.
The manufacturing method of the present invention is a method for manufacturing a substrate with a coating film having a coating film on the substrate, and includes the following steps (1) to (4).
(1) Liquid A preparation step for preparing liquid A containing a nonionic surfactant (hereinafter also referred to as (1) step)
(2) A B liquid preparation step (hereinafter referred to as (( 2) Also called a process.)
(3) Mixing step of mixing the liquid A and the liquid B stored at a storage temperature of −5 ° C. or less immediately after the liquid B preparation step to obtain a film-forming composition by mixing at a temperature at which no precipitate is generated ( Hereinafter, also referred to as (3) step.)
(4) A film forming step (hereinafter also referred to as (4) step) in which the film-forming composition is applied onto a substrate and cured to form a film.

ここで、本明細書に用いる官能基とは、単なる置換基とは区別された、反応性を有する基を包括的に示す用語であり、例えば、飽和炭化水素基のような非反応性の基は、これに含まれない。また、モノマーが側鎖に有するような高分子化合物の主鎖形成に関わらない付加重合性の不飽和二重結合(エチレン性二重結合)は官能基の1種とする。また、本明細書に用いる(メタ)アクリル酸エステル等の「(メタ)アクリル…」の用語は、「アクリル…」と「メタクリル…」の両方を意味する用語である。
本明細書において粘度は特に断りのない限り25℃における粘度をいう。また、本明細書において、粘度は、RE−80L(回転粘度計、東機産業製)を用いて測定した粘度である。
Here, the functional group used in this specification is a term comprehensively indicating a reactive group, which is distinguished from a mere substituent, and includes, for example, a non-reactive group such as a saturated hydrocarbon group. Is not included in this. An addition polymerizable unsaturated double bond (ethylenic double bond) that is not involved in the formation of the main chain of the polymer compound that the monomer has in the side chain is one kind of functional group. Further, the term “(meth) acryl ...” such as (meth) acrylic acid ester used in the present specification is a term meaning both “acryl” and “methacryl”.
In the present specification, the viscosity means a viscosity at 25 ° C. unless otherwise specified. Moreover, in this specification, a viscosity is a viscosity measured using RE-80L (rotary viscometer, the Toki Sangyo make).

本発明は、加水分解性シラン化合物を用いて被膜付き基板を製造する方法において、被膜形成用組成物を準備する際に、上記(1)工程および(2)工程により、少なくとも非イオン系界面活性剤を含むA液と加水分解性シラン化合物および/またはその部分加水分解縮合物、およびシリカ微粒子を含むB液を別々に準備して、(3)工程で少なくとも所定の温度で保管されたB液とA液を温度を調整しながら混合し被膜形成用組成物とし、(4)工程でこれを基板上に塗布することにより、被膜形成用組成物を沈殿等の発生を抑えながらかつ効率よく準備して被膜付き基板を製造できることを見出したものである。
したがって、本発明によりこのようにして被膜形成用組成物を準備すれば、品質や歩留まりを維持しながら簡便で生産効率よく加水分解性シラン化合物を用いて被膜付き基板を製造することができる。
In the method for producing a film-coated substrate using a hydrolyzable silane compound, the present invention provides at least a nonionic surface active by the above-mentioned steps (1) and (2) when preparing a film-forming composition. A liquid containing an agent, a hydrolyzable silane compound and / or a partially hydrolyzed condensate thereof, and a B liquid containing silica fine particles are prepared separately, and the B liquid stored at least at a predetermined temperature in step (3) And liquid A are mixed while adjusting the temperature to obtain a film-forming composition, and this is applied onto the substrate in step (4), thereby efficiently preparing the film-forming composition while suppressing the occurrence of precipitation and the like. Thus, it has been found that a substrate with a film can be produced.
Therefore, if the composition for film formation is prepared in this way according to the present invention, a substrate with a film can be produced using a hydrolyzable silane compound with ease and production efficiency while maintaining quality and yield.

以下、各工程について説明する。
(1)A液準備工程
A液は、非イオン系界面活性剤を含む液状組成物であり、非イオン系界面活性剤と溶媒のみからなることが好ましい。
(非イオン系界面活性剤)
非イオン系界面活性剤としては、通常、加水分解性シラン化合物を用いて基板上に被膜を形成する際に用いる被膜形成用組成物に配合されるものであれば、特に制限されない。例えば、フロー性、消泡性、レベリング性、ハジキ防止等の塗工性向上や表面平滑性向上の目的で用いられる、各種有機変性ポリシロキサン、フッ素系界面活性剤、アクリル系界面活性剤等が挙げられる。
Hereinafter, each step will be described.
(1) A liquid preparatory process A liquid is a liquid composition containing a nonionic surfactant, and it is preferable to consist only of a nonionic surfactant and a solvent.
(Nonionic surfactant)
The nonionic surfactant is not particularly limited as long as it is blended with a film-forming composition used when a film is usually formed on a substrate using a hydrolyzable silane compound. For example, various organically modified polysiloxanes, fluorine-based surfactants, acrylic surfactants, etc. used for the purpose of improving coating properties such as flow properties, defoaming properties, leveling properties, repellency prevention and surface smoothness. Can be mentioned.

有機変性ポリシロキサンとしては、極性を有する溶媒に可溶なものが好ましく、具体的には、ポリエーテル変性ポリシロキサンが好ましい。ポリシロキサンとしてはポリジメチルシロキサンが好ましい。ポリシロキサンの重合度、ポリエーテル基の種類や分子あたりの数は用途に応じて適宜調整される。フッ素系界面活性剤としては、ペルフルオロアルキルスルホン酸、ペルフルオロアルキルカルボン酸、フッ素テロマーアルコールが好ましい。   As the organically modified polysiloxane, those that are soluble in a polar solvent are preferable, and specifically, polyether-modified polysiloxane is preferable. The polysiloxane is preferably polydimethylsiloxane. The degree of polymerization of the polysiloxane, the type of polyether group, and the number per molecule are appropriately adjusted according to the application. As the fluorine-based surfactant, perfluoroalkylsulfonic acid, perfluoroalkylcarboxylic acid, and fluorine telomer alcohol are preferable.

アクリル系界面活性剤にはアクリル系(共)重合体、メタクリル系(共)重合体が含まれる。アクリル系界面活性剤においては、(メタ)アクリル酸のカルボキシ基を介して各種置換基を側鎖に導入することで、極性や基材濡れ性等が調整される。アクリル系界面活性剤としては、該置換基としてポリエーテル基やペルフルオロアルキル基を有するアクリル系界面活性剤が好ましい。(メタ)アクリル系(共)重合体の重合度、上記置換基としてのポリエーテル基、ペルフルオロアルキル基等の種類や分子あたりの数は用途に応じて適宜調整される。非イオン系界面活性剤は単独で用いられても、2種以上が併用されてもよい。   Acrylic surfactants include acrylic (co) polymers and methacrylic (co) polymers. In the acrylic surfactant, polarity, substrate wettability, and the like are adjusted by introducing various substituents into the side chain via the carboxy group of (meth) acrylic acid. As the acrylic surfactant, an acrylic surfactant having a polyether group or a perfluoroalkyl group as the substituent is preferable. The degree of polymerization of the (meth) acrylic (co) polymer, the types of the polyether groups and perfluoroalkyl groups as the substituents, and the number per molecule are appropriately adjusted according to the application. A nonionic surfactant may be used independently or 2 or more types may be used together.

非イオン系界面活性剤としては、市販品が使用できる。具体的には、以下いずれもビックケミー社製の商品名として、ポリエーテル変性ポリシロキサンについては、BYK−307、BYK−331、BYK−333等が挙げられる。また、フッ素系界面活性剤としては、BYK−340(固形分:10質量%、溶媒:ジプロピレングリコールモノメチルエーテル)、アクリル系界面活性剤としては、BYK−355(固形分:52質量%、溶媒:プロピレングリコールモノメチルエーテルアセテート)等が挙げられる。   A commercially available product can be used as the nonionic surfactant. Specifically, as for the following, trade names of BYK-Chemie Corporation include BYK-307, BYK-331, BYK-333 and the like for polyether-modified polysiloxane. Moreover, as a fluorine-type surfactant, BYK-340 (solid content: 10 mass%, solvent: dipropylene glycol monomethyl ether) and as an acrylic surfactant, BYK-355 (solid content: 52 mass%, solvent) : Propylene glycol monomethyl ether acetate) and the like.

なお、市販品が非イオン系界面活性剤と溶媒を含む液状組成物である場合は、市販品をそのままA液として使用することも可能である。必要に応じて、液状組成物の市販品にさらに溶媒を添加してもよい。   In addition, when a commercial item is a liquid composition containing a nonionic surfactant and a solvent, it is also possible to use a commercial item as A liquid as it is. As needed, you may add a solvent to the commercial item of a liquid composition further.

(溶媒)
A液の製造に用いる溶媒としては、B液に用いられる溶媒と同じか該溶媒に相溶性のあるものが好ましい。B液に用いられる溶媒としては、具体的には、後述のとおりであり、A液に用いる溶媒についても、B液に用いられる溶媒として具体的に示す溶媒から、A液が含有する非イオン系界面活性剤に合わせて適宜選択することが好ましい。
(solvent)
As the solvent used for the preparation of the liquid A, the same solvent as that used for the liquid B or a solvent compatible with the solvent is preferable. Specifically, the solvent used in the B liquid is as described later, and the solvent used in the A liquid is also a nonionic system contained in the A liquid from the solvent specifically shown as the solvent used in the B liquid. It is preferable to select appropriately according to the surfactant.

A液における非イオン系界面活性剤の含有量は、(3)の混合工程や(4)の被膜形成工程における作業性を良好にする観点から、A液全量に対して5〜50質量%が好ましく、10〜30質量%がより好ましい。   The content of the nonionic surfactant in the liquid A is 5 to 50% by mass with respect to the total amount of the liquid A from the viewpoint of improving workability in the mixing step (3) and the film forming step (4). Preferably, 10 to 30% by mass is more preferable.

A液は、以下の(2)工程で準備されたB液と(3)工程で所定の割合で混合されて被膜形成用組成物となる。被膜形成用組成物としたときの、非イオン系界面活性剤の含有量としては、その機能が十分に発揮される含有量として、被膜形成用組成物全量に対して0.001〜1.0質量%が好ましく、0.05〜0.5質量%がより好ましい。また、被膜形成用組成物としたときの非イオン系界面活性剤の含有量は、被膜形成用組成物の全固形分に対して0.01〜50.0質量%となる量が好ましく、0.1〜10.0質量%がより好ましい。   The A liquid is mixed with the B liquid prepared in the following step (2) and at a predetermined ratio in the (3) step to form a film forming composition. As content of a nonionic surfactant when it is set as the film formation composition, 0.001-1.0 with respect to the film formation composition whole quantity as content which the function fully exhibits. % By mass is preferable, and 0.05 to 0.5% by mass is more preferable. Further, the content of the nonionic surfactant in the film forming composition is preferably 0.01 to 50.0% by mass relative to the total solid content of the film forming composition. .1 to 10.0% by mass is more preferable.

なお、非イオン系界面活性剤の含有量がA液全量に対して好ましい範囲、すなわち5〜50質量%であるA液をB液と混合して、被膜形成用組成物全量に対して非イオン系界面活性剤の含有量が0.001〜1.0質量%となる被膜形成用組成物を得る場合の、A液とB液の混合割合はB液100質量部に対してA液が0.01〜25質量部の範囲が好ましい。また、より好ましいA液とB液の混合割合は、B液100質量部に対してA液が2〜25質量部の範囲である。   A nonionic surfactant is mixed in a preferable range with respect to the total amount of the liquid A, that is, 5% to 50% by mass with the liquid B, so that the nonionic surfactant is mixed with the total amount of the film-forming composition. In the case of obtaining a film forming composition in which the content of the system surfactant is 0.001 to 1.0% by mass, the mixing ratio of the A liquid and the B liquid is 0 for the A liquid with respect to 100 parts by mass of the B liquid. The range of 0.01 to 25 parts by mass is preferable. A more preferable mixing ratio of the liquid A and the liquid B is such that the liquid A is in the range of 2 to 25 parts by mass with respect to 100 parts by mass of the liquid B.

A液を準備する方法は特に制限されず、非イオン系界面活性剤と溶媒を所定の割合で仕込み、通常の方法により混合する方法が一般的である。混合の際の温度は特に制限されず、通常、室温で混合される。   The method for preparing the liquid A is not particularly limited, and a general method is a method in which a nonionic surfactant and a solvent are charged at a predetermined ratio and mixed by an ordinary method. The temperature during mixing is not particularly limited, and is usually mixed at room temperature.

A液は準備後、すぐに(3)の混合工程に供されても、所定の期間保管された後に(3)の混合工程に供されてもよい。(3)の混合工程においては、A液とB液の混合に際して、沈殿物が発生しない、特には、B液由来のシリカ微粒子が沈殿しない温度で混合することが必須である。このような混合温度としては、具体的には0〜30℃が好ましく、10〜25℃がより好ましい。なお、沈殿物が発生しない温度の「温度」とは、A液とB液を混合した混合液(混合工程の途中の混合液を含む)の液温度を示す。すなわち、混合液の液温度が、沈殿物を発生しない温度、具体的には0〜30℃であることが好ましく、10〜25℃であることがより好ましい。A液が(3)の混合工程に供される際の温度としては、上記混合温度と同じ範囲に調整されることが好ましい。   The liquid A may be used for the mixing step (3) immediately after preparation, or may be used for the mixing step (3) after being stored for a predetermined period. In the mixing step (3), it is essential to mix at a temperature at which no precipitate is generated when the A liquid and the B liquid are mixed, in particular, the silica fine particles derived from the B liquid are not precipitated. Specifically, the mixing temperature is preferably 0 to 30 ° C, more preferably 10 to 25 ° C. The “temperature” at which the precipitate is not generated indicates the liquid temperature of the mixed liquid (including the mixed liquid in the middle of the mixing process) in which the liquid A and the liquid B are mixed. That is, the liquid temperature of the mixed liquid is preferably a temperature at which no precipitate is generated, specifically 0 to 30 ° C., and more preferably 10 to 25 ° C. The temperature at which the liquid A is subjected to the mixing step (3) is preferably adjusted to the same range as the mixing temperature.

A液の準備において、非イオン系界面活性剤と溶媒が混合された後、すぐに(3)の混合工程が行われる場合、例えば、A液が室温で混合された場合は、上記混合時における好ましい温度にA液の温度を調整後、A液を混合に供する。   In the preparation of the liquid A, when the mixing step (3) is performed immediately after the nonionic surfactant and the solvent are mixed, for example, when the liquid A is mixed at room temperature, After adjusting the temperature of the liquid A to a preferred temperature, the liquid A is used for mixing.

A液の準備において、非イオン系界面活性剤と溶媒が混合された後、(3)の混合工程までにある程度の保管期間がある場合、該保管期間についてはA液を室温で保管し、(3)の混合工程の直前までに上記混合時における好ましい温度にA液の温度を調整すればよい。   In the preparation of the liquid A, after the nonionic surfactant and the solvent are mixed, when there is a certain storage period until the mixing step (3), the liquid A is stored at room temperature for the storage period. What is necessary is just to adjust the temperature of A liquid to the preferable temperature in the said mixing immediately before the mixing process of 3).

