WO2011099505A1 - Outdoor device, and antireflective layer for outdoor device - Google Patents

Outdoor device, and antireflective layer for outdoor device Download PDF

Info

Publication number
WO2011099505A1
WO2011099505A1 PCT/JP2011/052716 JP2011052716W WO2011099505A1 WO 2011099505 A1 WO2011099505 A1 WO 2011099505A1 JP 2011052716 W JP2011052716 W JP 2011052716W WO 2011099505 A1 WO2011099505 A1 WO 2011099505A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
layer
composition
organosilane
acid
Prior art date
Application number
PCT/JP2011/052716
Other languages
French (fr)
Japanese (ja)
Inventor
吉井 公彦
昌泰 藤岡
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to KR1020127018169A priority Critical patent/KR20120126068A/en
Priority to JP2011553857A priority patent/JPWO2011099505A1/en
Publication of WO2011099505A1 publication Critical patent/WO2011099505A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an outdoor installation device having an antireflection layer and an antireflection layer for an outdoor installation device. More specifically, the present invention relates to an outdoor installation device having an antireflection layer that can be formed by a simple method and exhibits excellent weather resistance in outdoor use, and the antireflection layer.
  • an antireflection film composed of a low refractive index material on the surface of the article, or an antireflection film composed of a multilayer structure of a low refractive index layer and a high refractive index layer Has been made to form.
  • conversion efficiency can be improved by performing the antireflection process on the surface.
  • Patent Documents 1 to 3 As a method of forming these antireflection films, for example, a method using an organic ultraviolet / radiation curable material or a method of forming an inorganic material by vapor deposition or the like is known (Patent Documents 1 to 3). ).
  • the top layer contains a large amount of high-refractive-index metal oxides such as titanium oxide and zinc oxide, the difference in refractive index from air becomes large, and instead of preventing surface reflection, the reflectance is reversed. Is incompatible with anti-reflection applications.
  • polydimethylsiloxane silicone
  • the coating film has low hardness. There are problems such as inferior adhesiveness, difficulty in increasing the refractive index, and difficulty in designing a laminate, and use as an antireflection layer has been difficult.
  • an object of the present invention is to provide an outdoor installation device having an antireflection layer that exhibits excellent weather resistance in outdoor use and that can be formed on a substrate by a simple method.
  • Another object of the present invention is to provide an antireflection layer for a device for outdoor installation, which exhibits excellent weather resistance in outdoor use and can be formed on a substrate by a simple method.
  • the outdoor installation device of the present invention mainly comprises a layer (I) containing polyorganosiloxane (A) and metal oxide particles (B), polyorganosiloxane (C) and silica having a number average particle diameter of 1 to 100 nm. It has an antireflection layer comprising a laminate with a layer (II) containing hollow or porous particles (D) as a component.
  • the layer (I) has the following formula (1) R 1 n Si (OR 2 ) 4-n (1) (Wherein, R 1 represents a non-hydrolyzable organic group having 1 to 12 carbon atoms, optionally .R 2 be different be the same as each other if there are two or more are each independently Represents an alkyl group having 1 to 5 carbon atoms or an acyl group having 1 to 6 carbon atoms, and n is an integer of 0 to 3.) At least one silane compound (a1) selected from the group consisting of at least one organosilane, a hydrolyzate of the organosilane, and a condensate of the organosilane represented by the formula: Obtained from a cured product of the composition (I) containing,
  • the layer (II) is represented by the following formula (2) R 3 m Si (OR 4 ) 4-m (2) (Wherein, R 3 represents a non-hydrolyzable organic group having 1 to 12 carbon atoms, optionally .R 4 be
  • the silane compound (a1) of the composition (I) preferably contains a silane compound in which at least one of R 1 in the formula (1) is a phenyl group.
  • R 1 in the formula (1) is a phenyl group.
  • 5 to 80 mol% of all R 1 in the formula (1) is preferably a phenyl group.
  • Typical examples of the outdoor installation device on which the antireflection layer is formed include an outdoor installation display and a solar cell.
  • the antireflection layer for a device for outdoor installation of the present invention comprises a layer (I) containing a polyorganosiloxane (A) and metal oxide particles (B), a polyorganosiloxane (C) and a number average particle diameter of 1 to 100 nm. It consists of a laminated body with the layer (II) containing the hollow or porous particle
  • the present invention it is possible to obtain a device for outdoor installation having an antireflection layer that can be easily formed by means such as coating and has excellent weather resistance in outdoor use.
  • the device for outdoor installation of the present invention comprises a layer (I) containing polyorganosiloxane (A) and metal oxide particles (B) on the surface of the surface member of the device for outdoor installation as a base material, and polyorganosiloxane. It has an antireflection layer comprising a laminate of (C) and a layer (II) containing hollow or porous particles (D) mainly composed of silica having a number average particle diameter of 1 to 100 nm. .
  • polyorganosiloxane refers to a polymer having a Si—O bond as a skeleton.
  • the device for outdoor installation of the present invention is not particularly limited as long as antireflection properties are required on the surface thereof, for example, a display for outdoor installation, a solar cell, and the like. Can be mentioned.
  • a surface forming member that forms such a surface in a device for outdoor installation is used as a base material, and an antireflection layer is formed thereon.
  • the material of this base material is not particularly limited, and examples thereof include metals, ceramics, glass, resin, wood, slate and the like.
  • the resin examples include polycarbonate, polymethyl methacrylate, polystyrene / polymethyl methacrylate copolymer, polystyrene, polyester, polyolefin, triacetyl cellulose resin (TAC), diallyl carbonate of diethylene glycol (CR-39), ABS resin, and AS resin. , Polyamide, epoxy resin, melamine resin, cyclized polyolefin resin (for example, norbornene resin), and the like. By forming an antireflection layer on the surface of these substrates, an excellent antireflection effect can be obtained.
  • Layer (I) contains polyorganosiloxane (A) and metal oxide particles (B).
  • the layer (I) has a refractive index of 1.50 or more and less than 1.85, depending on the type of device for outdoor installation, and has a film thickness in the range of 0.01 ⁇ m to 10 ⁇ m.
  • composition (I) Such a layer (I) has, for example, the following formula (1): R 1 n Si (OR 2 ) 4-n (1) (Wherein, R 1 represents a non-hydrolyzable organic group having 1 to 12 carbon atoms, optionally .R 2 be different be the same as each other if there are two or more are each independently Represents an alkyl group having 1 to 5 carbon atoms or an acyl group having 1 to 6 carbon atoms, and n is an integer of 0 to 3.) And selected from the group consisting of hydrolyzate of organosilane (1) and condensate of organosilane (1). It can be obtained from a cured product of a composition comprising at least one silane compound (a1) and metal oxide particles (B) (hereinafter also referred to as “composition (I)”).
  • silane compound (a1) The silane compound (a1) used in the present invention is selected from the group consisting of organosilane (1) represented by the above formula (1), hydrolyzate of organosilane (1) and condensate of organosilane (1). At least one silane compound, and among these three silane compounds, only one silane compound may be used, or any two silane compounds may be used in combination, or You may mix and use all three types of silane compounds. Moreover, when using organosilane (1) as a silane compound (a1), organosilane (1) may be used individually by 1 type, or may use 2 or more types together.
  • the hydrolyzate and condensate of the organosilane (1) may be formed from one kind of organosilane (1) or may be formed by using two or more kinds of organosilane (1) in combination. Good.
  • the hydrolyzate of the organosilane (1) is sufficient if at least one of the OR 2 groups contained in 1 to 4 of the organosilane (1) is hydrolyzed, for example, one OR 2 group. In which two or more OR 2 groups are hydrolyzed, or a mixture thereof.
  • the organosilane (1) condensate is a product in which silanol groups in the hydrolyzate produced by hydrolysis of organosilane (1) are condensed to form Si—O—Si bonds.
  • the condensate is a product obtained by condensing a small part of silanol groups, a product obtained by condensing most (including all) silanol groups, Includes a mixture thereof.
  • R 1 is a non-hydrolyzable organic group having 1 to 12 carbon atoms, specifically, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group.
  • Alkyl groups such as heptyl group, octyl group, decyl group, 2-ethylhexyl group; Acyl groups such as acetyl group, propionyl group, butyryl group, valeryl group, benzoyl group, trioyl group, caproyl group; Vinyl group, allyl group, cyclohexyl group, phenyl group, epoxycycloalkyl group, 3,4-epoxycyclohexylethyl group, glycidyl group, 3-glycidyloxypropyl group, (meth) acryloxy group, 3- (meth) acryloxy Examples thereof include a propyl group, a ureido group, an amide group, a fluoroacetamide group, and an isocyanate group.
  • examples of R 1 include substituted derivatives of the above organic groups.
  • examples of the substituent of the substituted derivative of R 1 include a halogen atom, a substituted or unsubstituted amino group, a hydroxyl group, a mercapto group, an isocyanate group, a glycidoxy group, a 3,4-epoxycyclohexyl group, a (meth) acryloxy group, Examples thereof include a ureido group and an ammonium base.
  • a plurality of R 1 are present in formula (1), they may be the same or different.
  • R 2 that is an alkyl group having 1 to 5 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group, and R 2 that is an acyl group having 1 to 6 carbon atoms.
  • R 2 include an acetyl group, a propionyl group, a butyryl group, a valeryl group, and a caproyl group.
  • silane compounds substituted with four hydrolyzable groups include tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, tetraphenoxysilane, tetrabenzyloxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, etc.
  • a silane compound substituted with one non-hydrolyzable group and three hydrolyzable groups methyltrimethoxysilane, methyltriethoxysilane, methyltri-i-propoxysilane, methyltributoxysilane, ethyltrimethoxy Silane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, i-propyltrimethoxysilane, i-propyltriethoxysilane, ethyltri-i-propoxysilane, ethyltributoxysilane, n-butyl Trimethoxysilane, n-butyltriethoxysilane, n-pentyltrimethoxysilane, n-hexyltrimethoxysilane, n-heptyltrimethoxysilane, n-oc
  • silane compounds substituted with two non-hydrolyzable groups and two hydrolyzable groups dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, di-n-propyldimethoxysilane , Di-n-propyldiethoxysilane, di-i-propyldimethoxysilane, di-i-propyldiethoxysilane, di-n-butyldimethoxysilane, di-n-butyldiethoxysilane, di-n-pentyldimethoxy Silane, di-n-pentyldiethoxysilane, di-n-hexyldimethoxysilane, di-n-hexyldiethoxysilane, di-n-heptyldimethoxysilane, di-n-heptyldiethoxysilane, di-n-octyl
  • At least one of R 1 contains a silane compound which is a phenyl group, and in formula (1), the phenyl group is 5 to 80 mol% with respect to all R 1 . What is contained is preferable.
  • the organosilane having a phenyl group is a mole of the organosilane having a phenyl group in the formula (1) from the viewpoint of the storage stability of the composition (I) according to the present invention and the crack resistance of the layer (I) to be formed.
  • the concentration is preferably 5 to 80% with respect to all R 1 , more preferably 5 to 60%.
  • the composition (I) When the content of the organosilane having a phenyl group is too much more than the above range, the composition (I) When the content of the organosilane having a phenyl group is too smaller than the above range, the storage stability of the composition (I) and the crack resistance of the layer (I) to be formed may be inferior. is there.
  • one type of organosilane (1) may be used alone as the silane compound (a1), but two or more types of organosilane (1) may be used in combination.
  • the averaged n (hereinafter also referred to as “average value of n”) is.
  • it is 0.5 to 2.0, more preferably 0.6 to 1.8, and particularly preferably 0.7 to 1.6.
  • the average value of n is less than the lower limit, the storage stability of the composition (I) and the crack resistance of the layer (I) may be inferior, and when the upper limit is exceeded, the curability of the composition (I) is inferior.
  • the average value of n can be adjusted to the above range by appropriately using a monofunctional to tetrafunctional organosilane (1) and appropriately adjusting the blending ratio.
  • organosilane (1) may be used as it is as silane compound (a1), but hydrolyzate and / or condensate of organosilane (1) can be used.
  • organosilane (1) is used as a hydrolyzate and / or condensate
  • a product prepared by previously hydrolyzing and condensing the organosilane (1) may be used, but the composition (I) is prepared.
  • the hydrolyzate and / or condensate of organosilane (1) can also be prepared by hydrolyzing and condensing organosilane (1).
  • the conditions for hydrolyzing and condensing the silane compound (a1) represented by the above formula (1) are hydrolyzable by hydrolyzing at least a part of the organosilane (1) represented by the above formula (1). Although it does not specifically limit as long as it converts a group into a silanol group or causes a condensation reaction, it can be carried out as follows as an example.
  • the water used for hydrolysis of the organosilane (1) represented by the above formula (1) is preferably water purified by a method such as reverse osmosis membrane treatment, ion exchange treatment or distillation. By using such purified water, side reactions can be suppressed and the reactivity of hydrolysis can be improved.
  • the amount of water used is preferably from 0.1 to 3 mol, more preferably from 1 mol of the total amount of hydrolyzable groups (—OR 2 ) of the organosilane (1) represented by the above formula (1). Is in an amount of 0.3 to 2 mol, more preferably 0.5 to 1.5 mol. By using such an amount of water, the reaction rate of hydrolysis can be optimized.
  • Organic solvent Although it does not specifically limit as a solvent which can be used for hydrolysis and condensation of the organosilane (1) represented by the said Formula (1), Usually, for manufacture of the polymer (A1) mentioned later. The thing similar to the solvent used can be used.
  • a solvent include propyl alcohol, methyl ethyl ketone, methyl isobutyl ketone, ethylene glycol monoalkyl ether acetate, diethylene glycol dialkyl ether, propylene glycol monoalkyl ether, propylene glycol monoalkyl ether acetate, and propionic acid esters. .
  • propyl alcohol methyl isobutyl ketone, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate or methyl 3-methoxypropionate are preferable.
  • catalyst Although it does not specifically limit as a catalyst which can be used for the hydrolysis and condensation reaction of organosilane (1) represented by the said Formula (1), Usually, manufacture of the polymer (A1) mentioned later The same catalyst as used in the above can be used.
  • Such catalysts include acid catalysts (for example, hydrochloric acid, sulfuric acid, nitric acid, formic acid, oxalic acid, acetic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, phosphoric acid, acidic ion exchange resins, various Lewis acids), Basic catalysts (for example, ammonia, primary amines, secondary amines, tertiary amines, nitrogen-containing compounds such as pyridine; basic ion exchange resins; hydroxides such as sodium hydroxide; carbonates such as potassium carbonate Carboxylates such as sodium acetate; various Lewis bases] or alkoxides (for example, zirconium alkoxide, titanium alkoxide, aluminum alkoxide) and the like.
  • acid catalysts for example, hydrochloric acid, sulfuric acid, nitric acid, formic acid, oxalic acid, acetic acid, trifluoroacetic acid, trifluoromethanesulf
  • tetra-i-propoxyaluminum can be used as the aluminum alkoxide.
  • the amount of the catalyst used is preferably 0.2 mol or less, more preferably 0.00001 to 0.1 mol with respect to 1 mol of the hydrolyzable silane compound monomer from the viewpoint of promoting the hydrolysis reaction. It is.
  • the reaction temperature and reaction time in hydrolysis / condensation of the organosilane (1) represented by the above formula (1) are appropriately set.
  • the reaction temperature is preferably 40 to 200 ° C, more preferably 50 to 150 ° C.
  • the reaction time is preferably 30 minutes to 24 hours, more preferably 1 to 12 hours. By setting such reaction temperature and reaction time, the hydrolysis reaction can be performed most efficiently.
  • the hydrolyzable silane compound, water and catalyst may be added to the reaction system at a time to carry out the reaction in one step, or the hydrolyzable silane compound, water and catalyst may be added,
  • the hydrolysis and condensation reaction may be performed in multiple stages by adding them into the reaction system in several times.
  • the condensate of the organosilane (1) has a polystyrene-equivalent weight average molecular weight (hereinafter referred to as “Mw”) measured by gel permeation chromatography (GPC method), preferably 300 to 100,000. More preferably, it is 500 to 50,000.
  • Mw polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography
  • organosilane (1) condensate When used as the silane compound (a1) in the present invention, it may be prepared from the organosilane (1) or a commercially available organosilane condensate.
  • organosilane condensates include MKC silicate manufactured by Mitsubishi Chemical Corporation, ethyl silicate manufactured by Colcoat, silicone resins and silicone oligomers manufactured by Toray Dow Corning Silicone Co., Momentive Performance Examples include silicone resins and silicone oligomers manufactured by Materials Co., Ltd., silicone resins and silicone oligomers manufactured by Shin-Etsu Chemical Co., Ltd., and hydroxyl group-containing polydimethylsiloxane manufactured by Dow Corning Asia Co., Ltd. These condensates of commercially available organosilanes may be used as they are or may be further condensed.
  • the above silane compound (a1) and the vinyl polymer (a2) containing a specific silyl group are hydrolyzed / condensed for the purpose of improving the adhesion to the substrate.
  • the polymer (A1) comprises a catalyst containing water and a catalyst that promotes hydrolysis / condensation reaction in a mixture containing the silane compound (a1) and a vinyl polymer (a2) containing a silyl group. And added.
  • the vinyl polymer (a2) containing a specific silyl group used in the present invention (hereinafter also referred to as “specific silyl group-containing vinyl polymer (a2)”) is composed of a hydrolyzable group and / or a hydroxyl group. It contains a silyl group having a bonded silicon atom (hereinafter referred to as “specific silyl group”).
  • the specific silyl group-containing vinyl polymer (a2) preferably has a specific silyl group at the terminal and / or side chain of the polymer molecular chain.
  • the hydrolyzable group and / or hydroxyl group in the specific silyl group co-condenses with the silane compound (a1) to form the polymer (A1).
  • the composition containing this polymer (A1) and metal oxide particles (B) acts as a high refractive index layer, and further layer (II) described later is further coated An antireflection layer can be formed.
  • the specific silyl group has the following formula (3): (Wherein X represents a hydrolyzable group such as a halogen atom, an alkoxyl group, an acetoxy group, a phenoxy group, a thioalkoxyl group, an amino group, or a hydroxyl group, and R 5 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or Represents an aralkyl group having 1 to 10 carbon atoms, and i is an integer of 1 to 3.) It is preferable that it is group represented by these.
  • Such a specific silyl group-containing vinyl polymer (a2) can be produced, for example, by the following methods (I) and (II).
  • hydrosilane compound (I) A hydrosilane compound having a specific silyl group represented by the above formula (3) (hereinafter also simply referred to as “hydrosilane compound (I)”) is converted into a vinyl polymer having a carbon-carbon double bond (hereinafter referred to as “hydrosilane compound (I)”). , “Unsaturated vinyl polymer”)) in which the carbon-carbon double bond is subjected to an addition reaction.
  • hydrosilane compound (I) used in the above method (I) examples include halogenated silanes such as methyldichlorosilane, trichlorosilane, and phenyldichlorosilane; methyldimethoxysilane, methyldiethoxysilane, and phenyldimethoxy.
  • Alkoxysilanes such as silane, trimethoxysilane, triethoxysilane; Acyloxysilanes such as methyldiacetoxysilane, phenyldiacetoxysilane, triacetoxysilane; Methyldiaminoxysilane, triaminoxysilane, dimethylaminoxysilane And aminoxysilanes.
  • These hydrosilane compounds (I) can be used alone or in admixture of two or more.
  • the unsaturated vinyl polymer used in the method (I) is not particularly limited as long as it is a polymer having a hydroxyl group. For example, the following methods (I-1) and (I-2) Or it can manufacture by these combinations.
  • (I-2) Radical polymerization initiator having functional group ( ⁇ ) (for example, 4,4′-azobis-4-cyanovaleric acid Or a compound having a functional group ( ⁇ ) in both radical polymerization initiator and chain transfer agent (for example, 4,4′-azobis-4-cyanovaleric acid and dithioglycolic acid)
  • the vinyl monomer is (co) polymerized and one end of the polymer molecular chain or After synthesizing a (co) polymer having a functional group ( ⁇ ) derived from a radical polymerization initiator or chain transfer agent at the terminal, a functional group ( ⁇ ) is added to the functional group ( ⁇ ) in the (co) polymer.
  • a functional group ( ⁇ ) is added to the functional group ( ⁇ ) in the (co) polymer.
  • Examples of the reaction between the functional group ( ⁇ ) and the functional group ( ⁇ ) in the methods (I-1) and (I-2) include an esterification reaction between a carboxyl group and a hydroxyl group, and a carboxylic anhydride group and a hydroxyl group.
  • Vinyl monomer having a functional group ( ⁇ ) examples include (meth) acrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid and the like.
  • unsaturated carboxylic acids include unsaturated carboxylic acids; Unsaturated carboxylic acid anhydrides such as maleic anhydride and itaconic anhydride; Hydroxyl group-containing vinyl monomers such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, N-methylol (meth) acrylamide, 2-hydroxyethyl vinyl ether; Amino group-containing vinyl monomers such as 2-aminoethyl (meth) acrylate, 2-aminopropyl (meth) acrylate, 3-aminopropyl (meth) acrylate, 2-aminoethyl vinyl ether; 1,1,1-trimethylamine (meth) acrylimide, 1-methyl-1-ethylamine (meth) acrylimide, 1,1-dimethyl-1- (2-hydroxypropyl) amine (meth) acrylimide, 1,1 -Dimethyl-1
  • vinyl monomers that can be copolymerized with a vinyl monomer having a functional group ( ⁇ ) include, for example, styrene, ⁇ -methylstyrene, 4-methylstyrene.
  • UV-absorbing monomers such as 2-hydroxy-4- (methacryloyloxyethoxy) benzophenone and 2-hydroxy-4- (acryloyloxyethoxy) benzophenone; Examples include dicaprolactone and allyl (meth) acrylate. These can be used alone or in combination of two or more.
  • an unsaturated compound having a functional group ( ⁇ ) and a carbon / carbon double bond for example, a vinyl monomer similar to the vinyl monomer having a functional group ( ⁇ ), or the above hydroxyl group-containing vinyl type
  • An isocyanate group-containing unsaturated compound obtained by reacting a monomer and a diisocyanate compound in an equimolar amount can be exemplified.
  • Examples of other vinyl monomers copolymerized with the unsaturated silane compound include, for example, vinyl monomers having the functional group ( ⁇ ) exemplified in the method (I-1) and other vinyl monomers. A monomer etc. can be mentioned.
  • Examples of the method for producing the specific silyl group-containing vinyl polymer (a2) include, for example, a method in which each monomer is added at once and polymerized. For example, a method in which polymerization is carried out by adding them intermittently or a method in which a monomer is continuously added from the start of polymerization. These polymerization methods may be combined.
  • a preferred polymerization method includes solution polymerization.
  • the solvent used in the solution polymerization is not particularly limited as long as it can produce the specific silyl group-containing vinyl polymer (a2).
  • alcohols diethylene glycol alkyl ethers, ethylene glycol alkyl ether acetates, propylene Examples include glycol monoalkyl ethers, propylene glycol monoalkyl ether acetates, propylene glycol monoalkyl ether propionates, aromatic hydrocarbons, ethers, ketones and esters.
  • Examples of the alcohols include methanol, ethanol, n-propyl alcohol, i-propyl alcohol, n-butyl alcohol, sec-butyl alcohol, t-butyl alcohol, isobutyl alcohol, n-hexyl alcohol, n-octyl alcohol, and ethylene glycol.
  • Examples of diethylene glycol alkyl ethers include diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and diethylene glycol ethyl methyl ether.
  • Ethylene glycol alcohol examples include methyl cellosolve acetate, ethyl cellosolve acetate, ethylene glycol monobutyl ether acetate, and ethylene glycol monoethyl ether acetate.
  • Examples of propylene glycol monoalkyl ethers include propylene glycol monomethyl ether and propylene glycol monoethyl ether. Propylene glycol monopropyl ether, propylene glycol monobutyl ether, and the like.
  • propylene glycol monoalkyl ether acetates for example, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol
  • propylene glycol monoalkyl ether propionate propylene glycol monomethyl ether propionate, propylene glycol monoethyl ether propionate, propylene glycol monopropyl ether propionate, propylene glycol mono Examples include butyl ether propionate.
  • Aromatic hydrocarbons include benzene, toluene, xylene, etc.
  • ethers include tetrahydrofuran, dioxane, etc.
  • ketones include acetone, cyclohexanone, 2-heptanone, 4-hydroxy- 4-methyl-2-pentanone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone and the like.
  • esters include methyl acetate, ethyl acetate, propyl acetate, i-propyl acetate, butyl acetate, ethyl 2-hydroxypropionate, Methyl 2-hydroxy-2-methylpropionate, ethyl 2-hydroxy-2-methylpropionate, methyl hydroxyacetate, ethyl hydroxyacetate, butyl hydroxyacetate, methyl lactate, ethyl lactate, normal propyl lactate, isopropyl lactate Butyl lactate, methyl 3-hydroxypropionate, ethyl 3-hydroxypropionate, propyl 3-hydroxypropionate, butyl 3-hydroxypropionate, methyl 2-hydroxy-3-methylbutanoate, methyl methoxyacetate, ethyl methoxyacetate, Propyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, propyl ethoxyacetate
  • the specific silyl group-containing vinyl polymer (a2) in addition to the specific silyl group-containing vinyl polymer polymerized as described above, the specific silyl group-containing epoxy resin and the specific silyl group-containing polyester resin are used.
  • Other specific silyl group-containing vinyl polymers such as can also be used.
  • the specific silyl group-containing epoxy resin include epoxy groups in epoxy resins such as bisphenol A type epoxy resins, bisphenol F type epoxy resins, hydrogenated bisphenol A type epoxy resins, aliphatic polyglycidyl ethers, and aliphatic polyglycidyl esters.
  • the specific silyl group-containing polyester resin is produced, for example, by reacting a carboxyl group or a hydroxyl group contained in the polyester resin with an aminosilane having a specific silyl group, a carboxysilane, or a glycidylsilane. Can do.
  • the polystyrene-equivalent Mw of the specific silyl group-containing vinyl polymer (a2) measured by the GPC method is preferably 2,000 to 100,000, more preferably 3,000 to 50,000.
  • the specific silyl group-containing vinyl polymer (a2) can be used alone or in admixture of two or more.
  • the silane compound (a1) and the specific silyl group-containing vinyl polymer (a2) may be co-condensed.
  • it can be prepared by adding a hydrolysis / condensation reaction catalyst and water to a mixture of the silane compound (a1) and the specific silyl group-containing vinyl polymer (a2) and co-condensing it.
  • Wa1 is a complete hydrolysis condensate conversion value of the silane compound (a1)
  • Wa2 is a solid content conversion value of the specific silyl group-containing vinyl polymer (a2).
  • the completely hydrolyzed condensate means a product in which the —OR group of a silane compound is hydrolyzed to 100% to become a Si—OH group, and further completely condensed to a siloxane structure.
  • the polymer (A1) is preferably prepared by the following methods (1) to (2).
  • the polymer (A1) is prepared by co-condensing the silane compound (a1) and the specific silyl group-containing vinyl polymer (a2) in ⁇ 12 hours. Thereafter, if necessary, other additives such as a stability improver may be added.
  • the weight average molecular weight of the polymer (A1) obtained by the above method is usually 2,500 to 200,000, preferably 3,000 to 150,000, more preferably in terms of polystyrene measured by gel permeation chromatography. 3,500 to 100,000.
  • the silane compound (a1) or the specific silyl group-containing vinyl polymer (a2) is promoted by hydrolysis / condensation reaction. And a specific silyl group-containing vinyl polymer (a2).
  • a catalyst By adding a catalyst, the degree of cross-linking of the resulting polymer (A1) can be increased, and the molecular weight of the polysiloxane produced by the polycondensation reaction of the organosilane (1) is increased.
  • a layer (I) excellent in durability and the like can be obtained.
  • the addition of the catalyst promotes the reaction between the silane compound (a1) and the specific silyl group-containing vinyl polymer (a2), and sufficient reaction sites (alkoxy groups) are formed in the polymer (A1).
  • the catalyst used for promoting such hydrolysis / condensation reaction include basic compounds, acidic compounds, salt compounds, and organometallic compounds.
  • Basic compound examples include ammonia (including ammonia aqueous solution), organic amine compounds, alkali metals such as sodium hydroxide and potassium hydroxide, hydroxides of alkaline earth metals, alkalis such as sodium methoxide and sodium ethoxide. Examples thereof include metal alkoxides. Of these, ammonia and organic amine compounds are preferred.
  • Examples of the organic amine include alkylamine, alkoxyamine, alkanolamine, and arylamine.
  • Alkylamines include methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, N, N-dimethylamine, N, N-diethylamine, N, N-dipropylamine, N, N-dibutylamine, trimethylamine
  • alkylamines having an alkyl group having 1 to 4 carbon atoms such as triethylamine, tripropylamine, and tributylamine.
  • Alkoxyamines include methoxymethylamine, methoxyethylamine, methoxypropylamine, methoxybutylamine, ethoxymethylamine, ethoxyethylamine, ethoxypropylamine, ethoxybutylamine, propoxymethylamine, propoxyethylamine, propoxypropylamine, propoxybutylamine, butoxymethylamine , Alkoxyamines having an alkoxy group having 1 to 4 carbon atoms, such as butoxyethylamine, butoxypropylamine, and butoxybutylamine.
  • Alkanolamines include methanolamine, ethanolamine, propanolamine, butanolamine, N-methylmethanolamine, N-ethylmethanolamine, min, N-ethylethanolamine, N-propylethanolamine, N-butylethanolamine, N -Methylpropanolamine, N-ethylpropanolamine, N-propylpropanolamine, N-butylpropanolamine, N-methylbutanolamine, N-ethylbutanolamine, N-propylbutanolamine, N-butylbutanolamine, N, N -Dimethylmethanolamine, N, N-diethylmethanolamine, N, N-dipropylmethanolamine, N, N-dibutylmethanolamine, N, N-dimethylethanolamine, N, N- Ethylethanolamine, N, N-dipropylethanolamine, N, N-dibutyl
  • tetraalkylammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide; tetramethylethylenediamine, tetraethylethylenediamine Tetraalkylethylenediamine such as tetrapropylethylenediamine and tetrabutylethylenediamine; methylaminomethylamine, methylaminoethylamine, methylaminopropylamine, methylaminobutylamine, ethylaminomethylamine, ethylaminoethylamine, ethylaminopropylamine, ethylaminobutylamine, Propylaminomethylamine, propylamino Alkylaminoalkylamines such as ethyl
  • Such basic compounds may be used singly or in combination of two or more. Of these, triethylamine, tetramethylammonium hydroxide, and pyridine are preferable.
  • Examples of the acidic compound include organic acids and inorganic acids.
  • Examples of the organic acid include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oxalic acid, maleic acid, maleic anhydride, methylmalonic acid, adipic acid, Sebacic acid, gallic acid, butyric acid, meritic acid, arachidonic acid, mikimic acid, 2-ethylhexanoic acid, oleic acid, stearic acid, linoleic acid, linolenic acid, salicylic acid, benzoic acid, p-aminobenzoic acid, p-toluenesulfone Examples include acid, benzenesulfonic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid
  • Such acidic compounds may be used singly or in combination of two or more. Of these, maleic acid, maleic anhydride, methanesulfonic acid, and acetic acid are particularly preferred.
  • salt compound examples include naphthenic acid, octylic acid, nitrous acid, sulfurous acid, aluminate, and alkali metal salts such as carbonic acid.
  • organometallic compounds examples include organometallic compounds and / or partial hydrolysates thereof (hereinafter, organometallic compounds and / or partial hydrolysates thereof are collectively referred to as “organometallic compounds”).
  • organometallic compounds include the following formula (b): M (OR 7 ) r (R 8 COCHCOR 9 ) s (b) (Wherein M represents at least one metal atom selected from the group consisting of zirconium, titanium and aluminum, and R 7 and 8 each independently represent a methyl group, an ethyl group, an n-propyl group, Monovalent hydrocarbon groups having 1 to 6 carbon atoms such as i-propyl group, n-butyl group, sec-butyl group, t-butyl group, n-pentyl group, n-hexyl group, cyclohexyl group and phenyl group
  • R 9 represents a monovalent hydrocarbon group having 1 to 6 carbon atoms, or a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group, a sec-butoxy group, represents an alkoxy group having 1 to 16 carbon atoms
  • organometallic compounds such as tetramethoxy titanium, tetraethoxy titanium, tetra-i-propoxy titanium, tetra-n-butoxy titanium; methyl trimethoxy titanium, ethyl triethoxy titanium, n-propyl tri Methoxytitanium, i-propyltriethoxytitanium, n-hexyltrimethoxytitanium, cyclohexyltriethoxytitanium, phenyltrimethoxytitanium, 3-chloropropyltriethoxytitanium, 3-aminopropyltrimethoxytitanium, 3-aminopropyltriethoxytitanium 3- (2-aminoethyl) -aminopropyltrimethoxytitanium, 3- (2-aminoethyl) -aminopropyltriethoxytitanium, 3- (2-aminoethyl
  • organometallic compound (b) examples include tetra-n-butoxyzirconium, tri-n-butoxyethylacetoacetatezirconium, di-n-butoxybis (ethylacetoacetate) zirconium, n-butoxytris (ethylacetoacetate).