または、A液とB液の準備を同時に行い、A液とB液の保管を一緒に行い、(3)の混合温度への設定もA液とB液で同時に行われる場合には、A液の保管はB液の保管温度と同じ温度、例えば−40〜−5℃に設定されてもよい。   Alternatively, preparation of liquid A and liquid B is performed at the same time, liquid A and liquid B are stored together, and setting of the mixing temperature in (3) is performed simultaneously with liquid A and liquid B, liquid A May be set to the same temperature as the storage temperature of the B liquid, for example, −40 to −5 ° C.

(2)B液準備工程
B液は加水分解性シラン化合物および/またはその部分加水分解縮合物およびシリカ微粒子を含有する液状組成物であり、A液と同様に、通常、溶媒を含有する。
(2) B liquid preparatory process B liquid is a liquid composition containing a hydrolysable silane compound and / or its partial hydrolysis-condensation product, and a silica fine particle, and normally contains a solvent similarly to A liquid.

(加水分解性シラン化合物および/またはその部分加水分解縮合物)
加水分解性シラン化合物および/またはその部分加水分解縮合物は、触媒と水の存在下、ケイ素原子に結合した加水分解性基が加水分解してケイ素原子に結合した水酸基(シラノール基)を生成し、次いでシラノール基同士が脱水縮合して−Si−O−Si−で表されるシロキサン結合を生成して高分子量化する。また、塩素原子を加水分解性基として有するシラン化合物、すなわちクロロシランを使用する際には、多くの場合、クロロシランの塩素原子とシラノール基とが脱塩化水素反応によりシロキサン結合を生成する。
(Hydrolyzable silane compound and / or partially hydrolyzed condensate thereof)
A hydrolyzable silane compound and / or a partial hydrolysis condensate thereof hydrolyzes a hydrolyzable group bonded to a silicon atom in the presence of a catalyst and water to form a hydroxyl group (silanol group) bonded to the silicon atom. Subsequently, silanol groups are dehydrated and condensed to form a siloxane bond represented by -Si-O-Si-, thereby increasing the molecular weight. Further, when a silane compound having a chlorine atom as a hydrolyzable group, that is, chlorosilane is used, in many cases, a chlorine atom and a silanol group of chlorosilane generate a siloxane bond by a dehydrochlorination reaction.

加水分解性シラン化合物および/またはその部分加水分解縮合物の加水分解縮合により、ケイ素原子に結合する加水分解性基の数に応じて、線状のポリシロキサンや3次元的なネットワーク構造のポリシロキサンが形成されて被膜となる。用いる加水分解性シラン化合物および/またはその部分加水分解縮合物の種類は、求められる被膜の性質により適宜選択される。   Depending on the number of hydrolyzable groups bonded to the silicon atom by hydrolytic condensation of the hydrolyzable silane compound and / or its partial hydrolyzed condensate, linear polysiloxane or polysiloxane having a three-dimensional network structure Is formed into a film. The kind of the hydrolyzable silane compound and / or its partial hydrolysis condensate to be used is appropriately selected depending on the properties of the desired coating.

加水分解性シラン化合物としては、ケイ素原子に4個の加水分解性基が結合した4官能性加水分解性シラン化合物、ケイ素原子に3個の加水分解性基と1個の非加水分解性基が結合した3官能性加水分解性シラン化合物、ケイ素原子に2個の加水分解性基と2個の非加水分解性基が結合した2官能性加水分解性シラン化合物等が挙げられる。これらは、1種または2種以上で部分加水分解縮合物を形成していてもよい。本明細書において、部分加水分解縮合物の用語は、1種の加水分解性シラン化合物による部分加水分解縮合物のみでなく、2種以上の加水分解性シラン化合物による部分加水分解共縮合物も含むものとして用いられる。以下、加水分解性シラン化合物および/またはその部分加水分解縮合物を「加水分解性シラン化合物類」ともいう。   Examples of the hydrolyzable silane compound include a tetrafunctional hydrolyzable silane compound in which four hydrolyzable groups are bonded to a silicon atom, and three hydrolyzable groups and one non-hydrolyzable group to a silicon atom. Examples thereof include a bonded trifunctional hydrolyzable silane compound and a bifunctional hydrolyzable silane compound in which two hydrolyzable groups and two non-hydrolyzable groups are bonded to a silicon atom. These may form a partial hydrolysis-condensation product by 1 type (s) or 2 or more types. In this specification, the term of a partial hydrolysis-condensation product includes not only a partial hydrolysis-condensation product by one hydrolyzable silane compound but also a partial hydrolysis co-condensation product by two or more hydrolyzable silane compounds. Used as a thing. Hereinafter, the hydrolyzable silane compound and / or the partial hydrolysis condensate thereof are also referred to as “hydrolyzable silane compounds”.

加水分解性シラン化合物類が有する加水分解性基として、具体的には、アルコキシ基(アルコキシ置換アルコキシ基などの置換アルコキシ基を含む)、アルケニルオキシ基、アシル基、アシルオキシ基、オキシム基、アミド基、アミノ基、イミノキシ基、アミノキシ基、アルキル置換アミノ基、イソシアネート基、塩素原子などが挙げられる。これらのうちでも、アルコキシ基、アルケニルオキシ基、アシルオキシ基、イミノキシ基、アミノキシ基等のオルガノオキシ基が好ましく、特にアルコキシ基が好ましい。アルコキシ基としては、炭素原子数1〜10のアルコキシ基が好ましく、炭素原子数4以下のアルコキシ基がより好ましく、特にメトキシ基およびエトキシ基が好ましい。加水分解性シラン化合物が複数の加水分解性基を有する場合、それらは互いに同一であっても異なっていてもよい。   Specific examples of hydrolyzable groups possessed by hydrolyzable silane compounds include alkoxy groups (including substituted alkoxy groups such as alkoxy-substituted alkoxy groups), alkenyloxy groups, acyl groups, acyloxy groups, oxime groups, and amide groups. Amino group, iminoxy group, aminoxy group, alkyl-substituted amino group, isocyanate group, chlorine atom and the like. Among these, organooxy groups such as an alkoxy group, alkenyloxy group, acyloxy group, iminoxy group, and aminoxy group are preferable, and an alkoxy group is particularly preferable. As the alkoxy group, an alkoxy group having 1 to 10 carbon atoms is preferable, an alkoxy group having 4 or less carbon atoms is more preferable, and a methoxy group and an ethoxy group are particularly preferable. When the hydrolyzable silane compound has a plurality of hydrolyzable groups, they may be the same as or different from each other.

4官能性加水分解性シラン化合物として、具体的には、テトラメトキシシラン、テトラエトキシシラン、テトラn−プロポキシシラン、テトラn−ブトキシシラン、テトラsec−ブトキシシラン、テトラtert−ブトキシシラン等が挙げられる。本発明において好ましくは、テトラエトキシシラン、テトラメトキシシラン等が用いられる。これらは1種が単独で用いられても、2種以上が併用されてもよい。   Specific examples of the tetrafunctional hydrolyzable silane compound include tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetra n-butoxysilane, tetrasec-butoxysilane, and tetratert-butoxysilane. . In the present invention, tetraethoxysilane, tetramethoxysilane or the like is preferably used. These may be used alone or in combination of two or more.

3官能性加水分解性シラン化合物が有する非加水分解性基としては、非加水分解性の官能基を有するまたは官能基を有しない1価有機基であることが好ましく、官能基を有する非加水分解性の1価有機基であることがより好ましい。非加水分解性の1価有機基とは、当該有機基とケイ素原子が炭素−ケイ素結合で結合する、結合末端原子が炭素原子である有機基をいう。   The non-hydrolyzable group possessed by the trifunctional hydrolyzable silane compound is preferably a monovalent organic group having a non-hydrolyzable functional group or having no functional group. It is more preferable that it is a monovalent organic group. The non-hydrolyzable monovalent organic group refers to an organic group in which the organic group and a silicon atom are bonded by a carbon-silicon bond, and a bond terminal atom is a carbon atom.

非加水分解性の1価有機基のうちでも、官能基を有しない非加水分解性の1価有機基としては、アルキル基、アリール基などの付加重合性の不飽和二重結合を有しない炭化水素基、ハロゲン化アルキル基などの付加重合性の不飽和二重結合を有しないハロゲン化炭化水素基が好ましい。官能基を有しない非加水分解性の1価有機基の炭素原子数は20以下が好ましく、10以下がより好ましい。官能基を有しない非加水分解性の1価有機基としては、炭素原子数4以下のアルキル基やフェニル基が好ましい。   Among the non-hydrolyzable monovalent organic groups, the non-hydrolyzable monovalent organic group having no functional group includes carbonization not having an addition polymerizable unsaturated double bond such as an alkyl group or an aryl group. A halogenated hydrocarbon group having no addition polymerizable unsaturated double bond such as a hydrogen group or a halogenated alkyl group is preferred. The number of carbon atoms of the non-hydrolyzable monovalent organic group having no functional group is preferably 20 or less, and more preferably 10 or less. The non-hydrolyzable monovalent organic group having no functional group is preferably an alkyl group having 4 or less carbon atoms or a phenyl group.

官能基を有しない非加水分解性の1価有機基を有する3官能性加水分解性シラン化合物としては具体的には、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリス(2−メトキシエトキシ)シラン、メチルトリアセトキシシラン、メチルトリプロポキシシラン、メチルトリイソプロペノキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン等が挙げられる。これらは1種が単独で用いられても、2種以上が併用されてもよい。   Specific examples of the trifunctional hydrolyzable silane compound having a non-hydrolyzable monovalent organic group having no functional group include methyltrimethoxysilane, methyltriethoxysilane, methyltris (2-methoxyethoxy) silane, Examples include methyltriacetoxysilane, methyltripropoxysilane, methyltriisopropenoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and phenyltriacetoxysilane. . These may be used alone or in combination of two or more.

官能基を有する非加水分解性の1価有機基における官能基としては、エポキシ基、(メタ)アクリロキシ基、1級または2級のアミノ基、オキセタニル基、ビニル基、スチリル基、ウレイド基、メルカプト基、イソシアネート基、シアノ基、ハロゲン原子等が挙げられ、エポキシ基、(メタ)アクリロキシ基、1級または2級のアミノ基、オキセタニル基、ビニル基、ウレイド基、メルカプト基などが好ましい。特に、エポキシ基、1級または2級のアミノ基、(メタ)アクリロキシ基が好ましい。エポキシ基を有する1価有機基としては、グリシドキシ基、3,4−エポキシシクロヘキシル基を有する1価有機基が好ましく、1級または2級のアミノ基を有する有機基としては、アミノ基、モノアルキルアミノ基、フェニルアミノ基、N−(アミノアルキル)アミノ基などを有する1価有機基が好ましい。   Examples of the functional group in the non-hydrolyzable monovalent organic group having a functional group include an epoxy group, a (meth) acryloxy group, a primary or secondary amino group, an oxetanyl group, a vinyl group, a styryl group, a ureido group, and a mercapto group. Group, isocyanate group, cyano group, halogen atom and the like, and epoxy group, (meth) acryloxy group, primary or secondary amino group, oxetanyl group, vinyl group, ureido group, mercapto group and the like are preferable. In particular, an epoxy group, a primary or secondary amino group, and a (meth) acryloxy group are preferable. The monovalent organic group having an epoxy group is preferably a monovalent organic group having a glycidoxy group or a 3,4-epoxycyclohexyl group, and the organic group having a primary or secondary amino group is an amino group or a monoalkyl group. Monovalent organic groups having an amino group, a phenylamino group, an N- (aminoalkyl) amino group, and the like are preferable.

1価有機基における官能基は2個以上存在していてもよいが、1級または2級のアミノ基の場合を除いて1個の官能基を有する1価有機基が好ましい。1級または2級のアミノ基の場合は、2個以上のアミノ基を有していてもよく、その場合は1個の1級アミノ基と1個の2級アミノ基を有する1価有機基、例えば、N−(2−アミノエチル)−3−アミノプロピル基や3−ウレイドプロピル基などが好ましい。これら官能基を有する1価有機基の全炭素原子数は20以下が好ましく、10以下がより好ましい。   Two or more functional groups in the monovalent organic group may exist, but a monovalent organic group having one functional group is preferable except for a primary or secondary amino group. In the case of a primary or secondary amino group, it may have two or more amino groups, in which case a monovalent organic group having one primary amino group and one secondary amino group For example, N- (2-aminoethyl) -3-aminopropyl group and 3-ureidopropyl group are preferable. The total number of carbon atoms of the monovalent organic group having these functional groups is preferably 20 or less, and more preferably 10 or less.

官能基を有する非加水分解性の1価有機基を有する3官能性加水分解性シラン化合物としては具体的には、以下の化合物が挙げられる。
ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリス(2−メトキシエトキシ)シラン、ビニルトリイソプロペノキシシラン、p−スチリルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、5,6−エポキシへキシルトリメトキシシラン、9,10−エポキシデシルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−ウレイドプロピルトリエトキシシラン、3−(メタ)アクリロキシプロピルトリメトキシシラン、3−(メタ)アクリロキシプロピルトリエトキシシラン、ジ−(3−(メタ)アクリロキシ)プロピルトリエトキシシラン、3−イソシアネートプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、3−クロロプロピルトリエトキシシラン、3−クロロプロピルトリプロポキシシラン、3,3,3−トリフロロプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、2−シアノエチルトリメトキシシラン等を挙げることができる。
Specific examples of the trifunctional hydrolyzable silane compound having a non-hydrolyzable monovalent organic group having a functional group include the following compounds.
Vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltris (2-methoxyethoxy) silane, vinyltriisopropenoxysilane, p-styryltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3- Glycidoxypropyltriethoxysilane, 5,6-epoxyhexyltrimethoxysilane, 9,10-epoxydecyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4 -Epoxycyclohexyl) ethyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane , 3-A Nopropyltriethoxysilane, 3-ureidopropyltriethoxysilane, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, di- (3- (meth) acryloxy) propyltri Ethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, 3-chloropropyltripropoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, 3- Examples include mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, and 2-cyanoethyltrimethoxysilane.

これらのうちでも好ましい化合物としては、炭素原子数2または3のアルキル基の末端に、グリシドキシ基、2,3−エポキシシクロヘキシル基、アミノ基、アルキルアミノ基(アルキル基の炭素原子数は4以下)、フェニルアミノ基、N−(アミノアルキル)アミノ基(アルキル基の炭素原子数は4以下)、および(メタ)アクリロキシ基のいずれかの官能基を有する1価有機基の1個と、炭素原子数4以下のアルコキシ基の3個がケイ素原子に結合した3官能性加水分解性シラン化合物である。   Among these, preferable compounds include a glycidoxy group, a 2,3-epoxycyclohexyl group, an amino group, and an alkylamino group at the terminal of the alkyl group having 2 or 3 carbon atoms (the number of carbon atoms of the alkyl group is 4 or less). , A phenylamino group, an N- (aminoalkyl) amino group (the number of carbon atoms of the alkyl group is 4 or less), and a monovalent organic group having a functional group of any one of (meth) acryloxy group, and a carbon atom A trifunctional hydrolyzable silane compound in which three of the alkoxy groups having a number of 4 or less are bonded to a silicon atom.