  • Organic zirconium compounds such as acetate) zirconium, tetrakis (n-propylacetoacetate) zirconium, tetrakis (acetylacetoacetate) zirconium, tetrakis (ethylacetoacetate) zirconium, di-n-butoxybis (acetylacetonato) zirconium;
  • Organic titanium compounds such as tetra-i-propoxy titanium, di-i-propoxy bis (ethylacetoacetate) titanium, di-i-propoxy bis (acetylacetate) titanium, di-i-propoxy bis (acetylacetone) titanium ; Tri-i-propoxy aluminum, di-i-propoxy ethyl acetoacetate aluminum, di-i-propoxy acetyl acetonato aluminum, i-propoxy bis (ethyl acetoacetate) aluminum, i-propoxy bis (acetyl acetonate) And organoa
  • organic tin compound for example, Carboxylic acid-type organotin compounds such as
  • Mercaptide-type organotin compounds such as
  • Sulfide-type organotin compounds such as;
  • Chloride-type organotin compounds such as; Reaction of organotin oxides such as (C 4 H 9 ) 2 SnO, (C 8 H 17 ) 2 SnO, and ester compounds such as silicates, dimethyl maleate, diethyl maleate, and dioctyl phthalate Products; and the like.
  • Such organometallic compounds may be used singly or in combination of two or more.
  • di-n-butoxy bis (acetylacetonato) zirconium, dioctyltin dioctyl maleate, di-i-propoxy bis (acetylacetonato) titanium, di-i-propoxyethylacetoacetate aluminum, Tris (ethyl acetoacetate) aluminum or a partial hydrolyzate thereof is preferred.
  • the said catalyst can also be used in mixture with another reaction retarder.
  • the amount of the catalyst used is usually 0.001 with respect to 100 parts by weight of the silane compound (a1) (in terms of a completely hydrolyzed condensate of organosilane (1)) when the catalyst is other than organometallic compounds.
  • To 100 parts by weight preferably 0.01 to 80 parts by weight, more preferably 0.1 to 50 parts by weight.
  • the catalyst is an organometallic compound, it is usually 100 parts by weight or less, preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the silane compound (a1) (in terms of complete hydrolysis condensate of organosilane (1)). 80 parts by weight, more preferably 0.5 to 50 parts by weight. If the amount of the catalyst used exceeds the upper limit, gelation may occur due to a decrease in the storage stability of the polymer (A1), or cracks may occur due to the degree of crosslinking of the layer (1) being too high.
  • Stability improver In the present invention, in order to improve the storage stability of the polymer (A1), it is preferable to add a stability improver as necessary after preparing the polymer (A1).
  • the stability improver used in the present invention is represented by the following formula (5).
  • R 10 COCH 2 COR 11 (5)
  • R 10 represents methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, sec-butyl group, t-butyl group, n-pentyl group, n-hexyl group, cyclohexyl group
  • R 1 represents a monovalent hydrocarbon group having 1 to 6 carbon atoms such as a phenyl group
  • R 11 is a monovalent hydrocarbon group having 1 to 6 carbon atoms similar to R 10 , or a methoxy group
  • And represents an alkoxyl group having 1 to 16 carbon atoms such as ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, sec-butoxy group, t-butoxy group, lauryloxy group, stearyloxy group).
  • organometallic compounds When organometallic compounds are used as the catalyst, it is preferable to add a stability improver represented by the above formula (5).
  • the stability improver By using the stability improver, the stability improver is coordinated to the metal atom of the organometallic compound, and this coordination is obtained between the silane compound (a1) and the specific silyl group-containing vinyl polymer (a2). It is considered that excessive cocondensation reaction can be suppressed and the storage stability of the resulting polymer (A1) can be further improved.
  • stability improvers include acetylacetone, methyl acetoacetate, ethyl acetoacetate, acetoacetate-n-propyl, acetoacetate-i-propyl, acetoacetate-n-butyl, acetoacetate-sec-butyl, Acetoacetic acid-t-butyl, hexane-2,4-dione, heptane-2,4-dione, heptane-3,5-dione, octane-2,4-dione, nonane-2,4-dione, 5-methyl Hexane-2,4-dione, malonic acid, oxalic acid, phthalic acid, glycolic acid, salicylic acid, aminoacetic acid, iminoacetic acid, ethylenediaminetetraacetic acid, glycol, catechol, ethylenediamine, 2,2-bipyridine, 1,10-phenanthroline, Diethylenetriamine, 2-ethanol
  • the amount of the stability improver used in the present invention is usually 2 moles or more, preferably 3 to 20 moles per mole of the organometallic compound of the organometallic compounds. If the amount of the stability improver is less than the above lower limit, the effect of improving the storage stability of the resulting composition may be insufficient.
  • water is added to a mixture of the silane compound (a1) and the specific silyl group-containing vinyl polymer (a2), and the silane compound (a1) and the specific silyl group-containing vinyl polymer (a2) Can be co-condensed to prepare the polymer (A1).
  • the amount of water added at this time is usually 0.1 to 1.0 mol, preferably 0.2 to 0.8 mol, based on 1 mol of all OR 2 groups in the silane compound (a1). More preferably, it is 0.25 to 0.6 mol.
  • the amount of water added is in the above range, gelation hardly occurs and the composition exhibits good storage stability. Further, when the amount of water is in the above range, a sufficiently crosslinked polymer (A1) is obtained, and by using such a composition containing the polymer (A1) and the metal oxide particles (B), Layer (I) can be obtained.
  • the silane compound (a1) and the specific silyl group-containing vinyl polymer (a2) may be hydrolyzed and condensed in an organic solvent.
  • the organic solvent used at the time of preparation of the silyl group-containing vinyl polymer (a2) can be used as it is.
  • an organic solvent can also be added as needed.
  • the organic solvent used in the preparation of the silyl group-containing vinyl polymer (a2) may be removed and an organic solvent may be newly added.
  • the organic solvent is added in such an amount that the solid content concentration in the preparation of the polymer (A1) is preferably in the range of 10 to 80% by weight, more preferably 15 to 60% by weight, and particularly preferably 20 to 50% by weight. can do.
  • an organic solvent is added. However, it may not be added.
  • the reactivity of the silane compound (a1) and the specific silyl group-containing vinyl polymer (a2) can be controlled by adjusting the solid content concentration during the preparation of the polymer (A1).
  • the reactivity between the silane compound (a1) and the specific silyl group-containing vinyl polymer (a2) may be lowered. If the solid content concentration at the time of preparing the polymer (A1) exceeds the above upper limit, it may be gelled.
  • the amount of solid content in solid content concentration said here is the usage-amount (Wa1) of the complete hydrolysis-condensation product conversion of a silane compound (a1), and the usage-amount of solid content conversion of a specific silyl group containing vinyl polymer (a2). This is the total amount of (Wa2).
  • the organic solvent is not particularly limited as long as the above components can be mixed uniformly.
  • Alcohols and diethylene glycol alkyl exemplified as the organic solvent used in the production of the specific silyl group-containing vinyl polymer (a2).
  • Ethers, ethylene glycol alkyl ether acetates, propylene glycol monoalkyl ethers, propylene glycol monoalkyl ether acetates, propylene glycol monoalkyl ether propionates, aromatic hydrocarbons, ethers, ketones, esters, etc. Can be mentioned.
  • these organic solvents may be used individually by 1 type, or may mix and use 2 or more types.
  • Metal oxide particles (B) The composition (I) of the present invention further contains metal oxide particles (B).
  • the metal oxide particles are not particularly limited as long as they are metal element oxide particles. For example, antimony oxide, zirconium oxide, anatase type titanium oxide, rutile type titanium oxide, brookite type titanium oxide, zinc oxide.
  • Tantalum oxide indium oxide, hafnium oxide, tin oxide, niobium oxide, aluminum oxide, cerium oxide, scandium oxide, yttrium oxide, lanthanum oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, oxide Dysprosium, holmium oxide, erbium oxide, thulium oxide, ytterbium oxide, lutetium oxide, calcium oxide, gallium oxide, lithium oxide, strontium oxide, tungsten oxide, barium oxide, magnesium oxide Neshiumu, and these complexes, as well as indium - metal oxides such as oxides of the metal 2 or more complex such as tin composite oxides.
  • metal oxide particles (B) composite oxide particles of silicon oxide and metal oxide or oxide particles in which the surface of the metal oxide is coated with silicon oxide can also be used.
  • a metal oxide particle (B) individually by 1 type or in mixture of 2 or more types.
  • the metal oxide particles (B) can be appropriately selected according to the function to be imparted.
  • anatase-type titanium oxide, rutile-type titanium oxide, zirconium oxide, aluminum oxide, and zinc oxide can be preferably used.
  • a powder or a solvent-based sol or colloid dispersed in a polar solvent such as isopropyl alcohol, propylene glycol monomethyl ether, methyl ethyl ketone, methyl isobutyl ketone, or a nonpolar solvent such as toluene It can also be used in the form.
  • the metal oxide particles (B) before addition may be aggregated to form secondary particles.
  • the primary particle diameter of these metal oxide particles (B) is usually 0.0001 to 1 ⁇ m, more preferably 0.001 to 0.5 ⁇ m, and particularly preferably 0.002 to 0.2 ⁇ m.
  • its solid content concentration is usually more than 0% by weight and 50% by weight or less, preferably 0.01% by weight or more and 40% by weight or less.
  • the metal oxide particles (B) are used in the form of sol or colloid, they can be dispersed in the solution by a stirring blade or the like.
  • dispersion in the case of using powder in the metal oxide particles (B) is ball mill, sand mill (bead mill, high shear bead mill), homogenizer, ultrasonic homogenizer, nanomizer, propeller mixer, high shear mixer, paint shaker, planetary
  • Known dispersing machines such as a mixer, a two-roll, a three-roll, a kneader roll and the like can be used.
  • a highly dispersed fine particle dispersion ball mill, a sand mill (bead mill, a high shear bead mill), and a paint shaker are preferably used. .
  • the amount of the metal oxide particles (B) used is generally more than 10% by weight and 90% by weight or less, preferably 20% by weight or more and 80% by weight based on the total solid weight in the composition (I). % Or less.
  • the amount of the metal oxide particles (B) used is larger than the above weight, the storage stability of the composition (I) may be inferior.
  • the layer (II) is formed on the layer (I). ) May not be sufficiently reduced, and the crack resistance of the layer (I) may be inferior.
  • a curing catalyst can also be added to the composition (I) used in the present invention.
  • a curing catalyst include the basic compound, acidic compound, salt compound, and organometallic compound used in preparing the polymer (A1).
  • a basic compound may be used individually by 1 type, or may be used in mixture of 2 or more types, and triethylamine, tetramethylammonium hydroxide, and pyridine are particularly preferable.
  • An acidic compound may be used individually by 1 type, or may be used in mixture of 2 or more types, Maleic acid, maleic anhydride, methanesulfonic acid, and acetic acid are especially preferable.
  • the organometallic compounds may be used singly or in combination of two or more, such as di-n-butoxy bis (acetylacetonate) zirconium, dioctyltin dioctyl maleate, di-i- Propoxy bis (acetylacetonate) titanium, di-i-propoxy ethyl acetoacetate aluminum, tris (ethyl acetoacetate) aluminum, or partial hydrolysates thereof are preferred.
  • Organic solvent, water An organic solvent and water may be further added to the composition (I) used in the present invention to adjust the solid content concentration.
  • organic solvent what was illustrated by the term of the said polymer (A1) preparation can be used.
  • a leveling agent In the composition (I) used in the present invention, a leveling agent, a wettability improver, a surfactant, a plasticizer, an ultraviolet absorber, an antioxidant, an antistatic agent, a silane coupling agent, ( Inorganic fillers other than the component B) can be added.
  • composition (I) used in the present invention comprises a powder of metal oxide particles (B) on the silane compound (a1) and / or the polymer (A1). It is obtained by adding a body and performing a dispersion
  • a solvent-based sol or colloid is used as the metal oxide particles (B), and a stirring blade or the like is used.
  • a ball mill, a bead mill, or a paint shaker is used when powder particles are used. Etc. can be used.
  • composition (I) may contain the above-mentioned organic solvent, water, stability improver, curing catalyst, and optional additive components as necessary, and these may be added before the dispersion step. It may be added after the dispersion step.
  • the metal oxide particle (B) works also as a curing catalyst of composition (I)
  • composition (I) used in the present invention is applied to a substrate which is a surface member of a device for outdoor installation, and is heated and dried.
  • the application method is not particularly limited, but brush coating, brush coating, bar coater, knife coater, doctor blade, screen printing, spray coating, spin coater, applicator, roll coater, flow coater, centrifugal coater, ultrasonic coater , (Micro) gravure coater, dip coating, flexographic printing, potting, and the like can be used, and they may be transferred onto another substrate (transfer substrate) and transferred.
  • Heat drying is preferably performed at a temperature in the range of 50 to 250 ° C. for 0.5 to 180 minutes.
  • a normal oven is used for heat drying, but a hot air type, a convection type, an infrared type, or the like can be used.
  • the condensation reaction proceeds in the layer, and a stronger layer can be obtained. It is desirable that the heating temperature is high, the heating time is long, the residual solvent is small, and the condensation reaction further proceeds.
  • the heating process may be performed through a plurality of stages, or may be performed in one stage. Depending on the content and boiling point of the solvent to be used and the heating conditions, the surface of the obtained layer may be rough.
  • the layer (II) includes a polyorganosiloxane (C) and hollow or porous particles (D) mainly composed of silica having a number average particle diameter of 1 to 100 nm.
  • the layer (II) has a refractive index of 1.25 or more and less than 1.50 depending on the type of device for outdoor installation, and has a film thickness in the range of 0.01 ⁇ m to 10 ⁇ m.
  • composition (II) Such a layer (II) has, for example, the following formula (2): R 3 m Si (OR 4 ) 4-m (2) (Wherein, R 3 represents a monovalent organic group having 1 to 12 carbon atoms, optionally different from one another the same if there are two or more .R 4 each independently And represents an alkyl group having 1 to 5 carbon atoms or an acyl group having 1 to 6 carbon atoms, m is an integer of 0 to 3.) At least one organosilane (hereinafter also referred to as “organosilane (2)”), a hydrolyzate of organosilane (2), and a condensate of organosilane (2). It can be obtained from a cured product of a composition containing at least one silane compound (c1) (hereinafter referred to as “composition (II)”).
  • the silane compound (c1) used in the present invention is at least one silane compound selected from the group consisting of the organosilane (2), the hydrolyzate of organosilane (2), and the condensate of organosilane (2). Of these three silane compounds, only one silane compound may be used, any two silane compounds may be mixed, or all three silane compounds may be mixed. May be used. Moreover, when using organosilane (2) as a silane compound (c1), organosilane (2) may be used individually by 1 type, or may use 2 or more types together. The hydrolyzate and condensate of the organosilane (2) may be formed from one type of organosilane (2) or may be formed by using two or more types of organosilane (2) in combination. Good.
  • the hydrolyzate of the organosilane (2) is sufficient if at least one of the OR 2 groups contained in 1 to 4 of the organosilane (2) is hydrolyzed, for example, one OR 2 group. In which two or more OR 2 groups are hydrolyzed, or a mixture thereof.
  • the organosilane (2) condensate is a product in which a silanol group in a hydrolyzate produced by hydrolysis of organosilane (2) is condensed to form a Si—O—Si bond.
  • the condensate may be one obtained by condensing a small part of silanol groups, one containing most (including all) silanol groups, These mixtures are also included.
  • R 3 is a non-hydrolyzable organic group having 1 to 12 carbon atoms, specifically, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group.
  • Alkyl groups such as heptyl group, octyl group, decyl group, 2-ethylhexyl group; Acyl groups such as acetyl group, propionyl group, butyryl group, valeryl group, benzoyl group, trioyl group, caproyl group; Examples thereof include a vinyl group, an allyl group, a cyclohexyl group, a phenyl group, an epoxycycloalkyl group, a glycidyl group, a (meth) acryloxy group, a ureido group, an amide group, a fluoroacetamide group, and an isocyanate group.
  • examples of R 3 include substituted derivatives of the above organic groups.
  • examples of the substituent of the substituted derivative of R 3 include a substituted or unsubstituted amino group, hydroxyl group, mercapto group, isocyanate group, glycidoxy group, 3-glycidyloxypropyl group, 3,4-epoxycyclohexyl group, 3,4 -Epoxycyclohexylethyl group, (meth) acryloxy group, 3- (meth) acryloyloxypropyl group, ureido group, ammonium base and the like.
  • R 3 When a plurality of R 3 are present in the formula (2), they may be the same or different.
  • R 4 that is an alkyl group having 1 to 5 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and the like, and R that is an acyl group having 1 to 6 carbon atoms.
  • Examples of 2 include an acetyl group, a propionyl group, a butyryl group, a valeryl group, and a caproyl group.
  • silane compounds substituted with four hydrolyzable groups include tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, tetraphenoxysilane, tetrabenzyloxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, etc. ;
  • silane compounds substituted with two non-hydrolyzable groups and two hydrolyzable groups dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, di-n-propyldimethoxysilane , Di-n-propyldiethoxysilane, di-i-propyldimethoxysilane, di-i-propyldiethoxysilane, di-n-butyldimethoxysilane, di-n-butyldiethoxysilane, di-n-pentyldimethoxy Silane, di-n-pentyldiethoxysilane, di-n-hexyldimethoxysilane, di-n-hexyldiethoxysilane, di-n-heptyldimethoxysilane, di-n-heptyldiethoxysilane, di-n-octyl
  • silane compound substituted with three non-hydrolyzable groups and one hydrolyzable group tributylmethoxysilane, trimethylmethoxysilane, trimethylethoxysilane, tributylethoxysilane, triphenylmethoxysilane, triphenylethoxysilane Etc., respectively.
  • R 3 is preferably an organic group containing no fluorine.
  • fluorine for the purpose of the present invention for reducing the reflectance as a laminate, it is advantageous to introduce fluorine into the layer (II) to lower the refractive index and increase the refractive index difference from the layer (I).
  • a functional group containing fluorine acts in a direction to reduce the interaction between molecules. Accordingly, when fluorine is introduced into the polymer, there is a problem that the coating film becomes soft and the hardness decreases.
  • one type of organosilane (2) may be used alone as the silane compound (c1), but two or more types of organosilane (2) may be used in combination.
  • the averaged n (hereinafter also referred to as “average value of n”) is.
  • it is 0.5 to 2.0, more preferably 0.6 to 1.8, and particularly preferably 0.7 to 1.6.
  • the storage stability of the composition (II) may be inferior, and when it exceeds the above upper limit, the curability of the layer (II) may be inferior.
  • the average value of n can be adjusted to the above range by appropriately using a monofunctional to tetrafunctional organosilane (2) and appropriately adjusting the blending ratio thereof.
  • organosilane (2) may be used as it is as silane compound (c1), but hydrolyzate and / or condensate of organosilane (2) can be used.
  • organosilane (2) is used as a hydrolyzate and / or a condensate
  • a product prepared by previously hydrolyzing and condensing the organosilane (2) may be used, but the composition (II) is prepared.
  • the hydrolyzate and / or condensate of organosilane (2) can also be prepared by hydrolyzing and condensing organosilane (2).
  • the conditions for hydrolyzing and condensing the silane compound (c1) represented by the above formula (2) are hydrolyzable by hydrolyzing at least a part of the organosilane (2) represented by the above formula (2). Although it does not specifically limit as long as it converts a group into a silanol group or causes a condensation reaction, it can be carried out as an example as follows.
  • the water used for hydrolysis of the organosilane (2) represented by the above formula (2) is preferably water purified by a method such as reverse osmosis membrane treatment, ion exchange treatment or distillation. By using such purified water, side reactions can be suppressed and the reactivity of hydrolysis can be improved.
  • the amount of water used is preferably from 0.1 to 3 mol, more preferably from 1 mol of the total amount of hydrolyzable groups (—OR 2 ) of the organosilane (2) represented by the above formula (2). Is in an amount of 0.3 to 2 mol, more preferably 0.5 to 1.5 mol. By using such an amount of water, the reaction rate of hydrolysis can be optimized.
  • Organic solvent Although it does not specifically limit as a solvent which can be used for hydrolysis and condensation of the organosilane (2) represented by the said Formula (2), Usually, in manufacture of the polymer (A1) mentioned above. The thing similar to the solvent used can be used.
  • a solvent include propyl alcohol, methyl ethyl ketone, methyl isobutyl ketone, ethylene glycol monoalkyl ether acetate, diethylene glycol dialkyl ether, propylene glycol monoalkyl ether, propylene glycol monoalkyl ether acetate, and propionic acid esters. .
  • propyl alcohol methyl isobutyl ketone, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate or methyl 3-methoxypropionate are preferable.
  • catalyst Although it does not specifically limit as a catalyst which can be used for the hydrolysis and condensation reaction of organosilane (2) represented by the said Formula (2), Usually, manufacture of the polymer (A1) mentioned above The same catalyst as that used in the above can be used.
  • Such catalysts include acid catalysts (for example, hydrochloric acid, sulfuric acid, nitric acid, formic acid, oxalic acid, acetic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, phosphoric acid, acidic ion exchange resins, various Lewis acids), Basic catalysts (for example, ammonia, primary amines, secondary amines, tertiary amines, nitrogen-containing compounds such as pyridine; basic ion exchange resins; hydroxides such as sodium hydroxide; carbonates such as potassium carbonate Carboxylates such as sodium acetate; various Lewis bases] or alkoxides (for example, zirconium alkoxide, titanium alkoxide, aluminum alkoxide) and the like.
  • acid catalysts for example, hydrochloric acid, sulfuric acid, nitric acid, formic acid, oxalic acid, acetic acid, trifluoroacetic acid, trifluoromethanesulf
  • tetra-i-propoxyaluminum can be used as the aluminum alkoxide.
  • the amount of the catalyst used is preferably 0.2 mol or less, more preferably 0.00001 to 0.1 mol with respect to 1 mol of the hydrolyzable silane compound monomer from the viewpoint of promoting the hydrolysis reaction. It is.
  • the reaction temperature and reaction time in hydrolysis / condensation of the organosilane (2) represented by the above formula (2) are appropriately set.
  • the reaction temperature is preferably 40 to 200 ° C, more preferably 50 to 150 ° C.
  • the reaction time is preferably 30 minutes to 24 hours, more preferably 1 to 12 hours. By setting such reaction temperature and reaction time, the hydrolysis reaction can be performed most efficiently.
  • the hydrolyzable silane compound, water and catalyst may be added to the reaction system at a time to carry out the reaction in one step, or the hydrolyzable silane compound, water and catalyst may be added,
  • the hydrolysis and condensation reaction may be performed in multiple stages by adding them into the reaction system in several times.
  • the condensate of the organosilane (2) has a polystyrene-equivalent weight average molecular weight (hereinafter referred to as “Mw”) measured by a gel permeation chromatography method (GPC method), preferably 300 to 100,000. More preferably, it is 500 to 50,000.
  • Mw polystyrene-equivalent weight average molecular weight
  • organosilane (2) condensate When used as the silane compound (c1) in the present invention, it may be prepared from the organosilane (2) or a commercially available organosilane condensate.
  • organosilane condensates include MKC silicate manufactured by Mitsubishi Chemical Corporation, ethyl silicate manufactured by Colcoat, silicone resins and silicone oligomers manufactured by Toray Dow Corning Silicone Co., Momentive Performance Examples include silicone resins and silicone oligomers manufactured by Materials Co., Ltd., silicone resins and silicone oligomers manufactured by Shin-Etsu Chemical Co., Ltd., and hydroxyl group-containing polydimethylsiloxane manufactured by Dow Corning Asia Co., Ltd. These condensates of commercially available organosilanes may be used as they are or may be further condensed.
  • the composition (II) of the present invention contains hollow or porous particles (D) mainly composed of silica having a number average particle diameter of 1 to 100 nm.
  • the particle size is measured with a transmission electron microscope.
  • a cured product obtained by curing the composition of the present invention can exhibit a low refractive index and scratch resistance.
  • D As a particle, a well-known thing can be used, Moreover, the shape is not restricted spherical and may be indefinite. Colloidal silica having a solid content of 5 to 40% by weight is preferred.
  • the dispersion medium is preferably water or an organic solvent.
  • organic solvents include alcohols such as methanol, isopropyl alcohol, ethylene glycol, butanol and ethylene glycol monopropyl ether; ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene; dimethylformamide and dimethyl Examples include amides such as acetamide and N-methylpyrrolidone; esters such as ethyl acetate, butyl acetate and ⁇ -butyrolactone; and organic solvents such as ethers such as tetrahydrofuran and 1,4-dioxane.
  • the amount of component (D) is usually 10 to 80% by weight, preferably 20 to 80% by weight, more preferably 30 to 80% by weight based on the total amount of the composition other than the organic solvent.
  • the amount of particles means solid content, and when the particles are used in the form of a solvent-dispersed sol, the amount of the solvent does not include the amount of solvent.
  • the amount of the metal oxide particles (D) used is less than the above weight, the reflectance, luminous reflectance, and scratch resistance of the resulting antireflection layer may be inferior.
  • the particles (D) containing silica as a main component can be obtained by subjecting the particle surface to surface treatment such as chemical modification, for example, hydrolyzable silicon compounds having one or more alkyl groups in the molecule. Or what contains the hydrolyzate etc. can be made to react.
  • hydrolyzable silicon compounds include trimethylmethoxysilane, tributylmethoxysilane, dimethyldimethoxysilane, dibutyldimethoxysilane, methyltrimethoxysilane, butyltrimethoxysilane, octyltrimethoxysilane, dodecyltrimethoxysilane, 1,1.
  • Hydrolyzable silicon compounds having one or more reactive groups in the molecule include, for example, urea propyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethylsilane having NH 2 groups as reactive groups.
  • a preferred compound is 3-mercaptopropyltrimethoxysilane.
  • the surface treatment of the particles (D) containing silica as a main component can be performed with an organic compound containing a polymerizable unsaturated group such as an acryloyl group.
  • composition (II) is laminated on the previously formed layer (I) and cured to form a layer (II), whereby a low refractive index layer is formed, and this laminate forms an antireflection layer.
  • Compound (E) having a polydimethylsiloxane skeleton In the composition (II) of the present invention, a compound (E) having a polydimethylsiloxane skeleton can be blended as necessary.
  • the compound (E) having a polydimethylsiloxane skeleton can improve surface slipperiness, improve the scratch resistance of the cured coating film, and can impart antifouling properties.
  • the compound (E) having these polydimethylsiloxanes preferably has a high molecular weight, and further preferably has a reactive group such as a (meth) acryloyl group, a hydroxyl group, an epoxy group, a carboxyl group, or an amino group.
  • Silaplane FM-4411, FM-4421, FM-4425, FM-7711, FM-7721, FM-7725, FM-0411, FM-0421, FM-0425, FM-DA11, FM -DA21, FM-DA26, FM0711, FM0721, FM-0725, TM-0701, TM-0701T (manufactured by Chisso Corp.), UV3500, UV3510, UV3530 (manufactured by Big Chemie Japan Corp.), YF3800, XF3905, YF3057 YF3807, YF3802, YF3897, XC96-723 (made by Momentive Performance Materials Japan), BY16-004, SF8428 (made by Toray Dow Corning Silicone Co., Ltd.), VPS-1001 (made by Wako Pure Chemical Industries, Ltd.) Rad 2500, 2600 (manufactured by TEGO), KF-101, X-22-2046, X-22-16
  • the amount of component (E) added is usually 0.01 to 20% by weight based on the total amount of the composition excluding the organic solvent. The reason for this is that when the addition amount is less than 0.01% by weight, the effect of improving the slipperiness cannot be sufficiently obtained. On the other hand, when the addition amount exceeds 20% by weight, the coating strength decreases due to an excessive amount of components. This is because the coatability deteriorates. For this reason, the amount of component (E) added is more preferably 0.1 to 15% by weight, and even more preferably 0.5 to 10% by weight.
  • a curing catalyst can also be added to the composition (II) used in the present invention.
  • a curing catalyst include the basic compound, acidic compound, salt compound, and organometallic compound used in preparing the polymer (A1).
  • a basic compound may be used individually by 1 type, or may be used in mixture of 2 or more types, and triethylamine, tetramethylammonium hydroxide, and pyridine are particularly preferable.
  • An acidic compound may be used individually by 1 type, or may be used in mixture of 2 or more types, Maleic acid, maleic anhydride, methanesulfonic acid, and acetic acid are especially preferable.
  • the organometallic compounds may be used singly or in combination of two or more, such as di-n-butoxy bis (acetylacetonate) zirconium, dioctyltin dioctyl maleate, di-i- Propoxy bis (acetylacetonate) titanium, di-i-propoxy ethyl acetoacetate aluminum, tris (ethyl acetoacetate) aluminum, or partial hydrolysates thereof are preferred.
  • Organic solvent water
  • An organic solvent or water may be further added to the composition (II) used in the present invention to adjust the solid content concentration.
  • the organic solvent is not particularly limited.
  • alcohols diethylene glycol alkyl ethers, ethylene glycol alkyl ether acetates, propylene glycol monoalkyl ethers, propylene glycol monoalkyl ether acetates, propylene glycol monoalkyl ether propionate.
  • Aromatic hydrocarbons, ethers, ketones, esters and the like are examples of the organic solvent.
  • Examples of the alcohols include methanol, ethanol, n-propyl alcohol, i-propyl alcohol, n-butyl alcohol, sec-butyl alcohol, t-butyl alcohol, isobutyl alcohol, n-hexyl alcohol, n-octyl alcohol, and ethylene glycol.
  • Examples of diethylene glycol alkyl ethers include diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and diethylene glycol ethyl methyl ether.
  • Ethylene glycol alcohol examples include methyl cellosolve acetate, ethyl cellosolve acetate, ethylene glycol monobutyl ether acetate, and ethylene glycol monoethyl ether acetate.
  • Examples of propylene glycol monoalkyl ethers include propylene glycol monomethyl ether and propylene glycol monoethyl. Ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether and the like.
  • propylene glycol monoalkyl ether acetates examples include propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene group
  • propylene glycol monoalkyl ether propionate propylene glycol monomethyl ether propionate
  • propylene glycol monoethyl ether propionate propylene glycol monopropyl ether propionate
  • propylene glycol mono Examples include butyl ether propionate.
  • Aromatic hydrocarbons include benzene, toluene, xylene, etc.
  • ethers include tetrahydrofuran, dioxane, etc.
  • ketones include acetone, cyclohexanone, 2-heptanone, 4-hydroxy- 4-methyl-2-pentanone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone and the like.
  • esters include methyl acetate, ethyl acetate, propyl acetate, i-propyl acetate, butyl acetate, ethyl 2-hydroxypropionate, Methyl 2-hydroxy-2-methylpropionate, ethyl 2-hydroxy-2-methylpropionate, methyl hydroxyacetate, ethyl hydroxyacetate, butyl hydroxyacetate, methyl lactate, ethyl lactate, normal propyl lactate, isoprolactide Pill, butyl lactate, methyl 3-hydroxypropionate, ethyl 3-hydroxypropionate, propyl 3-hydroxypropionate, butyl 3-hydroxypropionate, methyl 2-hydroxy-3-methylbutanoate, methyl methoxyacetate, ethyl methoxyacetate Propyl methoxyacetate, butyl methoxyacetate, methyl ethoxy acetate, ethyl ethoxy acetate, propyl ethoxy
  • composition (II) used in the present invention a leveling agent, a wettability improver, a surfactant, a plasticizer, an ultraviolet absorber, an antioxidant, an antistatic agent, a silane coupling agent, an inorganic, if necessary Fillers can be added.
  • composition (II) used in the present invention is a silane compound (c1) that is hollow or mainly composed of silica having a silica number average particle diameter of 1 to 100 nm. It is obtained by adding porous particles (D) and performing a mixing and / or dispersion step.
  • a method such as a stirring blade is used when (i) a solvent-based sol or colloid is used as the hollow or porous particle (D) mainly composed of silica having a number average particle diameter of 1 to 100 nm.
  • a technique such as a ball mill, a bead mill, or a paint shaker can be used.
  • the composition (II) may contain the organic solvent, water, stability improver, curing catalyst, and optional additive components, which are added before the dispersion step. It may be added after the dispersion step.
  • composition (II) used in the present invention is applied onto the layer (I) formed on the base material and dried by heating.
  • the layer (II) has a lower refractive index than the layer (I), and antireflection ability can be imparted by forming such a laminate.
  • the coating method of the composition (II) is not particularly limited, but brush coating, brush coating, bar coater, knife coater, doctor blade, screen printing, spray coating, spin coater, applicator, roll coater, flow coater, Techniques such as centrifugal coater, ultrasonic coater, (micro) gravure coater, dip coating, flexographic printing, and potting can be used, and they may be used after being applied on another substrate (transfer substrate). . Heat drying is preferably performed at a temperature in the range of 50 to 250 ° C. for 0.5 to 180 minutes.
  • a normal oven is used for heat drying, but a hot air type, a convection type, an infrared type, or the like can be used. While removing the solvent by heating, the condensation reaction proceeds in the layer, and a stronger layer can be obtained. It is desirable that the heating temperature is high, the heating time is long, the residual solvent is small, and the condensation reaction further proceeds.
  • the heating process may be performed through a plurality of stages, or may be performed in one stage. Depending on the content and boiling point of the solvent to be used and the heating conditions, the surface of the obtained layer may be rough. Therefore, it is desirable to examine an appropriate heating step in advance.
  • the antireflection layer formed by the present invention has a siloxane structure as a main skeleton, and is excellent in heat resistance, light resistance, and weather resistance as compared with a normal organic polymer. Moreover, since it can manufacture by application
  • the antireflection layer obtained in the present invention is useful as an antireflection film, and can be used indoors, but is particularly used for large screen display devices used outdoors, car navigation systems, mobile phones, video monitors, Various displays such as cathode ray tube display, liquid crystal display, plasma display, organic EL display, rear projection display, crystalline silicon type, amorphous silicon type, organic thin film type, dye sensitized type, compound semiconductor type, polymer type, quantum dot type It can be suitably used as an antireflection film for the glue of various solar cells. In particular, it is useful for devices for outdoor installation, especially for devices for outdoor installation such as digital signage.