このような化合物として、具体的には、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、3−(メタ)アクリロキシプロピルトリメトキシシラン、ジ−(3−(メタ)アクリロキシ)プロピルトリエトキシシラン等が挙げられる。シラン化合物との反応性の点から3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン等が特に好ましい。これらは1種が単独で用いられても、2種以上が併用されてもよい。   Specific examples of such a compound include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3 , 4-epoxycyclohexyl) ethyltriethoxysilane, 3- (meth) acryloxypropyltrimethoxysilane, di- (3- (meth) acryloxy) propyltriethoxysilane, and the like. From the viewpoint of reactivity with silane compounds, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4 -Epoxycyclohexyl) ethyltriethoxysilane and the like are particularly preferred. These may be used alone or in combination of two or more.

2官能性加水分解性シラン化合物が有する非加水分解性基としては、非加水分解性の1価有機基であることが好ましい。非加水分解性の1価有機基は必要に応じて、3官能性加水分解性シラン化合物と同様の官能基を有してもよい。   The non-hydrolyzable group possessed by the bifunctional hydrolyzable silane compound is preferably a non-hydrolyzable monovalent organic group. The non-hydrolyzable monovalent organic group may have a functional group similar to that of the trifunctional hydrolyzable silane compound, if necessary.

2官能性加水分解性シラン化合物として、具体的には、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジ(2−メトキシエトキシ)シラン、ジメチルジアセトキシシラン、ジメチルジプロポキシシラン、ジメチルジイソプロペノキシシラン、ジメチルジブトキシシラン、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン、ビニルメチルジアセトキシシラン、ビニルメチルジ(2−メトキシエトキシ)シラン、ビニルメチルジイソプロペノキシシラン、フェニルメチルジメトキシシラン、フェニルメチルジエトキシシラン、フェニルメチルジアセトキシシラン、3−クロロプロピルメチルジメトキシシラン、3−クロロプロピルメチルジエトキシシラン、3−クロロプロピルメチルジプロポキシシラン、3,3,3−トリフロロプロピルメチルジメトキシシラン、3−(メタ)アクリロキシプロピルメチルジメトキシシラン、3−アミノプロピルメチルジメトキシシラン、3−アミノプロピルメチルジエトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルメチルジエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、2−シアノエチルメチルジメトキシシラン等が挙げられる。これらは1種が単独で用いられても、2種以上が併用されてもよい。   Specific examples of the bifunctional hydrolyzable silane compound include dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldi (2-methoxyethoxy) silane, dimethyldiacetoxysilane, dimethyldipropoxysilane, dimethyldiisopropenoxysilane, Dimethyldibutoxysilane, vinylmethyldimethoxysilane, vinylmethyldiethoxysilane, vinylmethyldiacetoxysilane, vinylmethyldi (2-methoxyethoxy) silane, vinylmethyldiisopropenoxysilane, phenylmethyldimethoxysilane, phenylmethyldiethoxysilane, Phenylmethyldiacetoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloropropylmethyldiethoxysilane, 3-chloropropylmethyldipropoxysilane, 3, , 3-trifluoropropylmethyldimethoxysilane, 3- (meth) acryloxypropylmethyldimethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercapto Examples include propylmethyldiethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, and 2-cyanoethylmethyldimethoxysilane. These may be used alone or in combination of two or more.

なお、B液において、加水分解性シラン化合物類は、加水分解性シラン化合物の少なくとも一部が部分加水分解縮合された部分加水分解縮合物として存在することが好ましい。例えば、加水分解性シラン化合物を予め部分的に加水分解縮合して得られる部分加水分解縮合物を、以下に説明する加水分解性シラン化合物類以外にB液が含有する成分と混合してB液としてもよい。あるいは、加水分解性シラン化合物とともに、加水分解性シラン化合物類以外にB液が含有する成分の全てを配合した後、加水分解性シラン化合物を部分的に加水分解縮合させる処理を行ってB液としてもよい。後者の全成分を配合した後、部分的に加水分解縮合させる方法のほうが加水分解性シラン化合物とシリカ微粒子表面が反応し、より強固な被膜が得られる点で好ましい。   In the liquid B, the hydrolyzable silane compound is preferably present as a partially hydrolyzed condensate obtained by partial hydrolytic condensation of at least a part of the hydrolyzable silane compound. For example, a partially hydrolyzed condensate obtained by partially hydrolyzing and condensing a hydrolyzable silane compound in advance is mixed with components contained in the B liquid in addition to the hydrolyzable silane compounds described below, and the B liquid It is good. Alternatively, together with the hydrolyzable silane compound, after blending all the components contained in the B liquid in addition to the hydrolyzable silane compounds, the hydrolyzable silane compound is partially hydrolyzed and condensed to obtain the B liquid. Also good. The method of partially hydrolyzing and condensing the latter all components is preferred in that the hydrolyzable silane compound and the surface of the silica fine particles react to obtain a stronger coating.

B液における加水分解性シラン化合物類の含有量は、(3)の混合工程や(4)の被膜形成工程における作業性を良好にする観点から、B液全量に対して5〜50質量%が好ましく、10〜40質量%がより好ましい。   The content of the hydrolyzable silane compounds in the liquid B is 5 to 50% by mass with respect to the total amount of the liquid B from the viewpoint of improving the workability in the mixing step (3) and the film forming step (4). Preferably, 10 to 40% by mass is more preferable.

B液は、上記(1)工程で準備されたA液と(3)工程で所定の割合で混合されて被膜形成用組成物となる。上記のとおりA液とB液の混合割合はB液100質量部に対してA液が0.01〜25質量部の範囲が好ましく、2〜25質量部の範囲がより好ましい。   The liquid B is mixed with the liquid A prepared in the step (1) and at a predetermined ratio in the step (3) to form a film forming composition. As described above, the mixing ratio of the A liquid and the B liquid is preferably in the range of 0.01 to 25 parts by mass, more preferably in the range of 2 to 25 parts by mass with respect to 100 parts by mass of the B liquid.

被膜形成用組成物としたときの、加水分解性シラン化合物類の含有量としては、被膜形成用組成物全量に対して5.0〜50.0質量%が好ましく、10.0〜40.0質量%がより好ましい。また、被膜形成用組成物としたときの加水分解性シラン化合物類の含有量は、被膜形成用組成物の全固形分に対して30〜98質量%となる量が好ましく、70〜95質量%がより好ましい。   As content of a hydrolysable silane compound when it is set as the film formation composition, 5.0-50.0 mass% is preferable with respect to the film formation composition whole quantity, and 10.0-40.0 is preferable. The mass% is more preferable. In addition, the content of the hydrolyzable silane compounds when used as the film forming composition is preferably 30 to 98% by mass, and preferably 70 to 95% by mass with respect to the total solid content of the film forming composition. Is more preferable.

(シリカ微粒子)
B液が含有するシリカ微粒子は、得られる被膜の耐摩耗性を向上させる成分である。シリカ微粒子は、コロイダルシリカとして配合することが好ましい。なお、コロイダルシリカとは、シリカ微粒子が、水またはメタノール、エタノール、イソブタノール、プロピレングリコールモノメチルエーテル等の有機溶媒中に分散されたものをいう。
(Silica fine particles)
The silica fine particles contained in the liquid B are components that improve the wear resistance of the resulting coating. The silica fine particles are preferably blended as colloidal silica. Colloidal silica refers to silica fine particles dispersed in water or an organic solvent such as methanol, ethanol, isobutanol, or propylene glycol monomethyl ether.

シリカ微粒子の平均粒子径は、BET法で測定される平均粒子径として1〜100nmが好ましい。平均粒子径が1nm未満では取り扱いが容易でない場合があり、100nmを超えると粒子が光を乱反射するため被膜の光学品質上好ましくない場合がある。シリカ微粒子の平均粒子径は5〜40nmが特に好ましい。また、コロイダルシリカは水分散型および有機溶剤分散型のどちらも使用できるが、有機溶剤分散型を使用することが好ましい。さらに、コロイダルシリカには、アルミナゾル、チタニアゾル、セリアゾル等のシリカ微粒子以外の無機質微粒子を含有させることもできる。   The average particle diameter of the silica fine particles is preferably 1 to 100 nm as the average particle diameter measured by the BET method. If the average particle diameter is less than 1 nm, handling may not be easy, and if it exceeds 100 nm, the particles may diffusely reflect light, which may be undesirable in terms of the optical quality of the coating. The average particle diameter of the silica fine particles is particularly preferably 5 to 40 nm. Moreover, although colloidal silica can use both a water dispersion type and an organic solvent dispersion type, it is preferable to use an organic solvent dispersion type. Further, the colloidal silica may contain inorganic fine particles other than silica fine particles such as alumina sol, titania sol, and ceria sol.

B液におけるシリカ微粒子の含有量は、加水分解性シラン化合物類の100質量部に対して、0.5〜50質量部となる量が好ましく、2〜30質量部となる量がより好ましい。上記含有量の範囲であれば、得られる被膜において、十分な耐摩耗性を確保しながら製膜性を維持し、かつクラックの発生や、シリカ微粒子同士の凝集による被膜の無色透明性の低下を防止できる。   The content of the silica fine particles in the B liquid is preferably 0.5 to 50 parts by mass, more preferably 2 to 30 parts by mass with respect to 100 parts by mass of the hydrolyzable silane compounds. If the content is within the above range, in the resulting coating, the film-forming property is maintained while ensuring sufficient wear resistance, and the colorless transparency of the coating is reduced due to the occurrence of cracks and aggregation of silica fine particles. Can be prevented.

(溶媒)
B液の溶媒は、加水分解性シラン化合物類を溶解し、さらに、シリカ微粒子を分散できる溶媒が用いられる。B液に用いる溶媒としては、この観点から、少なくとも溶媒全量に対して20質量%以上の割合でアルコールを含有することが好ましく、50質量%以上の割合でアルコールを含有することがより好ましい。
(solvent)
As the solvent of the liquid B, a solvent capable of dissolving hydrolyzable silane compounds and further dispersing silica fine particles is used. From this viewpoint, the solvent used for the liquid B preferably contains alcohol at a ratio of at least 20% by mass, more preferably at least 50% by mass with respect to the total amount of the solvent.

このようなアルコールとしては、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、1−メトキシ−2−プロパノール、2−エトキシエタノール、4−メチル−2−ペンタノール、および2−ブトキシエタノール等が好ましく、これらのうちでも、加水分解性シラン化合物類の溶解性が良好な点、基材への塗工性が良好な点から、沸点が80〜160℃のアルコールが好ましい。具体的には、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、1−メトキシ−2−プロパノール、2−エトキシエタノール、4−メチル−2−ペンタノール、および2−ブトキシエタノールが好ましい。これらのアルコールから選ばれる1種以上を含む溶媒が好ましく、混合溶媒とする場合には、メタノールを少量含有してもよい。   Such alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 1-methoxy-2-propanol, 2-ethoxyethanol, 4- Methyl-2-pentanol, 2-butoxyethanol and the like are preferable. Among these, the boiling point is low because of the good solubility of the hydrolyzable silane compounds and the good coating property to the substrate. An alcohol of 80 to 160 ° C. is preferred. Specifically, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 1-methoxy-2-propanol, 2-ethoxyethanol, 4-methyl-2- Pentanol and 2-butoxyethanol are preferred. A solvent containing one or more selected from these alcohols is preferred, and in the case of a mixed solvent, a small amount of methanol may be contained.

また、B液に用いる溶媒としては、加水分解性シラン化合物を予め部分加水分解縮合してB液に含有させる場合には、その製造過程で、原料加水分解性シラン化合物を加水分解することに伴って発生する低級アルコール等や、有機溶媒分散系のコロイダルシリカを使用した場合にはその分散有機溶媒も含まれる。   In addition, as a solvent used in the B liquid, when the hydrolyzable silane compound is partially hydrolyzed and condensed in advance to be contained in the B liquid, the raw material hydrolyzable silane compound is hydrolyzed in the production process. In the case of using lower alcohol or the like generated in the above, or colloidal silica dispersed in an organic solvent, the dispersed organic solvent is also included.

さらに、B液に用いる溶媒としては、上記以外の溶媒として、水/アルコールと混和することができるアルコール以外の他の溶媒を併用してもよく、このような溶媒としては、アセトン、アセチルアセトン等のケトン類;酢酸エチル、酢酸イソブチル等のエステル類;プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジイソプロピルエーテル等のエーテル類が挙げられる。   Furthermore, as a solvent used for the liquid B, a solvent other than the above may be used in combination with a solvent other than alcohol that can be mixed with water / alcohol. Examples of such a solvent include acetone and acetylacetone. Ketones; esters such as ethyl acetate and isobutyl acetate; ethers such as propylene glycol monomethyl ether, dipropylene glycol monomethyl ether and diisopropyl ether.

B液における溶媒の量は、B液中の全固形分100質量部に対して100〜1900質量部が好ましく、250〜1000質量部がより好ましい。なお、B液とA液を混合して得られる被膜形成用組成物において、溶媒の量は被膜形成用組成物中の全固形分100質量部に対して、100〜1900質量部が好ましく、250〜1000質量部がより好ましい。被膜形成用組成物における溶媒の含有割合が上記範囲であれば、均一な塗膜の形成も容易であり、得られる被膜に処理ムラが発生するおそれもない。   100-1900 mass parts is preferable with respect to 100 mass parts of total solids in B liquid, and, as for the quantity of the solvent in B liquid, 250-1000 mass parts is more preferable. In addition, in the film forming composition obtained by mixing the liquid B and the liquid A, the amount of the solvent is preferably 100 to 1900 parts by weight with respect to 100 parts by weight of the total solid content in the film forming composition, 250 -1000 mass parts is more preferable. If the content rate of the solvent in the composition for film formation is the said range, formation of a uniform coating film will be easy and there will also be no possibility that processing nonuniformity will generate | occur | produce in the obtained film.

(水)
B液は、含有する加水分解性シラン化合物類が加水分解縮合するための水を含んでいてもよい。B液が水を含有する場合、その含有量は加水分解性シラン化合物類の合量質量の100質量部に対して、50〜350質量部程度が好ましい。なお、B液とA液を混合して得られる被膜形成用組成物においては、水を含有しなくとも、以下の塗膜から膜の状態において雰囲気中の水分を利用して加水分解性シラン化合物類の加水分解縮合を行わせることができる。
(water)
The B liquid may contain water for hydrolyzing and condensing the hydrolyzable silane compounds contained therein. When the B liquid contains water, the content is preferably about 50 to 350 parts by mass with respect to 100 parts by mass of the total mass of the hydrolyzable silane compounds. In addition, in the film forming composition obtained by mixing the liquid B and the liquid A, a hydrolyzable silane compound using water in the atmosphere in the state of the film from the following film without containing water. Hydrolysis condensation can be carried out.

(酸触媒)
B液とA液を混合して得られる被膜形成用組成物においては、これが含有する加水分解性シラン化合物類を、後述の通り硬化させることで被膜を形成する。B液は、該硬化を促進するための酸触媒を含有することが好ましい。
(Acid catalyst)
In the composition for forming a film obtained by mixing the B liquid and the A liquid, a film is formed by curing hydrolyzable silane compounds contained therein as described later. The liquid B preferably contains an acid catalyst for promoting the curing.

酸触媒として具体的には、硝酸、塩酸、硫酸、リン酸などの無機酸類や、ギ酸、酢酸、プロピオン酸、乳酸、グリコール酸、シュウ酸、マロン酸、コハク酸、マレイン酸、フタル酸、クエン酸、リンゴ酸などのカルボン酸類、メタンスルホン酸などのスルホン酸類が例示できる。得られる被膜に無色透明性が必要とされる場合には、酸触媒として、第一プロトンのpKa(以下、「pKa1」ともいう。)が1.0〜5.0の酸が好ましい。このような酸として、具体的には、酢酸(pKa1=4.76)、乳酸(pKa1=3.64)、マレイン酸(pKa1=1.84)、マロン酸(pKa1=2.60)、シュウ酸(pKa1=1.04)等が挙げられる。これらの中でも、酢酸が特に好ましい。酸触媒は1種が単独で用いられても、2種以上が併用されてもよい。   Specific examples of the acid catalyst include inorganic acids such as nitric acid, hydrochloric acid, sulfuric acid and phosphoric acid, formic acid, acetic acid, propionic acid, lactic acid, glycolic acid, oxalic acid, malonic acid, succinic acid, maleic acid, phthalic acid, citric acid. Examples thereof include carboxylic acids such as acid and malic acid, and sulfonic acids such as methanesulfonic acid. When the obtained film needs to be colorless and transparent, an acid having a pKa of the first proton (hereinafter also referred to as “pKa1”) of 1.0 to 5.0 is preferable as the acid catalyst. Specific examples of such acids include acetic acid (pKa1 = 4.76), lactic acid (pKa1 = 3.64), maleic acid (pKa1 = 1.84), malonic acid (pKa1 = 2.60), shu An acid (pKa1 = 1.04) etc. are mentioned. Among these, acetic acid is particularly preferable. One acid catalyst may be used alone, or two or more acid catalysts may be used in combination.

酸の添加量は、触媒としての機能が果たせる範囲で特に限定なく設定できるが、具体的には、B液の全容量に対する量として0.001〜3.0モル/L程度の量が挙げられる。B液とA液を混合して得られる被膜形成用組成物においては、全容量に対する量として0.002〜2.8モル/L程度の量が挙げられる。用いる酸の量が上限を超えると加水分解速度が速くなりB液の長期保管性が十分でなくなるおそれがある。   The addition amount of the acid can be set without any limitation as long as it can function as a catalyst. Specifically, the amount of the acid is about 0.001 to 3.0 mol / L with respect to the total volume of the B liquid. . In the film forming composition obtained by mixing the B liquid and the A liquid, an amount of about 0.002 to 2.8 mol / L can be mentioned as the amount with respect to the total capacity. If the amount of the acid used exceeds the upper limit, the hydrolysis rate increases and the long-term storage property of the B liquid may not be sufficient.

なお、B液は、上記酸触媒の他に必要に応じて硬化触媒を含有してもよい。硬化触媒としては、脂肪族カルボン酸(ギ酸、酢酸、プロピオン酸、酪酸、乳酸、酒石酸、コハク酸等)のリチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩;ベンジルトリメチルアンモニウム塩、テトラメチルアンモニウム塩、テトラエチルアンモニウム塩等の四級アンモニウム塩;アルミニウム、チタン、セリウム等の金属アルコキシドやキレート;過塩素酸アンモニウム、塩化アンモニウム、硫酸アンモニウム、酢酸ナトリウム、イミダゾール類及びその塩、トリフルオロメチルスルホン酸アンモニウム、ビス(トルフルオルメチルスルホニル)ブロモメチルアンモニウム等が挙げられる。   Liquid B may contain a curing catalyst as required in addition to the acid catalyst. Curing catalysts include aliphatic carboxylic acids (formic acid, acetic acid, propionic acid, butyric acid, lactic acid, tartaric acid, succinic acid, etc.), alkali metal salts such as lithium salt, sodium salt, potassium salt; benzyltrimethylammonium salt, tetramethylammonium salt Quaternary ammonium salts such as salts and tetraethylammonium salts; metal alkoxides and chelates such as aluminum, titanium and cerium; ammonium perchlorate, ammonium chloride, ammonium sulfate, sodium acetate, imidazoles and their salts, ammonium trifluoromethylsulfonate, Bis (tolufluoromethylsulfonyl) bromomethylammonium and the like can be mentioned.

(その他成分)
B液は、目的に応じて、被膜形成用組成物が通常含有する添加剤を任意に含んでもよい。添加剤としては、ベンゾフェノン類、トリアジン類、ベンゾトリアゾール類、シアノアクリレート類、アゾメチン類、インドール類、サリシレート類、アントラセン類等の有機系紫外線吸収剤、インジウム錫酸化物、アンチモン錫酸化物、アルミナ、ジルコニア、チタニア等の金属酸化物の超微粒子、染料または顔料等の着色用材料、防汚性材料、光安定剤、各種樹脂等の可撓性付与成分等が好ましく挙げられる。B液は、非イオン系界面活性剤を含まない。B液が非イオン系界面活性剤を含まないとは、B液全量に対する非イオン系界面活性剤の含有量が0.001質量%未満であることをいう。
(Other ingredients)
The liquid B may optionally contain an additive that the film-forming composition normally contains depending on the purpose. As additives, organic ultraviolet absorbers such as benzophenones, triazines, benzotriazoles, cyanoacrylates, azomethines, indoles, salicylates, anthracene, indium tin oxide, antimony tin oxide, alumina, Preferred examples include ultrafine particles of metal oxides such as zirconia and titania, coloring materials such as dyes or pigments, antifouling materials, light stabilizers, flexibility imparting components such as various resins, and the like. Liquid B does not contain a nonionic surfactant. That the B liquid does not contain a nonionic surfactant means that the content of the nonionic surfactant with respect to the total amount of the B liquid is less than 0.001% by mass.

可撓性付与成分とは、加水分解性シラン化合物類が硬化して得られる被膜に可撓性を付与する成分であり、被膜のクラック発生防止に寄与する成分である。可撓性付与成分の添加は、特に4官能性加水分解性シラン化合物を用いた場合に有効である。可撓性付与成分としては、例えば、シリコーン樹脂、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリオキシアルキレン基を含む親水性有機樹脂、エポキシ樹脂などの各種有機樹脂、グリセリン等の有機化合物を挙げることができる。   The flexibility-imparting component is a component that imparts flexibility to a coating obtained by curing hydrolyzable silane compounds, and is a component that contributes to preventing cracks in the coating. The addition of the flexibility imparting component is particularly effective when a tetrafunctional hydrolyzable silane compound is used. Examples of the flexibility-imparting component include silicone resins, acrylic resins, polyester resins, polyurethane resins, hydrophilic organic resins containing polyoxyalkylene groups, various organic resins such as epoxy resins, and organic compounds such as glycerin. it can.

添加剤の添加量は、B液とA液を混合して得られる被膜形成用組成物としたときに、全固形分100質量部に対して、各添加剤毎に0.01〜20質量部が好ましい。添加剤の過剰な添加は、得られる被膜の性能の低下を招くおそれがある。   The amount of the additive added is 0.01 to 20 parts by mass for each additive with respect to 100 parts by mass of the total solid content when the composition for forming a film obtained by mixing the B liquid and the A liquid is used. Is preferred. Excessive addition of the additive may cause a decrease in the performance of the resulting film.

B液を準備する方法は特に制限されず、必須成分としての加水分解性シラン化合物類およびシリカ微粒子の所定量と上で説明した任意成分の任意量と適量の溶媒を仕込み、通常の方法により混合する方法が一般的である。   The method for preparing the liquid B is not particularly limited, and a predetermined amount of hydrolyzable silane compounds and silica fine particles as essential components, an arbitrary amount of the optional components described above, and an appropriate amount of solvent are charged and mixed by a normal method. The method to do is common.

B液は加水分解性シラン化合物類として加水分解性シラン化合物を含む場合、その部分加水分解縮合物を含む場合、およびその両者を含む場合がある。いずれの場合であっても、B液を準備するための混合に際しては、酸触媒が存在すると加水分解縮合反応が進行する。したがって、B液が含有する加水分解性シラン化合物類を加水分解性シラン化合物の状態で、次の(3)の混合工程に供する場合は、B液への酸触媒の添加は、B液を準備するための混合の最後に行われることが好ましい。また、B液を準備するための混合の際の温度を10〜35℃の低温とすることが好ましい。   The liquid B may contain a hydrolyzable silane compound as a hydrolyzable silane compound, may contain a partially hydrolyzed condensate thereof, or may contain both. In any case, in the mixing for preparing the liquid B, the hydrolysis condensation reaction proceeds if an acid catalyst is present. Therefore, when the hydrolyzable silane compounds contained in the B liquid are subjected to the mixing step (3) in the state of the hydrolyzable silane compound, the addition of the acid catalyst to the B liquid prepares the B liquid. Preferably at the end of the mixing. Moreover, it is preferable to make the temperature in the case of mixing for preparing B liquid into the low temperature of 10-35 degreeC.

B液が加水分解性シラン化合物類として加水分解性シラン化合物の部分加水分解縮合物を含む場合は、加水分解性シラン化合物を予め通常の方法、例えば、酸触媒、水、溶媒等を添加した反応液で10〜35℃で1〜3時間、部分加水分解縮合させて得られた反応液から部分加水分解縮合物を分離して、あるいは反応液のまま、B液の準備に供してもよい。部分加水分解縮合物を用いる場合、部分加水分解縮合物と、B液がそれ以外に含有するシリカ微粒子等の成分とを混合することでB液が得られる。反応液を用いる場合には、酸触媒、水、溶媒等のすでに含有する成分については、必要に応じて追加の添加を行うとともに、それ以外にB液が含有するシリカ微粒子等の成分を添加し混合する。さらに、これに加水分解性シラン化合物を添加することも可能である。   When liquid B contains a partially hydrolyzed condensate of a hydrolyzable silane compound as a hydrolyzable silane compound, a reaction in which a hydrolyzable silane compound is added in advance by a conventional method, for example, an acid catalyst, water, a solvent, etc. The partial hydrolysis-condensation product may be separated from the reaction liquid obtained by partial hydrolysis-condensation at 10 to 35 ° C. for 1 to 3 hours in the liquid, or may be used for preparation of the B liquid as it is. When using a partial hydrolysis-condensation product, B liquid is obtained by mixing a partial hydrolysis-condensation product and components, such as silica fine particles which B liquid contains other than that. When using a reaction solution, components such as acid catalyst, water, and solvent that are already contained are added as necessary, and other components such as silica fine particles contained in solution B are added. Mix. Further, a hydrolyzable silane compound can be added thereto.

加水分解性シラン化合物の部分加水分解縮合物を含むB液を準備する方法としては、加水分解性シラン化合物とシリカ微粒子を含む溶液を該加水分解性シラン化合物が部分加水分解縮合する条件下で反応させる操作を含む方法をとってもよい。
具体的には、部分加水分解縮合物の原料となる加水分解性シラン化合物とともに最終的にB液が含有するシリカ微粒子を含む全成分を容器に仕込み、これを部分加水分解縮合反応が可能な条件、例えば、上記と同様の温度および時間の条件で混合する方法を採用してもよい。この方法によれば、B液を準備するための混合等の操作が1回で行え、生産性の点で好ましい。また、B液中でのシリカ微粒子の安定性も増し好ましい。
As a method for preparing the liquid B containing a hydrolyzable silane compound partially hydrolyzed condensate, a solution containing a hydrolyzable silane compound and silica fine particles is reacted under conditions where the hydrolyzable silane compound is partially hydrolyzed and condensed. You may take the method including operation to make.
Specifically, all the components including silica fine particles finally contained in the liquid B together with the hydrolyzable silane compound that is the raw material of the partial hydrolysis-condensation product are charged into a container, and this is a condition that enables partial hydrolysis-condensation reaction. For example, you may employ | adopt the method of mixing on the conditions of temperature and time similar to the above. According to this method, operations such as mixing for preparing the liquid B can be performed at a time, which is preferable in terms of productivity. Moreover, the stability of the silica fine particles in the B liquid is also increased, which is preferable.

このようにして得られるB液においては、準備された直後の粘度が25℃で1.0〜4.5mPa・sであることが好ましく、2.0〜3.5mPa・sがより好ましい。なお、準備された直後の粘度とは、混合等のB液の準備のための操作終了後3時間以内に測定された粘度をいう。ここで、(2)工程においては、B液の準備のための操作終了後1時間以内、10分間以内あるいは5分間以内に測定されたB液の粘度が上記粘度の範囲にあってもよい。また、B液の準備のための操作終了後、上記粘度となるまでの間に、以下に説明する該粘度を実質的に変化させずに保管する条件、具体的には、−5℃以下の温度条件にB液をおくのが好ましい。   In the B liquid thus obtained, the viscosity immediately after being prepared is preferably 1.0 to 4.5 mPa · s at 25 ° C., more preferably 2.0 to 3.5 mPa · s. In addition, the viscosity immediately after preparation means the viscosity measured within 3 hours after completion | finish of operation for preparation of B liquids, such as mixing. Here, in the step (2), the viscosity of the B liquid measured within 1 hour, 10 minutes or 5 minutes after the completion of the operation for preparing the B liquid may be within the above viscosity range. In addition, after the operation for preparing the liquid B is completed and before the viscosity is reached, the conditions described below for storage without substantially changing the viscosity, specifically, −5 ° C. or lower. It is preferable to place the liquid B under temperature conditions.

本発明の製造方法において、B液は準備工程の直後から(3)の混合工程に供されるまで、−5℃以下の保管温度に保管される。B液は、該温度条件下で所定の期間保管された後に(3)の混合工程に供される。保管の期間や環境によるが、B液が含有する加水分解性シラン化合物類は、保管期間中に少なからず部分加水分解縮合が進行する。B液を安定して保管するためには、加水分解性シラン化合物類は加水分解性シラン化合物自体としてB液に存在させるよりも、上記のようにして、予めある程度部分加水分解縮合させておくことが好ましい。ここで、保管温度とは、B液の液温度を意味する。   In the production method of the present invention, the solution B is stored at a storage temperature of −5 ° C. or less from immediately after the preparation step until it is subjected to the mixing step (3). The liquid B is stored in the temperature condition for a predetermined period and then subjected to the mixing step (3). Depending on the storage period and environment, the hydrolyzable silane compounds contained in the liquid B undergo a partial hydrolysis condensation during the storage period. In order to stably store the liquid B, the hydrolyzable silane compounds should be partially hydrolyzed and condensed to some extent in advance as described above, rather than being present in the liquid B as the hydrolyzable silane compound itself. Is preferred. Here, the storage temperature means the liquid temperature of the B liquid.

B液は上記温度条件下で保管することで、所定の保管期間において実質的に粘度変化を起こすことなく保管できる。これにより、例えば、A液とB液を別々に大量に生産した後、必要時に必要量を使用することが可能となれば、生産性の向上に繋げることができる。なお、保管のコスト等を考慮すれば、A液とB液はともに準備後、2カ月以内に(3)の混合工程に供され、(4)工程で被膜形成されることが好ましく、1カ月以内がより好ましい。   By storing the B liquid under the above temperature conditions, it can be stored without substantially changing the viscosity during a predetermined storage period. Thereby, for example, if the liquid A and the liquid B are separately produced in large quantities and then the necessary amount can be used when necessary, the productivity can be improved. In consideration of storage costs, it is preferable that both the liquid A and the liquid B are provided to the mixing step (3) within 2 months after preparation, and a film is preferably formed in the step (4). Within is more preferable.