  • composition kit comprising the above composition (I) and composition (II) is constructed, and the kit is made anti-reflective on the surface using the surface member of the device for outdoor installation as a base material. Can be used to form a layer.
  • composition to be measured was applied on a silicon wafer by spin coating so that the coating film thickness was 1 ⁇ m, and baked and dried in an oven as a sample.
  • a prism coupler apparatus Metal The refractive index at 633 nm was measured by a company manufactured 2010).
  • Initial luminous reflectance (Y value) measurement Assuming the use of an outdoor display, the initial luminous reflectance (Y value) is measured using a spectrophotometer (manufactured by JASCO Corporation, V-670). Analysis was performed in the wavelength range of ⁇ 780 nm. ⁇ : Y value is less than 1% ⁇ : Y value is 1% or more and less than 1.5% ⁇ : Y value is 1.5% or more
  • Anti-reflection layer standard ⁇ : No change in appearance (crack, whitening, etc.) up to 2000 hours, reflectance is less than 2% ⁇ : No change in appearance (crack, whitening, etc.) up to 1000 hours, reflectance is less than 2% ⁇ : Change in appearance (cracks) No whitening, etc.), but Y value is 2% or more and less than 4%.
  • Pencil Hardness (Surface Hardness) Test Pencil hardness (surface hardness) was measured by the 8.4.1 pencil scratch test of JIS K-5400-1990 for the sample to be measured.
  • a solution prepared by dissolving 3 parts of azobisisobutyronitrile in 8 parts of butyl acetate was added dropwise to this mixture over 30 minutes, and then reacted at 80 ° C. for 5 hours. After cooling, 40 parts of methyl ethyl ketone was added to obtain a polymer (2) solution having a solid content concentration of 40% and Mw of 15000.
  • Preparation Example 5 To 17 parts of the polymer (3) solution of the present invention, 8 parts of zirconium oxide powder having a primary particle diameter of 10 nm, 25 parts of methyl isobutyl ketone and 0.01 part of triethylamine are added and dispersed for 4 hours with a paint shaker. A composition (X-5) having a partial concentration of 25% by weight was obtained. The storage stability was A.
  • Preparation Example 7 To 15 parts of the polymer (4) solution of the present invention, 8 parts of zirconium oxide powder having a primary particle diameter of 10 nm, 28 parts of methyl isobutyl ketone and 0.01 part of triethylamine are added and dispersed in a paint shaker for 4 hours. A composition (X-7) having a partial concentration of 25% by weight was obtained. The storage stability was A.
  • Preparation Example 8 To 15 parts of the polymer (5) solution of the present invention, 8 parts of titanium oxide powder having a primary particle diameter of 10 nm, 28 parts of methyl isobutyl ketone and 0.01 part of triethylamine are added and dispersed for 4 hours with a paint shaker. A composition (X-8) having a partial concentration of 25% by weight was obtained. The storage stability was A.
  • Preparation Example 10 To 15 parts of the polymer (8) solution of the present invention, 8 parts of zirconium oxide powder having a primary particle size of 10 nm, 28 parts of methyl isobutyl ketone and 0.01 part of triethylamine are added and dispersed for 4 hours with a paint shaker. A composition (X-10) having a partial concentration of 25% by weight was obtained. The storage stability was A.
  • Example 1 The composition (X-1) was applied onto a glass substrate using a spin coater so that the film thickness after drying was 1.5 ⁇ m, and dried at 200 ° C. for 30 minutes (first stage drying).
  • the composition (Y-1) was applied from above the obtained (X-1) layer using a spin coater so that the film thickness after drying was 100 nm, and dried at 200 ° C. for 30 minutes (second stage)
  • the sample was prepared. A plurality of samples were prepared, and luminous reflectance, pencil hardness, scratch resistance, and crack resistance were measured as initial evaluation. One of the samples was subjected to an accelerated weathering test, and the appearance observation and luminous reflectance measurement after the test were performed. The results are shown in Table 1.
  • Example 2> A sample having an antireflection layer was prepared in the same manner as in Example 1 except that the composition (X-2) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 1.
  • Example 3> A sample having an antireflection layer was prepared in the same manner as in Example 1 except that the composition (X-3) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 1.
  • Example 4> A sample having an antireflection layer was prepared in the same manner as in Example 1 except that the composition (Y-2) was used instead of the composition (Y-1), and the same evaluation was performed. The results are shown in Table 1.
  • Example 5> A sample having an antireflection layer was prepared in the same manner as in Example 4 except that the composition (X-2) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 1.
  • Example 6> A sample having an antireflection layer was prepared in the same manner as in Example 4 except that the composition (X-3) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 1.
  • Example 7> A sample having an antireflection layer was prepared in the same manner as in Example 1 except that the composition (X-4) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 1.
  • Example 8> A sample having an antireflection layer was prepared in the same manner as in Example 1 except that the composition (X-5) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 1.
  • Example 9> A sample having an antireflection layer was prepared in the same manner as in Example 1 except that the composition (X-6) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 1.
  • Example 10> A sample having an antireflection layer was prepared in the same manner as in Example 7 except that the composition (Y-2) was used instead of the composition (Y-1), and the same evaluation was performed. The results are shown in Table 1.
  • Example 11> A sample having an antireflection layer was prepared in the same manner as in Example 10 except that the composition (X-5) was used instead of the composition (X-4), and the same evaluation was performed. The results are shown in Table 1.
  • Example 12> A sample having an antireflection layer was prepared in the same manner as in Example 10 except that the composition (X-6) was used instead of the composition (X-4), and the same evaluation was performed. The results are shown in Table 1.
  • Example 13> A sample having an antireflection layer was prepared in the same manner as in Example 1 except that the composition (X-7) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 1.
  • Example 14> A sample having an antireflection layer was prepared in the same manner as in Example 13 except that the composition (Y-2) was used instead of the composition (Y-1), and the same evaluation was performed. The results are shown in Table 1.
  • Example 15> A sample having an antireflection layer was prepared in the same manner as in Example 1 except that the composition (X-8) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 1.
  • Example 16> A sample having an antireflection layer was prepared in the same manner as in Example 4 except that the composition (X-9) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 1.
  • Example 17> A sample having an antireflection layer was prepared in the same manner as in Example 1 except that the composition (X-10) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 1.
  • ⁇ Comparative Example 1> A sample having an antireflection layer was prepared in the same manner as in Example 1 except that the composition (Z-1) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 2.
  • ⁇ Comparative Example 2> A sample having an antireflection layer was prepared in the same manner as in Example 1 except that the composition (Y-3) was used instead of the composition (Y-1), and the same evaluation was performed. The results are shown in Table 2.
  • ⁇ Comparative Example 3> A sample having an antireflection layer was prepared in the same manner as in Example 7 except that the composition ( ⁇ -1) was used instead of the composition (Y-1), and the same evaluation was performed. The results are shown in Table 2.
  • ⁇ Comparative Example 4> A sample having an antireflection layer was prepared in the same manner as in Example 4 except that the composition (Z-2) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 2.
  • ⁇ Comparative Example 5> A sample having an antireflection layer was prepared in the same manner as in Example 1 except that the composition (Y-4) was used instead of the composition (Y-1), and the same evaluation was performed. The results are shown in Table 2.
  • Examples 18 to 34 and Comparative Examples 7 to 12 were carried out as evaluation of the antireflection layer assuming a crystalline silicon type solar cell application. The results are shown in Tables 3 and 4.
  • Example 18 The composition (X-1) was applied onto a glass substrate using a spin coater so that the film thickness after drying was 1.0 ⁇ m, and dried at 200 ° C. for 30 minutes (first stage drying).
  • the composition (Y-1) was applied from above the obtained (X-1) layer using a spin coater so that the film thickness after drying was 200 nm, and dried at 200 ° C. for 30 minutes (second stage)
  • the sample was prepared. A plurality of samples were prepared, and reflectance, pencil hardness, scratch resistance, and crack resistance were measured as initial evaluation. One of the samples was subjected to an accelerated weathering test, and an appearance observation and a reflectance measurement were performed after the test. The results are shown in Table 3.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

Disclosed are: an outdoor device which is equipped with an antireflective layer having excellent light resistance, capable of being formed in a simple manner, and having an antireflection activity; and an antireflective layer for use in an outdoor device. Specifically disclosed is an antireflective layer comprising a laminate of a layer (I) comprising a polyorganosiloxane (A) and metal oxide particles (B) and a layer (II) comprising a polyorganosiloxane (C) and hollow or porous particles (D) mainly composed of a silica and having a number average particle diameter of 1 to 100 nm. The antireflective layer is formed on a surface member (which serves as a base material for the antireflective layer) of an outdoor device.

Description

屋外設置用デバイスおよび屋外設置用デバイス用反射防止層Outdoor installation device and antireflection layer for outdoor installation device
 本発明は、反射防止層を有する屋外設置用デバイスおよび屋外設置用デバイス用反射防止層に関する。より詳細には、簡便な方法にて形成することが可能であり、屋外使用において優れた耐候性を示す反射防止層を有する屋外設置用デバイスおよび当該反射防止層に関する。 The present invention relates to an outdoor installation device having an antireflection layer and an antireflection layer for an outdoor installation device. More specifically, the present invention relates to an outdoor installation device having an antireflection layer that can be formed by a simple method and exhibits excellent weather resistance in outdoor use, and the antireflection layer.
 従来、物品の視認性を向上させるための一手段として、物品の表面に低屈折率材料から構成される反射防止膜や、低屈折率層と高屈折率層との多層構造からなる反射防止膜を形成することが行われている。また、太陽電池においては、その表面に反射防止処理を行うことで、変換効率を向上させることができる。特に、近年では、低コスト且つ簡便な方法で大型基材に対しても反射防止膜を形成することのできる技術が求められている。
 これらの反射防止膜を形成する方法としては、例えば有機系の紫外線・放射線硬化性の材料を用いる方法や、無機系の材料を蒸着等によって形成する方法が知られている(特許文献1~3)。
Conventionally, as one means for improving the visibility of an article, an antireflection film composed of a low refractive index material on the surface of the article, or an antireflection film composed of a multilayer structure of a low refractive index layer and a high refractive index layer Has been made to form. Moreover, in a solar cell, conversion efficiency can be improved by performing the antireflection process on the surface. In particular, in recent years, there has been a demand for a technique that can form an antireflection film on a large-sized substrate by a low-cost and simple method.
As a method of forming these antireflection films, for example, a method using an organic ultraviolet / radiation curable material or a method of forming an inorganic material by vapor deposition or the like is known (Patent Documents 1 to 3). ).
特開2003-311911号公報Japanese Patent Laid-Open No. 2003-311911 特開2007-25078号公報JP 2007-25078 A 特許2989923号Patent 2989923
 しかしながら、有機系の材料を用いる場合には、例えば多官能(メタ)アクリレート構造を有するものをハードコート層として使用しており、特に耐候性が要求される屋外に設置される用途に用いた場合には、長期信頼性に大きな問題があった。また、無機系の材料を用いる場合には、蒸着等の真空プロセスによって層を形成するため、長期信頼性には優れるが、真空設備等が必要であるために生産コストが高く、大面積の基材に対して高い効率で均一な反射防止膜を形成することが困難であるという問題があった。屋外で使用される非真空プロセス型の無機系材料積層体としては、基材/中間層/トップ層の構成で提案されるいわゆる光触媒積層体が知られている。しかし、これらはトップ層が酸化チタンや酸化亜鉛などの高屈折率の金属酸化物類を多量に含有するために空気との屈折率差が大きくなり、表面反射を防止するどころか、逆に反射率は上がる傾向であるため、反射防止用途とは相容れないものである。
 また、耐久性の高いポリマー材料として、ポリジメチルシロキサン(シリコーン)を使用することも考えられるが、高価な白金化合物を硬化触媒に使用する必要がある上に、塗膜の硬度が低い、基材との密着性に劣る、高屈折率化が難しく積層体の設計が難しい等の課題があり、反射防止層としての使用は困難であった。
However, when using organic materials, for example, those having a polyfunctional (meth) acrylate structure are used as the hard coat layer, especially when used for outdoor installations where weather resistance is required Had a major problem with long-term reliability. In addition, when an inorganic material is used, the layer is formed by a vacuum process such as vapor deposition, which is excellent in long-term reliability. However, since a vacuum facility is required, the production cost is high and a large area base is required. There is a problem that it is difficult to form a uniform antireflection film with high efficiency on the material. As a non-vacuum process type inorganic material laminate used outdoors, a so-called photocatalyst laminate proposed with a structure of base material / intermediate layer / top layer is known. However, since the top layer contains a large amount of high-refractive-index metal oxides such as titanium oxide and zinc oxide, the difference in refractive index from air becomes large, and instead of preventing surface reflection, the reflectance is reversed. Is incompatible with anti-reflection applications.
In addition, although polydimethylsiloxane (silicone) may be used as a highly durable polymer material, it is necessary to use an expensive platinum compound as a curing catalyst, and the coating film has low hardness. There are problems such as inferior adhesiveness, difficulty in increasing the refractive index, and difficulty in designing a laminate, and use as an antireflection layer has been difficult.
 従って、本発明の目的は、屋外使用において優れた耐候性を示し、しかも基材に対して簡便な方法で層形成が可能な反射防止層を有する屋外設置用デバイスを提供することにある。
 本発明の他の目的は、屋外使用において優れた耐候性を示し、しかも基材に対して簡便な方法で層形成が可能な、屋外設置用デバイス用反射防止層を提供することにある。
Accordingly, an object of the present invention is to provide an outdoor installation device having an antireflection layer that exhibits excellent weather resistance in outdoor use and that can be formed on a substrate by a simple method.
Another object of the present invention is to provide an antireflection layer for a device for outdoor installation, which exhibits excellent weather resistance in outdoor use and can be formed on a substrate by a simple method.
 本発明者らは、鋭意研究した結果、下記に記述する反射防止層によって上述の課題を解決できることを見出し、本発明を完成させた。 As a result of earnest research, the present inventors have found that the above-described problems can be solved by the antireflection layer described below, and have completed the present invention.
 本発明の屋外設置用デバイスは、ポリオルガノシロキサン(A)および金属酸化物粒子(B)を含んだ層(I)と、ポリオルガノシロキサン(C)および数平均粒径1~100nmのシリカを主成分とする中空若しくは多孔質の粒子(D)を含んだ層(II)との積層体よりなる反射防止層を有することを特徴とする。 The outdoor installation device of the present invention mainly comprises a layer (I) containing polyorganosiloxane (A) and metal oxide particles (B), polyorganosiloxane (C) and silica having a number average particle diameter of 1 to 100 nm. It has an antireflection layer comprising a laminate with a layer (II) containing hollow or porous particles (D) as a component.
 前記層(I)が、下記式(1)
 R1 n Si(OR2 )4-n  (1)
(式中、R1 は、炭素数1~12の非加水分解性の有機基を示し、2個以上存在する場合には互いに同じであっても異なっていてもよい。R2 は、それぞれ独立に、炭素数1~5のアルキル基または炭素数1~6のアシル基を示す。nは0~3の整数である。)
で表される少なくとも1種のオルガノシラン、該オルガノシランの加水分解物および該オルガノシランの縮合物からなる群から選択される少なくとも1種のシラン化合物(a1)および金属酸化物粒子(B)を含有する組成物(I)の硬化物から得られ、
 前記層(II)が、下記式(2)
  R3 m Si(OR4 )4-m  (2)
(式中、R3 は、炭素数1~12の非加水分解性の有機基を示し、2個以上存在する場合には互いに同じであっても異なっていてもよい。R4 は、それぞれ独立に、炭素数1~5のアルキル基または炭素数1~6のアシル基を示す。mは0~3の整数である。)
で表される少なくとも1種のオルガノシラン、該オルガノシランの加水分解物および該オルガノシランの縮合物からなる群から選択される少なくとも1種のシラン化合物(c1)および数平均粒径1~100nmのシリカを主成分とする中空若しくは多孔質の粒子(D)を含有する組成物(II)の硬化物から得られることが好ましい。
The layer (I) has the following formula (1)
R 1 n Si (OR 2 ) 4-n (1)
(Wherein, R 1 represents a non-hydrolyzable organic group having 1 to 12 carbon atoms, optionally .R 2 be different be the same as each other if there are two or more are each independently Represents an alkyl group having 1 to 5 carbon atoms or an acyl group having 1 to 6 carbon atoms, and n is an integer of 0 to 3.)
At least one silane compound (a1) selected from the group consisting of at least one organosilane, a hydrolyzate of the organosilane, and a condensate of the organosilane represented by the formula: Obtained from a cured product of the composition (I) containing,
The layer (II) is represented by the following formula (2)
R 3 m Si (OR 4 ) 4-m (2)
(Wherein, R 3 represents a non-hydrolyzable organic group having 1 to 12 carbon atoms, optionally .R 4 be different be the same as each other if there are two or more are each independently Represents an alkyl group having 1 to 5 carbon atoms or an acyl group having 1 to 6 carbon atoms, and m is an integer of 0 to 3.)
At least one silane compound (c1) selected from the group consisting of at least one organosilane, a hydrolyzate of the organosilane, and a condensate of the organosilane represented by the formula: It is preferably obtained from a cured product of the composition (II) containing hollow or porous particles (D) mainly composed of silica.
 前記組成物(I)のシラン化合物(a1)は、前記式(1)におけるR1 の少なくとも1つがフェニル基であるシラン化合物を含有することが好ましい。
 また、前記組成物(I)のシラン化合物(a1)は、前記式(1)における全てのR1 の5~80モル%がフェニル基のものであることが好ましい。
The silane compound (a1) of the composition (I) preferably contains a silane compound in which at least one of R 1 in the formula (1) is a phenyl group.
In the silane compound (a1) of the composition (I), 5 to 80 mol% of all R 1 in the formula (1) is preferably a phenyl group.
 上記の反射防止層が形成される屋外設置用デバイスの代表的なものとしては、屋外設置用ディスプレイ、太陽電池を挙げることができる。 Typical examples of the outdoor installation device on which the antireflection layer is formed include an outdoor installation display and a solar cell.
  本発明の屋外設置用デバイス用反射防止層は、ポリオルガノシロキサン(A)および金属酸化物粒子(B)を含んだ層(I)と、ポリオルガノシロキサン(C)および数平均粒径1~100nmのシリカを主成分とする中空若しくは多孔質の粒子(D)を含んだ層(II)との積層体よりなることを特徴とする。 The antireflection layer for a device for outdoor installation of the present invention comprises a layer (I) containing a polyorganosiloxane (A) and metal oxide particles (B), a polyorganosiloxane (C) and a number average particle diameter of 1 to 100 nm. It consists of a laminated body with the layer (II) containing the hollow or porous particle | grains (D) which have silica as a main component.
 本発明によれば、塗布等の手段によって簡便に形成することができ、屋外使用において優れた耐候性を示す反射防止層を有する屋外設置用デバイスを得ることができる。 According to the present invention, it is possible to obtain a device for outdoor installation having an antireflection layer that can be easily formed by means such as coating and has excellent weather resistance in outdoor use.
 以下、本発明の実施の形態を具体的に説明する。
 本発明の屋外設置用デバイスは、屋外設置用デバイスの表面部材を基材としてその表面に、ポリオルガノシロキサン(A)および金属酸化物粒子(B)を含んだ層(I)並びに、ポリオルガノシロキサン(C)および数平均粒径1~100nmのシリカを主成分とする中空若しくは多孔質の粒子(D)を含んだ層(II)との積層体よりなる反射防止層を有することを特徴とする。
 本発明において「ポリオルガノシロキサン」とはSi-O結合を骨格とした重合体のことを指すものとする。
Hereinafter, embodiments of the present invention will be specifically described.
The device for outdoor installation of the present invention comprises a layer (I) containing polyorganosiloxane (A) and metal oxide particles (B) on the surface of the surface member of the device for outdoor installation as a base material, and polyorganosiloxane. It has an antireflection layer comprising a laminate of (C) and a layer (II) containing hollow or porous particles (D) mainly composed of silica having a number average particle diameter of 1 to 100 nm. .
In the present invention, “polyorganosiloxane” refers to a polymer having a Si—O bond as a skeleton.
(1)屋外設置用デバイス
 本発明の屋外設置用デバイスは、特に制限されるものでなく、その表面に反射防止性が要求されるものであればよく、例えば屋外設置用ディスプレイ、太陽電池、その他を挙げることができる。屋外設置用デバイスにおける、そのような表面を形成する表面形成部材が基材とされ、これに反射防止層が形成される。この基材の材質は特に限定されるものではなく、例えば、金属、セラミックス、ガラス、樹脂、木材、スレート等を挙げることができる。
 樹脂としては、例えば、ポリカーボネート、ポリメチルメタクリレート、ポリスチレン/ポリメチルメタクリレート共重合体、ポリスチレン、ポリエステル、ポリオレフィン、トリアセチルセルロース樹脂(TAC)、ジエチレングリコールのジアリルカーボネート(CR-39)、ABS樹脂、AS樹脂、ポリアミド、エポキシ樹脂、メラミン樹脂、環化ポリオレフィン樹脂(例えば、ノルボルネン系樹脂)等を挙げることができる。これらの基材の表面に反射防止層を形成することにより、優れた反射防止効果を得ることができる。
(1) Device for outdoor installation The device for outdoor installation of the present invention is not particularly limited as long as antireflection properties are required on the surface thereof, for example, a display for outdoor installation, a solar cell, and the like. Can be mentioned. A surface forming member that forms such a surface in a device for outdoor installation is used as a base material, and an antireflection layer is formed thereon. The material of this base material is not particularly limited, and examples thereof include metals, ceramics, glass, resin, wood, slate and the like.
Examples of the resin include polycarbonate, polymethyl methacrylate, polystyrene / polymethyl methacrylate copolymer, polystyrene, polyester, polyolefin, triacetyl cellulose resin (TAC), diallyl carbonate of diethylene glycol (CR-39), ABS resin, and AS resin. , Polyamide, epoxy resin, melamine resin, cyclized polyolefin resin (for example, norbornene resin), and the like. By forming an antireflection layer on the surface of these substrates, an excellent antireflection effect can be obtained.
(2)層(I)
 層(I)には、ポリオルガノシロキサン(A)および金属酸化物粒子(B)が含まれる。
 層(I)は、屋外設置用デバイスの種類にもよるが、屈折率1.50以上1.85未満のものが用いられ、膜厚は0.01μm~10μmの範囲で用いられる。
(2) Layer (I)
Layer (I) contains polyorganosiloxane (A) and metal oxide particles (B).
The layer (I) has a refractive index of 1.50 or more and less than 1.85, depending on the type of device for outdoor installation, and has a film thickness in the range of 0.01 μm to 10 μm.
(2-1)組成物(I)
このような層(I)は、たとえば、下記式(1)
 R1 n Si(OR2 )4-n  (1)
(式中、R1 は、炭素数1~12の非加水分解性の有機基を示し、2個以上存在する場合には互いに同じであっても異なっていてもよい。R2 は、それぞれ独立に、炭素数1~5のアルキル基または炭素数1~6のアシル基を示す。nは0~3の整数である。)
で表される少なくとも1種のオルガノシラン(以下、「オルガノシラン(1)」ともいう。)、オルガノシラン(1)の加水分解物およびオルガノシラン(1)の縮合物からなる群から選択される少なくとも1種のシラン化合物(a1)、および金属酸化物粒子(B)を含む組成物(以下「組成物(I)」ともいう。)の硬化物から得ることができる。
(2-1) Composition (I)
Such a layer (I) has, for example, the following formula (1):
R 1 n Si (OR 2 ) 4-n (1)
(Wherein, R 1 represents a non-hydrolyzable organic group having 1 to 12 carbon atoms, optionally .R 2 be different be the same as each other if there are two or more are each independently Represents an alkyl group having 1 to 5 carbon atoms or an acyl group having 1 to 6 carbon atoms, and n is an integer of 0 to 3.)
And selected from the group consisting of hydrolyzate of organosilane (1) and condensate of organosilane (1). It can be obtained from a cured product of a composition comprising at least one silane compound (a1) and metal oxide particles (B) (hereinafter also referred to as “composition (I)”).
(シラン化合物(a1))
 本発明に用いられるシラン化合物(a1)は、上記式(1)で表されるオルガノシラン(1)、オルガノシラン(1)の加水分解物およびオルガノシラン(1)の縮合物からなる群から選択される少なくとも1種のシラン化合物であって、これら3種のシラン化合物のうち、1種のシラン化合物だけを用いてもよく、任意の2種のシラン化合物を混合して用いてもよく、または3種すべてのシラン化合物を混合して用いてもよい。また、シラン化合物(a1)として、オルガノシラン(1)を使用する場合、オルガノシラン(1)は1種単独で使用しても、2種以上を併用してもよい。また、上記オルガノシラン(1)の加水分解物および縮合物は、1種のオルガノシラン(1)から形成したものでもよいし、2種以上のオルガノシラン(1)を併用して形成したものでもよい。
 上記オルガノシラン(1)の加水分解物は、オルガノシラン(1)に1~4個含まれるOR2 基のうちの少なくとも1個が加水分解されていればよく、たとえば、1個のOR2 基が加水分解されたもの、2個以上のOR2 基が加水分解されたもの、あるいはこれらの混合物であってもよい。
(Silane compound (a1))
The silane compound (a1) used in the present invention is selected from the group consisting of organosilane (1) represented by the above formula (1), hydrolyzate of organosilane (1) and condensate of organosilane (1). At least one silane compound, and among these three silane compounds, only one silane compound may be used, or any two silane compounds may be used in combination, or You may mix and use all three types of silane compounds. Moreover, when using organosilane (1) as a silane compound (a1), organosilane (1) may be used individually by 1 type, or may use 2 or more types together. The hydrolyzate and condensate of the organosilane (1) may be formed from one kind of organosilane (1) or may be formed by using two or more kinds of organosilane (1) in combination. Good.
The hydrolyzate of the organosilane (1) is sufficient if at least one of the OR 2 groups contained in 1 to 4 of the organosilane (1) is hydrolyzed, for example, one OR 2 group. In which two or more OR 2 groups are hydrolyzed, or a mixture thereof.
  上記オルガノシラン(1)の縮合物は、オルガノシラン(1)が加水分解して生成する加水分解物中のシラノール基が縮合してSi-O-Si結合を形成したものである。本発明では、シラノール基がすべて縮合している必要はなく、前記縮合物は、僅かな一部のシラノール基が縮合したもの、大部分(全部を含む。)のシラノール基が縮合したもの、さらにはこれらの混合物などをも包含する。 The organosilane (1) condensate is a product in which silanol groups in the hydrolyzate produced by hydrolysis of organosilane (1) are condensed to form Si—O—Si bonds. In the present invention, it is not necessary that all of the silanol groups are condensed, and the condensate is a product obtained by condensing a small part of silanol groups, a product obtained by condensing most (including all) silanol groups, Includes a mixture thereof.
  上記式(1)において、R1 は炭素数1~12個である非加水分解性の有機基であり、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、2-エチルヘキシル基などのアルキル基;
アセチル基、プロピオニル基、ブチリル基、バレリル基、ベンゾイル基、トリオイル基、カプロイル基などのアシル基;
  ビニル基、アリル基、シクロヘキシル基、フェニル基、エポキシシクロアルキル基、3,4-エポキシシクロヘキシルエチル基、グリシジル基、3-グリシジルオキシプロピル基、(メタ)アクリルオキシ基、3-(メタ)アクリルオキシプロピル基、ウレイド基、アミド基、フルオロアセトアミド基、イソシアネート基などが挙げられる。
  さらに、R1 として、上記有機基の置換誘導体などが挙げられる。R1 の置換誘導体の置換基としては、たとえば、ハロゲン原子、置換もしくは非置換のアミノ基、水酸基、メルカプト基、イソシアネート基、グリシドキシ基、3,4-エポキシシクロヘキシル基、(メタ)アクリルオキシ基、ウレイド基、アンモニウム塩基などが挙げられる。式(1)中にR1 が複数個存在する場合には、それぞれ同じであっても異なっていてもよい。
In the above formula (1), R 1 is a non-hydrolyzable organic group having 1 to 12 carbon atoms, specifically, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group. Alkyl groups such as heptyl group, octyl group, decyl group, 2-ethylhexyl group;
Acyl groups such as acetyl group, propionyl group, butyryl group, valeryl group, benzoyl group, trioyl group, caproyl group;
Vinyl group, allyl group, cyclohexyl group, phenyl group, epoxycycloalkyl group, 3,4-epoxycyclohexylethyl group, glycidyl group, 3-glycidyloxypropyl group, (meth) acryloxy group, 3- (meth) acryloxy Examples thereof include a propyl group, a ureido group, an amide group, a fluoroacetamide group, and an isocyanate group.
Furthermore, examples of R 1 include substituted derivatives of the above organic groups. Examples of the substituent of the substituted derivative of R 1 include a halogen atom, a substituted or unsubstituted amino group, a hydroxyl group, a mercapto group, an isocyanate group, a glycidoxy group, a 3,4-epoxycyclohexyl group, a (meth) acryloxy group, Examples thereof include a ureido group and an ammonium base. When a plurality of R 1 are present in formula (1), they may be the same or different.
  炭素数が1~5個のアルキル基であるR2 として、たとえば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基などを挙げることができ、炭素数1~6のアシル基であるR2 としては、たとえば、アセチル基、プロピオニル基、ブチリル基、バレリル基、カプロイル基などが挙げられる。式(1)中にR2 が複数個存在する場合には、それぞれ同じであっても異なっていてもよい。 Examples of R 2 that is an alkyl group having 1 to 5 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group, and R 2 that is an acyl group having 1 to 6 carbon atoms. Examples of 2 include an acetyl group, a propionyl group, a butyryl group, a valeryl group, and a caproyl group. When a plurality of R 2 are present in the formula (1), they may be the same or different from each other.
  このような上記式(1)で表される加水分解性シラン化合物の具体例としては、
  4個の加水分解性基で置換されたシラン化合物として、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、テトラフェノキシシラン、テトラベンジロキシシラン、テトラ-n-プロポキシシラン、テトラ-i-プロポキシシラン等;
  1個の非加水分解性基と3個の加水分解性基とで置換されたシラン化合物として、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ-i-プロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、i-プロピルトリメトキシシラン、i-プロピルトリエトキシシラン、エチルトリ-i-プロポキシシラン、エチルトリブトキシシラン、n-ブチルトリメトキシシラン、n-ブチルトリエトキシシラン、n-ペンチルトリメトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘプチルトリメトキシシラン、n-オクチルトリメトキシシラン、n-デシルトリメトキシシラン、n-デシルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ-n-プロポキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、3,3,3-トリフルオロプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-ヒドロキシエチルトリメトキシシラン、2-ヒドロキシエチルトリエトキシシラン、2-ヒドロキシプロピルトリメトキシシラン、2-ヒドロキシプロピルトリエトキシシラン、3-ヒドロキシプロピルトリメトキシシラン、3-ヒドロキシプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-イソシアナートプロピルトリメトキシシラン、3-イソシアナートプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-(メタ)アクリルオキシプロピルトリメトキシシラン、3-(メタ)アタクリルオキシプロピルトリエトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、メチルトリアセチルオキシシランなどのトリアルコキシシラン等;
As a specific example of the hydrolyzable silane compound represented by the above formula (1),
Examples of silane compounds substituted with four hydrolyzable groups include tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, tetraphenoxysilane, tetrabenzyloxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, etc. ;
As a silane compound substituted with one non-hydrolyzable group and three hydrolyzable groups, methyltrimethoxysilane, methyltriethoxysilane, methyltri-i-propoxysilane, methyltributoxysilane, ethyltrimethoxy Silane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, i-propyltrimethoxysilane, i-propyltriethoxysilane, ethyltri-i-propoxysilane, ethyltributoxysilane, n-butyl Trimethoxysilane, n-butyltriethoxysilane, n-pentyltrimethoxysilane, n-hexyltrimethoxysilane, n-heptyltrimethoxysilane, n-octyltrimethoxysilane, n-decyltrimethoxysilane, n-decyltri Ethoxy Run, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri-n-propoxysilane, cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloro Propyltriethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, 3,3,3-trifluoropropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-hydroxy Ethyltrimethoxysilane, 2-hydroxyethyltriethoxysilane, 2-hydroxypropyltrimethoxysilane, 2-hydroxypropyltriethoxysilane, 3-hydroxypropyltrimethyl Xysilane, 3-hydroxypropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-glycidoxypropyl Trimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 3- (meth) acrylic Oxypropyltrimethoxysilane, 3- (meth) atacryloxypropyltriethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, methyltriacetyloxysilane Trialkoxysilane, etc .;
  2個の非加水分解性基と2個の加水分解性基とで置換されたシラン化合物として、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジ-n-プロピルジメトキシシラン、ジ-n-プロピルジエトキシシラン、ジ-i-プロピルジメトキシシラン、ジ-i-プロピルジエトキシシラン、ジ-n-ブチルジメトキシシラン、ジ-n-ブチルジエトキシシラン、ジ-n-ペンチルジメトキシシラン、ジ-n-ペンチルジエトキシシラン、ジ-n-ヘキシルジメトキシシラン、ジ-n-ヘキシルジエトキシシラン、ジ-n-ヘプチルジメトキシシラン、ジ-n-ヘプチルジエトキシシラン、ジ-n-オクチルジメトキシシラン、ジ-n-オクチルジエトキシシラン、ジ-n-デシルジメトキシシラン、ジ-n-デシルジエトキシシラン、ジ-n-シクロヘキシルジメトキシシラン、ジ-n-シクロヘキシルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシランなどのジアルコキシシラン、ジメチルジアセチルオキシシラン等;
  3個の非加水分解性基と1個の加水分解性基とで置換されたシラン化合物として、トリブチルメトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、トリブチルエトキシシラン、トリフェニルメトキシシラン、トリフェニルエトキシシラン等をそれぞれ挙げることができる。
As silane compounds substituted with two non-hydrolyzable groups and two hydrolyzable groups, dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, di-n-propyldimethoxysilane , Di-n-propyldiethoxysilane, di-i-propyldimethoxysilane, di-i-propyldiethoxysilane, di-n-butyldimethoxysilane, di-n-butyldiethoxysilane, di-n-pentyldimethoxy Silane, di-n-pentyldiethoxysilane, di-n-hexyldimethoxysilane, di-n-hexyldiethoxysilane, di-n-heptyldimethoxysilane, di-n-heptyldiethoxysilane, di-n-octyl Dimethoxysilane, di-n-octyldiethoxysilane, di-n-decyldi Tokishishiran, di -n- decyl diethoxy silane, di -n- cyclohexyl dimethoxysilane, di -n- cyclohexyl diethoxysilane, diphenyl dimethoxysilane, di-alkoxysilanes such as diphenyl diethoxy silane, dimethyl acetyloxy silane;
As a silane compound substituted with three non-hydrolyzable groups and one hydrolyzable group, tributylmethoxysilane, trimethylmethoxysilane, trimethylethoxysilane, tributylethoxysilane, triphenylmethoxysilane, triphenylethoxysilane Etc., respectively.