上記のように、B液は含有する加水分解性シラン化合物類が保管期間中に少なからず部分加水分解縮合することで粘度上昇が起こる。本発明の方法においては、B液は準備後、(3)の混合工程に供される際に実質的に粘度が変化していない状態である。実質的に粘度変化がないとは、粘度変化が1.5mPa・s未満であることをいう。   As described above, the viscosity rises when the hydrolyzable silane compounds contained in the liquid B undergo a partial hydrolysis condensation during the storage period. In the method of the present invention, the liquid B is in a state in which the viscosity is not substantially changed after preparation and when it is subjected to the mixing step (3). “There is substantially no change in viscosity” means that the change in viscosity is less than 1.5 mPa · s.

B液の準備直後の粘度と(3)の混合工程に供される際のB液の粘度の差は、好ましくは、1.0mPa・s未満であり、0.5mPa・s未満であることがより好ましい。なお、(3)の混合工程に供される際のB液の粘度とは、該混合の前3時間以内に測定された粘度をいう。ここで、(3)の混合工程に供される際のB液の粘度は、該混合の前1時間以内に測定されたB液の粘度として上記B液の準備直後の粘度との差が上記範囲内であることが好ましく、該混合の前10分間以内に測定されたB液の粘度として上記B液の準備直後の粘度との差が上記範囲内であることがより好ましく、該混合の前5分間以内に測定されたB液の粘度として上記B液の準備直後の粘度との差が上記範囲内であることが特に好ましい。   The difference between the viscosity immediately after the preparation of the B liquid and the viscosity of the B liquid when it is used in the mixing step (3) is preferably less than 1.0 mPa · s and less than 0.5 mPa · s. More preferred. In addition, the viscosity of B liquid at the time of using for the mixing process of (3) means the viscosity measured within 3 hours before this mixing. Here, the viscosity of the liquid B when subjected to the mixing step (3) is the difference between the viscosity immediately after preparation of the liquid B as the viscosity of the liquid B measured within 1 hour before the mixing. Preferably, the difference between the viscosity of B liquid measured within 10 minutes before mixing and the viscosity immediately after preparation of B liquid is within the above range, It is particularly preferable that the difference between the viscosity of the liquid B measured within 5 minutes and the viscosity immediately after the preparation of the liquid B is in the above range.

B液を(2)の準備工程の直後から(3)の混合工程の直前まで、粘度を実質的に変化させずに保管するには、上記のとおりB液の保管温度をB液の粘度変化が実質的に生じない−5℃以下の温度に保持する。B液の準備工程の直後とは、B液の準備のための操作終了後3時間までをいう。なお、B液の準備のための操作終了時から−5℃以下の保管期間が開始される保管開始時までに要する時間は、好ましくは1時間以内、より好ましくは10分間以内、特に好ましくは5分間以内である。また、(3)の混合工程の直前とは、該混合の操作開始の3時間前までをいう。なお、B液を−5℃以下で保管する保管期間の終了時からA液とB液を混合する操作の開始時までに要する時間は、好ましくは1時間以内、より好ましくは10分間以内、特に好ましくは5分間以内である。   In order to store B liquid from immediately after the preparation step (2) to immediately before the mixing step (3) without substantially changing the viscosity, the storage temperature of B liquid is changed as described above. Is maintained at a temperature of −5 ° C. or lower. The term “immediately after the preparation step for the B liquid” means up to 3 hours after the completion of the operation for preparing the B liquid. The time required from the end of the operation for preparing the B liquid to the start of storage when the storage period of −5 ° C. or less is started is preferably within 1 hour, more preferably within 10 minutes, particularly preferably 5 Within minutes. Further, “immediately before the mixing step (3)” means up to 3 hours before the start of the mixing operation. The time required from the end of the storage period for storing the B liquid at −5 ° C. or less until the start of the operation of mixing the A liquid and the B liquid is preferably within 1 hour, more preferably within 10 minutes, particularly Preferably it is within 5 minutes.

B液の保管温度は、好ましくは、B液準備工程直後から2カ月間の保管でB液の粘度変化を1.5mPa・s未満とできる温度である。B液の組成にもよるが、具体的には、B液の保管温度は−40〜−5℃が好ましく、−25〜−10℃がより好ましい。   The storage temperature of the B liquid is preferably a temperature at which the change in the viscosity of the B liquid can be made less than 1.5 mPa · s by storage for 2 months immediately after the B liquid preparation step. Although it depends on the composition of the B liquid, specifically, the storage temperature of the B liquid is preferably −40 to −5 ° C., more preferably −25 to −10 ° C.

ここで、(3)の混合工程においては、A液とB液の混合に際して、沈殿物が発生しない、特には、B液由来のシリカ微粒子が沈殿しない温度で混合することが必須である。このような混合温度としては、具体的には0〜30℃が好ましく、10〜25℃がより好ましい。B液が(3)の混合工程に供される際の温度としては、上記混合温度と同じ範囲に調整されることが好ましい。   Here, in the mixing step (3), it is essential to mix at a temperature at which no precipitate is generated when the A liquid and the B liquid are mixed, in particular, the silica fine particles derived from the B liquid are not precipitated. Specifically, the mixing temperature is preferably 0 to 30 ° C, more preferably 10 to 25 ° C. The temperature at which the liquid B is subjected to the mixing step (3) is preferably adjusted to the same range as the mixing temperature.

B液の準備において、B液が混合された後、(3)の混合工程までは、B液を−5℃以下の温度で保管する。そして、以下の(3)の混合工程の直前までに、(3)工程の混合時における好ましい温度にB液の温度を調整すればよい。   In the preparation of the liquid B, after the liquid B is mixed, the liquid B is stored at a temperature of −5 ° C. or lower until the mixing step (3). And just before the mixing process of the following (3), what is necessary is just to adjust the temperature of B liquid to the preferable temperature at the time of the mixing of (3) process.

(3)混合工程
本工程では、(1)工程で準備されたA液と、(2)工程で準備され(2)工程直後に比して実質的に粘度が変化しないように、(2)工程直後から−5℃以下の保管温度で保管されたB液とを、沈殿物が発生しない、特には、B液から持ち込まれたシリカ微粒子が沈殿しない混合温度で混合し被膜形成用組成物を得る。
(3) Mixing step In this step, the liquid A prepared in the step (1) and the liquid prepared in the step (2) (2) so that the viscosity does not substantially change immediately after the step (2) The composition for forming a film is prepared by mixing the liquid B stored at a storage temperature of −5 ° C. or less immediately after the process at a mixing temperature at which no precipitate is generated, in particular, the silica fine particles brought from the liquid B are not precipitated. obtain.

混合温度として、具体的な温度はすでに上に示したとおりである。なお、本工程における混合の温度、すなわち混合温度とは、混合操作中におけるA液とB液が混合された液状物の温度をいう。A液とB液の混合操作は通常の方法による。A液の所定量とB液の所定量を同時に仕込んで混合してもよく、いずれか一方の所定量に、他方の所定量を徐々に加えるあるいは数回に分けて加える方法であってもよい。   As the mixing temperature, specific temperatures are as already shown above. In addition, the temperature of mixing in this step, that is, the mixing temperature refers to the temperature of the liquid material in which the liquid A and the liquid B are mixed during the mixing operation. The mixing operation of the A liquid and the B liquid is performed by a normal method. A predetermined amount of the A liquid and a predetermined amount of the B liquid may be charged simultaneously and mixed, or the predetermined amount of the other may be gradually added to one of the predetermined amounts or added in several times. .

混合操作中の温度管理は熱電対によるモニタリング等により行う。あるいは、A液とB液は混合に際して熱の出入りがないため、両者を上記混合温度の範囲内に予め調整しておけば、特に混合液の温度管理を行うことなく混合の操作を完了できる。   Temperature control during the mixing operation is performed by monitoring with a thermocouple. Alternatively, since the liquid A and the liquid B do not enter and exit during mixing, the mixing operation can be completed without particularly controlling the temperature of the mixed liquid if the both are adjusted within the range of the mixing temperature.

ここで、(3)の混合工程に供されるA液とB液のうち少なくともB液は−5℃以下の保管温度で保管されたものが用いられる。この−5℃以下の温度のB液を、混合温度として好ましい0〜30℃に調整するには、例えば、−5℃以下の保管庫等から取り出されたB液を所定の混合温度に設定された恒温槽に、該混合温度になるまで好ましくは3時間以内の時間放置する等すればよい。A液がB液同様に保管されている場合には、A液についてもB液同様に温度調整すればよい。   Here, among the A liquid and B liquid used in the mixing step (3), at least the B liquid is stored at a storage temperature of −5 ° C. or lower. In order to adjust the B liquid having a temperature of −5 ° C. or lower to a preferable mixing temperature of 0 to 30 ° C., for example, the B liquid taken out from a storage or the like of −5 ° C. or lower is set to a predetermined mixing temperature. It is preferable to leave it in a constant temperature bath for 3 hours or less until the mixing temperature is reached. When the A liquid is stored in the same manner as the B liquid, the temperature of the A liquid may be adjusted in the same manner as the B liquid.

A液とB液の混合割合としては、得られる被膜形成用組成物において、非イオン系界面活性剤が、被膜形成用組成物全量に対して好ましくは0.001〜0.1質量%、より好ましくは0.05〜0.5質量%となる量であり、かつ加水分解性シラン化合物類の含有量が、被膜形成用組成物全量に対して好ましくは5〜30質量%、より好ましくは、10〜25質量%となる量が挙げられる。このようなA液とB液の混合割合としては、B液100質量部に対してA液が0.01〜25質量部の範囲が挙げられ、2〜25質量部の範囲がより好ましい。   As the mixing ratio of the liquid A and the liquid B, the nonionic surfactant is preferably 0.001 to 0.1% by mass relative to the total amount of the film forming composition in the film forming composition to be obtained. The amount is preferably 0.05 to 0.5% by mass, and the content of the hydrolyzable silane compounds is preferably 5 to 30% by mass, more preferably, based on the total amount of the film-forming composition. The quantity used as 10-25 mass% is mentioned. As a mixing ratio of such A liquid and B liquid, the range of 0.01-25 mass parts of A liquid is mentioned with respect to 100 mass parts of B liquid, The range of 2-25 mass parts is more preferable.

このようにして得られる被膜形成用組成物においては、混合直後の粘度が25℃で1.5〜4.0mPa・sであることが好ましく、2.0〜3.0mPa・sがより好ましい。なお、混合直後の粘度とは、混合の操作終了後3時間以内に測定された粘度をいう。ここで、(3)工程においては、混合の操作終了後1時間以内、10分間以内あるいは5分間以内に測定された被膜形成用組成物の粘度が上記粘度の範囲にあってもよい。また、混合の操作終了後、上記粘度となるまでの間に、以下に説明する(4)工程において被膜形成用組成物を基板上に塗布する操作を開始することが好ましい。   In the film-forming composition thus obtained, the viscosity immediately after mixing is preferably 1.5 to 4.0 mPa · s at 25 ° C., more preferably 2.0 to 3.0 mPa · s. The viscosity immediately after mixing refers to the viscosity measured within 3 hours after completion of the mixing operation. Here, in the step (3), the viscosity of the film-forming composition measured within 1 hour, within 10 minutes or within 5 minutes after completion of the mixing operation may be within the above viscosity range. Moreover, it is preferable to start the operation of applying the film-forming composition on the substrate in the step (4) described below after the mixing operation is completed until the viscosity is reached.

(4)被膜形成工程
本工程は、(3)工程で得られた被膜形成用組成物を基板上に塗布し硬化させて被膜とする工程である。好ましくは、(3)工程後、得られた被膜形成用組成物を、沈殿物が発生しない、特には、B液から持ち込まれたシリカ微粒子が沈殿しない温度で保持し、混合工程直後に比して実質的に粘度が変化していない状態で基板上に塗布し、さらに硬化させて被膜とする工程である。
(4) Film Forming Process This process is a process in which the film forming composition obtained in the process (3) is applied on a substrate and cured to form a film. Preferably, after the step (3), the obtained film-forming composition is maintained at a temperature at which no precipitate is generated, in particular, the silica fine particles brought from the liquid B are not precipitated, compared to immediately after the mixing step. This is a step of coating on a substrate in a state where the viscosity is not substantially changed, and further curing to form a film.

(3)工程により得られた被膜形成用組成物は、基板上に塗布されるまで、沈殿物が発生しない、特には、B液から持ち込まれたシリカ微粒子が沈殿しない温度で保持されることが好ましい。被膜形成用組成物は、このような温度で保持されると、時間の経過に伴い加水分解性シラン化合物類の部分加水分解縮合がある程度の速度で進行する。したがって、被膜形成用組成物は、基板上に塗布される際に粘度が(3)工程直後に比して実質的に粘度が変化していない状態で、塗布されることが好ましい。   (3) The film-forming composition obtained in the step can be maintained at a temperature at which the precipitate is not generated until the silica fine particles brought in from the liquid B are not precipitated until the composition is applied onto the substrate. preferable. When the film-forming composition is held at such a temperature, the partial hydrolytic condensation of hydrolyzable silane compounds proceeds at a certain rate with the passage of time. Therefore, it is preferable that the film-forming composition is applied in a state where the viscosity is not substantially changed when applied onto the substrate as compared to immediately after the step (3).

実質的に粘度変化がないとは、上記のとおり粘度変化が1.5mPa・s未満であることをいい、(3)工程直後の被膜形成用組成物の粘度と、塗布に供する被膜形成用組成物の粘度の差は、好ましくは、1.0mPa・s未満である。なお、塗布に供される際の被膜形成用組成物の粘度とは、塗布の前3時間以内に測定された粘度をいう。ここで、塗布に供される際の被膜形成用組成物の粘度は、塗布の前1時間以内に測定された被膜形成用組成物の粘度として、(3)工程直後の被膜形成用組成物の粘度との差が上記範囲内であることが好ましく、該塗布の前10分間以内に測定された被膜形成用組成物の粘度として、(3)工程直後の被膜形成用組成物の粘度との差が上記範囲内であることがより好ましく、該塗布の前5分間以内に測定された被膜形成用組成物の粘度として、(3)工程直後の被膜形成用組成物の粘度との差が上記範囲内であることが特に好ましい。なお、このような観点から、被膜形成用組成物の保持温度にもよるが、(3)工程終了後、3時間以内に(4)工程の塗布を始めることが好ましく、2時間以内がより好ましく、1時間以内が特に好ましい。   The fact that there is substantially no change in viscosity means that the change in viscosity is less than 1.5 mPa · s as described above. (3) The viscosity of the composition for forming a film immediately after the step and the composition for forming a film used for coating The difference in viscosity between the objects is preferably less than 1.0 mPa · s. In addition, the viscosity of the composition for film formation when it is used for coating refers to the viscosity measured within 3 hours before coating. Here, the viscosity of the composition for forming a film when it is used for coating is the viscosity of the composition for forming a film measured within 1 hour before the coating, as the viscosity of the composition for forming a film immediately after the step (3). The difference from the viscosity is preferably within the above range, and as the viscosity of the film-forming composition measured within 10 minutes before the coating, the difference from the viscosity of the film-forming composition immediately after the step (3) Is more preferably within the above range, and the difference between the viscosity of the film forming composition immediately after the step (3) and the viscosity of the film forming composition measured within 5 minutes before the coating is within the above range. It is particularly preferred that From this point of view, although depending on the holding temperature of the film-forming composition, it is preferable to start application of the step (4) within 3 hours after the completion of the step (3), and more preferably within 2 hours. Within 1 hour is particularly preferred.