 これらのうち、式(1)においてR1 のうち少なくとも1つがフェニル基であるシラン化合物を含有しており、また、式(1)においてフェニル基が全てのR1 に対して5~80モル%含有しているものが好ましい。
  このフェニル基を有するオルガノシランは、本発明に係る組成物(I)の貯蔵安定性と形成される層(I)のクラック耐性の面から、式(1)においてフェニル基を有するオルガノシランのモル濃度は全てのR1 に対して5~80%であることが好ましく、さらに好ましくは5~60%である
 フェニル基を有するオルガノシランの含有量が上記範囲より多すぎると、組成物(I)の硬化性が劣ることがあり、フェニル基を有するオルガノシランの含有量が上記範囲より少なすぎると、組成物(I)の貯蔵安定性や形成される層(I)のクラック耐性が劣ることがある。
Among these, in formula (1), at least one of R 1 contains a silane compound which is a phenyl group, and in formula (1), the phenyl group is 5 to 80 mol% with respect to all R 1 . What is contained is preferable.
The organosilane having a phenyl group is a mole of the organosilane having a phenyl group in the formula (1) from the viewpoint of the storage stability of the composition (I) according to the present invention and the crack resistance of the layer (I) to be formed. The concentration is preferably 5 to 80% with respect to all R 1 , more preferably 5 to 60%. If the content of the organosilane having a phenyl group is too much more than the above range, the composition (I) When the content of the organosilane having a phenyl group is too smaller than the above range, the storage stability of the composition (I) and the crack resistance of the layer (I) to be formed may be inferior. is there.
  本発明では、シラン化合物(a1)として1種のオルガノシラン(1)を単独で使用してもよいが、2種以上のオルガノシラン(1)を併用してもよい。シラン化合物(a1)として使用した2種以上のオルガノシラン(1)を、平均化して上記式(1)で表した場合、平均化したn(以下、「nの平均値」ともいう。)は好ましくは0.5~2.0、より好ましくは0.6~1.8、特に好ましくは0.7~1.6である。nの平均値が上記下限未満にあると組成物(I)の貯蔵安定性や層(I)のクラック耐性が劣ることがあり、上記上限を超えると組成物(I)の硬化性が劣ることがある。
  nの平均値は、1官能~4官能のオルガノシラン(1)を適宜併用して、その配合割合を適宜調整することにより、上記範囲に調整することができる。
In the present invention, one type of organosilane (1) may be used alone as the silane compound (a1), but two or more types of organosilane (1) may be used in combination. When two or more organosilanes (1) used as the silane compound (a1) are averaged and expressed by the above formula (1), the averaged n (hereinafter also referred to as “average value of n”) is. Preferably it is 0.5 to 2.0, more preferably 0.6 to 1.8, and particularly preferably 0.7 to 1.6. When the average value of n is less than the lower limit, the storage stability of the composition (I) and the crack resistance of the layer (I) may be inferior, and when the upper limit is exceeded, the curability of the composition (I) is inferior. There is.
The average value of n can be adjusted to the above range by appropriately using a monofunctional to tetrafunctional organosilane (1) and appropriately adjusting the blending ratio.
 以上の事情は、シラン化合物(a1)としてオルガノシラン(1)の加水分解物または縮合物を使用した場合も同様である。
  本発明では、シラン化合物(a1)として、オルガノシラン(1)をそのまま使用してもよいが、オルガノシラン(1)の加水分解物および/または縮合物を使用することができる。オルガノシラン(1)を加水分解物および/または縮合物として使用する場合、オルガノシラン(1)を予め加水分解・縮合させて製造したものを用いてもよいが、組成物(I)を調製する際に、オルガノシラン(1)を加水分解・縮合させて、オルガノシラン(1)の加水分解物および/または縮合物を調製することもできる。
The above situation is the same when the hydrolyzate or condensate of organosilane (1) is used as the silane compound (a1).
In the present invention, organosilane (1) may be used as it is as silane compound (a1), but hydrolyzate and / or condensate of organosilane (1) can be used. When the organosilane (1) is used as a hydrolyzate and / or condensate, a product prepared by previously hydrolyzing and condensing the organosilane (1) may be used, but the composition (I) is prepared. In this case, the hydrolyzate and / or condensate of organosilane (1) can also be prepared by hydrolyzing and condensing organosilane (1).
(シラン化合物(a1)の製造方法)
  上記式(1)で表されるシラン化合物(a1)を加水分解・縮合させる条件は、上記式(1)で表されるオルガノシラン(1)の少なくとも一部を加水分解して、加水分解性基をシラノール基に変換し、又は縮合反応を起こさせるものである限り、特に限定されるものではないが、一例として以下のように実施することができる。
(Method for producing silane compound (a1))
The conditions for hydrolyzing and condensing the silane compound (a1) represented by the above formula (1) are hydrolyzable by hydrolyzing at least a part of the organosilane (1) represented by the above formula (1). Although it does not specifically limit as long as it converts a group into a silanol group or causes a condensation reaction, it can be carried out as follows as an example.
(水)
  上記式(1)で表されるオルガノシラン(1)の加水分解に用いられる水は、逆浸透膜処理、イオン交換処理、蒸留等の方法により精製された水を使用することが好ましい。このような精製水を用いることによって、副反応を抑制し、加水分解の反応性を向上させることができる。水の使用量は、上記式(1)で表されるオルガノシラン(1)の加水分解性基(-OR2 )の合計量1モルに対して、好ましくは0.1~3モル、より好ましくは0.3~2モル、さらに好ましくは0.5~1.5モルの量である。このような量の水を用いることによって、加水分解の反応速度を最適化することができる。
(water)
The water used for hydrolysis of the organosilane (1) represented by the above formula (1) is preferably water purified by a method such as reverse osmosis membrane treatment, ion exchange treatment or distillation. By using such purified water, side reactions can be suppressed and the reactivity of hydrolysis can be improved. The amount of water used is preferably from 0.1 to 3 mol, more preferably from 1 mol of the total amount of hydrolyzable groups (—OR 2 ) of the organosilane (1) represented by the above formula (1). Is in an amount of 0.3 to 2 mol, more preferably 0.5 to 1.5 mol. By using such an amount of water, the reaction rate of hydrolysis can be optimized.
(有機溶剤)
 上記式(1)で表されるオルガノシラン(1)の加水分解・縮合に使用することができる溶剤としては、特に限定されるものではないが、通常、後述する重合体(A1)の製造に用いられる溶剤と同様のものを使用することができる。このような溶剤の好ましい例としては、プロピルアルコール、メチルエチルケトン、メチルイソブチルケトン、エチレングリコールモノアルキルエーテルアセテート、ジエチレングリコールジアルキルエーテル、プロピレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテルアセテート、プロピオン酸エステル類が挙げられる。これらの溶剤の中でも、プロピルアルコール、メチルイソブチルケトン、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート又は3-メトキシプロピオン酸メチルが好ましい。
(Organic solvent)
Although it does not specifically limit as a solvent which can be used for hydrolysis and condensation of the organosilane (1) represented by the said Formula (1), Usually, for manufacture of the polymer (A1) mentioned later. The thing similar to the solvent used can be used. Preferable examples of such a solvent include propyl alcohol, methyl ethyl ketone, methyl isobutyl ketone, ethylene glycol monoalkyl ether acetate, diethylene glycol dialkyl ether, propylene glycol monoalkyl ether, propylene glycol monoalkyl ether acetate, and propionic acid esters. . Among these solvents, propyl alcohol, methyl isobutyl ketone, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate or methyl 3-methoxypropionate are preferable.
(触媒)
 上記式(1)で表されるオルガノシラン(1)の加水分解・縮合反応に使用することができる触媒としては、特に限定されるものではないが、通常、後述する重合体(A1)の製造に用いられる触媒と同様のものを使用することができる。このような触媒の好ましい例としては、酸触媒(例えば、塩酸、硫酸、硝酸、蟻酸、シュウ酸、酢酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、リン酸、酸性イオン交換樹脂、各種ルイス酸)、塩基触媒(例えば、アンモニア、1級アミン類、2級アミン類、3級アミン類、ピリジンなどの含窒素化合物;塩基性イオン交換樹脂;水酸化ナトリウムなどの水酸化物;炭酸カリウムなどの炭酸塩;酢酸ナトリウムなどのカルボン酸塩;各種ルイス塩基)、又は、アルコキシド(例えば、ジルコニウムアルコキシド、チタニウムアルコキシド、アルミニウムアルコキシド)等を挙げることができる。例えば、アルミニウムアルコキシドとしては、テトラ-i-プロポキシアルミニウムを用いることができる。触媒の使用量としては、加水分解反応の促進の観点から、加水分解性シラン化合物のモノマー1モルに対して、好ましくは0.2モル以下であり、より好ましくは0.00001~0.1モルである。
(catalyst)
Although it does not specifically limit as a catalyst which can be used for the hydrolysis and condensation reaction of organosilane (1) represented by the said Formula (1), Usually, manufacture of the polymer (A1) mentioned later The same catalyst as used in the above can be used. Preferred examples of such catalysts include acid catalysts (for example, hydrochloric acid, sulfuric acid, nitric acid, formic acid, oxalic acid, acetic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, phosphoric acid, acidic ion exchange resins, various Lewis acids), Basic catalysts (for example, ammonia, primary amines, secondary amines, tertiary amines, nitrogen-containing compounds such as pyridine; basic ion exchange resins; hydroxides such as sodium hydroxide; carbonates such as potassium carbonate Carboxylates such as sodium acetate; various Lewis bases] or alkoxides (for example, zirconium alkoxide, titanium alkoxide, aluminum alkoxide) and the like. For example, tetra-i-propoxyaluminum can be used as the aluminum alkoxide. The amount of the catalyst used is preferably 0.2 mol or less, more preferably 0.00001 to 0.1 mol with respect to 1 mol of the hydrolyzable silane compound monomer from the viewpoint of promoting the hydrolysis reaction. It is.
  上記式(1)で表されるオルガノシラン(1)の加水分解・縮合における反応温度及び反応時間は、適宜に設定される。例えば、下記の条件が採用できる。反応温度は、好ましくは40~200℃、より好ましくは50~150℃である。反応時間は、好ましくは30分~24時間、より好ましくは1~12時間である。このような反応温度及び反応時間とすることによって、加水分解反応を最も効率的に行うことができる。この加水分解・縮合においては、反応系内に加水分解性シラン化合物、水及び触媒を一度に添加して反応を一段階で行ってもよく、あるいは、加水分解性シラン化合物、水及び触媒を、数回に分けて反応系内に添加することによって、加水分解及び縮合反応を多段階で行ってもよい。なお、加水分解・縮合反応の後には、脱水剤を加え、次いでエバポレーションにかけることによって、水及び生成したアルコールを反応系から除去することができる。
  上記オルガノシラン(1)の縮合物は、ゲルパーミエーションクロマトグラフィー法(GPC法)により測定したポリスチレン換算の重量平均分子量(以下、「Mw」と表す。)が、好ましくは300~100,000、より好ましくは500~50,000である。
The reaction temperature and reaction time in hydrolysis / condensation of the organosilane (1) represented by the above formula (1) are appropriately set. For example, the following conditions can be adopted. The reaction temperature is preferably 40 to 200 ° C, more preferably 50 to 150 ° C. The reaction time is preferably 30 minutes to 24 hours, more preferably 1 to 12 hours. By setting such reaction temperature and reaction time, the hydrolysis reaction can be performed most efficiently. In this hydrolysis / condensation, the hydrolyzable silane compound, water and catalyst may be added to the reaction system at a time to carry out the reaction in one step, or the hydrolyzable silane compound, water and catalyst may be added, The hydrolysis and condensation reaction may be performed in multiple stages by adding them into the reaction system in several times. Incidentally, after the hydrolysis / condensation reaction, water and the produced alcohol can be removed from the reaction system by adding a dehydrating agent and then subjecting it to evaporation.
The condensate of the organosilane (1) has a polystyrene-equivalent weight average molecular weight (hereinafter referred to as “Mw”) measured by gel permeation chromatography (GPC method), preferably 300 to 100,000. More preferably, it is 500 to 50,000.
  本発明におけるシラン化合物(a1)としてオルガノシラン(1)の縮合物を用いる場合、上記オルガノシラン(1)から調製してもよいし、市販されているオルガノシランの縮合物を用いてもよい。市販されているオルガノシランの縮合物としては、三菱化学(株)製のMKCシリケート、コルコート社製のエチルシリケート、東レ・ダウコーニング・シリコーン(株)製のシリコーンレジンやシリコーンオリゴマー、モメンティブ・パフォーマンス・マテリアルズ(株)製のシリコーンレジンやシリコーンオリゴマー、信越化学工業(株)製のシリコーンレジンやシリコーンオリゴマー、ダウコーニング・アジア(株)製のヒドロキシル基含有ポリジメチルシロキサンなどが挙げられる。これらの市販されているオルガノシランの縮合物は、そのまま用いても、さらに縮合させて使用してもよい。 場合 When the organosilane (1) condensate is used as the silane compound (a1) in the present invention, it may be prepared from the organosilane (1) or a commercially available organosilane condensate. Commercially available organosilane condensates include MKC silicate manufactured by Mitsubishi Chemical Corporation, ethyl silicate manufactured by Colcoat, silicone resins and silicone oligomers manufactured by Toray Dow Corning Silicone Co., Momentive Performance Examples include silicone resins and silicone oligomers manufactured by Materials Co., Ltd., silicone resins and silicone oligomers manufactured by Shin-Etsu Chemical Co., Ltd., and hydroxyl group-containing polydimethylsiloxane manufactured by Dow Corning Asia Co., Ltd. These condensates of commercially available organosilanes may be used as they are or may be further condensed.
(重合体A1)
  本発明においては、組成物(I)として、下地基材への密着性向上を目的に上記シラン化合物(a1)と特定のシリル基を含有するビニル系重合体(a2)とを加水分解・縮合反応させることにより調製された重合体(A1)および金属酸化物粒子(B)を含むものを用いてもよい。より具体的には、重合体(A1)は、上記シラン化合物(a1)とシリル基を含有するビニル系重合体(a2)とを含有する混合物に、加水分解・縮合反応を促進する触媒と水とを添加して調製される。
(Polymer A1)
In the present invention, as the composition (I), the above silane compound (a1) and the vinyl polymer (a2) containing a specific silyl group are hydrolyzed / condensed for the purpose of improving the adhesion to the substrate. You may use what contains the polymer (A1) and metal oxide particle (B) which were prepared by making it react. More specifically, the polymer (A1) comprises a catalyst containing water and a catalyst that promotes hydrolysis / condensation reaction in a mixture containing the silane compound (a1) and a vinyl polymer (a2) containing a silyl group. And added.
(シリル基含有ビニル系重合体(a2))
  本発明に用いられる特定のシリル基を含有するビニル系重合体(a2)(以下、「特定シリル基含有ビニル系重合体(a2)」ともいう。)は、加水分解性基および/または水酸基と結合したケイ素原子を有するシリル基(以下「特定シリル基」という。)を含有する。
  この特定シリル基含有ビニル系重合体(a2)は、重合体分子鎖の末端および/または側鎖に特定シリル基を有することが好ましい。
  この特定シリル基中の加水分解性基および/または水酸基が上記シラン化合物(a1)と共縮合することにより、重合体(A1)が形成される。この重合体(A1)および金属酸化物粒子(B)を含有する組成物を基材表面にコーティングすることによって高屈折率層として作用し、後述する層(II)をさらに重ねてコーティングすることにより、反射防止層を形成することができる。
(Silyl group-containing vinyl polymer (a2))
The vinyl polymer (a2) containing a specific silyl group used in the present invention (hereinafter also referred to as “specific silyl group-containing vinyl polymer (a2)”) is composed of a hydrolyzable group and / or a hydroxyl group. It contains a silyl group having a bonded silicon atom (hereinafter referred to as “specific silyl group”).
The specific silyl group-containing vinyl polymer (a2) preferably has a specific silyl group at the terminal and / or side chain of the polymer molecular chain.
The hydrolyzable group and / or hydroxyl group in the specific silyl group co-condenses with the silane compound (a1) to form the polymer (A1). By coating the composition containing this polymer (A1) and metal oxide particles (B) on the surface of the substrate, it acts as a high refractive index layer, and further layer (II) described later is further coated An antireflection layer can be formed.
(特定シリル基)
  上記特定シリル基は、下記式(3)
Figure JPOXMLDOC01-appb-C000001
(式中、Xはハロゲン原子、アルコキシル基、アセトキシ基、フェノキシ基、チオアルコキシル基、アミノ基などの加水分解性基または水酸基を示し、R5 は水素原子、炭素数1~10のアルキル基または炭素数1~10のアラルキル基を示し、iは1~3の整数である。)
で表される基であることが好ましい。
(Specific silyl group)
The specific silyl group has the following formula (3):
Figure JPOXMLDOC01-appb-C000001
(Wherein X represents a hydrolyzable group such as a halogen atom, an alkoxyl group, an acetoxy group, a phenoxy group, a thioalkoxyl group, an amino group, or a hydroxyl group, and R 5 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or Represents an aralkyl group having 1 to 10 carbon atoms, and i is an integer of 1 to 3.)
It is preferable that it is group represented by these.
(特定シリル基含有ビニル系重合体(a2)の製造方法)
  このような特定シリル基含有ビニル系重合体(a2)は、たとえば、下記(I)や(II)の方法により、製造することができる。
(Method for producing specific silyl group-containing vinyl polymer (a2))
Such a specific silyl group-containing vinyl polymer (a2) can be produced, for example, by the following methods (I) and (II).
(I)上記式(3)で表される特定シリル基を有するヒドロシラン化合物(以下、単に「ヒドロシラン化合物(I)」ともいう。)を、炭素-炭素二重結合を有するビニル系重合体(以下、「不飽和ビニル系重合体」という。)中の該炭素-炭素二重結合に付加反応させる方法 (I) A hydrosilane compound having a specific silyl group represented by the above formula (3) (hereinafter also simply referred to as “hydrosilane compound (I)”) is converted into a vinyl polymer having a carbon-carbon double bond (hereinafter referred to as “hydrosilane compound (I)”). , “Unsaturated vinyl polymer”)) in which the carbon-carbon double bond is subjected to an addition reaction.
 (II)下記式(4)
Figure JPOXMLDOC01-appb-C000002
(式中、X、R5 、iはそれぞれ上記式(3)におけるX,R5 ,iと同義であり、R6 は重合性二重結合を有する有機基を示す。)
で表されるシラン化合物(以下、「不飽和シラン化合物(II)」という。)と、ビニル系単量体とを共重合する方法
(II) The following formula (4)
Figure JPOXMLDOC01-appb-C000002
(In the formula, X, R 5 and i are respectively synonymous with X, R 5 and i in the above formula (3), and R 6 represents an organic group having a polymerizable double bond.)
A silane compound represented by the formula (hereinafter referred to as "unsaturated silane compound (II)") and a vinyl monomer.
 上記(I)の方法に使用されるヒドロシラン化合物(I)としては、たとえば、メチルジクロルシラン、トリクロルシラン、フェニルジクロルシランなどのハロゲン化シラン類;メチルジメトキシシラン、メチルジエトキシシラン、フェニルジメトキシシラン、トリメトキシシラン、トリエトキシシランなどのアルコキシシラン類;メチルジアセトキシシラン、フェニルジアセトキシシラン、トリアセトキシシランなどのアシロキシシラン類;メチルジアミノキシシラン、トリアミノキシシラン、ジメチル・アミノキシシランなどのアミノキシシラン類などを挙げることができる。これらのヒドロシラン化合物(I)は、単独でまたは2種以上を混合して使用することができる。
 また、上記(I)の方法に使用される不飽和ビニル系重合体は、水酸基を有する重合体以外であれば特に限定されず、たとえば、下記(I-1)や(I-2)の方法あるいはこれらの組み合わせなどによって製造することができる。
Examples of the hydrosilane compound (I) used in the above method (I) include halogenated silanes such as methyldichlorosilane, trichlorosilane, and phenyldichlorosilane; methyldimethoxysilane, methyldiethoxysilane, and phenyldimethoxy. Alkoxysilanes such as silane, trimethoxysilane, triethoxysilane; Acyloxysilanes such as methyldiacetoxysilane, phenyldiacetoxysilane, triacetoxysilane; Methyldiaminoxysilane, triaminoxysilane, dimethylaminoxysilane And aminoxysilanes. These hydrosilane compounds (I) can be used alone or in admixture of two or more.
The unsaturated vinyl polymer used in the method (I) is not particularly limited as long as it is a polymer having a hydroxyl group. For example, the following methods (I-1) and (I-2) Or it can manufacture by these combinations.
 (I-1)官能基(以下、「官能基(α)」という)を有するビニル系単量体を(共)重合したのち、該(共)重合体中の官能基(α)に、該官能基(α)と反応しうる官能基(以下、「官能基(β)」という。)と炭素・炭素二重結合とを有する不飽和化合物を反応させることにより、重合体分子鎖の側鎖に炭素-炭素二重結合を有する不飽和ビニル系重合体を製造する方法
 (I-2)官能基(α)を有するラジカル重合開始剤(たとえば、4,4' -アゾビス-4-シアノ吉草酸など)を使用し、あるいは、ラジカル重合開始剤と連鎖移動剤の双方に官能基(α)を有する化合物(たとえば、4,4' -アゾビス-4-シアノ吉草酸とジチオグリコール酸など)を使用して、ビニル系単量体を(共)重合して、重合体分子鎖の片末端あるいは両末端にラジカル重合開始剤や連鎖移動剤に由来する官能基(α)を有する(共)重合体を合成したのち、該(共)重合体中の官能基(α)に、官能基(β)と炭素・炭素二重結合を有する不飽和化合物を反応させることにより、重合体分子鎖の片末端あるいは両末端に炭素-炭素二重結合を有する不飽和ビニル系重合体を製造する方法
(I-1) After (co) polymerizing a vinyl monomer having a functional group (hereinafter referred to as “functional group (α)”), the functional group (α) in the (co) polymer By reacting a functional group capable of reacting with the functional group (α) (hereinafter referred to as “functional group (β)”) and an unsaturated compound having a carbon / carbon double bond, the side chain of the polymer molecular chain is reacted. (I-2) Radical polymerization initiator having functional group (α) (for example, 4,4′-azobis-4-cyanovaleric acid Or a compound having a functional group (α) in both radical polymerization initiator and chain transfer agent (for example, 4,4′-azobis-4-cyanovaleric acid and dithioglycolic acid) The vinyl monomer is (co) polymerized and one end of the polymer molecular chain or After synthesizing a (co) polymer having a functional group (α) derived from a radical polymerization initiator or chain transfer agent at the terminal, a functional group (β) is added to the functional group (α) in the (co) polymer. Of producing an unsaturated vinyl polymer having a carbon-carbon double bond at one or both ends of a polymer molecular chain by reacting with an unsaturated compound having a carbon / carbon double bond
  (I-1)および(I-2)の方法における官能基(α)と官能基(β)との反応としては、たとえば、カルボキシル基と水酸基とのエステル化反応、カルボン酸無水物基と水酸基との開環エステル化反応、カルボキシル基とエポキシ基との開環エステル化反応、カルボキシル基とアミノ基とのアミド化反応、カルボン酸無水物基とアミノ基との開環アミド化反応、エポキシ基とアミノ基との開環付加反応、水酸基とイソシアネート基とのウレタン化反応や、これらの反応の組み合わせなどを挙げることができる。 Examples of the reaction between the functional group (α) and the functional group (β) in the methods (I-1) and (I-2) include an esterification reaction between a carboxyl group and a hydroxyl group, and a carboxylic anhydride group and a hydroxyl group. Ring-opening esterification reaction, carboxyl group and epoxy group ring-opening esterification reaction, carboxyl group and amino group amidation reaction, carboxylic acid anhydride group and amino group ring-opening amidation reaction, epoxy group Ring-opening addition reaction between a hydroxyl group and an amino group, urethanization reaction between a hydroxyl group and an isocyanate group, a combination of these reactions, and the like.
(ビニル系単量体)
(i)官能基(α)を有するビニル系単量体
 官能基(α)を有するビニル系単量体としては、たとえば、(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸などの不飽和カルボン酸;
 無水マレイン酸、無水イタコン酸などの不飽和カルボン酸無水物;
 2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、2-ヒドロキシエチルビニルエーテルなどの水酸基含有ビニル系単量体;
 2-アミノエチル(メタ)アクリレート、2-アミノプロピル(メタ)アクリレート、3-アミノプロピル(メタ)アクリレート、2-アミノエチルビニルエーテルなどのアミノ基含有ビニル系単量体;
 1,1,1-トリメチルアミン(メタ)アクリルイミド、1-メチル-1-エチルアミン(メタ)アクリルイミド、1,1-ジメチル-1-(2-ヒドロキシプロピル)アミン(メタ)アクリルイミド、1,1-ジメチル-1-(2' -フェニル-2' -ヒドロキシエチル)アミン(メタ)アクリルイミド、1,1-ジメチル-1-(2' -ヒドロキシ-2' -フェノキシプロピル)アミン(メタ)アクリルイミドなどのアミンイミド基含有ビニル系単量体;
 グリシジル(メタ)アクリレート、アリルグリシジルエーテルなどのエポキシ基含有ビニル系単量体などを挙げることができる。これらの官能基(α)を有するビニル系単量体は、単独でまたは2種以上を混合して使用することができる。
(Vinyl monomer)
(I) Vinyl monomer having a functional group (α) Examples of the vinyl monomer having a functional group (α) include (meth) acrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid and the like. Of unsaturated carboxylic acids;
Unsaturated carboxylic acid anhydrides such as maleic anhydride and itaconic anhydride;
Hydroxyl group-containing vinyl monomers such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, N-methylol (meth) acrylamide, 2-hydroxyethyl vinyl ether;
Amino group-containing vinyl monomers such as 2-aminoethyl (meth) acrylate, 2-aminopropyl (meth) acrylate, 3-aminopropyl (meth) acrylate, 2-aminoethyl vinyl ether;
1,1,1-trimethylamine (meth) acrylimide, 1-methyl-1-ethylamine (meth) acrylimide, 1,1-dimethyl-1- (2-hydroxypropyl) amine (meth) acrylimide, 1,1 -Dimethyl-1- (2'-phenyl-2'-hydroxyethyl) amine (meth) acrylimide, 1,1-dimethyl-1- (2'-hydroxy-2'-phenoxypropyl) amine (meth) acrylimide Amine-imide group-containing vinyl monomers such as;
Examples thereof include epoxy group-containing vinyl monomers such as glycidyl (meth) acrylate and allyl glycidyl ether. These vinyl monomers having a functional group (α) can be used alone or in admixture of two or more.
(ii)他のビニル系単量体
 官能基(α)を有するビニル系単量体と共重合可能な他のビニル系単量体としては、たとえば、スチレン、α-メチルスチレン、4-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メトキシスチレン、2-ヒドロキシメチルスチレン、4-エチルスチレン、4-エトキシスチレン、3,4-ジメチルスチレン、3,4-ジエチルスチレン、2-クロロスチレン、3-クロロスチレン、4-クロロ-3-メチルスチレン、4-t-ブチルスチレン、2,4-ジクロロスチレン、2,6-ジクロロスチレン、1-ビニルナフタレンなどの芳香族ビニル単量体;
 メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、アミル(メタ)アクリレート、i-アミル(メタ)アクリレート、へキシル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メタクリル酸トリシクロ[ 5.2.1.02.6]デカン-8-イルなどのアルキル(メタ)アクリレート化合物;
 ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートなどの多官能性単量体;
(Ii) Other vinyl monomers Other vinyl monomers that can be copolymerized with a vinyl monomer having a functional group (α) include, for example, styrene, α-methylstyrene, 4-methylstyrene. 2-methylstyrene, 3-methylstyrene, 4-methoxystyrene, 2-hydroxymethylstyrene, 4-ethylstyrene, 4-ethoxystyrene, 3,4-dimethylstyrene, 3,4-diethylstyrene, 2-chlorostyrene Aromatic vinyl monomers such as 3-chlorostyrene, 4-chloro-3-methylstyrene, 4-t-butylstyrene, 2,4-dichlorostyrene, 2,6-dichlorostyrene, 1-vinylnaphthalene;
Methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, amyl (meth) acrylate, i-amyl (meth) acrylate, hexyl Alkyl such as (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, cyclohexyl (meth) acrylate, and tricyclo [5.2.1.0 2.6 ] decan-8-yl methacrylate (Meth) acrylate compounds;
Divinylbenzene, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) ) Acrylate, tripropylene glycol di (meth) acrylate, tetrapropylene glycol di (meth) acrylate, butanediol di (meth) acrylate, hexanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra ( Polyfunctional monomers such as (meth) acrylates;
  (メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N,N' -メチレンビスアクリルアミド、ダイアセトンアクリルアミド、マレイン酸アミド、マレイミド、フェニルマレイミド、シクロヘキシルマレイミドなどの酸アミド化合物;
 塩化ビニル、塩化ビニリデン、脂肪酸ビニルエステルなどのビニル化合物;
 1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-ネオペンチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン、2-シアノ-1,3-ブタジエン、イソプレン、アルキル基、ハロゲン原子、シアノ基などの置換基で置換された置換直鎖共役ペンタジエン類、直鎖状および側鎖状の共役ヘキサジエンなどの脂肪族共役ジエン;
 アクリロニトリル、メタアクリロニトリルなどのシアン化ビニル化合物;
 トリフルオロエチル(メタ)アクリレート、ペンタデカフルオロオクチル(メタ)アクリレートなどのフッ素原子含有単量体;
 4-(メタ)アクリロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-(メタ)アクリロイルアミノ-2,2,6,6-テトラメチルピペリジン、4-(メタ)アクリロイルオキシ-1,2,2,6,6-ペンタメチルピペリジンなどのピペリジン系モノマー;
(Meth) acrylamide, N-methylol (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, N, N′-methylenebisacrylamide, diacetone acrylamide, maleic acid amide, maleimide, Acid amide compounds such as phenylmaleimide and cyclohexylmaleimide;
Vinyl compounds such as vinyl chloride, vinylidene chloride and fatty acid vinyl esters;
1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-neopentyl-1,3-butadiene, 2-chloro-1,3-butadiene, 2- Aliphatic conjugated dienes such as substituted linear conjugated pentadienes substituted with substituents such as cyano-1,3-butadiene, isoprene, alkyl groups, halogen atoms, cyano groups, linear and side chain conjugated hexadienes;
Vinyl cyanide compounds such as acrylonitrile and methacrylonitrile;
Fluorine atom-containing monomers such as trifluoroethyl (meth) acrylate and pentadecafluorooctyl (meth) acrylate;
4- (meth) acryloyloxy-2,2,6,6-tetramethylpiperidine, 4- (meth) acryloylamino-2,2,6,6-tetramethylpiperidine, 4- (meth) acryloyloxy-1, Piperidine monomers such as 2,2,6,6-pentamethylpiperidine;
  2-(2' -ヒドロキシ-5' -メタクリロキシエチルフェニル)-2H-ベンゾトリアゾール、2-(2' -ヒドロキシ-3' -t-ブチル-5' -メタクリロキシエチルフェニル)-2H-ベンゾトリアゾール、2-ヒドロキシ-4-(メタクリロイルオキシエトキシ)ベンゾフェノン、2-ヒドロキシ-4-(アクリロイルオキシエトキシ)ベンゾフェノンなどの紫外線吸収モノマー;
 ジカプロラクトン、アリル(メタ)アクリレートなどが挙げられる。これらは、1種単独あるいは2種以上を併用して用いることができる。
  官能基(β)と炭素・炭素二重結合とを有する不飽和化合物としては、たとえば、官能基(α)を有するビニル系単量体と同様のビニル系単量体や、上記水酸基含有ビニル系単量体とジイソシアネート化合物とを等モルで反応させることにより得られるイソシアネート基含有不飽和化合物などを挙げることができる。
2- (2′-hydroxy-5′-methacryloxyethylphenyl) -2H-benzotriazole, 2- (2′-hydroxy-3′-tert-butyl-5′-methacryloxyethylphenyl) -2H-benzotriazole UV-absorbing monomers such as 2-hydroxy-4- (methacryloyloxyethoxy) benzophenone and 2-hydroxy-4- (acryloyloxyethoxy) benzophenone;
Examples include dicaprolactone and allyl (meth) acrylate. These can be used alone or in combination of two or more.