上記(1)〜(3)工程で得られる被膜形成用組成物は、沈殿等の発生が抑えられかつ効率よく準備された被膜形成用組成物である。この被膜形成用組成物を準備された良好な状態を保持したまま用いて、加水分解性シラン化合物を含有する組成物により基板上に硬化膜を形成する通常の方法、例えば、以下に示す方法によって、被膜付き基板を製造すれば、品質や歩留まりを維持しながら簡便で生産効率よく、被膜付き基板が製造できる。   The film-forming composition obtained in the above steps (1) to (3) is a film-forming composition that is efficiently prepared with generation of precipitation and the like suppressed. Using this film-forming composition while maintaining a prepared good state, a normal method of forming a cured film on a substrate with a composition containing a hydrolyzable silane compound, for example, by the method shown below If a substrate with a coating is manufactured, the substrate with a coating can be manufactured easily and efficiently while maintaining quality and yield.

本発明の製造方法が適用される被膜付き基板に用いる基板は、一般に被膜の付与が求められている材質からなる基板であれば特に限定されず、金属、樹脂、ガラス、セラミック、またはその組み合わせ(複合材料、積層材料等)からなる基板が好ましく使用される。特にガラスまたは樹脂等の透明な基板が好ましい。ガラスとしては、通常のソーダライムガラス、ホウ珪酸ガラス、無アルカリガラス、石英ガラス等が挙げられ、これらのなかでもソーダライムガラスが特に好ましい。また、樹脂としては、ポリメチルメタクリレートなどのアクリル系樹脂やポリフェニレンカーボネートなどの芳香族ポリカーボネート系樹脂、ポリエチレンテレフタレート(PET)などの芳香族ポリエステル系樹脂等が挙げられる。   The substrate used for the coated substrate to which the production method of the present invention is applied is not particularly limited as long as it is a substrate made of a material that is generally required to be coated, and is a metal, resin, glass, ceramic, or a combination thereof ( A substrate made of a composite material, a laminated material or the like is preferably used. A transparent substrate such as glass or resin is particularly preferable. Examples of the glass include ordinary soda lime glass, borosilicate glass, non-alkali glass, and quartz glass. Among these, soda lime glass is particularly preferable. Examples of the resin include acrylic resins such as polymethyl methacrylate, aromatic polycarbonate resins such as polyphenylene carbonate, and aromatic polyester resins such as polyethylene terephthalate (PET).

基板の形状は平板でもよく、全面または一部が曲率を有していてもよい。基板の厚さは被膜付き基板の用途により適宜選択できるが、一般的には1〜10mmであることが好ましい。   The shape of the substrate may be a flat plate, or the entire surface or a part thereof may have a curvature. Although the thickness of a board | substrate can be suitably selected by the use of a board | substrate with a film, generally it is preferable that it is 1-10 mm.

被膜形成用組成物を基板上に塗布する方法としては、均一な塗膜が形成できる方法であれば、特に限定されない。例えば、はけ塗り、フローコート、スピンコート、ディップコート、スキージコート、スプレーコート、ダイコート、手塗り等の方法が使用できる。これらの方法により、基板上に被膜形成用組成物を、最終的に得られる被膜の厚さが所定の厚さとなるように塗膜の厚さを調整して、塗布する。なお、本発明の製造方法が適用される被膜の厚さとしては、特に制限されない。用途に応じて適宜選択される。   The method for coating the film-forming composition on the substrate is not particularly limited as long as it is a method capable of forming a uniform coating film. For example, methods such as brush coating, flow coating, spin coating, dip coating, squeegee coating, spray coating, die coating, and hand coating can be used. By these methods, the composition for forming a coating film is applied onto a substrate after adjusting the thickness of the coating film so that the finally obtained coating film has a predetermined thickness. The thickness of the coating to which the production method of the present invention is applied is not particularly limited. It is appropriately selected according to the application.

塗膜形成後、通常、塗膜からの溶媒の除去が行われる。溶媒の除去は加熱および/または減圧乾燥によって行うことが好ましい。基板上に塗膜を形成した後、室温〜120℃程度の温度下で仮乾燥を行うことが塗膜のレベリング性向上の観点から好ましい。通常、この仮乾燥の操作中に、これと並行して溶媒が除去されるため、溶媒除去の操作は仮乾燥に含まれることになる。仮乾燥の時間、すなわち溶媒除去の操作の時間は、被膜形成用組成物にもよるが3秒〜2時間程度であることが好ましい。   After forming the coating film, the solvent is usually removed from the coating film. The solvent is preferably removed by heating and / or drying under reduced pressure. After forming the coating film on the substrate, it is preferable to perform temporary drying at a temperature of about room temperature to 120 ° C. from the viewpoint of improving the leveling property of the coating film. Usually, during the temporary drying operation, the solvent is removed in parallel with the temporary drying operation, so that the solvent removal operation is included in the temporary drying. The time for temporary drying, that is, the time for removing the solvent, is preferably about 3 seconds to 2 hours, although it depends on the film-forming composition.

なお、この際、溶媒が十分除去されることが好ましいが、完全に除去されなくてもよい。つまり、最終的に得られる被膜の性能に影響を与えない範囲で被膜に溶媒の一部が残存することも可能である。また、上記溶媒の除去のために加熱を行う場合には、その後必要に応じて行われる加水分解性シラン化合物類の硬化のための加熱と、溶媒除去のための加熱、すなわち一般的には仮乾燥と、は連続して実施してもよい。   At this time, it is preferable that the solvent is sufficiently removed, but it may not be completely removed. That is, a part of the solvent can remain in the film as long as the performance of the finally obtained film is not affected. In addition, when heating for removing the solvent, heating for curing the hydrolyzable silane compounds, which is performed as necessary, and heating for removing the solvent, which are generally temporary Drying may be performed continuously.

上記のようにして塗膜から溶媒を除去した後、加水分解性シラン化合物類を硬化させる。この反応は、常温下ないし加熱下に行うことができる。加熱下に硬化物(ポリシロキサン被膜)を形成させる場合、硬化物が有機成分を含むことより、その加熱温度の上限は200℃が好ましく、特に190℃が好ましい。常温においても硬化物を生成させることができることより、その加熱温度の下限は特に限定されるものではない。ただし、加熱による反応の促進を意図する場合は、加熱温度の下限は60℃が好ましく、80℃がより好ましい。したがって、この加熱温度は60〜200℃が好ましく、80〜190℃がより好ましい。加熱時間は、被膜形成用組成物の組成にもよるが、数分〜数時間であることが好ましい。   After removing the solvent from the coating film as described above, the hydrolyzable silane compounds are cured. This reaction can be carried out at room temperature or under heating. When a cured product (polysiloxane film) is formed under heating, the upper limit of the heating temperature is preferably 200 ° C., and particularly preferably 190 ° C., because the cured product contains an organic component. Since the cured product can be generated even at normal temperature, the lower limit of the heating temperature is not particularly limited. However, when the promotion of the reaction by heating is intended, the lower limit of the heating temperature is preferably 60 ° C, more preferably 80 ° C. Therefore, this heating temperature is preferably 60 to 200 ° C, more preferably 80 to 190 ° C. The heating time is preferably from several minutes to several hours, although it depends on the composition of the film-forming composition.

以下、本発明の実施例を挙げてさらに説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下に説明する例1、8、10、12が実施例であり、例2〜7、9、11、13が比較例である。また、各例において商品名で記載した薬剤の構成化合物を以下に示す。   Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited to these examples. Examples 1, 8, 10, and 12 described below are examples, and examples 2 to 7, 9, 11, and 13 are comparative examples. In addition, the constituent compounds of drugs described by trade names in each example are shown below.

<例で使用した市販品(商品名)>
・ソルミックスAP−1;日本アルコール販売社製、エタノール:2−プロパノール:メタノール=85.5:13.4:1.1(質量比)の混合溶媒
・メタノールシリカゾル;日産化学工業社製、平均一次粒子径10〜20nmのシリカ微粒子を固形分濃度30質量%でメタノールに分散させたコロイダルシリカ
・非イオン系界面活性剤;表1に示すビックケミー社製の界面活性剤を用いた。
<Commercial product used in the example (product name)>
Solmix AP-1; mixed alcohol of ethanol: 2-propanol: methanol = 85.5: 13.4: 1.1 (mass ratio) manufactured by Nippon Alcohol Sales Co., Ltd .; methanol silica sol; manufactured by Nissan Chemical Industries, average Colloidal silica / nonionic surfactant in which silica fine particles having a primary particle size of 10 to 20 nm are dispersed in methanol at a solid content concentration of 30% by mass;

Figure 2014161766
Figure 2014161766

(例1)
ソルミックスAP−1の32.5g、テトラメトキシシランの17.8g、コロイダルシリカとしてメタノールシリカゾルの1.2g、酢酸の16.9g、イオン交換水の31.6gを仕込み、25℃で1時間撹拌しB1液を得た。撹拌終了の直後に得られたB1液の粘度を測定した。また、BYK−307の0.06gと、ソルミックスAP−1の0.44gを25℃で30分間撹拌してA1液を得た。
B1液とA1液は撹拌終了後すぐに、−20℃の冷凍庫に入れて2カ月間保管した。
(Example 1)
32.5 g of Solmix AP-1, 17.8 g of tetramethoxysilane, 1.2 g of methanol silica sol as colloidal silica, 16.9 g of acetic acid and 31.6 g of ion-exchanged water were charged and stirred at 25 ° C. for 1 hour. B1 liquid was obtained. The viscosity of the B1 liquid obtained immediately after the completion of stirring was measured. Further, 0.06 g of BYK-307 and 0.44 g of Solmix AP-1 were stirred at 25 ° C. for 30 minutes to obtain A1 solution.
B1 liquid and A1 liquid were put in a freezer at -20 ° C. and stored for 2 months immediately after stirring.

2カ月間保管後に、冷凍庫からB1液とA1液を取り出し沈殿の有無を目視で確認した。冷凍庫から取り出したB1液およびA1液について、3時間以内に温度を25℃に調整した。B1液については粘度を測定した。測定後すぐに、B1液およびA1液を25℃温度で10分間混合撹拌して、被膜形成用組成物1を得た。
得られた被膜形成用組成物1における沈殿の有無を目視で確認した。
B1液の調製直後の粘度と保管後の粘度の差を求めた。評価結果を製造条件、沈殿の有無とともに表2に示す。なお、粘度は、全てRE−80L(回転粘度計、東機産業製)を用いて測定した。
After storage for 2 months, the B1 liquid and the A1 liquid were taken out from the freezer and visually checked for precipitation. About B1 liquid and A1 liquid taken out from the freezer, temperature was adjusted to 25 degreeC within 3 hours. Viscosity was measured about B1 liquid. Immediately after the measurement, the B1 liquid and the A1 liquid were mixed and stirred at a temperature of 25 ° C. for 10 minutes to obtain a film-forming composition 1.
The presence or absence of precipitation in the obtained film-forming composition 1 was confirmed visually.
The difference between the viscosity immediately after preparation of the B1 solution and the viscosity after storage was determined. The evaluation results are shown in Table 2 together with the production conditions and the presence or absence of precipitation. In addition, all the viscosity was measured using RE-80L (rotary viscometer, the Toki Sangyo make).

上記で得られた直後の被膜形成用組成物1の2gを、ガラス基板(10cm角、3.5mm厚)にスピンコート法で塗布し、180℃の乾燥炉で30分間加熱して被膜付き基板1を得た。なお、被膜形成用組成物1は調製後すぐに塗布に供されたため、その粘度変化は0である。以下、被膜形成用組成物を調製後すぐに塗布に供した例においては、その粘度変化は同様に0である。得られた被膜は異物もなく透明でであった。   2 g of the film-forming composition 1 immediately after obtained above is applied to a glass substrate (10 cm square, 3.5 mm thickness) by spin coating, and heated in a drying oven at 180 ° C. for 30 minutes to provide a substrate with a film 1 was obtained. In addition, since the composition 1 for film formation was applied immediately after preparation, the viscosity change is 0. Hereinafter, in the example in which the coating film-forming composition was applied immediately after preparation, the viscosity change is similarly 0. The resulting coating was transparent with no foreign matter.

(例2)
例1において、B1液およびA1液の混合温度を−10℃に変更した以外は同様にして被膜形成用組成物2を得た。得られた被膜形成用組成物2における沈殿の有無を目視で確認した。結果を製造条件、沈殿の有無とともに表2に示す。
また得られた直後の被膜形成用組成物2の2gを用いた以外は例1と同様にして被膜付き基板2を得た。得られた被膜は白濁していた。
(Example 2)
A film-forming composition 2 was obtained in the same manner as in Example 1, except that the mixing temperature of the B1 liquid and the A1 liquid was changed to -10 ° C. The presence or absence of precipitation in the obtained film-forming composition 2 was visually confirmed. The results are shown in Table 2 together with the production conditions and the presence or absence of precipitation.
Moreover, the board | substrate 2 with a film was obtained like Example 1 except having used 2g of the composition 2 for film formation immediately after obtained. The obtained film was cloudy.

(例3)
例1と同様にしてB1液を得た後、これにさらにBYK−307の0.06gとソルミックスAP−1の0.44gを添加し25℃で10分間撹拌して被膜形成用組成物3を得た。なお、B1液は調製後すぐに非イオン系界面活性剤等が添加されたため、その粘度変化は0である。撹拌終了の直後に得られた被膜形成用組成物3の粘度を測定した。また、沈殿の有無を目視で確認した。
被膜形成用組成物3は撹拌終了後すぐに、−20℃の冷凍庫に入れて2カ月間保管した。2カ月間保管後に、冷凍庫から被膜形成用組成物3を取り出し沈殿の有無を目視で確認した。冷凍庫から取り出した被膜形成用組成物3について、3時間以内に温度を25℃に調整し、粘度を測定して調製直後の粘度と保管後の粘度の差を求めた。評価結果を製造条件、沈殿の有無とともに表2に示す。
(Example 3)
After obtaining the B1 solution in the same manner as in Example 1, 0.06 g of BYK-307 and 0.44 g of Solmix AP-1 were further added thereto, and the mixture was stirred at 25 ° C. for 10 minutes, followed by coating composition 3 Got. In addition, since the nonionic surfactant etc. were added to the B1 liquid immediately after preparation, the viscosity change is zero. The viscosity of the film-forming composition 3 obtained immediately after the stirring was measured. Moreover, the presence or absence of precipitation was confirmed visually.
Immediately after completion of stirring, the film-forming composition 3 was placed in a freezer at -20 ° C. and stored for 2 months. After storage for 2 months, the film-forming composition 3 was taken out of the freezer and visually checked for precipitation. About the composition 3 for film formation taken out from the freezer, temperature was adjusted to 25 degreeC within 3 hours, the viscosity was measured, and the difference of the viscosity immediately after preparation and the viscosity after storage was calculated | required. The evaluation results are shown in Table 2 together with the production conditions and the presence or absence of precipitation.