As an unsaturated compound having a functional group (β) and a carbon / carbon double bond, for example, a vinyl monomer similar to the vinyl monomer having a functional group (α), or the above hydroxyl group-containing vinyl type An isocyanate group-containing unsaturated compound obtained by reacting a monomer and a diisocyanate compound in an equimolar amount can be exemplified.
(不飽和シラン化合物)
 また、上記(II)の方法に使用される不飽和シラン化合物(II)としては、
CH2 =CHSi(CH3 )(OCH3 )2 、
CH2 =CHSi(OCH3 )3 、
CH2 =CHSi(CH3 )Cl2 、
CH2 =CHSiCl3 、
CH2 =CHCOO(CH2 )2 Si(CH3 )(OCH3 )2 、
CH2 =CHCOO(CH2 )2 Si(OCH3 )3 、
CH2 =CHCOO(CH2 )3 Si(CH3 )(OCH3 )2 、
CH2 =CHCOO(CH2 )3 Si(OCH3 )3 、
CH2 =CHCOO(CH2 )2 Si(CH3 )Cl2 、
CH2 =CHCOO(CH2 )2 SiCl3 、
CH2 =CHCOO(CH2 )3 Si(CH3 )Cl2 、
CH2 =CHCOO(CH2 )3 SiCl3 、
CH2 =C(CH3 )COO(CH2 )2 Si(CH3 )(OCH3 )2 、
CH2 =C(CH3 )COO(CH2 )2 Si(OCH3 )3 、
CH2 =C(CH3 )COO(CH2 )3 Si(CH3 )(OCH3 )2 、
CH2 =C(CH3 )COO(CH2 )3 Si(OCH3 )3 、
CH2 =C(CH3 )COO(CH2 )2 Si(CH3 )Cl2 、
CH2 =C(CH3 )COO(CH2 )2 SiCl3 、
CH2 =C(CH3 )COO(CH2 )3 Si(CH3 )Cl2 、
CH2 =C(CH3 )COO(CH2 )3 SiCl3 、
(Unsaturated silane compound)
Moreover, as unsaturated silane compound (II) used for the method of said (II),
CH 2 = CHSi (CH 3) (OCH 3) 2,
CH 2 = CHSi (OCH 3 ) 3 ,
CH 2 = CHSi (CH 3 ) Cl 2 ,
CH 2 = CHSiCl 3 ,
CH 2 = CHCOO (CH 2) 2 Si (CH 3) (OCH 3) 2,
CH 2 = CHCOO (CH 2) 2 Si (OCH 3) 3,
CH 2 = CHCOO (CH 2) 3 Si (CH 3) (OCH 3) 2,
CH 2 = CHCOO (CH 2 ) 3 Si (OCH 3 ) 3 ,
CH 2 = CHCOO (CH 2) 2 Si (CH 3) Cl 2,
CH 2 = CHCOO (CH 2 ) 2 SiCl 3 ,
CH 2 = CHCOO (CH 2 ) 3 Si (CH 3 ) Cl 2 ,
CH 2 = CHCOO (CH 2 ) 3 SiCl 3 ,
CH 2 = C (CH 3) COO (CH 2) 2 Si (CH 3) (OCH 3) 2,
CH 2 = C (CH 3) COO (CH 2) 2 Si (OCH 3) 3,
CH 2 = C (CH 3) COO (CH 2) 3 Si (CH 3) (OCH 3) 2,
CH 2 = C (CH 3) COO (CH 2) 3 Si (OCH 3) 3,
CH 2 = C (CH 3) COO (CH 2) 2 Si (CH 3) Cl 2,
CH 2 = C (CH 3 ) COO (CH 2 ) 2 SiCl 3 ,
CH 2 = C (CH 3) COO (CH 2) 3 Si (CH 3) Cl 2,
CH 2 = C (CH 3) COO (CH 2) 3 SiCl 3,
Figure JPOXMLDOC01-appb-C000003
を挙げることができる。これらは、1種単独あるいは2種以上を併用して用いることができる。
Figure JPOXMLDOC01-appb-C000003
Can be mentioned. These can be used alone or in combination of two or more.
 また、不飽和シラン化合物と共重合させる他のビニル系単量体としては、たとえば、上記(I-1)の方法において例示した官能基(α)を有するビニル系単量体や他のビニル系単量体などを挙げることができる。 Examples of other vinyl monomers copolymerized with the unsaturated silane compound include, for example, vinyl monomers having the functional group (α) exemplified in the method (I-1) and other vinyl monomers. A monomer etc. can be mentioned.
 上記特定シリル基含有ビニル系重合体(a2)の製造方法としては、たとえば、一括して各単量体を添加して重合する方法、単量体の一部を重合したのち、その残りを連続的にまたは断続的に添加して重合する方法、あるいは、単量体を重合開始時から連続的に添加する方法などが挙げられる。また、これらの重合方法を組み合わせてもよい。
 好ましい重合方法としては、溶液重合が挙げられる。溶液重合に使用される溶媒は、特定シリル基含有ビニル系重合体(a2)を製造できるものであれば特に制限されないが、たとえば、アルコール類、ジエチレングリコールアルキルエーテル類、エチレングリコールアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテル類、プロピレングリコールモノアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテルプロピオネート類、芳香族炭化水素類、エーテル類、ケトン類、エステル類などを挙げることができる。
Examples of the method for producing the specific silyl group-containing vinyl polymer (a2) include, for example, a method in which each monomer is added at once and polymerized. For example, a method in which polymerization is carried out by adding them intermittently or a method in which a monomer is continuously added from the start of polymerization. These polymerization methods may be combined.
A preferred polymerization method includes solution polymerization. The solvent used in the solution polymerization is not particularly limited as long as it can produce the specific silyl group-containing vinyl polymer (a2). For example, alcohols, diethylene glycol alkyl ethers, ethylene glycol alkyl ether acetates, propylene Examples include glycol monoalkyl ethers, propylene glycol monoalkyl ether acetates, propylene glycol monoalkyl ether propionates, aromatic hydrocarbons, ethers, ketones and esters.
 上記アルコール類としては、メタノール、エタノール、n-プロピルアルコール、i-プロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、t-ブチルアルコール、イソブチルアルコール、n-ヘキシルアルコール、n-オクチルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、エチレングリコールモノブチルエーテル、ジアセトンアルコールなどが挙げられ、ジエチレングリコールアルキルエーテル類として、例えばジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテルなどが挙げられ、エチレングリコールアルキルエーテルアセテート類として、例えばメチルセロソルブアセテート、エチルセロソルブアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテートなどが挙げられ、プロピレングリコールモノアルキルエーテル類として、例えばプロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテルなどが挙げられ、プロピレングリコールモノアルキルエーテルアセテート類として、例えばプロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテートなどが挙げられ、プロピレングリコールモノアルキルエーテルプロピオネート類として、例えばプロピレングリコールモノメチルエーテルプロピオネート、プロピレングリコールモノエチルエーテルプロピオネート、プロピレングリコールモノプロピルエーテルプロピオネート、プロピレングリコールモノブチルエーテルプロピオネートなどが挙げられる。 Examples of the alcohols include methanol, ethanol, n-propyl alcohol, i-propyl alcohol, n-butyl alcohol, sec-butyl alcohol, t-butyl alcohol, isobutyl alcohol, n-hexyl alcohol, n-octyl alcohol, and ethylene glycol. , Diethylene glycol, triethylene glycol, ethylene glycol monobutyl ether, diacetone alcohol, and the like. Examples of diethylene glycol alkyl ethers include diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and diethylene glycol ethyl methyl ether. Ethylene glycol alcohol Examples of ether acetates include methyl cellosolve acetate, ethyl cellosolve acetate, ethylene glycol monobutyl ether acetate, and ethylene glycol monoethyl ether acetate. Examples of propylene glycol monoalkyl ethers include propylene glycol monomethyl ether and propylene glycol monoethyl ether. Propylene glycol monopropyl ether, propylene glycol monobutyl ether, and the like. As propylene glycol monoalkyl ether acetates, for example, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol For example, propylene glycol monoalkyl ether propionate, propylene glycol monomethyl ether propionate, propylene glycol monoethyl ether propionate, propylene glycol monopropyl ether propionate, propylene glycol mono Examples include butyl ether propionate.
 また、芳香族炭化水素類としては、ベンゼン、トルエン、キシレンなどが挙げられ、エーテル類としては、テトラヒドロフラン、ジオキサンなどが挙げられ、ケトン類としては、アセトン、シクロヘキサノン、2-ヘプタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトンなどが挙げられ、エステル類としては、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸i-プロピル、酢酸ブチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸メチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、ヒドロキシ酢酸メチル、ヒドロキシ酢酸エチル、ヒドロキシ酢酸ブチル、乳酸メチル、乳酸エチル、乳酸ノルマルプロピル、乳酸イソプロピル、乳酸ブチル、3-ヒドロキシプロピオン酸メチル、3-ヒドロキシプロピオン酸エチル、3-ヒドロキシプロピオン酸プロピル、3-ヒドロキシプロピオン酸ブチル、2-ヒドロキシ-3-メチルブタン酸メチル、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸プロピル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル、エトキシ酢酸プロピル、エトキシ酢酸ブチル、プロポキシ酢酸メチル、プロポキシ酢酸エチル、プロポキシ酢酸プロピル、プロポキシ酢酸ブチル、ブトキシ酢酸メチル、ブトキシ酢酸エチル、ブトキシ酢酸プロピル、ブトキシ酢酸ブチル、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-メトキシプロピオン酸ブチル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル、炭酸プロピレン、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチルなどが挙げられる。これらの有機溶剤は、1種単独で用いても、2種以上を混合して用いてもよい。
 また、上記重合では、重合開始剤、分子量調整剤、キレート化剤、無機電解質は、公知のものを使用することができる。
Aromatic hydrocarbons include benzene, toluene, xylene, etc., ethers include tetrahydrofuran, dioxane, etc., and ketones include acetone, cyclohexanone, 2-heptanone, 4-hydroxy- 4-methyl-2-pentanone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone and the like. Examples of esters include methyl acetate, ethyl acetate, propyl acetate, i-propyl acetate, butyl acetate, ethyl 2-hydroxypropionate, Methyl 2-hydroxy-2-methylpropionate, ethyl 2-hydroxy-2-methylpropionate, methyl hydroxyacetate, ethyl hydroxyacetate, butyl hydroxyacetate, methyl lactate, ethyl lactate, normal propyl lactate, isopropyl lactate Butyl lactate, methyl 3-hydroxypropionate, ethyl 3-hydroxypropionate, propyl 3-hydroxypropionate, butyl 3-hydroxypropionate, methyl 2-hydroxy-3-methylbutanoate, methyl methoxyacetate, ethyl methoxyacetate, Propyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, propyl ethoxyacetate, butyl ethoxyacetate, methyl propoxyacetate, ethyl propoxyacetate, propylpropoxyacetate, butylpropoxyacetate, methylbutoxyacetate, ethylbutoxyacetate, butoxyacetic acid Propyl, butyl butoxyacetate, methyl 2-methoxypropionate, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, butyl 2-methoxypropionate, 2- Methyl Tokishipuropion acid, 2-ethoxy ethyl propionate, propylene carbonate, methyl 3-ethoxypropionate, and ethyl 3-ethoxypropionate and the like. These organic solvents may be used individually by 1 type, or 2 or more types may be mixed and used for them.
In the above polymerization, known polymerization initiators, molecular weight regulators, chelating agents, and inorganic electrolytes can be used.
 本発明では、特定シリル基含有ビニル系重合体(a2)として、上記のようにして重合された特定シリル基含有ビニル系重合体の他に、特定シリル基含有エポキシ樹脂、特定シリル基含有ポリエステル樹脂などの他の特定シリル基含有ビニル系重合体を使用することもできる。上記特定シリル基含有エポキシ樹脂は、たとえば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、脂肪族ポリグリシジルエーテル、脂肪族ポリグリシジルエステルなどのエポキシ樹脂中のエポキシ基に、特定シリル基を有するアミノシラン類、ビニルシラン類、カルボキシシラン類、グリシジルシラン類などを反応させることにより製造することができる。また、上記特定シリル基含有ポリエステル樹脂は、たとえば、ポリエステル樹脂中に含有されるカルボキシル基や水酸基に、特定シリル基を有するアミノシラン類、カルボキシシラン類、グリシジルシラン類などを反応させることにより製造することができる。
 特定シリル基含有ビニル系重合体(a2)のGPC法により測定したポリスチレン換算のMwは、好ましくは2,000~100,000、さらに好ましくは3,000~50,000である。本発明において、特定シリル基含有ビニル系重合体(a2)は、単独でまたは2種以上を混合して使用することができる。
In the present invention, as the specific silyl group-containing vinyl polymer (a2), in addition to the specific silyl group-containing vinyl polymer polymerized as described above, the specific silyl group-containing epoxy resin and the specific silyl group-containing polyester resin are used. Other specific silyl group-containing vinyl polymers such as can also be used. Examples of the specific silyl group-containing epoxy resin include epoxy groups in epoxy resins such as bisphenol A type epoxy resins, bisphenol F type epoxy resins, hydrogenated bisphenol A type epoxy resins, aliphatic polyglycidyl ethers, and aliphatic polyglycidyl esters. And aminosilanes having a specific silyl group, vinylsilanes, carboxysilanes, glycidylsilanes, and the like. The specific silyl group-containing polyester resin is produced, for example, by reacting a carboxyl group or a hydroxyl group contained in the polyester resin with an aminosilane having a specific silyl group, a carboxysilane, or a glycidylsilane. Can do.
The polystyrene-equivalent Mw of the specific silyl group-containing vinyl polymer (a2) measured by the GPC method is preferably 2,000 to 100,000, more preferably 3,000 to 50,000. In the present invention, the specific silyl group-containing vinyl polymer (a2) can be used alone or in admixture of two or more.
 本発明においては、シラン化合物(a1)と特定シリル基含有ビニル系重合体(a2)とを共縮合させても良い。好ましくは、シラン化合物(a1)と特定シリル基含有ビニル系重合体(a2)との混合物に、加水分解・縮合反応用触媒および水を添加して共縮合させることにより調製できる。 In the present invention, the silane compound (a1) and the specific silyl group-containing vinyl polymer (a2) may be co-condensed. Preferably, it can be prepared by adding a hydrolysis / condensation reaction catalyst and water to a mixture of the silane compound (a1) and the specific silyl group-containing vinyl polymer (a2) and co-condensing it.
 この反応において、シラン化合物(a1)の含有量(Wa1)と特定シリル基含有ビニル系重合体(a2)の含有量(Wa2)との重量比(Wa1/Wa2)は、Wa1+Wa2=100として、5/95~95/5であり、好ましくは15/85~85/15である。なお、Wa1はシラン化合物(a1)の完全加水分解縮合物換算値、Wa2は特定シリル基含有ビニル系重合体(a2)の固形分換算値である。重量比(Wa1/Wa2)が上記範囲にあると透明性や耐候性に優れた層(I)を得ることができる。
 尚、本明細書において、完全加水分解縮合物とは、シラン化合物の-OR基が100%加水分解してSi-OH基となり、さらに完全に縮合してシロキサン構造になったものをいう。
In this reaction, the weight ratio (Wa1 / Wa2) between the content (Wa1) of the silane compound (a1) and the content (Wa2) of the specific silyl group-containing vinyl polymer (a2) is set to Wa1 + Wa2 = 100. / 95 to 95/5, preferably 15/85 to 85/15. In addition, Wa1 is a complete hydrolysis condensate conversion value of the silane compound (a1), and Wa2 is a solid content conversion value of the specific silyl group-containing vinyl polymer (a2). When the weight ratio (Wa1 / Wa2) is in the above range, a layer (I) excellent in transparency and weather resistance can be obtained.
In the present specification, the completely hydrolyzed condensate means a product in which the —OR group of a silane compound is hydrolyzed to 100% to become a Si—OH group, and further completely condensed to a siloxane structure.
 重合体(A1)は、具体的には下記(1)~(2)の方法により調製することが好ましい。
 (1)シラン化合物(a1)と特定シリル基含有ビニル系重合体(a2)と加水分解・縮合反応用触媒との混合液に、水を加えて、温度40~80℃、反応時間0.5~12時間でシラン化合物(a1)と特定シリル基含有ビニル系重合体(a2)とを共縮合させて、重合体(A1)を調製する。その後、必要に応じて、安定性向上剤などの他の添加剤を加えてもよい。
Specifically, the polymer (A1) is preferably prepared by the following methods (1) to (2).
(1) Water is added to a mixed solution of the silane compound (a1), the specific silyl group-containing vinyl polymer (a2) and the catalyst for hydrolysis / condensation reaction, the temperature is 40 to 80 ° C., and the reaction time is 0.5. The polymer (A1) is prepared by co-condensing the silane compound (a1) and the specific silyl group-containing vinyl polymer (a2) in ˜12 hours. Thereafter, if necessary, other additives such as a stability improver may be added.
 (2)シラン化合物(a1)に水を加えて、温度40~80℃、時間0.5~12時間でシラン化合物(a1)の加水分解・縮合反応を行う。次いで、特定シリル基含有ビニル系重合体(a2)および加水分解・縮合反応用触媒を加えて混合し、さらに温度40~80℃、反応時間0.5~12時間で縮合反応を行い、重合体(A1)を調製する。その後、必要に応じて、安定性向上剤などの他の添加剤を加えてもよい。加水分解縮合触媒として有機金属化合物を使用した場合には、反応後に上記安定性向上剤を添加することが好ましい。
 上記方法により得られる重合体(A1)の重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定したポリスチレン換算値で通常2,500~200,000、好ましくは3,000~150,000、より好ましくは3,500~100,000である。
(2) Water is added to the silane compound (a1), and the hydrolysis / condensation reaction of the silane compound (a1) is carried out at a temperature of 40 to 80 ° C. for 0.5 to 12 hours. Next, the specific silyl group-containing vinyl polymer (a2) and a catalyst for hydrolysis / condensation reaction are added and mixed, and further subjected to a condensation reaction at a temperature of 40 to 80 ° C. and a reaction time of 0.5 to 12 hours. Prepare (A1). Thereafter, if necessary, other additives such as a stability improver may be added. When an organometallic compound is used as the hydrolysis condensation catalyst, it is preferable to add the stability improver after the reaction.
The weight average molecular weight of the polymer (A1) obtained by the above method is usually 2,500 to 200,000, preferably 3,000 to 150,000, more preferably in terms of polystyrene measured by gel permeation chromatography. 3,500 to 100,000.
(触媒)
 本発明では、重合体(A1)を調製する際に、上記シラン化合物(a1)や特定シリル基含有ビニル系重合体(a2)の加水分解・縮合反応を促進するために、上記シラン化合物(a1)と特定シリル基含有ビニル系重合体(a2)との混合物に触媒を添加することが好ましい。触媒を添加することにより、得られる重合体(A1)の架橋度を高めることができるとともに、オルガノシラン(1)の重縮合反応により生成するポリシロキサンの分子量が大きくなり、結果として、強度、長期耐久性などに優れた層(I)を得ることができる。さらに、触媒の添加は、上記シラン化合物(a1)と特定シリル基含有ビニル系重合体(a2)との反応を促進し、重合体(A1)に十分な反応サイト(アルコキシ基)が形成される。このような加水分解・縮合反応を促進するために用いられる触媒としては、例えば、塩基性化合物、酸性化合物、塩化合物および有機金属化合物が挙げられる。
(catalyst)
In the present invention, when the polymer (A1) is prepared, the silane compound (a1) or the specific silyl group-containing vinyl polymer (a2) is promoted by hydrolysis / condensation reaction. And a specific silyl group-containing vinyl polymer (a2). By adding a catalyst, the degree of cross-linking of the resulting polymer (A1) can be increased, and the molecular weight of the polysiloxane produced by the polycondensation reaction of the organosilane (1) is increased. A layer (I) excellent in durability and the like can be obtained. Furthermore, the addition of the catalyst promotes the reaction between the silane compound (a1) and the specific silyl group-containing vinyl polymer (a2), and sufficient reaction sites (alkoxy groups) are formed in the polymer (A1). . Examples of the catalyst used for promoting such hydrolysis / condensation reaction include basic compounds, acidic compounds, salt compounds, and organometallic compounds.
(塩基性化合物)
 上記塩基性化合物としては、アンモニア(アンモニア水溶液を含む)、有機アミン化合物、水酸化ナトリウム、水酸化カリウム等のアルカリ金属やアルカリ土類金属の水酸化物、ナトリウムメトキシド、ナトリウムエトキシド等のアルカリ金属のアルコキシドが挙げられる。これらのうち、アンモニアおよび有機アミン化合物が好ましい。
(Basic compound)
Examples of the basic compound include ammonia (including ammonia aqueous solution), organic amine compounds, alkali metals such as sodium hydroxide and potassium hydroxide, hydroxides of alkaline earth metals, alkalis such as sodium methoxide and sodium ethoxide. Examples thereof include metal alkoxides. Of these, ammonia and organic amine compounds are preferred.
 有機アミンとしては、アルキルアミン、アルコキシアミン、アルカノールアミン、アリールアミンなどが挙げられる。
 アルキルアミンとしては、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、N,N-ジメチルアミン、N,N-ジエチルアミン、N,N-ジプロピルアミン、N,N-ジブチルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミンなどの炭素数1~4のアルキル基を有するアルキルアミンなどが挙げられる。
Examples of the organic amine include alkylamine, alkoxyamine, alkanolamine, and arylamine.
Alkylamines include methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, N, N-dimethylamine, N, N-diethylamine, N, N-dipropylamine, N, N-dibutylamine, trimethylamine And alkylamines having an alkyl group having 1 to 4 carbon atoms such as triethylamine, tripropylamine, and tributylamine.
 アルコキシアミンとしては、メトキシメチルアミン、メトキシエチルアミン、メトキシプロピルアミン、メトキシブチルアミン、エトキシメチルアミン、エトキシエチルアミン、エトキシプロピルアミン、エトキシブチルアミン、プロポキシメチルアミン、プロポキシエチルアミン、プロポキシプロピルアミン、プロポキシブチルアミン、ブトキシメチルアミン、ブトキシエチルアミン、ブトキシプロピルアミン、ブトキシブチルアミンなどの炭素数1~4のアルコキシ基を有するアルコキシアミンなどが挙げられる。 Alkoxyamines include methoxymethylamine, methoxyethylamine, methoxypropylamine, methoxybutylamine, ethoxymethylamine, ethoxyethylamine, ethoxypropylamine, ethoxybutylamine, propoxymethylamine, propoxyethylamine, propoxypropylamine, propoxybutylamine, butoxymethylamine , Alkoxyamines having an alkoxy group having 1 to 4 carbon atoms, such as butoxyethylamine, butoxypropylamine, and butoxybutylamine.
 アルカノールアミンとしては、メタノールアミン、エタノールアミン、プロパノールアミン、ブタノールアミン、N-メチルメタノールアミン、N-エチルメタノールアミン、ミン、N-エチルエタノールアミン、N-プロピルエタノールアミン、N-ブチルエタノールアミン、N-メチルプロパノールアミン、N-エチルプロパノールアミン、N-プロピルプロパノールアミン、N-ブチルプロパノールアミン、N-メチルブタノールアミン、N-エチルブタノールアミン、N-プロピルブタノールアミン、N-ブチルブタノールアミン、N,N-ジメチルメタノールアミン、N,N-ジエチルメタノールアミン、N,N-ジプロピルメタノールアミン、N,N-ジブチルメタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、N,N-ジプロピルエタノールアミン、N,N-ジブチルエタノールアミン、N,N-ジメチルプロパノールアミン、N,N-ジエチルプロパノールアミン、N,N-ジプロピルプロパノールアミン、N,N-ジブチルプロパノールアミン、N,N-ジメチルブタノールアミン、N,N-ジエチルブタノールアミン、N,N-ジプロピルブタノールアミン、N,N-ジブチルブタノールアミン、N-メチルジメタノールアミン、N-エチルジメタノールアミン、N-プロピルジメタノールアミン、N-ブチルジメタノールアミン、N-メチルジエタノールアミン、N-エチルジエタノールアミン、N-プロピルジエタノールアミン、N-ブチルジエタノールアミン、N-メチルジプロパノールアミン、N-エチルジプロパノールアミン、N-プロピルジプロパノールアミン、N-ブチルジプロパノールアミン、N-メチルジブタノールアミン、N-エチルジブタノールアミン、N-プロピルジブタノールアミン、N-ブチルジブタノールアミン、N-(アミノメチル)メタノールアミン、N-(アミノメチル)エタノールアミン、N-(アミノメチル)プロパノールアミン、N-(アミノメチル)ブタノールアミン、N-(アミノエチル)メタノールアミン、N-(アミノエチル)エタノールアミン、N-(アミノエチル)プロパノールアミン、N-(アミノエチル)ブタノールアミン、N-(アミノプロピル)メタノールアミン、N-(アミノプロピル)エタノールアミン、N-(アミノプロピル)プロパノールアミン、N-(アミノプロピル)ブタノールアミン、N-(アミノブチル)メタノールアミン、N-(アミノブチル)エタノールアミン、N-(アミノブチル)プロパノールアミン、N-(アミノブチル)ブタノールアミンなどの炭素数1~4のアルキル基を有するアルカノールアミンが挙げられる。
 アリールアミンとしてはアニリン、N-メチルアニリンなどが挙げられる。
Alkanolamines include methanolamine, ethanolamine, propanolamine, butanolamine, N-methylmethanolamine, N-ethylmethanolamine, min, N-ethylethanolamine, N-propylethanolamine, N-butylethanolamine, N -Methylpropanolamine, N-ethylpropanolamine, N-propylpropanolamine, N-butylpropanolamine, N-methylbutanolamine, N-ethylbutanolamine, N-propylbutanolamine, N-butylbutanolamine, N, N -Dimethylmethanolamine, N, N-diethylmethanolamine, N, N-dipropylmethanolamine, N, N-dibutylmethanolamine, N, N-dimethylethanolamine, N, N- Ethylethanolamine, N, N-dipropylethanolamine, N, N-dibutylethanolamine, N, N-dimethylpropanolamine, N, N-diethylpropanolamine, N, N-dipropylpropanolamine, N, N- Dibutylpropanolamine, N, N-dimethylbutanolamine, N, N-diethylbutanolamine, N, N-dipropylbutanolamine, N, N-dibutylbutanolamine, N-methyldimethanolamine, N-ethyldimethanolamine N-propyldimethanolamine, N-butyldimethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, N-propyldiethanolamine, N-butyldiethanolamine, N-methyldipropanolamine, N-ethyl Propanolamine, N-propyldipropanolamine, N-butyldipropanolamine, N-methyldibutanolamine, N-ethyldibutanolamine, N-propyldibutanolamine, N-butyldibutanolamine, N- (aminomethyl ) Methanolamine, N- (aminomethyl) ethanolamine, N- (aminomethyl) propanolamine, N- (aminomethyl) butanolamine, N- (aminoethyl) methanolamine, N- (aminoethyl) ethanolamine, N -(Aminoethyl) propanolamine, N- (aminoethyl) butanolamine, N- (aminopropyl) methanolamine, N- (aminopropyl) ethanolamine, N- (aminopropyl) propanolamine, N- (aminopropyl) Butano Alkanols having an alkyl group having 1 to 4 carbon atoms such as allamine, N- (aminobutyl) methanolamine, N- (aminobutyl) ethanolamine, N- (aminobutyl) propanolamine, N- (aminobutyl) butanolamine Examples include amines.
Examples of the arylamine include aniline and N-methylaniline.
 さらに、上記以外の有機アミンとして、テトラメチルアンモニウムハイドロキサイド、テトラエチルアンモニウムハイドロキサイド、テトラプロピルアンモニウムハイドロキサイド、テトラブチルアンモニウムハイドロキサイドなどのテトラアルキルアンモニウムハイドロキサイド;テトラメチルエチレンジアミン、テトラエチルエチレンジアミン、テトラプロピルエチレンジアミン、テトラブチルエチレンジアミンなどのテトラアルキルエチレンジアミン;メチルアミノメチルアミン、メチルアミノエチルアミン、メチルアミノプロピルアミン、メチルアミノブチルアミン、エチルアミノメチルアミン、エチルアミノエチルアミン、エチルアミノプロピルアミン、エチルアミノブチルアミン、プロピルアミノメチルアミン、プロピルアミノエチルアミン、プロピルアミノプロピルアミン、プロピルアミノブチルアミン、ブチルアミノメチルアミン、ブチルアミノエチルアミン、ブチルアミノプロピルアミン、ブチルアミノブチルアミンなどのアルキルアミノアルキルアミン; エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、m-フェニレンジアミン、p-フェニレンジアミンなどのポリアミン;ピリジン、ピロール、ピペラジン、ピロリジン、ピペリジン、ピコリン、モルホリン、メチルモルホリン、ジアザビシクロオクラン、ジアザビシクロノナン、ジアザビシクロウンデセンなども挙げられる。 Further, as organic amines other than the above, tetraalkylammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide; tetramethylethylenediamine, tetraethylethylenediamine Tetraalkylethylenediamine such as tetrapropylethylenediamine and tetrabutylethylenediamine; methylaminomethylamine, methylaminoethylamine, methylaminopropylamine, methylaminobutylamine, ethylaminomethylamine, ethylaminoethylamine, ethylaminopropylamine, ethylaminobutylamine, Propylaminomethylamine, propylamino Alkylaminoalkylamines such as ethylamine, propylaminopropylamine, propylaminobutylamine, butylaminomethylamine, butylaminoethylamine, butylaminopropylamine, butylaminobutylamine; ethylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepenta Polyamines such as amine, m-phenylenediamine, p-phenylenediamine; pyridine, pyrrole, piperazine, pyrrolidine, piperidine, picoline, morpholine, methylmorpholine, diazabicycloocrane, diazabicyclononane, diazabicycloundecene, etc. Can be mentioned.
 このような塩基性化合物は、1種単独で用いても、2種以上を混合して用いてもよい。これらのうち、トリエチルアミン、テトラメチルアンモニウムハイドロキサイド、ピリジンが好ましい。 Such basic compounds may be used singly or in combination of two or more. Of these, triethylamine, tetramethylammonium hydroxide, and pyridine are preferable.
(酸性化合物)
 上記酸性化合物としては、有機酸および無機酸が挙げられる。有機酸としては、たとえば、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、シュウ酸、マレイン酸、無水マレイン酸、メチルマロン酸、アジピン酸、セバシン酸、没食子酸、酪酸、メリット酸、アラキドン酸、ミキミ酸、2-エチルヘキサン酸、オレイン酸、ステアリン酸、リノール酸、リノレイン酸、サリチル酸、安息香酸、p-アミノ安息香酸、p-トルエンスルホン酸、ベンゼンスルホン酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ギ酸、マロン酸、メタンスルホン酸、フタル酸、フマル酸、クエン酸、酒石酸などが挙げられる。上記無機酸としては、たとえば、塩酸、硝酸、硫酸、フッ酸、リン酸などが挙げられる。
(Acidic compounds)
Examples of the acidic compound include organic acids and inorganic acids. Examples of the organic acid include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oxalic acid, maleic acid, maleic anhydride, methylmalonic acid, adipic acid, Sebacic acid, gallic acid, butyric acid, meritic acid, arachidonic acid, mikimic acid, 2-ethylhexanoic acid, oleic acid, stearic acid, linoleic acid, linolenic acid, salicylic acid, benzoic acid, p-aminobenzoic acid, p-toluenesulfone Examples include acid, benzenesulfonic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, formic acid, malonic acid, methanesulfonic acid, phthalic acid, fumaric acid, citric acid, and tartaric acid. Examples of the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid.
 このような酸性化合物は、1種単独で用いても、2種以上を混合して用いてもよい。これらのうち、マレイン酸、無水マレイン酸、メタンスルホン酸、酢酸が特に好ましい。 Such acidic compounds may be used singly or in combination of two or more. Of these, maleic acid, maleic anhydride, methanesulfonic acid, and acetic acid are particularly preferred.
(塩化合物)
 上記塩化合物として、ナフテン酸、オクチル酸、亜硝酸、亜硫酸、アルミン酸、炭酸などのアルカリ金属塩などが挙げられる。
(Salt compound)
Examples of the salt compound include naphthenic acid, octylic acid, nitrous acid, sulfurous acid, aluminate, and alkali metal salts such as carbonic acid.
(有機金属化合物)
 上記有機金属化合物としては、有機金属化合物および/またはその部分加水分解物(以下、有機金属化合物および/またはその部分加水分解物をまとめて、「有機金属化合物類」という)が挙げられる。
上記有機金属化合物類としては、たとえば、下記式(b)
 M(OR7 )r (R8 COCHCOR9s  (b)
(式中、Mは、ジルコニウム、チタンおよびアルミニウムからなる群からを選択される少なくとも1種の金属原子を表し、R7 および8 は、それぞれ独立に、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、シクロヘキシル基、フェニル基などの炭素数1~6個の1価の炭化水素基を表し、R9 は、前記炭素数1~6個の1価の炭化水素基、または、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基、ラウリルオキシ基、ステアリルオキシ基などの炭素数1~16個のアルコキシ基を表し、rおよびsは、それぞれ独立に0~4の整数であって、(r+s)=(Mの原子価)の関係を満たす)で表される化合物(以下、「有機金属化合物(b)」という)、 1つのスズ原子に炭素数1~10個のアルキル基が1~2個結合した4価のスズの有機金属化合物(以下、「有機スズ化合物」という)、あるいは、これらの部分加水分解物などが挙げられる。
(Organic metal compound)
Examples of the organometallic compound include organometallic compounds and / or partial hydrolysates thereof (hereinafter, organometallic compounds and / or partial hydrolysates thereof are collectively referred to as “organometallic compounds”).
Examples of the organometallic compounds include the following formula (b):
M (OR 7 ) r (R 8 COCHCOR 9 ) s (b)
(Wherein M represents at least one metal atom selected from the group consisting of zirconium, titanium and aluminum, and R 7 and 8 each independently represent a methyl group, an ethyl group, an n-propyl group, Monovalent hydrocarbon groups having 1 to 6 carbon atoms such as i-propyl group, n-butyl group, sec-butyl group, t-butyl group, n-pentyl group, n-hexyl group, cyclohexyl group and phenyl group R 9 represents a monovalent hydrocarbon group having 1 to 6 carbon atoms, or a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group, a sec-butoxy group, represents an alkoxy group having 1 to 16 carbon atoms such as t-butoxy group, lauryloxy group and stearyloxy group, and r and s are each independently an integer of 0 to 4 and (r + s) = (M Valence) (Hereinafter, referred to as “organometallic compound (b)”), a tetravalent tin organic compound in which one or two alkyl groups having 1 to 10 carbon atoms are bonded to one tin atom. Examples thereof include metal compounds (hereinafter referred to as “organotin compounds”) or partial hydrolysates thereof.
 また、有機金属化合物類として、テトラメトキシチタン、テトラエトキシチタン、テトラ-i-プロポキシチタン、テトラ-n-ブトキシチタンなどのテトラアルコキシチタン類;メチルトリメトキシチタン、エチルトリエトキシチタン、n-プロピルトリメトキシチタン、i-プロピルトリエトキシチタン、n-ヘキシルトリメトキシチタン、シクロヘキシルトリエトキシチタン、フェニルトリメトキシチタン、3-クロロプロピルトリエトキシチタン、3-アミノプロピルトリメトキシチタン、3-アミノプロピルトリエトキシチタン、3-(2-アミノエチル)-アミノプロピルトリメトキシチタン、3-(2-アミノエチル)-アミノプロピルトリエトキシチタン、3-(2-アミノエチル)-アミノプロピルメチルジメトキシチタン、3-アニリノプロピルトリメトキシチタン、3-メルカプトプロピルトリエトキシチタン、3-イソシアネートプロピルトリメトキシチタン、3-グリシドキシプロピルトリエトキシチタン、3-ウレイドプロピルトリメトキシチタンなどのトリアルコキシチタン類;ジメチルジエトキシチタン、ジエチルジエトキシチタン、ジ-n-プロピルジメトキシチタン、ジ-i-プロピルジエトキシチタン、ジ-n-ペンチルジメトキシチタン、ジ-n-オクチルジエトキシチタン、ジ-n-シクロヘキシルジメトキシチタン、ジフェニルジメトキシチタンなどのジアルコキシチタン類などのチタンアルコレートおよびその縮合物を用いることができる。 Further, as organometallic compounds, tetraalkoxy titanium such as tetramethoxy titanium, tetraethoxy titanium, tetra-i-propoxy titanium, tetra-n-butoxy titanium; methyl trimethoxy titanium, ethyl triethoxy titanium, n-propyl tri Methoxytitanium, i-propyltriethoxytitanium, n-hexyltrimethoxytitanium, cyclohexyltriethoxytitanium, phenyltrimethoxytitanium, 3-chloropropyltriethoxytitanium, 3-aminopropyltrimethoxytitanium, 3-aminopropyltriethoxytitanium 3- (2-aminoethyl) -aminopropyltrimethoxytitanium, 3- (2-aminoethyl) -aminopropyltriethoxytitanium, 3- (2-aminoethyl) -aminopropylmethyldimethoxytitanium Trialkoxytitanium such as 3-anilinopropyltrimethoxytitanium, 3-mercaptopropyltriethoxytitanium, 3-isocyanatopropyltrimethoxytitanium, 3-glycidoxypropyltriethoxytitanium, 3-ureidopropyltrimethoxytitanium Dimethyldiethoxytitanium, diethyldiethoxytitanium, di-n-propyldimethoxytitanium, di-i-propyldiethoxytitanium, di-n-pentyldimethoxytitanium, di-n-octyldiethoxytitanium, di-n-cyclohexyl Titanium alcoholates such as dialkoxytitaniums such as dimethoxytitanium and diphenyldimethoxytitanium and condensates thereof can be used.
  有機金属化合物(b)として、たとえば、テトラ-n-ブトキシジルコニウム、トリ-n-ブトキシ・エチルアセトアセテートジルコニウム、ジ-n-ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、n-ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、テトラキス(n-プロピルアセトアセテート)ジルコニウム、テトラキス(アセチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウム、ジ-n-ブトキシ・ビス(アセチルアセトナート)ジルコニウムなどの有機ジルコニウム化合物;
 テトラ-i-プロポキシチタニウム、ジ-i-プロポキシ・ビス(エチルアセトアセテート)チタニウム、ジ-i-プロポキシ・ビス(アセチルアセテート)チタニウム、ジ-i-プロポキシ・ビス(アセチルアセトン)チタニウムなどの有機チタン化合物;
 トリ-i-プロポキシアルミニウム、ジ-i-プロポキシ・エチルアセトアセテートアルミニウム、ジ-i-プロポキシ・アセチルアセトナートアルミニウム、i-プロポキシ・ビス(エチルアセトアセテート)アルミニウム、i-プロポキシ・ビス(アセチルアセトナート)アルミニウム、トリス(エチルアセトアセテート)アルミニウム、トリス(アセチルアセトナート)アルミニウム、モノアセチルアセトナート・ビス(エチルアセトアセテート)アルミニウムなどの有機アルミニウム化合物が挙げられる。
Examples of the organometallic compound (b) include tetra-n-butoxyzirconium, tri-n-butoxyethylacetoacetatezirconium, di-n-butoxybis (ethylacetoacetate) zirconium, n-butoxytris (ethylacetoacetate). Organic zirconium compounds such as acetate) zirconium, tetrakis (n-propylacetoacetate) zirconium, tetrakis (acetylacetoacetate) zirconium, tetrakis (ethylacetoacetate) zirconium, di-n-butoxybis (acetylacetonato) zirconium;
Organic titanium compounds such as tetra-i-propoxy titanium, di-i-propoxy bis (ethylacetoacetate) titanium, di-i-propoxy bis (acetylacetate) titanium, di-i-propoxy bis (acetylacetone) titanium ;
Tri-i-propoxy aluminum, di-i-propoxy ethyl acetoacetate aluminum, di-i-propoxy acetyl acetonato aluminum, i-propoxy bis (ethyl acetoacetate) aluminum, i-propoxy bis (acetyl acetonate) And organoaluminum compounds such as aluminum, tris (ethylacetoacetate) aluminum, tris (acetylacetonato) aluminum, monoacetylacetonatobis (ethylacetoacetate) aluminum.
 有機スズ化合物として、たとえば、
Figure JPOXMLDOC01-appb-C000004
 などのカルボン酸型有機スズ化合物;
As an organic tin compound, for example,
Figure JPOXMLDOC01-appb-C000004
Carboxylic acid-type organotin compounds such as
Figure JPOXMLDOC01-appb-C000005
 などのメルカプチド型有機スズ化合物;
Figure JPOXMLDOC01-appb-C000005
Mercaptide-type organotin compounds such as
Figure JPOXMLDOC01-appb-C000006
などのスルフィド型有機スズ化合物;
Figure JPOXMLDOC01-appb-C000006
Sulfide-type organotin compounds such as;
Figure JPOXMLDOC01-appb-C000007
 などのクロライド型有機スズ化合物;
  (C4 H9 )2 SnO、(C8 H172 SnOなどの有機スズオキサイドや、これらの有機スズオキサイドとシリケート、マレイン酸ジメチル、マレイン酸ジエチル、フタル酸ジオクチルなどのエステル化合物との反応生成物;などが挙げられる。
Figure JPOXMLDOC01-appb-C000007
Chloride-type organotin compounds such as;
Reaction of organotin oxides such as (C 4 H 9 ) 2 SnO, (C 8 H 17 ) 2 SnO, and ester compounds such as silicates, dimethyl maleate, diethyl maleate, and dioctyl phthalate Products; and the like.
 このような有機金属化合物は、1種単独で用いても、2種以上を混合して用いてもよい。これらのうち、ジ-n-ブトキシ・ビス(アセチルアセトナート)ジルコニウム、ジオクチルスズ・ジオクチルマレエート、ジ-i-プロポキシ・ビス(アセチルアセトナート)チタニウム、ジ-i-プロポキシ・エチルアセトアセテートアルミニウム、トリス(エチルアセトアセテート)アルミニウム、あるいはこれらの部分加水分解物が好ましい。
 また、上記触媒は、その他の反応遅延剤と混合して使用することもできる。
Such organometallic compounds may be used singly or in combination of two or more. Among these, di-n-butoxy bis (acetylacetonato) zirconium, dioctyltin dioctyl maleate, di-i-propoxy bis (acetylacetonato) titanium, di-i-propoxyethylacetoacetate aluminum, Tris (ethyl acetoacetate) aluminum or a partial hydrolyzate thereof is preferred.
Moreover, the said catalyst can also be used in mixture with another reaction retarder.
 上記触媒の使用量は、上記触媒が有機金属化合物類以外の場合には、シラン化合物(a1)100重量部(オルガノシラン(1)の完全加水分解縮合物換算)に対して、通常0.001~100重量部、好ましくは0.01~80重量部、さらに好ましくは0.1~50重量部である。上記触媒が有機金属化合物類の場合には、シラン化合物(a1)100重量部(オルガノシラン(1)の完全加水分解縮合物換算)に対して、通常100重量部以下、好ましくは0.1~80重量部、さらに好ましくは0.5~50重量部である。 上記触媒の使用量が上記上限を超えると、重合体(A1)の保存安定性の低下によりゲル化したり、層(1)の架橋度が高くなりすぎてクラックが発生することがある。 The amount of the catalyst used is usually 0.001 with respect to 100 parts by weight of the silane compound (a1) (in terms of a completely hydrolyzed condensate of organosilane (1)) when the catalyst is other than organometallic compounds. To 100 parts by weight, preferably 0.01 to 80 parts by weight, more preferably 0.1 to 50 parts by weight. When the catalyst is an organometallic compound, it is usually 100 parts by weight or less, preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the silane compound (a1) (in terms of complete hydrolysis condensate of organosilane (1)). 80 parts by weight, more preferably 0.5 to 50 parts by weight. If the amount of the catalyst used exceeds the upper limit, gelation may occur due to a decrease in the storage stability of the polymer (A1), or cracks may occur due to the degree of crosslinking of the layer (1) being too high.
(安定性向上剤)
 本発明では、重合体(A1)の保存安定性などを向上させるために、重合体(A1)を調製した後、必要に応じて、安定性向上剤を添加することが好ましい。本発明に用いられる安定性向上剤は、下記式(5)
 R10COCH2 COR11 (5)
(式中、R10は、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、シクロヘキシル基、フェニル基などの炭素数1~6個の1価の炭化水素基を表し、R11は、R10と同様の炭素数1~6個の1価の炭化水素基、または、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基、ラウリルオキシ基、ステアリルオキシ基などの炭素数1~16個のアルコキシル基を表す。)で表されるβ-ジケトン類、β-ケトエステル類、カルボン酸化合物、ジヒドロキシ化合物、アミン化合物およびオキシアルデヒド化合物からなる群から選択される少なくとも1種の化合物である。
 上記触媒として有機金属化合物類を使用した場合、上記式(5)で表される安定性向上剤を添加することが好ましい。安定性向上剤を用いることによって、安定性向上剤が有機金属化合物類の金属原子に配位し、この配位が、シラン化合物(a1)と特定シリル基含有ビニル系重合体(a2)との過剰な共縮合反応を抑制し、得られる重合体(A1)の保存安定性をさらに向上させることができると考えられる。
(Stability improver)
In the present invention, in order to improve the storage stability of the polymer (A1), it is preferable to add a stability improver as necessary after preparing the polymer (A1). The stability improver used in the present invention is represented by the following formula (5).
R 10 COCH 2 COR 11 (5)
(In the formula, R 10 represents methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, sec-butyl group, t-butyl group, n-pentyl group, n-hexyl group, cyclohexyl group) R 1 represents a monovalent hydrocarbon group having 1 to 6 carbon atoms such as a phenyl group, and R 11 is a monovalent hydrocarbon group having 1 to 6 carbon atoms similar to R 10 , or a methoxy group, And represents an alkoxyl group having 1 to 16 carbon atoms such as ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, sec-butoxy group, t-butoxy group, lauryloxy group, stearyloxy group). At least one compound selected from the group consisting of β-diketones, β-ketoesters, carboxylic acid compounds, dihydroxy compounds, amine compounds, and oxyaldehyde compounds.
When organometallic compounds are used as the catalyst, it is preferable to add a stability improver represented by the above formula (5). By using the stability improver, the stability improver is coordinated to the metal atom of the organometallic compound, and this coordination is obtained between the silane compound (a1) and the specific silyl group-containing vinyl polymer (a2). It is considered that excessive cocondensation reaction can be suppressed and the storage stability of the resulting polymer (A1) can be further improved.
 このような安定性向上剤としては、たとえば、アセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸-n-プロピル、アセト酢酸-i-プロピル、アセト酢酸-n-ブチル、アセト酢酸-sec-ブチル、アセト酢酸-t-ブチル、ヘキサン-2,4-ジオン、ヘプタン-2,4-ジオン、ヘプタン-3,5-ジオン、オクタン-2,4-ジオン、ノナン-2,4-ジオン、5-メチルヘキサン-2,4-ジオン、マロン酸、シュウ酸、フタル酸、グリコール酸、サリチル酸、アミノ酢酸、イミノ酢酸、エチレンジアミン四酢酸、グリコール、カテコール、エチレンジアミン、2,2-ビピリジン、1,10-フェナントロリン、ジエチレントリアミン、2-エタノールアミン、ジメチルグリオキシム、ジチゾン、メチオニン、サリチルアルデヒドなどが挙げられる。これらのうち、アセチルアセトンおよびアセト酢酸エチルが好ましい。
  また、安定性向上剤は、1種単独で用いても、2種以上を混合して用いてもよい。
Examples of such stability improvers include acetylacetone, methyl acetoacetate, ethyl acetoacetate, acetoacetate-n-propyl, acetoacetate-i-propyl, acetoacetate-n-butyl, acetoacetate-sec-butyl, Acetoacetic acid-t-butyl, hexane-2,4-dione, heptane-2,4-dione, heptane-3,5-dione, octane-2,4-dione, nonane-2,4-dione, 5-methyl Hexane-2,4-dione, malonic acid, oxalic acid, phthalic acid, glycolic acid, salicylic acid, aminoacetic acid, iminoacetic acid, ethylenediaminetetraacetic acid, glycol, catechol, ethylenediamine, 2,2-bipyridine, 1,10-phenanthroline, Diethylenetriamine, 2-ethanolamine, dimethylglyoxime, dithizone, methioni , Such as salicylic aldehyde, and the like. Of these, acetylacetone and ethyl acetoacetate are preferred.
Moreover, a stability improver may be used individually by 1 type, or 2 or more types may be mixed and used for it.
 本発明に用いられる安定性向上剤の量は、前記有機金属化合物類の有機金属化合物1モルに対して、通常2モル以上、好ましくは3~20モルが望ましい。安定性向上剤の量が上記下限未満であると、得られる組成物の保存安定性の向上効果が不充分となることがある。 The amount of the stability improver used in the present invention is usually 2 moles or more, preferably 3 to 20 moles per mole of the organometallic compound of the organometallic compounds. If the amount of the stability improver is less than the above lower limit, the effect of improving the storage stability of the resulting composition may be insufficient.
(水)
 本発明では、上記シラン化合物(a1)と特定シリル基含有ビニル系重合体(a2)との混合物に水を添加して、シラン化合物(a1)と特定シリル基含有ビニル系重合体(a2)とを共縮合して重合体(A1)を調製することができる。
 このとき添加される水の量は、シラン化合物(a1)中の全てのOR2 基1モルに対して、通常0.1~1.0モル、好ましくは、0.2~0.8モル、より好ましくは、0.25~0.6モルである。水の添加量が上記範囲にあるとゲル化が発生しにくく、組成物は良好な貯蔵安定性を示す。また、水の添加量が上記範囲にあると十分に架橋した重合体(A1)が得られ、このような重合体(A1)および金属酸化物粒子(B)を含む組成物を用いることによって、層(I)を得ることができる。
(water)
In the present invention, water is added to a mixture of the silane compound (a1) and the specific silyl group-containing vinyl polymer (a2), and the silane compound (a1) and the specific silyl group-containing vinyl polymer (a2) Can be co-condensed to prepare the polymer (A1).
The amount of water added at this time is usually 0.1 to 1.0 mol, preferably 0.2 to 0.8 mol, based on 1 mol of all OR 2 groups in the silane compound (a1). More preferably, it is 0.25 to 0.6 mol. When the amount of water added is in the above range, gelation hardly occurs and the composition exhibits good storage stability. Further, when the amount of water is in the above range, a sufficiently crosslinked polymer (A1) is obtained, and by using such a composition containing the polymer (A1) and the metal oxide particles (B), Layer (I) can be obtained.
(有機溶剤)
 本発明では、シラン化合物(a1)と特定シリル基含有ビニル系重合体(a2)とを有機溶剤中で加水分解・縮合反応させてもよい。このとき、前記シリル基含有ビニル系重合体(a2)の調製時に使用した有機溶媒をそのまま使用することもできる。また、重合体(A1)調製時の固形分濃度を調整するために、必要に応じて、有機溶媒を添加することもできる。さらに、前記シリル基含有ビニル系重合体(a2)の調製時に使用した有機溶媒を除去し、新たに有機溶媒を添加してもよい。
(Organic solvent)
In the present invention, the silane compound (a1) and the specific silyl group-containing vinyl polymer (a2) may be hydrolyzed and condensed in an organic solvent. At this time, the organic solvent used at the time of preparation of the silyl group-containing vinyl polymer (a2) can be used as it is. Moreover, in order to adjust solid content concentration at the time of polymer (A1) preparation, an organic solvent can also be added as needed. Further, the organic solvent used in the preparation of the silyl group-containing vinyl polymer (a2) may be removed and an organic solvent may be newly added.
 上記有機溶媒は、重合体(A1)調製時の固形分濃度が、好ましくは10~80重量%、より好ましくは15~60重量%、特に好ましくは20~50重量%の範囲となる量を添加することができる。なお、前記シリル基含有ビニル系重合体(a2)の調製時に使用した有機溶媒をそのまま使用して重合体(A1)調製時の固形分濃度が上記範囲にある場合には、有機溶媒を添加しても、添加しなくてもよい。
 重合体(A1)調製時の固形分濃度を調整することによって、シラン化合物(a1)と特定シリル基含有ビニル系重合体(a2)との反応性のコントロールをすることができる。
 重合体(A1)調製時の固形分濃度が上記下限未満になるとシラン化合物(a1)と特定シリル基含有ビニル系重合体(a2)との反応性が低下することがある。重合体(A1)調製時の固形分濃度が上記上限を超えるとゲル化することがある。なお、ここで言う固形分濃度における固形分量は、シラン化合物(a1)の完全加水分解縮合物換算の使用量(Wa1)と特定シリル基含有ビニル系重合体(a2)の固形分換算の使用量(Wa2)の総量である。
The organic solvent is added in such an amount that the solid content concentration in the preparation of the polymer (A1) is preferably in the range of 10 to 80% by weight, more preferably 15 to 60% by weight, and particularly preferably 20 to 50% by weight. can do. In addition, when the organic solvent used at the time of preparation of the silyl group-containing vinyl polymer (a2) is used as it is and the solid content concentration at the time of preparation of the polymer (A1) is within the above range, an organic solvent is added. However, it may not be added.
The reactivity of the silane compound (a1) and the specific silyl group-containing vinyl polymer (a2) can be controlled by adjusting the solid content concentration during the preparation of the polymer (A1).
When the solid content concentration at the time of preparing the polymer (A1) is less than the lower limit, the reactivity between the silane compound (a1) and the specific silyl group-containing vinyl polymer (a2) may be lowered. If the solid content concentration at the time of preparing the polymer (A1) exceeds the above upper limit, it may be gelled. In addition, the amount of solid content in solid content concentration said here is the usage-amount (Wa1) of the complete hydrolysis-condensation product conversion of a silane compound (a1), and the usage-amount of solid content conversion of a specific silyl group containing vinyl polymer (a2). This is the total amount of (Wa2).
 上記有機溶媒としては、上記成分を均一に混合できるものであれば特に限定されないが、上記特定シリル基含有ビニル系重合体(a2)の製造に用いられる有機溶媒として例示した、アルコール類、ジエチレングリコールアルキルエーテル類、エチレングリコールアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテル類、プロピレングリコールモノアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテルプロピオネート類、芳香族炭化水素類、エーテル類、ケトン類、エステル類などを挙げることができる。また、これらの有機溶剤は、1種単独で用いても、2種以上を混合して用いてもよい。 The organic solvent is not particularly limited as long as the above components can be mixed uniformly. Alcohols and diethylene glycol alkyl exemplified as the organic solvent used in the production of the specific silyl group-containing vinyl polymer (a2). Ethers, ethylene glycol alkyl ether acetates, propylene glycol monoalkyl ethers, propylene glycol monoalkyl ether acetates, propylene glycol monoalkyl ether propionates, aromatic hydrocarbons, ethers, ketones, esters, etc. Can be mentioned. Moreover, these organic solvents may be used individually by 1 type, or may mix and use 2 or more types.
(金属酸化物粒子(B))
 本発明の組成物(I)は、さらに金属酸化物粒子(B)を含む。
 上記金属酸化物粒子は、金属元素の酸化物の粒子であればその種類は特に限定されないが、たとえば、酸化アンチモン、酸化ジルコニウム、アナターゼ型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタン、酸化亜鉛、酸化タンタル、酸化インジウム、酸化ハフニウム、酸化スズ、酸化ニオブ、酸化アルミニウム、酸化セリウム、酸化スカンジウム、酸化イットリウム、酸化ランタン、酸化プラセオジウム、酸化ネオジウム、酸化サマリウム、酸化ユウロピウム、酸化ガドリニウム、酸化テルビニウム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウム、酸化カルシウム、酸化ガリウム、酸化リチウム、酸化ストロンチウム、酸化タングステン、酸化バリウム、酸化マグネシウム、およびこれらの複合体、ならびにインジウム-スズ複合酸化物などの上記金属2種以上の複合体の酸化物などの金属酸化物が挙げられる。また、上記金属酸化物粒子(B)として、ケイ素酸化物と金属酸化物との複合酸化物の粒子や金属酸化物の表面をケイ素酸化物で被覆した酸化物の粒子を用いることもできる。
(Metal oxide particles (B))
The composition (I) of the present invention further contains metal oxide particles (B).
The metal oxide particles are not particularly limited as long as they are metal element oxide particles. For example, antimony oxide, zirconium oxide, anatase type titanium oxide, rutile type titanium oxide, brookite type titanium oxide, zinc oxide. , Tantalum oxide, indium oxide, hafnium oxide, tin oxide, niobium oxide, aluminum oxide, cerium oxide, scandium oxide, yttrium oxide, lanthanum oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, oxide Dysprosium, holmium oxide, erbium oxide, thulium oxide, ytterbium oxide, lutetium oxide, calcium oxide, gallium oxide, lithium oxide, strontium oxide, tungsten oxide, barium oxide, magnesium oxide Neshiumu, and these complexes, as well as indium - metal oxides such as oxides of the metal 2 or more complex such as tin composite oxides. Further, as the metal oxide particles (B), composite oxide particles of silicon oxide and metal oxide or oxide particles in which the surface of the metal oxide is coated with silicon oxide can also be used.
 本発明において、金属酸化物粒子(B)は、1種単独で、または2種以上を混合して使用してもよい。金属酸化物粒子(B)は、付与する機能に応じて適宜選択することができるが、本発明ではアナターゼ型酸化チタン、ルチル型酸化チタン、酸化ジルコニウム、酸化アルミニウム、酸化亜鉛を好ましく用いることができる。
 金属酸化物粒子(B)を配合する場合は、粉体、またはイソプロピルアルコール、プロピレングリコールモノメチルエーテル、メチルエチルケトン、メチルイソブチルケトンなどの極性溶媒やトルエンなどの非極性溶媒に分散した溶媒系のゾルもしくはコロイドなどの形態で使用することもできる。添加前の金属酸化物粒子(B)は、凝集して二次粒子を形成していてもよい。また、金属酸化物粒子(B)の分散性を向上させるために表面処理して用いてもよい。
In this invention, you may use a metal oxide particle (B) individually by 1 type or in mixture of 2 or more types. The metal oxide particles (B) can be appropriately selected according to the function to be imparted. In the present invention, anatase-type titanium oxide, rutile-type titanium oxide, zirconium oxide, aluminum oxide, and zinc oxide can be preferably used. .
When blending the metal oxide particles (B), a powder or a solvent-based sol or colloid dispersed in a polar solvent such as isopropyl alcohol, propylene glycol monomethyl ether, methyl ethyl ketone, methyl isobutyl ketone, or a nonpolar solvent such as toluene It can also be used in the form. The metal oxide particles (B) before addition may be aggregated to form secondary particles. Moreover, in order to improve the dispersibility of a metal oxide particle (B), you may surface-treat and use.
 これらの金属酸化物粒子(B)の1次粒子径は、通常0.0001~1μm、さらに好ましくは0.001~0.5μm、特に好ましくは0.002~0.2μmである。金属酸化物が溶媒系のゾルもしくはコロイドの形態である場合、その固形分濃度は通常0重量%を超えて50量%以下、好ましくは0.01重量%以上40重量%以下である。金属酸化物粒子(B)において、ゾルまたはコロイドなどの形態で使用する場合は、攪拌翼等により、溶液中で分散させることができる。一方、金属酸化物粒子(B)において、粉体を用いる場合の分散は、ボールミル、サンドミル(ビーズミル,ハイシェアビーズミル)、ホモジナイザー、超音波ホモジナイザー、ナノマイザー、プロペラミキサー、ハイシェアミキサー、ペイントシェーカー、プラネタリミキサー、二本ロール、三本ロール、ニーダーロールなどの公知の分散機を用いることができ、特に高分散の微粒子分散体ボールミル、サンドミル(ビーズミル,ハイシェアビーズミル)、ペイントシェーカーが好適に使用される。 The primary particle diameter of these metal oxide particles (B) is usually 0.0001 to 1 μm, more preferably 0.001 to 0.5 μm, and particularly preferably 0.002 to 0.2 μm. When the metal oxide is in the form of a solvent-based sol or colloid, its solid content concentration is usually more than 0% by weight and 50% by weight or less, preferably 0.01% by weight or more and 40% by weight or less. When the metal oxide particles (B) are used in the form of sol or colloid, they can be dispersed in the solution by a stirring blade or the like. On the other hand, dispersion in the case of using powder in the metal oxide particles (B) is ball mill, sand mill (bead mill, high shear bead mill), homogenizer, ultrasonic homogenizer, nanomizer, propeller mixer, high shear mixer, paint shaker, planetary Known dispersing machines such as a mixer, a two-roll, a three-roll, a kneader roll and the like can be used. Particularly, a highly dispersed fine particle dispersion ball mill, a sand mill (bead mill, a high shear bead mill), and a paint shaker are preferably used. .
 金属酸化物粒子(B)の使用量は、組成物(I)中の全固形分重量に対して、固形分で通常10重量%を超えて90重量%以下、好ましくは20重量%以上80重量%以下である。金属酸化物粒子(B)の使用量が上記重量より多い場合は組成物(I)の保存安定性が劣ることがあり、使用量が上記重量より少ない場合は層(I)上に層(II)を積層して得られる反射防止層の反射率、視感反射率が十分低下せず、また層(I)のクラック耐性が劣ることがある。 The amount of the metal oxide particles (B) used is generally more than 10% by weight and 90% by weight or less, preferably 20% by weight or more and 80% by weight based on the total solid weight in the composition (I). % Or less. When the amount of the metal oxide particles (B) used is larger than the above weight, the storage stability of the composition (I) may be inferior. When the amount used is smaller than the above weight, the layer (II) is formed on the layer (I). ) May not be sufficiently reduced, and the crack resistance of the layer (I) may be inferior.
(硬化触媒)
 本発明で用いる組成物(I)には、さらに硬化触媒を加えることもできる。このような硬化触媒としては、たとえば、重合体(A1)調製時に用いる前記塩基性化合物、酸性化合物、塩化合物および有機金属化合物が挙げられる。塩基性化合物は、1種単独で用いても、2種以上を混合して用いてもよく、トリエチルアミン、テトラメチルアンモニウムハイドロキサイド、ピリジンが特に好ましい。酸性化合物は、1種単独で用いても、2種以上を混合して用いてもよく、マレイン酸、無水マレイン酸、メタンスルホン酸、酢酸が特に好ましい。有機金属化合物は、1種単独で用いても、2種以上を混合して用いてもよく、ジ-n-ブトキシ・ビス(アセチルアセトナート)ジルコニウム、ジオクチルスズ・ジオクチルマレエート、ジ-i-プロポキシ・ビス(アセチルアセトナート)チタニウム、ジ-i-プロポキシ・エチルアセトアセテートアルミニウム、トリス(エチルアセトアセテート)アルミニウム、あるいはこれらの部分加水分解物が好ましい。
(Curing catalyst)
A curing catalyst can also be added to the composition (I) used in the present invention. Examples of such a curing catalyst include the basic compound, acidic compound, salt compound, and organometallic compound used in preparing the polymer (A1). A basic compound may be used individually by 1 type, or may be used in mixture of 2 or more types, and triethylamine, tetramethylammonium hydroxide, and pyridine are particularly preferable. An acidic compound may be used individually by 1 type, or may be used in mixture of 2 or more types, Maleic acid, maleic anhydride, methanesulfonic acid, and acetic acid are especially preferable. The organometallic compounds may be used singly or in combination of two or more, such as di-n-butoxy bis (acetylacetonate) zirconium, dioctyltin dioctyl maleate, di-i- Propoxy bis (acetylacetonate) titanium, di-i-propoxy ethyl acetoacetate aluminum, tris (ethyl acetoacetate) aluminum, or partial hydrolysates thereof are preferred.
(有機溶剤、水)
 本発明で用いる組成物(I)には、さらに有機溶剤や水を加えて、固形分濃度を調整してもよい。有機溶剤としては、前記重合体(A1)調製の項で例示したものを用いることができる。
(Organic solvent, water)
An organic solvent and water may be further added to the composition (I) used in the present invention to adjust the solid content concentration. As an organic solvent, what was illustrated by the term of the said polymer (A1) preparation can be used.
(任意添加成分)
 本発明で用いる組成物(I)には、必要に応じて、レベリング剤、濡れ性改良剤、界面活性剤、可塑剤、紫外線吸収剤、酸化防止剤、帯電防止剤、シランカップリング剤、(B)成分以外の無機充填剤を添加することができる。
(Optional additive)
In the composition (I) used in the present invention, a leveling agent, a wettability improver, a surfactant, a plasticizer, an ultraviolet absorber, an antioxidant, an antistatic agent, a silane coupling agent, ( Inorganic fillers other than the component B) can be added.
(2-2)組成物(I)の調製方法
 本発明で使用される組成物(I)は、シラン化合物(a1)および/又は重合体(A1)に、金属酸化物粒子(B)の粉体を加え、分散工程を行うか、あらかじめ作製しておいた金属酸化物粒子(B)の分散ゾルを混合することで得られる。
 分散工程は、金属酸化物粒子(B)として(i)溶媒系のゾルもしくはコロイドを用いた場合は攪拌翼等の手法で、(ii)粉体粒子を用いた場合はボールミル、ビーズミル、ペイントシェーカー等の手法を用いることができる。組成物(I)には、必要に応じて、前記の有機溶剤、水、安定性向上剤、硬化触媒、任意添加成分を添加することができ、これらは分散工程を行う前に添加しておいてもよいし、分散工程を行った後に添加してもよい。
 なお、上記硬化触媒については、金属酸化物粒子(B)が組成物(I)の硬化触媒としても働くため、必要に応じて上記硬化触媒の添加量を低減してもよい。
(2-2) Preparation Method of Composition (I) The composition (I) used in the present invention comprises a powder of metal oxide particles (B) on the silane compound (a1) and / or the polymer (A1). It is obtained by adding a body and performing a dispersion | distribution process or mixing the dispersion | distribution sol of the metal oxide particle (B) produced previously.
In the dispersion step, (i) a solvent-based sol or colloid is used as the metal oxide particles (B), and a stirring blade or the like is used. (Ii) a ball mill, a bead mill, or a paint shaker is used when powder particles are used. Etc. can be used. The composition (I) may contain the above-mentioned organic solvent, water, stability improver, curing catalyst, and optional additive components as necessary, and these may be added before the dispersion step. It may be added after the dispersion step.
In addition, about the said curing catalyst, since the metal oxide particle (B) works also as a curing catalyst of composition (I), you may reduce the addition amount of the said curing catalyst as needed.