また、上記温度で2カ月間保管後、冷凍庫から取り出し、25℃とした被膜形成用組成物3の2gを用いた以外は例1と同様にして被膜付き基板3を得た。得られた被膜は得られた被膜は白濁していた。   Further, after storing at the above temperature for 2 months, a coated substrate 3 was obtained in the same manner as in Example 1 except that 2 g of the film-forming composition 3 taken out from the freezer and adjusted to 25 ° C. was used. The obtained film was cloudy.

(例4〜6)
例3と同様にして被膜形成用組成物3を製造した後、保管温度を−10℃(例4)、−5℃(例5)、5℃(例6)にそれぞれ変えた以外は例3と同様に被膜形成用組成物3を冷凍庫等の保管庫に保管した。
2カ月間保管後に、冷凍庫等の保管庫から被膜形成用組成物3をそれぞれ取り出し沈殿の有無を目視で確認した。冷凍庫から取り出した被膜形成用組成物3について、3時間以内に温度を25℃に調整し、粘度を測定して調製直後の粘度と保管後の粘度の差を求めた。評価結果を製造条件、沈殿の有無とともに表2に示す。
(Examples 4 to 6)
Example 3 was produced except that the film-forming composition 3 was produced in the same manner as Example 3 and then the storage temperature was changed to −10 ° C. (Example 4), −5 ° C. (Example 5), and 5 ° C. (Example 6). Similarly, the film-forming composition 3 was stored in a storage such as a freezer.
After storage for 2 months, each of the film-forming compositions 3 was taken out from a storage such as a freezer and visually checked for precipitation. About the composition 3 for film formation taken out from the freezer, temperature was adjusted to 25 degreeC within 3 hours, the viscosity was measured, and the difference of the viscosity immediately after preparation and the viscosity after storage was calculated | required. The evaluation results are shown in Table 2 together with the production conditions and the presence or absence of precipitation.

また、上記温度で2カ月間保管後、冷凍庫等の保管庫から取り出し、25℃とした被膜形成用組成物3の2gを用いた以外は例1と同様にして被膜付き基板4〜6を得た。得られた被膜は全ての例で白濁していた。   Moreover, after storing at the said temperature for 2 months, it took out from storages, such as a freezer, and obtained the board | substrates 4-6 with a film similarly to Example 1 except having used 2g of the composition 3 for film formation which was 25 degreeC. It was. The resulting coating was cloudy in all cases.

(例7)
例1と同様にしてB1液を得た後、これにさらにBYK−307の0.01gとソルミックスAP−1の0.83gを添加し25℃で10分間撹拌して被膜形成用組成物4を得た。撹拌終了の直後に得られた被膜形成用組成物4の粘度を測定した。また、沈殿の有無を目視で確認した。
被膜形成用組成物4は撹拌終了後すぐに、−20℃の冷凍庫に入れて2カ月間保管した。2カ月間保管後に、冷凍庫から被膜形成用組成物4を取り出し沈殿の有無を目視で確認した。冷凍庫から取り出した被膜形成用組成物4について、3時間以内に温度を25℃に調整し、粘度を測定して調製直後の粘度と保管後の粘度の差を求めた。評価結果を製造条件、沈殿の有無とともに表2に示す。
(Example 7)
After obtaining the B1 solution in the same manner as in Example 1, 0.01 g of BYK-307 and 0.83 g of Solmix AP-1 were further added thereto, and the mixture was stirred at 25 ° C. for 10 minutes, followed by coating forming composition 4 Got. The viscosity of the film-forming composition 4 obtained immediately after the stirring was measured. Moreover, the presence or absence of precipitation was confirmed visually.
Immediately after the completion of stirring, the film-forming composition 4 was placed in a freezer at −20 ° C. and stored for 2 months. After storage for 2 months, the film-forming composition 4 was taken out of the freezer and visually checked for precipitation. About the film forming composition 4 taken out from the freezer, the temperature was adjusted to 25 ° C. within 3 hours, and the viscosity was measured to determine the difference between the viscosity immediately after preparation and the viscosity after storage. The evaluation results are shown in Table 2 together with the production conditions and the presence or absence of precipitation.

また、上記温度で2カ月間保管後、冷凍庫から取り出し、25℃とした被膜形成用組成物4の2gを用いた以外は例1と同様にして被膜付き基板7を得た。得られた被膜は白濁していた。   Further, after storing at the above temperature for 2 months, a coated substrate 7 was obtained in the same manner as in Example 1 except that 2 g of the film-forming composition 4 taken out from the freezer and adjusted to 25 ° C. was used. The obtained film was cloudy.

(例8)
例1と同様にしてB1液を得た。撹拌終了の直後に得られたB1液の粘度を測定した。また、BYK−331の0.10g、ソルミックスAP−1の0.73gを25℃で30分間撹拌してA2液を得た。
B1液とA2液は撹拌終了後すぐに、−20℃の冷凍庫に入れて2カ月間保管した。
(Example 8)
In the same manner as in Example 1, a B1 solution was obtained. The viscosity of the B1 liquid obtained immediately after the completion of stirring was measured. Further, 0.10 g of BYK-331 and 0.73 g of Solmix AP-1 were stirred at 25 ° C. for 30 minutes to obtain A2 liquid.
B1 liquid and A2 liquid were put into a -20 ° C. freezer immediately after stirring and stored for 2 months.

2カ月間保管後に、冷凍庫からB1液とA2液を取り出し沈殿の有無を目視で確認した。冷凍庫から取り出したB1液およびA2液について、3時間以内に温度を25℃に調整した。B1液については粘度を測定した。測定後すぐに、B1液およびA2液を25℃温度で10分間混合撹拌して、被膜形成用組成物5を得た。
得られた被膜形成用組成物5における沈殿の有無を目視で確認した。
B1液の調製直後の粘度と保管後の粘度の差を求めた。評価結果を製造条件、沈殿の有無とともに表2に示す。
After storage for 2 months, the B1 liquid and the A2 liquid were taken out from the freezer and visually checked for the presence of precipitation. About B1 liquid and A2 liquid which were taken out from the freezer, temperature was adjusted to 25 degreeC within 3 hours. Viscosity was measured about B1 liquid. Immediately after the measurement, the liquid B1 and the liquid A2 were mixed and stirred at a temperature of 25 ° C. for 10 minutes to obtain a film-forming composition 5.
The presence or absence of precipitation in the obtained film-forming composition 5 was visually confirmed.
The difference between the viscosity immediately after preparation of the B1 solution and the viscosity after storage was determined. The evaluation results are shown in Table 2 together with the production conditions and the presence or absence of precipitation.

上記で得られた直後の被膜形成用組成物5の2gを、ガラス基板(10cm角、3.5mm厚)にスピンコート法で塗布し、180℃の乾燥炉で30分間加熱して被膜付き基板8を得た。得られた被膜は異物もなく透明であった。   2 g of the film-forming composition 5 just obtained as described above was applied to a glass substrate (10 cm square, 3.5 mm thickness) by a spin coating method, and heated in a drying furnace at 180 ° C. for 30 minutes to provide a substrate with a film 8 was obtained. The resulting coating was transparent with no foreign matter.

(例9)
例1と同様にしてB1液を得た後、これにさらにBYK−331の0.10g、ソルミックスAP−1の0.73gを添加し25℃で10分間撹拌して被膜形成用組成物6を得た。撹拌終了の直後に得られた被膜形成用組成物6の粘度を測定した。また、沈殿の有無を目視で確認した。
被膜形成用組成物6は撹拌終了後すぐに、−20℃の冷凍庫に入れて2カ月間保管した。2カ月間保管後に、冷凍庫から被膜形成用組成物6を取り出し沈殿の有無を目視で確認した。冷凍庫から取り出した被膜形成用組成物6について、3時間以内に温度を25℃に調整し、粘度を測定して調製直後の粘度と保管後の粘度の差を求めた。評価結果を製造条件、沈殿の有無とともに表2に示す。
(Example 9)
After obtaining the B1 solution in the same manner as in Example 1, 0.10 g of BYK-331 and 0.73 g of Solmix AP-1 were further added thereto, and the mixture was stirred at 25 ° C. for 10 minutes, followed by coating forming composition 6 Got. The viscosity of the film-forming composition 6 obtained immediately after the stirring was measured. Moreover, the presence or absence of precipitation was confirmed visually.
The film-forming composition 6 was placed in a freezer at −20 ° C. and stored for 2 months immediately after stirring. After storage for 2 months, the film-forming composition 6 was taken out of the freezer and visually checked for the presence of precipitation. About the film forming composition 6 taken out from the freezer, the temperature was adjusted to 25 ° C. within 3 hours, and the viscosity was measured to determine the difference between the viscosity immediately after preparation and the viscosity after storage. The evaluation results are shown in Table 2 together with the production conditions and the presence or absence of precipitation.

また、上記温度で2カ月間保管後、冷凍庫から取り出し、25℃とした被膜形成用組成物6の2gを用いた以外は例1と同様にして被膜付き基板9を得た。得られた被膜は白濁していた。   Further, after storing at the above temperature for 2 months, a coated substrate 9 was obtained in the same manner as in Example 1 except that 2 g of the film-forming composition 6 was removed from the freezer and adjusted to 25 ° C. The obtained film was cloudy.

(例10)
例1と同様にしてB1液を得た。撹拌終了の直後に得られたB1液の粘度を測定した。また、BYK−340の0.5gをそのままA3液として準備した。
B1液とA3液は撹拌終了後、または準備後すぐに、−20℃の冷凍庫に入れて2カ月間保管した。
(Example 10)
In the same manner as in Example 1, a B1 solution was obtained. The viscosity of the B1 liquid obtained immediately after the completion of stirring was measured. Moreover, 0.5 g of BYK-340 was directly prepared as an A3 solution.
Liquid B1 and liquid A3 were placed in a freezer at −20 ° C. and stored for 2 months immediately after completion of stirring or immediately after preparation.

2カ月間保管後に、冷凍庫からB1液とA3液を取り出し沈殿の有無を目視で確認した。冷凍庫から取り出したB1液およびA3液について、3時間以内に温度を25℃に調整した。B1液については粘度を測定した。測定後すぐに、B1液およびA3液を25℃温度で10分間混合撹拌して、被膜形成用組成物7を得た。
得られた被膜形成用組成物7における沈殿の有無を目視で確認した。
B1液の調製直後の粘度と保管後の粘度の差を求めた。評価結果を製造条件、沈殿の有無とともに表2に示す。
After storage for 2 months, the B1 liquid and the A3 liquid were taken out from the freezer and visually checked for the presence of precipitation. About B1 liquid and A3 liquid taken out from the freezer, temperature was adjusted to 25 degreeC within 3 hours. Viscosity was measured about B1 liquid. Immediately after the measurement, the solution B1 and the solution A3 were mixed and stirred at a temperature of 25 ° C. for 10 minutes to obtain a film-forming composition 7.
The presence or absence of precipitation in the obtained film-forming composition 7 was visually confirmed.
The difference between the viscosity immediately after preparation of the B1 solution and the viscosity after storage was determined. The evaluation results are shown in Table 2 together with the production conditions and the presence or absence of precipitation.

上記で得られた直後の被膜形成用組成物7の2gを、ガラス基板(10cm角、3.5mm厚)にスピンコート法で塗布し、180℃の乾燥炉で30分間加熱して被膜付き基板10を得た。得られた被膜は異物もなく透明であった。   2 g of the film-forming composition 7 just obtained as described above was applied to a glass substrate (10 cm square, 3.5 mm thickness) by spin coating, and heated in a drying furnace at 180 ° C. for 30 minutes for coating-coated substrate. 10 was obtained. The resulting coating was transparent with no foreign matter.

(例11)
例1と同様にしてB1液を得た後、これにさらにBYK−340の0.5gを添加し25℃で10分間撹拌して被膜形成用組成物8を得た。撹拌終了の直後に得られた被膜形成用組成物8の粘度(25℃)を測定した。また、沈殿の有無を目視で確認した。
被膜形成用組成物8は撹拌終了後すぐに、−20℃の冷凍庫に入れて2カ月間保管した。2カ月間保管後に、冷凍庫から被膜形成用組成物8を取り出し沈殿の有無を目視で確認し、粘度(25℃)を測定し調製直後の粘度と保管後の粘度の差を求めた。評価結果を製造条件、沈殿の有無とともに表2に示す。
(Example 11)
After obtaining B1 liquid like Example 1, 0.5g of BYK-340 was further added to this, and it stirred at 25 degreeC for 10 minute (s), and obtained the film forming composition 8. The viscosity (25 ° C.) of the film-forming composition 8 obtained immediately after the stirring was measured. Moreover, the presence or absence of precipitation was confirmed visually.
Immediately after the stirring, the film-forming composition 8 was placed in a freezer at −20 ° C. and stored for 2 months. After storage for 2 months, the film-forming composition 8 was taken out of the freezer and visually checked for the presence or absence of precipitation, and the viscosity (25 ° C.) was measured to determine the difference between the viscosity immediately after preparation and the viscosity after storage. The evaluation results are shown in Table 2 together with the production conditions and the presence or absence of precipitation.

また、上記温度で2カ月間保管後、冷凍庫から取り出し、25℃とした被膜形成用組成物8の2gを用いた以外は例1と同様にして被膜付き基板11を得た。得られた被膜は白濁していた。   Further, after storing at the above temperature for 2 months, a coated substrate 11 was obtained in the same manner as in Example 1 except that 2 g of the film forming composition 8 taken out from the freezer and adjusted to 25 ° C. was used. The obtained film was cloudy.

(例12)
例1と同様にしてB1液を得た。撹拌終了の直後に得られたB1液の粘度を測定した。また、BYK−355の1.0gをそのままA4液として準備した。
B1液とA4液は撹拌終了後、または準備後すぐに、−20℃の冷凍庫に入れて2カ月間保管した。
(Example 12)
In the same manner as in Example 1, a B1 solution was obtained. The viscosity of the B1 liquid obtained immediately after the completion of stirring was measured. Further, 1.0 g of BYK-355 was prepared as it is as A4 liquid.
Liquid B1 and liquid A4 were placed in a freezer at −20 ° C. and stored for 2 months immediately after completion of stirring or immediately after preparation.

2カ月間保管後に、冷凍庫からB1液とA4液を取り出し沈殿の有無を目視で確認した。冷凍庫から取り出したB1液およびA4液について、3時間以内に温度を25℃に調整した。B1液については粘度を測定した。測定後すぐに、B1液およびA4液を25℃温度で10分間混合撹拌して、被膜形成用組成物9を得た。
得られた被膜形成用組成物9における沈殿の有無を目視で確認した。
B1液の調製直後の粘度と保管後の粘度の差を求めた。評価結果を製造条件、沈殿の有無とともに表2に示す。
After storage for 2 months, the B1 liquid and the A4 liquid were taken out from the freezer and visually checked for the presence of precipitation. About B1 liquid and A4 liquid taken out from the freezer, temperature was adjusted to 25 degreeC within 3 hours. Viscosity was measured about B1 liquid. Immediately after the measurement, the B1 liquid and the A4 liquid were mixed and stirred at a temperature of 25 ° C. for 10 minutes to obtain a film forming composition 9.
The presence or absence of precipitation in the obtained film forming composition 9 was visually confirmed.
The difference between the viscosity immediately after preparation of the B1 solution and the viscosity after storage was determined. The evaluation results are shown in Table 2 together with the production conditions and the presence or absence of precipitation.

上記で得られた直後の被膜形成用組成物9の2gを、ガラス基板(10cm角、3.5mm厚)にスピンコート法で塗布し、180℃の乾燥炉で30分間加熱して被膜付き基板12を得た。得られた被膜は異物もなく透明であった。   2 g of the film-forming composition 9 immediately after obtained above was applied to a glass substrate (10 cm square, 3.5 mm thickness) by spin coating, and heated in a drying oven at 180 ° C. for 30 minutes to provide a film-coated substrate. 12 was obtained. The resulting coating was transparent with no foreign matter.

(例13)
例1と同様にしてB1液を得た後、これにさらにBYK−355の1.0gを添加し25℃で10分間撹拌して被膜形成用組成物10を得た。撹拌終了の直後に得られた被膜形成用組成物10の粘度を測定した。また、沈殿の有無を目視で確認した。
被膜形成用組成物10は撹拌終了後すぐに、−20℃の冷凍庫に入れて2カ月間保管した。2カ月間保管後に、冷凍庫から被膜形成用組成物10を取り出し沈殿の有無を目視で確認した。冷凍庫から取り出した被膜形成用組成物10について、3時間以内に温度を25℃に調整し、粘度を測定して調製直後の粘度と保管後の粘度の差を求めた。評価結果を製造条件、沈殿の有無とともに表2に示す。
(Example 13)
After obtaining B1 liquid like Example 1, 1.0g of BYK-355 was further added to this, and it stirred at 25 degreeC for 10 minutes, and obtained the composition 10 for film formation. The viscosity of the film-forming composition 10 obtained immediately after the completion of stirring was measured. Moreover, the presence or absence of precipitation was confirmed visually.
Immediately after completion of stirring, the film-forming composition 10 was placed in a freezer at −20 ° C. and stored for 2 months. After storage for 2 months, the film-forming composition 10 was taken out of the freezer and visually checked for precipitation. About the film forming composition 10 taken out from the freezer, the temperature was adjusted to 25 ° C. within 3 hours, the viscosity was measured, and the difference between the viscosity immediately after preparation and the viscosity after storage was determined. The evaluation results are shown in Table 2 together with the production conditions and the presence or absence of precipitation.

また、上記温度で2カ月間保管後、冷凍庫から取り出し、25℃とした被膜形成用組成物10の2gを用いた以外は例1と同様にして被膜付き基板13を得た。得られた被膜は白濁していた。   Further, after storing at the above temperature for 2 months, a coated substrate 13 was obtained in the same manner as in Example 1 except that 2 g of the film forming composition 10 taken out from the freezer and adjusted to 25 ° C. was used. The obtained film was cloudy.

Figure 2014161766
Figure 2014161766

表2に示す非イオン系界面活性剤の含有量は、被膜形成用組成物の全量に対する質量%である。なお、粘度変化は、2液のものはB液の、1液としたものは被膜形成用組成物の、それぞれ保管期間前後の粘度変化である。また、混合温度、および混合時の沈殿の有無は1液で保管した被膜形成用組成物については、保管前における混合時の温度および沈殿の有無である。   The content of the nonionic surfactant shown in Table 2 is mass% with respect to the total amount of the film-forming composition. In addition, a viscosity change is a viscosity change before and behind the storage period of the composition for film formation, and the thing made into 1 liquid is a B liquid, respectively. Further, the mixing temperature and the presence or absence of precipitation during mixing are the temperature during mixing and the presence or absence of precipitation for the film-forming composition stored in one liquid.

本発明の実施例である例1、8、10、12では、A液、B液に分けて保存され、基板への塗布の直前に混合され得られた被膜形成用組成物を用いたことにより、良好な被膜が得られた。
比較例の例2〜7、9、11、13では保管温度、A液、B液の混合温度等のいずれかが適切でなく、被膜形成用組成物に沈殿や増粘が発生し、被膜において白濁が観察される等問題であった。
In Examples 1, 8, 10, and 12, which are examples of the present invention, by using a film-forming composition that was stored separately for liquid A and liquid B and mixed immediately before application to the substrate. A good film was obtained.
In Comparative Examples 2 to 7, 9, 11, and 13, any one of storage temperature, mixing temperature of liquid A, liquid B, etc. is not appropriate, and precipitation or thickening occurs in the film forming composition. It was a problem that cloudiness was observed.

本発明によれば、加水分解性シラン化合物を用いて被膜付き基板を製造する方法において、被膜形成用組成物を沈殿等の発生を抑えながらかつ効率よく準備することにより、品質や歩留まりを維持しながら簡便で生産効率よく酸化ケイ素系の被膜付き基板が製造でき有用である。   According to the present invention, in the method for producing a substrate with a film using a hydrolyzable silane compound, the quality and yield can be maintained by preparing the film forming composition efficiently while suppressing the occurrence of precipitation or the like. However, it is useful because it can produce a silicon oxide-based substrate with a simple and efficient production.

Claims (11)

非イオン系界面活性剤を含むA液を準備するA液準備工程、
加水分解可能な官能基を有するシラン化合物および/またはその部分加水分解縮合物、およびシリカ微粒子を含み非イオン系界面活性剤を含まないB液を準備するB液準備工程、
前記A液と、前記B液準備工程の直後から−5℃以下の保管温度で保管されたB液を、沈殿物が発生しない温度で混合し被膜形成用組成物を得る混合工程、および
前記被膜形成用組成物を基板上に塗布し硬化させて被膜とする被膜形成工程
を有する被膜付き基板の製造方法。
A solution preparation process for preparing solution A containing a nonionic surfactant,
A B liquid preparation step of preparing a B liquid containing a silane compound having a hydrolyzable functional group and / or a partial hydrolysis condensate thereof, and silica fine particles and not containing a nonionic surfactant;
The mixing step of mixing the liquid A and the liquid B stored at a storage temperature of −5 ° C. or less immediately after the step of preparing the liquid B at a temperature at which no precipitate is generated, and obtaining the film forming composition, and the film The manufacturing method of the board | substrate with a film which has a film formation process which apply | coats the composition for formation on a board | substrate, and makes it a film by making it harden | cure.
前記B液準備工程直後のB液の粘度と前記混合工程に供するB液の粘度の差、および前記混合工程直後の被膜形成用組成物の粘度と前記塗布に供する被膜形成用組成物の粘度の差(ただし、前記粘度は全て25℃における粘度である。)がともに1.5mPa・s未満である請求項1に記載の製造方法。   The difference between the viscosity of the B liquid immediately after the B liquid preparation process and the viscosity of the B liquid used in the mixing process, and the viscosity of the film forming composition immediately after the mixing process and the viscosity of the film forming composition used in the application The manufacturing method according to claim 1, wherein both the differences (however, the viscosities are all at 25 ° C.) are less than 1.5 mPa · s. 前記B液準備工程が、前記シラン化合物と前記シリカ微粒子を含む溶液を前記シラン化合物が部分加水分解縮合する条件下で反応させる操作を含む請求項1または2に記載の製造方法。   The manufacturing method of Claim 1 or 2 with which the said B liquid preparation process includes operation which reacts the solution containing the said silane compound and the said silica fine particle on the conditions on which the said silane compound partially hydrolyzes and condenses. 前記シラン化合物が、主として前記加水分解可能な官能基として炭素原子数1〜10のアルコキシ基を有するシラン化合物である請求項1〜3のいずれか1項に記載の製造方法。   The method according to any one of claims 1 to 3, wherein the silane compound is a silane compound mainly having an alkoxy group having 1 to 10 carbon atoms as the hydrolyzable functional group. 前記保管温度が、前記B液準備工程直後から2カ月間の保管で前記B液の25℃で測定される粘度変化を1.5mPa・s未満とできる温度である請求項1〜4のいずれか1項に記載の製造方法。   5. The temperature according to claim 1, wherein the storage temperature is a temperature at which a change in viscosity of the B liquid measured at 25 ° C. can be less than 1.5 mPa · s after storage for 2 months immediately after the B liquid preparation step. 2. The production method according to item 1. 前記保管温度が、−40〜−5℃である請求項1〜5のいずれか1項に記載の製造方法。   The said storage temperature is -40--5 degreeC, The manufacturing method of any one of Claims 1-5. 前記混合工程における混合の温度が、0〜30℃である請求項1〜6のいずれか1項に記載の製造方法。   The manufacturing method according to any one of claims 1 to 6, wherein a mixing temperature in the mixing step is 0 to 30 ° C. 前記被膜形成用組成物における前記非イオン系界面活性剤の含有量が前記組成物全量に対して0.001〜1.0質量%である、請求項1〜7のいずれか1項に記載の製造方法。   The content of the nonionic surfactant in the composition for forming a film is 0.001 to 1.0 mass% with respect to the total amount of the composition, according to any one of claims 1 to 7. Production method. 前記被膜形成用組成物における前記シラン化合物および/またはその部分加水分解縮合物の含有量が前記組成物全量に対して5.0〜50.0質量%である、請求項1〜8のいずれか1項に記載の製造方法。   The content of the said silane compound and / or its partial hydrolysis-condensation product in the said film formation composition is any one of Claims 1-8 which are 5.0-50.0 mass% with respect to the said composition whole quantity. 2. The production method according to item 1. 前記被膜形成用組成物における前記シリカ微粒子の含有量が前記シラン化合物および/またはその部分加水分解縮合物100質量部に対して0.5〜50質量部である請求項1〜9のいずれか1項に記載の製造方法。   The content of the silica fine particles in the film forming composition is 0.5 to 50 parts by mass with respect to 100 parts by mass of the silane compound and / or a partial hydrolysis condensate thereof. The production method according to item. 前記シリカ微粒子の平均粒子径は1〜100nmである、請求項1〜10のいずれか1項に記載の製造方法。   The manufacturing method of any one of Claims 1-10 whose average particle diameter of the said silica fine particle is 1-100 nm.
JP2013033112A 2013-02-22 2013-02-22 Method for manufacturing substrate with coating Active JP5998981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013033112A JP5998981B2 (en) 2013-02-22 2013-02-22 Method for manufacturing substrate with coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013033112A JP5998981B2 (en) 2013-02-22 2013-02-22 Method for manufacturing substrate with coating

Publications (2)

Publication Number Publication Date
JP2014161766A true JP2014161766A (en) 2014-09-08
JP5998981B2 JP5998981B2 (en) 2016-09-28

Family

ID=51612931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013033112A Active JP5998981B2 (en) 2013-02-22 2013-02-22 Method for manufacturing substrate with coating

Country Status (1)

Country Link
JP (1) JP5998981B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023169539A1 (en) * 2022-03-10 2023-09-14 福耀玻璃工业集团股份有限公司 Hydrophobic anti-reflective glass for vehicle, fabrication method therefor, and laminated glass

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131266A (en) * 1981-02-06 1982-08-14 Asahi Optical Co Ltd Coating composition
JPH10168391A (en) * 1996-12-13 1998-06-23 Matsushita Electric Works Ltd Silicon emulsion coating material composition and its production
JP2002143765A (en) * 2000-11-14 2002-05-21 Toray Ind Inc Method for coating metallic substrate and coated article
JP2005199233A (en) * 2004-01-19 2005-07-28 Nippon Soda Co Ltd Composition for forming photocatalyst layer, its storing method, method for forming photocatalyst layer and method for preparing photocatalyst carrying structure
WO2008105306A1 (en) * 2007-02-22 2008-09-04 Tokuyama Corporation Coating composition and photochromic optical article
WO2012166692A1 (en) * 2011-06-01 2012-12-06 Dow Corning Corporation Room temperature vulcanisable silicone compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131266A (en) * 1981-02-06 1982-08-14 Asahi Optical Co Ltd Coating composition
JPH10168391A (en) * 1996-12-13 1998-06-23 Matsushita Electric Works Ltd Silicon emulsion coating material composition and its production
JP2002143765A (en) * 2000-11-14 2002-05-21 Toray Ind Inc Method for coating metallic substrate and coated article
JP2005199233A (en) * 2004-01-19 2005-07-28 Nippon Soda Co Ltd Composition for forming photocatalyst layer, its storing method, method for forming photocatalyst layer and method for preparing photocatalyst carrying structure
WO2008105306A1 (en) * 2007-02-22 2008-09-04 Tokuyama Corporation Coating composition and photochromic optical article
WO2012166692A1 (en) * 2011-06-01 2012-12-06 Dow Corning Corporation Room temperature vulcanisable silicone compositions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023169539A1 (en) * 2022-03-10 2023-09-14 福耀玻璃工业集团股份有限公司 Hydrophobic anti-reflective glass for vehicle, fabrication method therefor, and laminated glass

Also Published As

Publication number Publication date
JP5998981B2 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
JP5382310B2 (en) Coating liquid for forming a film, manufacturing method thereof, coating film thereof, and antireflection material
JP2019064913A (en) Glass article
JPWO2011142463A1 (en) UV absorbing film forming coating solution and UV absorbing glass article
JP4887783B2 (en) Coating with low refractive index and water repellency
JP2007277505A (en) Oxide particulate dispersion and manufacturing method thereof
JPWO2012141150A1 (en) Functional articles, articles for transport equipment, articles for construction, and compositions for coating
JP5262722B2 (en) Coating liquid for forming low refractive index film, production method thereof and antireflection material
JPWO2007102513A1 (en) Silicon-based liquid crystal aligning agent, liquid crystal aligning film, and production method thereof
KR20150097783A (en) Composite of metal oxide nanoparticles and silsesquioxane polymer, method for producing same, and composite material produced using composite thereof
JP2009235238A (en) Aqueous coating composition, organic-inorganic composite coating film, metal alkoxide condensate dispersion, and production method thereof
JP2010209280A (en) Fluorine-containing nanocomposite particle, and method for producing the same
JP5108417B2 (en) Base material with antireflection film
JP2012246440A (en) Inorganic coating composition
JP5293180B2 (en) Coating liquid for coating formation containing phosphoric ester compound and antireflection film
WO2008044742A1 (en) Coating solution for formation of low refractive coating film, process for production thereof, and anti-reflection material
JPH10218995A (en) Organopolysiloxane resin composition
JP5998981B2 (en) Method for manufacturing substrate with coating
JP4893103B2 (en) Coating liquid for coating film formation, coating film therefor, and coating film forming method
JP6778007B2 (en) Coating liquid for film formation, its manufacturing method, and coating base material manufacturing method
KR20140134867A (en) Anti-pollution coating solution composition with low reflective property and method for preparing it
JP5357503B2 (en) Coating material composition and painted product
JP2007277073A (en) Oxide microparticle dispersion and method for producing the same
JPWO2014203951A1 (en) Composition for forming metal oxide film and metal oxide film
WO2011099505A1 (en) Outdoor device, and antireflective layer for outdoor device
KR20150131499A (en) Composition for forming a thin layer of low refractive index, manufacturing method thereof, and manufacturing method of a thin layer of low refractive index

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160815

R150 Certificate of patent or registration of utility model

Ref document number: 5998981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250