(2-3)組成物(I)の製膜方法
 本発明で使用される組成物(I)は、屋外設置用デバイスの表面部材である基材に塗布し、加熱乾燥して使用される。
 塗布方法は特に制限されるものではないが、刷毛塗り、筆塗り、バーコーター、ナイフコーター、ドクターブレード、スクリーン印刷、スプレー塗布、スピンコーター、アプリケーター、ロールコーター、フローコーター、遠心コーター、超音波コーター、(マイクロ)グラビアコーター、ディップコート、フレキソ印刷、ポッティング等の手法を用いることができ、他の基材(転写基材)上に塗布した後に転写して用いてもよい。
(2-3) Film Forming Method of Composition (I) The composition (I) used in the present invention is applied to a substrate which is a surface member of a device for outdoor installation, and is heated and dried.
The application method is not particularly limited, but brush coating, brush coating, bar coater, knife coater, doctor blade, screen printing, spray coating, spin coater, applicator, roll coater, flow coater, centrifugal coater, ultrasonic coater , (Micro) gravure coater, dip coating, flexographic printing, potting, and the like can be used, and they may be transferred onto another substrate (transfer substrate) and transferred.
 加熱乾燥は50~250℃の範囲内の温度で、0.5~180分加熱するのが好ましい。加熱乾燥には、通常のオーブンが用いられるが、熱風式、対流式、赤外式などを用いることができる。加熱により溶剤を除去するとともに、層内で縮合反応が進み、より強度のある層を得ることができる。
 加熱温度は高いことが、加熱時間は長いことが、残留溶剤も少なく、また上記縮合反応がより進むので望ましい。加熱工程は複数の段階を経て昇温してもよいし、1段階で加熱してもよい。使用する溶剤の含有量および沸点と加熱条件によっては、得られた層表面が荒れる場合があるため、適切な加熱工程につき予め検討しておくことが望ましい。
Heat drying is preferably performed at a temperature in the range of 50 to 250 ° C. for 0.5 to 180 minutes. A normal oven is used for heat drying, but a hot air type, a convection type, an infrared type, or the like can be used. While removing the solvent by heating, the condensation reaction proceeds in the layer, and a stronger layer can be obtained.
It is desirable that the heating temperature is high, the heating time is long, the residual solvent is small, and the condensation reaction further proceeds. The heating process may be performed through a plurality of stages, or may be performed in one stage. Depending on the content and boiling point of the solvent to be used and the heating conditions, the surface of the obtained layer may be rough.
(3)層(II)
 層(II)には、ポリオルガノシロキサン(C)および数平均粒径1~100nmのシリカを主成分とする中空若しくは多孔質の粒子(D)が含まれる。
 層(II)は、屋外設置用デバイスの種類にもよるが、屈折率1.25以上1.50未満のものが用いられ、膜厚は0.01μm~10μmの範囲で用いられる。
(3) Layer (II)
The layer (II) includes a polyorganosiloxane (C) and hollow or porous particles (D) mainly composed of silica having a number average particle diameter of 1 to 100 nm.
The layer (II) has a refractive index of 1.25 or more and less than 1.50 depending on the type of device for outdoor installation, and has a film thickness in the range of 0.01 μm to 10 μm.
(3-1)組成物(II)
このような層(II)は、たとえば、下記式(2)
 R3 m Si(OR4 )4-m  (2)
 (式中、R3 は、炭素数1~12の1価の有機基を示し、2個以上存在する場合には互いに同じであっても異なっていてもよい。R4 は、それぞれ独立に、炭素数1~5のアルキル基または炭素数1~6のアシル基を示す。mは0~3の整数である。)
で表される少なくとも1種のオルガノシラン(以下、「オルガノシラン(2)」ともいう。)、オルガノシラン(2)の加水分解物およびオルガノシラン(2)の縮合物からなる群から選択される少なくとも1種のシラン化合物(c1)を含む組成物(以下「組成物(II)」という。)の硬化物から得ることができる。
(3-1) Composition (II)
Such a layer (II) has, for example, the following formula (2):
R 3 m Si (OR 4 ) 4-m (2)
(Wherein, R 3 represents a monovalent organic group having 1 to 12 carbon atoms, optionally different from one another the same if there are two or more .R 4 each independently And represents an alkyl group having 1 to 5 carbon atoms or an acyl group having 1 to 6 carbon atoms, m is an integer of 0 to 3.)
At least one organosilane (hereinafter also referred to as “organosilane (2)”), a hydrolyzate of organosilane (2), and a condensate of organosilane (2). It can be obtained from a cured product of a composition containing at least one silane compound (c1) (hereinafter referred to as “composition (II)”).
 (シラン化合物(c1))
 本発明に用いられるシラン化合物(c1)は、上記オルガノシラン(2)、オルガノシラン(2)の加水分解物およびオルガノシラン(2)の縮合物からなる群から選択される少なくとも1種のシラン化合物であって、これら3種のシラン化合物のうち、1種のシラン化合物だけを用いてもよく、任意の2種のシラン化合物を混合して用いてもよく、または3種すべてのシラン化合物を混合して用いてもよい。また、シラン化合物(c1)として、オルガノシラン(2)を使用する場合、オルガノシラン(2)は1種単独で使用しても、2種以上を併用してもよい。また、上記オルガノシラン(2)の加水分解物および縮合物は、1種のオルガノシラン(2)から形成したものでもよいし、2種以上のオルガノシラン(2)を併用して形成したものでもよい。
(Silane compound (c1))
The silane compound (c1) used in the present invention is at least one silane compound selected from the group consisting of the organosilane (2), the hydrolyzate of organosilane (2), and the condensate of organosilane (2). Of these three silane compounds, only one silane compound may be used, any two silane compounds may be mixed, or all three silane compounds may be mixed. May be used. Moreover, when using organosilane (2) as a silane compound (c1), organosilane (2) may be used individually by 1 type, or may use 2 or more types together. The hydrolyzate and condensate of the organosilane (2) may be formed from one type of organosilane (2) or may be formed by using two or more types of organosilane (2) in combination. Good.
 上記オルガノシラン(2)の加水分解物は、オルガノシラン(2)に1~4個含まれるOR2 基のうちの少なくとも1個が加水分解されていればよく、たとえば、1個のOR2 基が加水分解されたもの、2個以上のOR2 基が加水分解されたもの、あるいはこれらの混合物であってもよい。 The hydrolyzate of the organosilane (2) is sufficient if at least one of the OR 2 groups contained in 1 to 4 of the organosilane (2) is hydrolyzed, for example, one OR 2 group. In which two or more OR 2 groups are hydrolyzed, or a mixture thereof.
 上記オルガノシラン(2)の縮合物は、オルガノシラン(2)が加水分解して生成する加水分解物中のシラノール基が縮合してSi-O-Si結合を形成したものである。本発明では、シラノール基がすべて縮合している必要はなく、前記縮合物は、僅かな一部のシラノール基が縮合したもの、大部分(全部を含む)のシラノール基が縮合したもの、さらにはこれらの混合物などをも包含する。 The organosilane (2) condensate is a product in which a silanol group in a hydrolyzate produced by hydrolysis of organosilane (2) is condensed to form a Si—O—Si bond. In the present invention, it is not necessary that all of the silanol groups are condensed, and the condensate may be one obtained by condensing a small part of silanol groups, one containing most (including all) silanol groups, These mixtures are also included.
  上記式(2)において、R3 は炭素数1~12個である非加水分解性の有機基であり、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、2-エチルヘキシル基などのアルキル基;
  アセチル基、プロピオニル基、ブチリル基、バレリル基、ベンゾイル基、トリオイル基、カプロイル基などのアシル基;
  ビニル基、アリル基、シクロヘキシル基、フェニル基、エポキシシクロアルキル基、グリシジル基、(メタ)アクリルオキシ基、ウレイド基、アミド基、フルオロアセトアミド基、イソシアネート基などが挙げられる。
In the above formula (2), R 3 is a non-hydrolyzable organic group having 1 to 12 carbon atoms, specifically, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group. Alkyl groups such as heptyl group, octyl group, decyl group, 2-ethylhexyl group;
Acyl groups such as acetyl group, propionyl group, butyryl group, valeryl group, benzoyl group, trioyl group, caproyl group;
Examples thereof include a vinyl group, an allyl group, a cyclohexyl group, a phenyl group, an epoxycycloalkyl group, a glycidyl group, a (meth) acryloxy group, a ureido group, an amide group, a fluoroacetamide group, and an isocyanate group.
  さらに、R3 として、上記有機基の置換誘導体などが挙げられる。R3 の置換誘導体の置換基としては、たとえば、置換もしくは非置換のアミノ基、水酸基、メルカプト基、イソシアネート基、グリシドキシ基、3-グリシジルオキシプロピル基、3,4-エポキシシクロヘキシル基、3,4-エポキシシクロヘキシルエチル基、(メタ)アクリルオキシ基、3-(メタ)アクリロイルオキシプロピル基、ウレイド基、アンモニウム塩基などが挙げられる。式(2)中にR3 が複数個存在する場合には、それぞれ同じであっても異なっていてもよい。 Furthermore, examples of R 3 include substituted derivatives of the above organic groups. Examples of the substituent of the substituted derivative of R 3 include a substituted or unsubstituted amino group, hydroxyl group, mercapto group, isocyanate group, glycidoxy group, 3-glycidyloxypropyl group, 3,4-epoxycyclohexyl group, 3,4 -Epoxycyclohexylethyl group, (meth) acryloxy group, 3- (meth) acryloyloxypropyl group, ureido group, ammonium base and the like. When a plurality of R 3 are present in the formula (2), they may be the same or different.
  炭素数が1~5個のアルキル基であるR4 として、たとえば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基などを挙げることができ、炭素数1~6のアシル基であるR2 としては、たとえば、アセチル基、プロピオニル基、ブチリル基、バレリル基、カプロイル基などが挙げられる。式(2)中にR4 が複数個存在する場合には、それぞれ同じであっても異なっていてもよい。 Examples of R 4 that is an alkyl group having 1 to 5 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and the like, and R that is an acyl group having 1 to 6 carbon atoms. Examples of 2 include an acetyl group, a propionyl group, a butyryl group, a valeryl group, and a caproyl group. When a plurality of R 4 are present in the formula (2), they may be the same or different.
  このような上記式(2)で表される加水分解性シラン化合物の具体例としては、
  4個の加水分解性基で置換されたシラン化合物として、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、テトラフェノキシシラン、テトラベンジロキシシラン、テトラ-n-プロポキシシラン、テトラ-i-プロポキシシラン等;
As a specific example of the hydrolyzable silane compound represented by the above formula (2),
Examples of silane compounds substituted with four hydrolyzable groups include tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, tetraphenoxysilane, tetrabenzyloxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, etc. ;
  1個の非加水分解性基と3個の加水分解性基とで置換されたシラン化合物として、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ-i-プロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、i-プロピルトリメトキシシラン、i-プロピルトリエトキシシラン、エチルトリ-i-プロポキシシラン、エチルトリブトキシシラン、n-ブチルトリメトキシシラン、n-ブチルトリエトキシシラン、n-ペンチルトリメトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘプチルトリメトキシシラン、n-オクチルトリメトキシシラン、n-デシルトリメトキシシラン、n-デシルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ-n-プロポキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-ヒドロキシエチルトリメトキシシラン、2-ヒドロキシエチルトリエトキシシラン、2-ヒドロキシプロピルトリメトキシシラン、2-ヒドロキシプロピルトリエトキシシラン、3-ヒドロキシプロピルトリメトキシシラン、3-ヒドロキシプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-イソシアナートプロピルトリメトキシシラン、3-イソシアナートプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-(メタ)アクリルオキシプロピルトリメトキシシラン、3-(メタ)アタクリルオキシプロピルトリエトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、メチルトリアセチルオキシシランなどのトリアルコキシシラン等; As a silane compound substituted with one non-hydrolyzable group and three hydrolyzable groups, methyltrimethoxysilane, methyltriethoxysilane, methyltri-i-propoxysilane, methyltributoxysilane, ethyltrimethoxy Silane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, i-propyltrimethoxysilane, i-propyltriethoxysilane, ethyltri-i-propoxysilane, ethyltributoxysilane, n-butyl Trimethoxysilane, n-butyltriethoxysilane, n-pentyltrimethoxysilane, n-hexyltrimethoxysilane, n-heptyltrimethoxysilane, n-octyltrimethoxysilane, n-decyltrimethoxysilane, n-decyltriethoxy Sisilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri-n-propoxysilane, cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-amino Propyltriethoxysilane, 2-hydroxyethyltrimethoxysilane, 2-hydroxyethyltriethoxysilane, 2-hydroxypropyltrimethoxysilane, 2-hydroxypropyltriethoxysilane, 3-hydroxypropyltrimethoxysilane, 3-hydroxypropyltri Ethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-isocyanatopropyltrimethoxy Lan, 3-isocyanatopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3 , 4-epoxycyclohexyl) ethyltriethoxysilane, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxy Trialkoxysilanes such as silane and methyltriacetyloxysilane;
  2個の非加水分解性基と2個の加水分解性基とで置換されたシラン化合物として、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジ-n-プロピルジメトキシシラン、ジ-n-プロピルジエトキシシラン、ジ-i-プロピルジメトキシシラン、ジ-i-プロピルジエトキシシラン、ジ-n-ブチルジメトキシシラン、ジ-n-ブチルジエトキシシラン、ジ-n-ペンチルジメトキシシラン、ジ-n-ペンチルジエトキシシラン、ジ-n-ヘキシルジメトキシシラン、ジ-n-ヘキシルジエトキシシラン、ジ-n-ヘプチルジメトキシシラン、ジ-n-ヘプチルジエトキシシラン、ジ-n-オクチルジメトキシシラン、ジ-n-オクチルジエトキシシラン、ジ-n-デシルジメトキシシラン、ジ-n-デシルジエトキシシラン、ジ-n-シクロヘキシルジメトキシシラン、ジ-n-シクロヘキシルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシランなどのジアルコキシシラン、ジメチルジアセチルオキシシラン等; As silane compounds substituted with two non-hydrolyzable groups and two hydrolyzable groups, dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, di-n-propyldimethoxysilane , Di-n-propyldiethoxysilane, di-i-propyldimethoxysilane, di-i-propyldiethoxysilane, di-n-butyldimethoxysilane, di-n-butyldiethoxysilane, di-n-pentyldimethoxy Silane, di-n-pentyldiethoxysilane, di-n-hexyldimethoxysilane, di-n-hexyldiethoxysilane, di-n-heptyldimethoxysilane, di-n-heptyldiethoxysilane, di-n-octyl Dimethoxysilane, di-n-octyldiethoxysilane, di-n-decyl Dialkoxysilanes such as dimethoxysilane, di-n-decyldiethoxysilane, di-n-cyclohexyldimethoxysilane, di-n-cyclohexyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, dimethyldiacetyloxysilane and the like;
  3個の非加水分解性基と1個の加水分解性基とで置換されたシラン化合物として、トリブチルメトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、トリブチルエトキシシラン、トリフェニルメトキシシラン、トリフェニルエトキシシラン等をそれぞれ挙げることができる。 As a silane compound substituted with three non-hydrolyzable groups and one hydrolyzable group, tributylmethoxysilane, trimethylmethoxysilane, trimethylethoxysilane, tributylethoxysilane, triphenylmethoxysilane, triphenylethoxysilane Etc., respectively.
  これらのうち、式(2)においてR3 は、フッ素を含まない有機基であることが好ましい。積層体として反射率を低下させる本発明の目的からすれば、層(II)にフッ素を導入して屈折率を低下させ、層(I)との屈折率差を大きくするほうが有利である。しかし、一般的にフッ素を含む官能基は分子間の相互作用を低下させる方向に作用する。従ってポリマー中にフッ素を導入すると塗布膜が柔らかくなり、硬度が低下してしまう問題がある。 Of these, in formula (2), R 3 is preferably an organic group containing no fluorine. For the purpose of the present invention for reducing the reflectance as a laminate, it is advantageous to introduce fluorine into the layer (II) to lower the refractive index and increase the refractive index difference from the layer (I). However, in general, a functional group containing fluorine acts in a direction to reduce the interaction between molecules. Accordingly, when fluorine is introduced into the polymer, there is a problem that the coating film becomes soft and the hardness decreases.
  本発明では、シラン化合物(c1)として1種のオルガノシラン(2)を単独で使用してもよいが、2種以上のオルガノシラン(2)を併用してもよい。シラン化合物(c1)として使用した2種以上のオルガノシラン(2)を、平均化して上記式(2)で表した場合、平均化したn(以下、「nの平均値」ともいう。)は好ましくは0.5~2.0、より好ましくは0.6~1.8、特に好ましくは0.7~1.6である。nの平均値が上記下限未満にあると組成物(II)の貯蔵安定性が劣ることがあり、上記上限を超えると層(II)の硬化性が劣ることがある。
  nの平均値は、1官能~4官能のオルガノシラン(2)を適宜併用して、その配合割合を適宜調整することにより、上記範囲に調整することができる。
In the present invention, one type of organosilane (2) may be used alone as the silane compound (c1), but two or more types of organosilane (2) may be used in combination. When two or more organosilanes (2) used as the silane compound (c1) are averaged and expressed by the above formula (2), the averaged n (hereinafter also referred to as “average value of n”) is. Preferably it is 0.5 to 2.0, more preferably 0.6 to 1.8, and particularly preferably 0.7 to 1.6. When the average value of n is less than the above lower limit, the storage stability of the composition (II) may be inferior, and when it exceeds the above upper limit, the curability of the layer (II) may be inferior.
The average value of n can be adjusted to the above range by appropriately using a monofunctional to tetrafunctional organosilane (2) and appropriately adjusting the blending ratio thereof.
 以上の事情は、シラン化合物(c1)としてオルガノシラン(2)の加水分解物または縮合物を使用した場合も同様である。
  本発明では、シラン化合物(c1)として、オルガノシラン(2)をそのまま使用してもよいが、オルガノシラン(2)の加水分解物および/または縮合物を使用することができる。オルガノシラン(2)を加水分解物および/または縮合物として使用する場合、オルガノシラン(2)を予め加水分解・縮合させて製造したものを用いてもよいが、組成物(II)を調製する際に、オルガノシラン(2)を加水分解・縮合させて、オルガノシラン(2)の加水分解物および/または縮合物を調製することもできる。
The above situation is the same when the hydrolyzate or condensate of organosilane (2) is used as the silane compound (c1).
In the present invention, organosilane (2) may be used as it is as silane compound (c1), but hydrolyzate and / or condensate of organosilane (2) can be used. When the organosilane (2) is used as a hydrolyzate and / or a condensate, a product prepared by previously hydrolyzing and condensing the organosilane (2) may be used, but the composition (II) is prepared. In this case, the hydrolyzate and / or condensate of organosilane (2) can also be prepared by hydrolyzing and condensing organosilane (2).
(シラン化合物(c1)の製造方法)
  上記式(2)で表されるシラン化合物(c1)を加水分解・縮合させる条件は、上記式(2)で表されるオルガノシラン(2)の少なくとも一部を加水分解して、加水分解性基をシラノール基に変換し、又は縮合反応を起こさせるものである限り、特に限定されるものではないが、一例として以下のように実施することができる。
(Method for producing silane compound (c1))
The conditions for hydrolyzing and condensing the silane compound (c1) represented by the above formula (2) are hydrolyzable by hydrolyzing at least a part of the organosilane (2) represented by the above formula (2). Although it does not specifically limit as long as it converts a group into a silanol group or causes a condensation reaction, it can be carried out as an example as follows.
(水)
  上記式(2)で表されるオルガノシラン(2)の加水分解に用いられる水は、逆浸透膜処理、イオン交換処理、蒸留等の方法により精製された水を使用することが好ましい。このような精製水を用いることによって、副反応を抑制し、加水分解の反応性を向上させることができる。水の使用量は、上記式(2)で表されるオルガノシラン(2)の加水分解性基(-OR2 )の合計量1モルに対して、好ましくは0.1~3モル、より好ましくは0.3~2モル、さらに好ましくは0.5~1.5モルの量である。このような量の水を用いることによって、加水分解の反応速度を最適化することができる。
(water)
The water used for hydrolysis of the organosilane (2) represented by the above formula (2) is preferably water purified by a method such as reverse osmosis membrane treatment, ion exchange treatment or distillation. By using such purified water, side reactions can be suppressed and the reactivity of hydrolysis can be improved. The amount of water used is preferably from 0.1 to 3 mol, more preferably from 1 mol of the total amount of hydrolyzable groups (—OR 2 ) of the organosilane (2) represented by the above formula (2). Is in an amount of 0.3 to 2 mol, more preferably 0.5 to 1.5 mol. By using such an amount of water, the reaction rate of hydrolysis can be optimized.
(有機溶剤)
 上記式(2)で表されるオルガノシラン(2)の加水分解・縮合に使用することができる溶剤としては、特に限定されるものではないが、通常、前述した重合体(A1)の製造に用いられる溶剤と同様のものを使用することができる。このような溶剤の好ましい例としては、プロピルアルコール、メチルエチルケトン、メチルイソブチルケトン、エチレングリコールモノアルキルエーテルアセテート、ジエチレングリコールジアルキルエーテル、プロピレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテルアセテート、プロピオン酸エステル類が挙げられる。これらの溶剤の中でも、プロピルアルコール、メチルイソブチルケトン、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート又は3-メトキシプロピオン酸メチルが、好ましい。
(Organic solvent)
Although it does not specifically limit as a solvent which can be used for hydrolysis and condensation of the organosilane (2) represented by the said Formula (2), Usually, in manufacture of the polymer (A1) mentioned above. The thing similar to the solvent used can be used. Preferable examples of such a solvent include propyl alcohol, methyl ethyl ketone, methyl isobutyl ketone, ethylene glycol monoalkyl ether acetate, diethylene glycol dialkyl ether, propylene glycol monoalkyl ether, propylene glycol monoalkyl ether acetate, and propionic acid esters. . Among these solvents, propyl alcohol, methyl isobutyl ketone, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate or methyl 3-methoxypropionate are preferable.
(触媒)
  上記式(2)で表されるオルガノシラン(2)の加水分解・縮合反応に使用することができる触媒としては、特に限定されるものではないが、通常、前述した重合体(A1)の製造に用いられる触媒と同様のものを使用することができる。このような触媒の好ましい例としては、酸触媒(例えば、塩酸、硫酸、硝酸、蟻酸、シュウ酸、酢酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、リン酸、酸性イオン交換樹脂、各種ルイス酸)、塩基触媒(例えば、アンモニア、1級アミン類、2級アミン類、3級アミン類、ピリジンなどの含窒素化合物;塩基性イオン交換樹脂;水酸化ナトリウムなどの水酸化物;炭酸カリウムなどの炭酸塩;酢酸ナトリウムなどのカルボン酸塩;各種ルイス塩基)、又は、アルコキシド(例えば、ジルコニウムアルコキシド、チタニウムアルコキシド、アルミニウムアルコキシド)等を挙げることができる。例えば、アルミニウムアルコキシドとしては、テトラ-i-プロポキシアルミニウムを用いることができる。触媒の使用量としては、加水分解反応の促進の観点から、加水分解性シラン化合物のモノマー1モルに対して、好ましくは0.2モル以下であり、より好ましくは0.00001~0.1モルである。
(catalyst)
Although it does not specifically limit as a catalyst which can be used for the hydrolysis and condensation reaction of organosilane (2) represented by the said Formula (2), Usually, manufacture of the polymer (A1) mentioned above The same catalyst as that used in the above can be used. Preferred examples of such catalysts include acid catalysts (for example, hydrochloric acid, sulfuric acid, nitric acid, formic acid, oxalic acid, acetic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, phosphoric acid, acidic ion exchange resins, various Lewis acids), Basic catalysts (for example, ammonia, primary amines, secondary amines, tertiary amines, nitrogen-containing compounds such as pyridine; basic ion exchange resins; hydroxides such as sodium hydroxide; carbonates such as potassium carbonate Carboxylates such as sodium acetate; various Lewis bases] or alkoxides (for example, zirconium alkoxide, titanium alkoxide, aluminum alkoxide) and the like. For example, tetra-i-propoxyaluminum can be used as the aluminum alkoxide. The amount of the catalyst used is preferably 0.2 mol or less, more preferably 0.00001 to 0.1 mol with respect to 1 mol of the hydrolyzable silane compound monomer from the viewpoint of promoting the hydrolysis reaction. It is.
  上記式(2)で表されるオルガノシラン(2)の加水分解・縮合における反応温度及び反応時間は、適宜に設定される。例えば、下記の条件が採用できる。反応温度は、好ましくは40~200℃、より好ましくは50~150℃である。反応時間は、好ましくは30分~24時間、より好ましくは1~12時間である。このような反応温度及び反応時間とすることによって、加水分解反応を最も効率的に行うことができる。この加水分解・縮合においては、反応系内に加水分解性シラン化合物、水及び触媒を一度に添加して反応を一段階で行ってもよく、あるいは、加水分解性シラン化合物、水及び触媒を、数回に分けて反応系内に添加することによって、加水分解及び縮合反応を多段階で行ってもよい。なお、加水分解・縮合反応の後には、脱水剤を加え、次いでエバポレーションにかけることによって、水及び生成したアルコールを反応系から除去することができる。
  上記オルガノシラン(2)の縮合物は、ゲルパーミエーションクロマトグラフィー法(GPC法)により測定したポリスチレン換算の重量平均分子量(以下、「Mw」と表す。)が、好ましくは300~100,000、より好ましくは500~50,000である。
The reaction temperature and reaction time in hydrolysis / condensation of the organosilane (2) represented by the above formula (2) are appropriately set. For example, the following conditions can be adopted. The reaction temperature is preferably 40 to 200 ° C, more preferably 50 to 150 ° C. The reaction time is preferably 30 minutes to 24 hours, more preferably 1 to 12 hours. By setting such reaction temperature and reaction time, the hydrolysis reaction can be performed most efficiently. In this hydrolysis / condensation, the hydrolyzable silane compound, water and catalyst may be added to the reaction system at a time to carry out the reaction in one step, or the hydrolyzable silane compound, water and catalyst may be added, The hydrolysis and condensation reaction may be performed in multiple stages by adding them into the reaction system in several times. Incidentally, after the hydrolysis / condensation reaction, water and the produced alcohol can be removed from the reaction system by adding a dehydrating agent and then subjecting it to evaporation.
The condensate of the organosilane (2) has a polystyrene-equivalent weight average molecular weight (hereinafter referred to as “Mw”) measured by a gel permeation chromatography method (GPC method), preferably 300 to 100,000. More preferably, it is 500 to 50,000.
  本発明におけるシラン化合物(c1)としてオルガノシラン(2)の縮合物を用いる場合、上記オルガノシラン(2)から調製してもよいし、市販されているオルガノシランの縮合物を用いてもよい。市販されているオルガノシランの縮合物としては、三菱化学(株)製のMKCシリケート、コルコート社製のエチルシリケート、東レ・ダウコーニング・シリコーン(株)製のシリコーンレジンやシリコーンオリゴマー、モメンティブ・パフォーマンス・マテリアルズ(株)製のシリコーンレジンやシリコーンオリゴマー、信越化学工業(株)製のシリコーンレジンやシリコーンオリゴマー、ダウコーニング・アジア(株)製のヒドロキシル基含有ポリジメチルシロキサンなどが挙げられる。これらの市販されているオルガノシランの縮合物は、そのまま用いても、さらに縮合させて使用してもよい。 場合 When the organosilane (2) condensate is used as the silane compound (c1) in the present invention, it may be prepared from the organosilane (2) or a commercially available organosilane condensate. Commercially available organosilane condensates include MKC silicate manufactured by Mitsubishi Chemical Corporation, ethyl silicate manufactured by Colcoat, silicone resins and silicone oligomers manufactured by Toray Dow Corning Silicone Co., Momentive Performance Examples include silicone resins and silicone oligomers manufactured by Materials Co., Ltd., silicone resins and silicone oligomers manufactured by Shin-Etsu Chemical Co., Ltd., and hydroxyl group-containing polydimethylsiloxane manufactured by Dow Corning Asia Co., Ltd. These condensates of commercially available organosilanes may be used as they are or may be further condensed.
(数平均粒径1~100nmのシリカを主成分とする中空若しくは多孔質の粒子(D))

 本発明の組成物(II)は、数平均粒径1~100nmのシリカを主成分とする中空若しくは多孔質の粒子(D)を含む。粒径は、透過型電子顕微鏡により測定する。粒子(D)を配合することにより、本発明の組成物を硬化させてなる硬化物に低屈折率、耐擦傷性を発現させることができる。(D)粒子としては、公知のものを使用することができ、また、その形状も球状に限らず不定形であってもよい。固形分が5~40重量%のコロイダルシリカが好ましい。
(Hollow or porous particles (D) mainly composed of silica having a number average particle diameter of 1 to 100 nm)

The composition (II) of the present invention contains hollow or porous particles (D) mainly composed of silica having a number average particle diameter of 1 to 100 nm. The particle size is measured with a transmission electron microscope. By blending the particles (D), a cured product obtained by curing the composition of the present invention can exhibit a low refractive index and scratch resistance. (D) As a particle, a well-known thing can be used, Moreover, the shape is not restricted spherical and may be indefinite. Colloidal silica having a solid content of 5 to 40% by weight is preferred.
  また、分散媒は、水あるいは有機溶媒が好ましい。有機溶媒としては、メタノール、イソプロピルアルコール、エチレングリコール、ブタノール、エチレングリコールモノプロピルエーテル等のアルコール類;メチルエチルケトン、メチルイソブチルケトン等のケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド類;酢酸エチル、酢酸ブチル、γ-ブチロラクトン等のエステル類;テトラヒドロフラン、1,4-ジオキサン等のエ-テル類等の有機溶剤を挙げることができ、これらの中で、アルコール類及びケトン類が好ましい。これら有機溶剤は、単独で、又は2種以上混合して分散媒として使用することができる。(D)粒子の市販品としては、例えば、触媒化成工業株式会社製 商品名:JX1008SIV、JX1009SIV、JX1010SIV、JX1012SIV等を挙げることができる。 In addition, the dispersion medium is preferably water or an organic solvent. Examples of organic solvents include alcohols such as methanol, isopropyl alcohol, ethylene glycol, butanol and ethylene glycol monopropyl ether; ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene; dimethylformamide and dimethyl Examples include amides such as acetamide and N-methylpyrrolidone; esters such as ethyl acetate, butyl acetate and γ-butyrolactone; and organic solvents such as ethers such as tetrahydrofuran and 1,4-dioxane. Of these, alcohols and ketones are preferred. These organic solvents can be used alone or in combination of two or more as a dispersion medium. (D) As a commercial item of particle | grains, the product name: JX1008SIV, JX1009SIV, JX1010SIV, JX1012SIV etc. made from a catalyst chemical industry Co., Ltd. can be mentioned, for example.
  (D)成分の配合量は、有機溶剤以外の組成物全量に対して通常10~80重量%配合され、20~80重量%が好ましく、30~80重量%がさらに好ましい。尚、粒子の量は、固形分を意味し、粒子が溶剤分散ゾルの形態で用いられるときは、その配合量には溶剤の量を含まない。金属酸化物粒子(D)の使用量が上記重量より少ない場合は得られる反射防止層の反射率、視感反射率、耐擦傷性が劣ることがある。 The amount of component (D) is usually 10 to 80% by weight, preferably 20 to 80% by weight, more preferably 30 to 80% by weight based on the total amount of the composition other than the organic solvent. The amount of particles means solid content, and when the particles are used in the form of a solvent-dispersed sol, the amount of the solvent does not include the amount of solvent. When the amount of the metal oxide particles (D) used is less than the above weight, the reflectance, luminous reflectance, and scratch resistance of the resulting antireflection layer may be inferior.
 また、シリカを主成分とする粒子(D)は、粒子表面に化学修飾等の表面処理を行ったものを使用することができ、例えば分子中に1以上のアルキル基を有する加水分解性ケイ素化合物又はその加水分解物を含有するもの等を反応させることができる。このような加水分解性ケイ素化合物としては、トリメチルメトキシシラン、トリブチルメトキシシラン、ジメチルジメトキシシラン、ジブチルジメトキシシラン、メチルトリメトキシシラン、ブチルトリメトキシシラン、オクチルトリメトキシシラン、ドデシルトリメトキシシラン、1,1,1―トリメトキシ-2,2,2-トリメチル-ジシラン、ヘキサメチル-1,3-ジシロキサン、1,1,1―トリメトキシ-3,3,3-トリメチル-1,3-ジシロキサン、α-トリメチルシリル-ω-ジメチルメトキシシリル-ポリジメチルシロキサン、α-トリメチルシリル-ω-トリメトキシシリル-ポリジメチルシロキサン、ヘキサメチル-1,3-ジシラザン等を挙げることができる。また、分子中に1以上の反応性基を有する加水分解性ケイ素化合物を使用することもできる。分子中に1以上の反応性基を有する加水分解性ケイ素化合物は、例えば反応性基としてNH2 基を有するものとして尿素プロピルトリメトキシシラン、N―(2-アミノエチル)―3―アミノプロピルトリメトキシシラン等、OH基を有するものとしてビス(2-ヒドロキシエチル)―3-アミノトリプロピルメトキシシラン等、イソシアネート基を有するものとして3-イソシアネートプロピルトリメトキシシラン等、チオシアネート基を有するものとして3-チオシアネートプロピルトリメトキシシラン等、エポキシ基を有するものとして(3-グリシドキシプロピル)トリメトキシシラン、2-(3,4―エポキシシクロヘキシル)エチルトリメトキシシラン等、チオール基を有するものとして3-メルカプトプロピルトリメトキシシラン等を挙げることができる。好ましい化合物として3-メルカプトプロピルトリメトキシシランを挙げることができる。
  アクリロイル基などの重合性不飽和基を含む有機化合物によって、シリカを主成分とする粒子(D)の表面処理をすることもできる。
Further, the particles (D) containing silica as a main component can be obtained by subjecting the particle surface to surface treatment such as chemical modification, for example, hydrolyzable silicon compounds having one or more alkyl groups in the molecule. Or what contains the hydrolyzate etc. can be made to react. Such hydrolyzable silicon compounds include trimethylmethoxysilane, tributylmethoxysilane, dimethyldimethoxysilane, dibutyldimethoxysilane, methyltrimethoxysilane, butyltrimethoxysilane, octyltrimethoxysilane, dodecyltrimethoxysilane, 1,1. , 1-trimethoxy-2,2,2-trimethyl-disilane, hexamethyl-1,3-disiloxane, 1,1,1-trimethoxy-3,3,3-trimethyl-1,3-disiloxane, α-trimethylsilyl -Ω-dimethylmethoxysilyl-polydimethylsiloxane, α-trimethylsilyl-ω-trimethoxysilyl-polydimethylsiloxane, hexamethyl-1,3-disilazane and the like. A hydrolyzable silicon compound having one or more reactive groups in the molecule can also be used. Hydrolyzable silicon compounds having one or more reactive groups in the molecule include, for example, urea propyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethylsilane having NH 2 groups as reactive groups. Methoxysilane, etc., having OH group, bis (2-hydroxyethyl) -3-aminotripropylmethoxysilane, etc., having isocyanate group, 3-isocyanatopropyltrimethoxysilane, etc., having thiocyanate group, 3- Thiocyanate propyltrimethoxysilane and the like having an epoxy group (3-glycidoxypropyl) trimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and the like having a thiol group 3-mercapto Propyltrimethoxy Mention may be made of the emissions and the like. A preferred compound is 3-mercaptopropyltrimethoxysilane.
The surface treatment of the particles (D) containing silica as a main component can be performed with an organic compound containing a polymerizable unsaturated group such as an acryloyl group.
  組成物(II)を、先に形成した層(I)の上に積層して硬化させ、層(II)とすることで低屈折率層が形成され、この積層体により反射防止層が形成される。 The composition (II) is laminated on the previously formed layer (I) and cured to form a layer (II), whereby a low refractive index layer is formed, and this laminate forms an antireflection layer. The
(ポリジメチルシロキサン骨格を有する化合物(E))
 本発明の組成物(II)には、必要に応じてポリジメチルシロキサン骨格を有する化合物(E)を配合することができる。ポリジメチルシロキサン骨格を有する化合物(E)は、表面滑り性を改善し、硬化塗膜の耐擦傷性を向上に効果があるとともに、防汚性を付与することができる。これらのポリジメチルシロキサンを有する化合物(E)は、高分子量であることが好ましく、さらに(メタ)アクリロイル基や水酸基、エポキシ基、カルボキシル基、アミノ基等の反応性基を有することが好ましい。これらの具体事例としては、サイラプレーンFM-4411、FM-4421、FM-4425、FM-7711、FM-7721、FM-7725、FM-0411、FM-0421、FM-0425、FM-DA11、FM-DA21、FM-DA26、FM0711、FM0721、FM-0725、TM-0701、TM-0701T(チッソ(株)製)、UV3500、UV3510、UV3530(ビックケミー・ジャパン(株)製)、YF3800、XF3905、YF3057、YF3807、YF3802、YF3897、XC96-723(モメンティブ・パフォーマンス・マテリアルズ・ジャパン製)、BY16-004、SF8428(東レ・ダウコーニングシリコーン(株)製)、VPS-1001(和光純薬製)、Rad2500、2600(TEGO製)、KF-101、X-22-2046、X-22-163C,X-22-164B、X-22-162C,X-22-9002(信越シリコーン製)等が挙げられる。特にサイラプレーンFM-7711、FM-7721、FM-7725、FM-0411、FM-0421、FM-0425、FM0711、FM0721、FM-0725、XF3905、YF3807、VPS-1001、Rad2600が好ましい。
(Compound (E) having a polydimethylsiloxane skeleton)
In the composition (II) of the present invention, a compound (E) having a polydimethylsiloxane skeleton can be blended as necessary. The compound (E) having a polydimethylsiloxane skeleton can improve surface slipperiness, improve the scratch resistance of the cured coating film, and can impart antifouling properties. The compound (E) having these polydimethylsiloxanes preferably has a high molecular weight, and further preferably has a reactive group such as a (meth) acryloyl group, a hydroxyl group, an epoxy group, a carboxyl group, or an amino group. Specific examples of these include Silaplane FM-4411, FM-4421, FM-4425, FM-7711, FM-7721, FM-7725, FM-0411, FM-0421, FM-0425, FM-DA11, FM -DA21, FM-DA26, FM0711, FM0721, FM-0725, TM-0701, TM-0701T (manufactured by Chisso Corp.), UV3500, UV3510, UV3530 (manufactured by Big Chemie Japan Corp.), YF3800, XF3905, YF3057 YF3807, YF3802, YF3897, XC96-723 (made by Momentive Performance Materials Japan), BY16-004, SF8428 (made by Toray Dow Corning Silicone Co., Ltd.), VPS-1001 (made by Wako Pure Chemical Industries, Ltd.) Rad 2500, 2600 (manufactured by TEGO), KF-101, X-22-2046, X-22-163C, X-22-164B, X-22-162C, X-22-9002 (manufactured by Shin-Etsu Silicone), etc. It is done. Particularly preferred are Silaplane FM-7711, FM-7721, FM-7725, FM-0411, FM-0421, FM-0425, FM0711, FM0721, FM-0725, XF3905, YF3807, VPS-1001, and Rad2600.
  (E)成分の添加量は、有機溶剤を除く組成物全量に対して通常0.01~20重量%である。この理由は、添加量が0.01重量%未満となると、滑り性改善効果が十分に得られず、一方、添加量が20重量%を超えると、過剰量の成分により塗膜強度の低下や塗工性悪化が起こるからである。また、このような理由から、(E)成分の添加量を0.1~15重量%とするのがより好ましく、0.5~10重量%の範囲内の値とするのがさらに好ましい。 The amount of component (E) added is usually 0.01 to 20% by weight based on the total amount of the composition excluding the organic solvent. The reason for this is that when the addition amount is less than 0.01% by weight, the effect of improving the slipperiness cannot be sufficiently obtained. On the other hand, when the addition amount exceeds 20% by weight, the coating strength decreases due to an excessive amount of components. This is because the coatability deteriorates. For this reason, the amount of component (E) added is more preferably 0.1 to 15% by weight, and even more preferably 0.5 to 10% by weight.
(硬化触媒)
 本発明で用いる組成物(II)には、さらに硬化触媒を加えることもできる。このような硬化触媒としては、たとえば、重合体(A1)調製時に用いる前記塩基性化合物、酸性化合物、塩化合物および有機金属化合物が挙げられる。塩基性化合物は、1種単独で用いても、2種以上を混合して用いてもよく、トリエチルアミン、テトラメチルアンモニウムハイドロキサイド、ピリジンが特に好ましい。酸性化合物は、1種単独で用いても、2種以上を混合して用いてもよく、マレイン酸、無水マレイン酸、メタンスルホン酸、酢酸が特に好ましい。有機金属化合物は、1種単独で用いても、2種以上を混合して用いてもよく、ジ-n-ブトキシ・ビス(アセチルアセトナート)ジルコニウム、ジオクチルスズ・ジオクチルマレエート、ジ-i-プロポキシ・ビス(アセチルアセトナート)チタニウム、ジ-i-プロポキシ・エチルアセトアセテートアルミニウム、トリス(エチルアセトアセテート)アルミニウム、あるいはこれらの部分加水分解物が好ましい。
(Curing catalyst)
A curing catalyst can also be added to the composition (II) used in the present invention. Examples of such a curing catalyst include the basic compound, acidic compound, salt compound, and organometallic compound used in preparing the polymer (A1). A basic compound may be used individually by 1 type, or may be used in mixture of 2 or more types, and triethylamine, tetramethylammonium hydroxide, and pyridine are particularly preferable. An acidic compound may be used individually by 1 type, or may be used in mixture of 2 or more types, Maleic acid, maleic anhydride, methanesulfonic acid, and acetic acid are especially preferable. The organometallic compounds may be used singly or in combination of two or more, such as di-n-butoxy bis (acetylacetonate) zirconium, dioctyltin dioctyl maleate, di-i- Propoxy bis (acetylacetonate) titanium, di-i-propoxy ethyl acetoacetate aluminum, tris (ethyl acetoacetate) aluminum, or partial hydrolysates thereof are preferred.
(有機溶剤、水)
 本発明で用いる組成物(II)には、さらに有機溶剤や水を加えて、固形分濃度を調整してもよい。有機溶剤としては、特に制限されないが、たとえば、アルコール類、ジエチレングリコールアルキルエーテル類、エチレングリコールアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテル類、プロピレングリコールモノアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテルプロピオネート類、芳香族炭化水素類、エーテル類、ケトン類、エステル類などを挙げることができる。
(Organic solvent, water)
An organic solvent or water may be further added to the composition (II) used in the present invention to adjust the solid content concentration. The organic solvent is not particularly limited. For example, alcohols, diethylene glycol alkyl ethers, ethylene glycol alkyl ether acetates, propylene glycol monoalkyl ethers, propylene glycol monoalkyl ether acetates, propylene glycol monoalkyl ether propionate. , Aromatic hydrocarbons, ethers, ketones, esters and the like.
  上記アルコール類としては、メタノール、エタノール、n-プロピルアルコール、i-プロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、t-ブチルアルコール、イソブチルアルコール、n-ヘキシルアルコール、n-オクチルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、エチレングリコールモノブチルエーテル、ジアセトンアルコールなどが挙げられ、ジエチレングリコールアルキルエーテル類として、例えばジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテルなどが挙げられ、エチレングリコールアルキルエーテルアセテート類として、例えばメチルセロソルブアセテート、エチルセロソルブアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテートなどが挙げられ、プロピレングリコールモノアルキルエーテル類として、例えばプロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテルなどが挙げられ、プロピレングリコールモノアルキルエーテルアセテート類として、例えばプロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテートなどが挙げられ、プロピレングリコールモノアルキルエーテルプロピオネート類として、例えばプロピレングリコールモノメチルエーテルプロピオネート、プロピレングリコールモノエチルエーテルプロピオネート、プロピレングリコールモノプロピルエーテルプロピオネート、プロピレングリコールモノブチルエーテルプロピオネートなどが挙げられる。 Examples of the alcohols include methanol, ethanol, n-propyl alcohol, i-propyl alcohol, n-butyl alcohol, sec-butyl alcohol, t-butyl alcohol, isobutyl alcohol, n-hexyl alcohol, n-octyl alcohol, and ethylene glycol. , Diethylene glycol, triethylene glycol, ethylene glycol monobutyl ether, diacetone alcohol, and the like. Examples of diethylene glycol alkyl ethers include diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and diethylene glycol ethyl methyl ether. Ethylene glycol alcohol Examples of kill ether acetates include methyl cellosolve acetate, ethyl cellosolve acetate, ethylene glycol monobutyl ether acetate, and ethylene glycol monoethyl ether acetate. Examples of propylene glycol monoalkyl ethers include propylene glycol monomethyl ether and propylene glycol monoethyl. Ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether and the like. Examples of propylene glycol monoalkyl ether acetates include propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene group For example, propylene glycol monoalkyl ether propionate, propylene glycol monomethyl ether propionate, propylene glycol monoethyl ether propionate, propylene glycol monopropyl ether propionate, propylene glycol mono Examples include butyl ether propionate.
  また、芳香族炭化水素類としては、ベンゼン、トルエン、キシレンなどが挙げられ、エーテル類としては、テトラヒドロフラン、ジオキサンなどが挙げられ、ケトン類としては、アセトン、シクロヘキサノン、2-ヘプタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトンなどが挙げられ、エステル類としては、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸i-プロピル、酢酸ブチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸メチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、ヒドロキシ酢酸メチル、ヒドロキシ酢酸エチル、ヒドロキシ酢酸ブチル、乳酸メチル、乳酸エチル、乳酸ノルマルプロピル、乳酸イソプロピル、乳酸ブチル、3-ヒドロキシプロピオン酸メチル、3-ヒドロキシプロピオン酸エチル、3-ヒドロキシプロピオン酸プロピル、3-ヒドロキシプロピオン酸ブチル、2-ヒドロキシ-3-メチルブタン酸メチル、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸プロピル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル、エトキシ酢酸プロピル、エトキシ酢酸ブチル、プロポキシ酢酸メチル、プロポキシ酢酸エチル、プロポキシ酢酸プロピル、プロポキシ酢酸ブチル、ブトキシ酢酸メチル、ブトキシ酢酸エチル、ブトキシ酢酸プロピル、ブトキシ酢酸ブチル、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-メトキシプロピオン酸ブチル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル、炭酸プロピレン、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチルなどが挙げられる。これらの有機溶剤は、1種単独で用いても、2種以上を混合して用いてもよい。 Aromatic hydrocarbons include benzene, toluene, xylene, etc., ethers include tetrahydrofuran, dioxane, etc., and ketones include acetone, cyclohexanone, 2-heptanone, 4-hydroxy- 4-methyl-2-pentanone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone and the like. Examples of esters include methyl acetate, ethyl acetate, propyl acetate, i-propyl acetate, butyl acetate, ethyl 2-hydroxypropionate, Methyl 2-hydroxy-2-methylpropionate, ethyl 2-hydroxy-2-methylpropionate, methyl hydroxyacetate, ethyl hydroxyacetate, butyl hydroxyacetate, methyl lactate, ethyl lactate, normal propyl lactate, isoprolactide Pill, butyl lactate, methyl 3-hydroxypropionate, ethyl 3-hydroxypropionate, propyl 3-hydroxypropionate, butyl 3-hydroxypropionate, methyl 2-hydroxy-3-methylbutanoate, methyl methoxyacetate, ethyl methoxyacetate Propyl methoxyacetate, butyl methoxyacetate, methyl ethoxy acetate, ethyl ethoxy acetate, propyl ethoxy acetate, butyl ethoxy acetate, methyl propoxyacetate, ethyl propoxyacetate, propylpropoxyacetate, butyl propoxyacetate, methyl butoxyacetate, ethyl butoxyacetate, butoxy Propyl acetate, butyl butoxyacetate, methyl 2-methoxypropionate, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, butyl 2-methoxypropionate, 2 Ethoxypropionate, methyl 2-ethoxy propionate, propylene carbonate, methyl 3-ethoxypropionate, and ethyl 3-ethoxypropionate and the like. These organic solvents may be used individually by 1 type, or 2 or more types may be mixed and used for them.
(任意添加成分)
 本発明で用いる組成物(II)には、必要に応じて、レベリング剤、濡れ性改良剤、界面活性剤、可塑剤、紫外線吸収剤、酸化防止剤、帯電防止剤、シランカップリング剤、無機充填剤を添加することができる。
(Optional additive)
In the composition (II) used in the present invention, a leveling agent, a wettability improver, a surfactant, a plasticizer, an ultraviolet absorber, an antioxidant, an antistatic agent, a silane coupling agent, an inorganic, if necessary Fillers can be added.
(3-2)組成物(II)の調製方法
 本発明で使用される組成物(II)は、シラン化合物(c1)に、シリカ数平均粒径1~100nmのシリカを主成分とする中空若しくは多孔質の粒子(D)を加え、混合および/または分散工程を行うことで得られる。
  分散工程を行う場合は、数平均粒径1~100nmのシリカを主成分とする中空若しくは多孔質の粒子(D)として(i)溶媒系のゾルもしくはコロイドを用いた場合は攪拌翼等の手法で、(ii)粉体粒子を用いた場合はボールミル、ビーズミル、ペイントシェーカー等の手法を用いることができる。組成物(II)には、必要に応じて、前記の有機溶剤、水、安定性向上剤、硬化触媒、任意添加成分を添加することができ、これらは分散工程を行う前に添加しておいてもよいし、分散工程を行った後に添加してもよい。
(3-2) Preparation Method of Composition (II) The composition (II) used in the present invention is a silane compound (c1) that is hollow or mainly composed of silica having a silica number average particle diameter of 1 to 100 nm. It is obtained by adding porous particles (D) and performing a mixing and / or dispersion step.
When the dispersion step is performed, a method such as a stirring blade is used when (i) a solvent-based sol or colloid is used as the hollow or porous particle (D) mainly composed of silica having a number average particle diameter of 1 to 100 nm. (Ii) When powder particles are used, a technique such as a ball mill, a bead mill, or a paint shaker can be used. If necessary, the composition (II) may contain the organic solvent, water, stability improver, curing catalyst, and optional additive components, which are added before the dispersion step. It may be added after the dispersion step.
(3-3)組成物(II)の製膜方法
 本発明で使用される組成物(II)は、基材に形成した層(I)上に塗布し、加熱乾燥して使用される。層(II)は層(I)に比べ低屈折率であり、このような積層体を形成することで、反射防止能を付与することができる。組成物(II)の塗布方法は特に制限されるものではないが、刷毛塗り、筆塗り、バーコーター、ナイフコーター、ドクターブレード、スクリーン印刷、スプレー塗布、スピンコーター、アプリケーター、ロールコーター、フローコーター、遠心コーター、超音波コーター、(マイクロ)グラビアコーター、ディップコート、フレキソ印刷、ポッティング等の手法を用いることができ、他の基材(転写基材)上に塗布した後に転写して用いてもよい。
  加熱乾燥は50~250℃の範囲内の温度で、0.5~180分加熱するのが好ましい。
(3-3) Film Forming Method of Composition (II) The composition (II) used in the present invention is applied onto the layer (I) formed on the base material and dried by heating. The layer (II) has a lower refractive index than the layer (I), and antireflection ability can be imparted by forming such a laminate. The coating method of the composition (II) is not particularly limited, but brush coating, brush coating, bar coater, knife coater, doctor blade, screen printing, spray coating, spin coater, applicator, roll coater, flow coater, Techniques such as centrifugal coater, ultrasonic coater, (micro) gravure coater, dip coating, flexographic printing, and potting can be used, and they may be used after being applied on another substrate (transfer substrate). .
Heat drying is preferably performed at a temperature in the range of 50 to 250 ° C. for 0.5 to 180 minutes.
  加熱乾燥には、通常のオーブンが用いられるが、熱風式、対流式、赤外式などを用いることができる。加熱により溶剤を除去するとともに、層内で縮合反応が進み、より強度のある層を得ることができる。加熱温度は高いことが、加熱時間は長いことが、残留溶剤も少なく、また前記縮合反応がより進むので望ましい。加熱工程は複数の段階を経て昇温してもよいし、1段階で加熱してもよい。使用する溶剤の含有量および沸点と加熱条件によっては、得られた層表面が荒れる場合があるため、適切な加熱工程につき予め検討しておくことが望ましい。 A normal oven is used for heat drying, but a hot air type, a convection type, an infrared type, or the like can be used. While removing the solvent by heating, the condensation reaction proceeds in the layer, and a stronger layer can be obtained. It is desirable that the heating temperature is high, the heating time is long, the residual solvent is small, and the condensation reaction further proceeds. The heating process may be performed through a plurality of stages, or may be performed in one stage. Depending on the content and boiling point of the solvent to be used and the heating conditions, the surface of the obtained layer may be rough. Therefore, it is desirable to examine an appropriate heating step in advance.
(4)反射防止層の用途
 本発明によって形成される反射防止層は、シロキサン構造を主骨格としており、通常の有機高分子に比べ、耐熱性・耐光性・耐候性に優れている。また、塗布により製造できることから真空蒸着等の手法に比べ、コスト面やプロセス面に優れている。
(4) Use of antireflection layer The antireflection layer formed by the present invention has a siloxane structure as a main skeleton, and is excellent in heat resistance, light resistance, and weather resistance as compared with a normal organic polymer. Moreover, since it can manufacture by application | coating, it is excellent in the cost side and the process side compared with methods, such as vacuum evaporation.
 本発明で得られる反射防止層は、反射防止膜として有用であり、屋内で使用することもできるが、特に屋外で用いられる大画面表示装置や、カーナビや携帯電話、ビデオモニター等に用いられる、ブラウン管ディスプレイ、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、リアプロジェクションディスプレイ等の各種ディスプレイや、結晶シリコン型、アモルファスシリコン型、有機薄膜型、色素増感型、化合物半導体型、高分子型、量子ドット型等の各種太陽電池のりめの反射防止膜として好適に使用することができる。
 特に屋外設置用デバイス、中でもデジタルサイネージなどの屋外設置用ディスプレイ用のデバイスにおいて有用である。
The antireflection layer obtained in the present invention is useful as an antireflection film, and can be used indoors, but is particularly used for large screen display devices used outdoors, car navigation systems, mobile phones, video monitors, Various displays such as cathode ray tube display, liquid crystal display, plasma display, organic EL display, rear projection display, crystalline silicon type, amorphous silicon type, organic thin film type, dye sensitized type, compound semiconductor type, polymer type, quantum dot type It can be suitably used as an antireflection film for the glue of various solar cells.
In particular, it is useful for devices for outdoor installation, especially for devices for outdoor installation such as digital signage.
(5)反射防止層形成用組成物キット
 上記組成物(I)および組成物(II)からなるキットを構成し、こきキットを、屋外設置用デバイスの表面部材を基材としてその表面に反射防止層を形成するために用いることができる。
(5) Anti-reflective layer forming composition kit A kit comprising the above composition (I) and composition (II) is constructed, and the kit is made anti-reflective on the surface using the surface member of the device for outdoor installation as a base material. Can be used to form a layer.
 以下、本発明を実施例により説明するが、本発明は、この実施例により何ら限定されるものではない。なお、実施例および比較例中の「部」および「%」は、特記しない限り、「重量部」および「重量%」を示す。また、実施例および比較例における各種測定は、下記の方法により行なった。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to the examples. In the examples and comparative examples, “parts” and “%” indicate “parts by weight” and “% by weight” unless otherwise specified. In addition, various measurements in Examples and Comparative Examples were performed by the following methods.
(1)GPC測定
 ポリオルガノシロキサンの重量平均分子量Mwは、ゲルパーミエーションクロマトグラフィーにより下記条件で測定し、ポリスチレン換算値として示した。装置:HLC-8120C(東ソー社製)カラム:TSK-gel MultiporeHXL-M(東ソー社製)溶離液:THF、流量0.5mL/min、負荷量5.0%、100μL、測定温度:40℃
(1) GPC measurement The weight average molecular weight Mw of the polyorganosiloxane was measured by gel permeation chromatography under the following conditions and indicated as a polystyrene equivalent value. Apparatus: HLC-8120C (manufactured by Tosoh Corp.) Column: TSK-gel Multipore H XL- M (manufactured by Tosoh Corp.) Eluent: THF, flow rate 0.5 mL / min, load 5.0%, 100 μL, measurement temperature: 40 ° C.
(2)組成物の保存安定性
 測定対象の組成物をポリエチレン製容器内に入れて密栓して常温で1ヶ月間保存し、ゲル化および粒子沈降の有無を目視により判定した。ゲル化していないものについては東京計器社製のBM型粘度計により25℃で粘度測定を行い、下記基準で評価した。
 A:保存前後の粘度変化率が20%以下
 B:保存前後の粘度変化率が20%超
(2) Storage stability of the composition The composition to be measured was put in a polyethylene container, sealed, and stored at room temperature for 1 month, and the presence or absence of gelation and particle sedimentation was visually determined. About the thing which is not gelatinized, the viscosity was measured at 25 degreeC with the BM type | mold viscosity meter by Tokyo Keiki Co., Ltd., and the following reference | standard evaluated.
A: Viscosity change rate before and after storage is 20% or less B: Viscosity change rate before and after storage exceeds 20%
(3)屈折率測定
 測定対象の組成物を、シリコンウェハー上に塗布膜厚が1μmになるようにスピンコートによって塗布し、オーブン中において焼成乾燥させたものを試料として用い、プリズムカップラー装置(Metricon社製2010)で633nmにおける屈折率を測定した。
(3) Refractive Index Measurement The composition to be measured was applied on a silicon wafer by spin coating so that the coating film thickness was 1 μm, and baked and dried in an oven as a sample. A prism coupler apparatus (Metricon The refractive index at 633 nm was measured by a company manufactured 2010).
(4)固形分濃度
 測定対象の組成物溶液をアルミ皿に2g程度測り、ホットプレート上200℃で30分加熱した後の重量変化から求めた。
(4) Concentration of solid content About 2 g of the composition solution to be measured was measured on an aluminum dish and obtained from the change in weight after heating at 200 ° C. for 30 minutes on a hot plate.
(5)初期視感反射率(Y値)測定
 屋外ディスプレイの用途を想定し、初期視感反射率(Y値)を分光光度計(日本分光製、V-670)を用いて測定し、380-780nmの波長範囲で解析した。
  ○:Y値が1%未満
 △:Y値が1%以上1.5%未満
 ×:Y値が1.5%以上
(5) Initial luminous reflectance (Y value) measurement Assuming the use of an outdoor display, the initial luminous reflectance (Y value) is measured using a spectrophotometer (manufactured by JASCO Corporation, V-670). Analysis was performed in the wavelength range of −780 nm.
○: Y value is less than 1% Δ: Y value is 1% or more and less than 1.5% ×: Y value is 1.5% or more
(6)初期反射率測定
 結晶シリコン型の太陽電池用途を想定し、初期反射率を分光光度計(日本分光製、V-670)を用いて測定し、900-1200nmの波長範囲で解析した。
  ○:反射率2%未満
 △:反射率2%以上4%未満
 ×:反射率4%以上
(6) Initial reflectance measurement Assuming the use of a crystalline silicon solar cell, the initial reflectance was measured using a spectrophotometer (manufactured by JASCO Corporation, V-670) and analyzed in the wavelength range of 900-1200 nm.
○: Less than 2% reflectance △: More than 2% reflectance but less than 4% ×: More than 4% reflectance
(7)促進耐候性
  測定対象の試料について、JIS A 5759に準拠して(温度63℃、湿度50%、降雨18分/120分照射の条件)、サンシャインカーボンアーク灯式耐候性試験機を用い、促進耐候試験を実施した。2000時間後まで測定を実施し、硬化物の外観観察及び視感反射率(Y値)を測定し、以下の基準で耐候性を評価した。
(屋外ディスプレイ用途を想定した場合の反射防止層の基準)
 ◎:2000時間まで外観変化(クラック、白化など)が無く、Y値が1%未満
 ○:1000時間まで外観変化(クラック、白化など)が無く、Y値が1%未満
 △:外観変化(クラック、白化など)は全く無いが、Y値が1%以上1.5%未満
 ×:外観変化(クラック、白化など)が認められ、Y値が1.5%以上
(結晶シリコン型の太陽電池用途を想定した場合の反射防止層の基準)
 ◎:2000時間まで外観変化(クラック、白化など)が無く、反射率が2%未満
 ○:1000時間まで外観変化(クラック、白化など)が無く、反射率が2%未満
 △:外観変化(クラック、白化など)は全く無いが、Y値が2%以上4%未満
 ×:外観変化(クラック、白化など)が認められ、Y値が4%以上
(7) Accelerated weather resistance Using a sunshine carbon arc lamp type weather resistance tester for the sample to be measured in accordance with JIS A 5759 (temperature 63 ° C., humidity 50%, rainfall 18 minutes / 120 minutes irradiation conditions). An accelerated weathering test was conducted. The measurement was carried out until 2000 hours later, the appearance observation and luminous reflectance (Y value) of the cured product were measured, and the weather resistance was evaluated according to the following criteria.
(Standard for antireflection layer when used for outdoor display)
A: No change in appearance (crack, whitening, etc.) up to 2000 hours, Y value less than 1% B: No change in appearance (crack, whitening, etc.) up to 1000 hours, Y value less than 1% Δ: Appearance change (cracks) No whitening, etc.), but Y value is 1% or more and less than 1.5%. (Anti-reflection layer standard)
◎: No change in appearance (crack, whitening, etc.) up to 2000 hours, reflectance is less than 2% ○: No change in appearance (crack, whitening, etc.) up to 1000 hours, reflectance is less than 2% △: Change in appearance (cracks) No whitening, etc.), but Y value is 2% or more and less than 4%.
(8)鉛筆硬度(表面硬度)試験
 測定対象の試料について、JIS K-5400-1990の8.4.1鉛筆引っかき試験により鉛筆硬度(表面硬度)を測定した。
(8) Pencil Hardness (Surface Hardness) Test Pencil hardness (surface hardness) was measured by the 8.4.1 pencil scratch test of JIS K-5400-1990 for the sample to be measured.
(9)耐擦傷性試験
 測定対象の試料について、学振型磨耗試験機を用い、スチールウール#0000の上に200gの荷重をかけて10往復させた。硬化膜表面における擦傷の状況を肉眼で以下の判定基準で評価した。
 ◎:硬化膜に傷が発生しない
 ○:硬化膜の剥離や傷の発生がほとんど認められないか、あるいは硬化膜にわずかな細い傷が認められる
 △:硬化膜全体に筋状の傷が認められる
 ×:硬化膜の剥離が生じる
 ◎、○であれば、良好な耐擦傷性を有すると言える。
(9) Scratch resistance test The specimen to be measured was reciprocated 10 times on a steel wool # 0000 using a Gakushin type abrasion tester on a steel wool # 0000. The condition of scratches on the surface of the cured film was evaluated with the naked eye according to the following criteria.
◎: No damage occurs on the cured film ○: Peeling or scarring of the cured film is hardly observed, or slight thin scratches are observed on the cured film X: Peeling of the cured film occurs ◎, ○ means good scratch resistance.
(10)耐クラック性の効果
 測定対象の試料について、23℃で24時間放置し、その反射防止積層膜表面にクラックが発生しているか、レーザー顕微鏡(キーエンス製VK-8500)を用いて確認し、以下の判定基準で評価した。
 ◎:全くクラックがない
 ○:基板端部にのみ、わずかな(1~3個)クラックがある
 △:3~10個のクラックがある
 ×:10個以上のクラックがある
 ◎、○であれば、クラック発生有無の確認結果は良好であると言える。
(10) Effect of crack resistance The sample to be measured is allowed to stand at 23 ° C. for 24 hours, and it is confirmed by using a laser microscope (Keyence VK-8500) whether cracks are generated on the antireflection laminated film surface. Evaluation was made according to the following criteria.
◎: No crack at all ○: There are few (1-3) cracks only at the edge of the substrate △: There are 3-10 cracks ×: There are 10 or more cracks ◎, ○ It can be said that the result of confirming the presence or absence of cracks is good.
<合成例1>
 還流冷却器および攪拌機を備えた反応器に、メチルトリメトキシシラン72部、フェニルトリメトキシシラン28部、3-グリシドキシプロピルトリメトキシシラン8部、溶媒としてプロピレングリコールモノメチルエーテル71部、水19部、触媒としてジ-i-プロポキシ・エチルアセトアセテートアルミニウムのi-プロピルアルコール10%希釈液1部を混合し、75℃で3時間加水分解縮合反応させた。室温に冷却し、固形分濃度が30重量%、Mwが3000の重合体(1)溶液を得た。
<Synthesis Example 1>
In a reactor equipped with a reflux condenser and a stirrer, 72 parts of methyltrimethoxysilane, 28 parts of phenyltrimethoxysilane, 8 parts of 3-glycidoxypropyltrimethoxysilane, 71 parts of propylene glycol monomethyl ether as a solvent, 19 parts of water Then, 1 part of di-i-propoxyethylacetoacetate aluminum 10% diluted solution of di-i-propoxyethylacetoacetate was mixed as a catalyst and subjected to hydrolysis condensation reaction at 75 ° C. for 3 hours. After cooling to room temperature, a polymer (1) solution having a solid content concentration of 30% by weight and Mw of 3000 was obtained.
<合成例2>
 還流冷却器および攪拌機を備えた反応器に、メチルメタクリレート70部、2-エチルヘキシルアクリレート10部、シクロヘキシルメタクリレート9部、ブチルアクリレート20部、γ-メタクリロキシプロピルトリメトキシシラン7部、4-(メタ)アクリロイルオキシ-2,2,6,6-テトラメチルピペリジン5部、i-ブチルアルコール75部、メチルエチルケトン50部およびメタノール25部を加えて混合した後、攪拌しながら80℃に加温した。この混合物にアゾビスイソブチロニトリル3部を酢酸ブチル8部に溶解した溶液を30分間かけて滴下した後、80℃で5時間反応させた。冷却後、メチルエチルケトンを40部加えて、固形分濃度が40%、Mwが15000の重合体(2)溶液を得た。
<Synthesis Example 2>
In a reactor equipped with a reflux condenser and a stirrer, 70 parts of methyl methacrylate, 10 parts of 2-ethylhexyl acrylate, 9 parts of cyclohexyl methacrylate, 20 parts of butyl acrylate, 7 parts of γ-methacryloxypropyltrimethoxysilane, 4- (meth) After adding and mixing 5 parts of acryloyloxy-2,2,6,6-tetramethylpiperidine, 75 parts of i-butyl alcohol, 50 parts of methyl ethyl ketone and 25 parts of methanol, the mixture was heated to 80 ° C. with stirring. A solution prepared by dissolving 3 parts of azobisisobutyronitrile in 8 parts of butyl acetate was added dropwise to this mixture over 30 minutes, and then reacted at 80 ° C. for 5 hours. After cooling, 40 parts of methyl ethyl ketone was added to obtain a polymer (2) solution having a solid content concentration of 40% and Mw of 15000.
<合成例3>
 撹拌機および還流冷却器を備えた反応器に、メチルトリメトキシシラン17部とフェニルトリメトキシシラン25部、上記重合体(2)溶液43部、有機溶媒としてメチルイソブチルケトン50部、および加水分解・縮合反応触媒としてジ-i-プロポキシ・エチルアセトアセテートアルミニウムのi-プロピルアルコール10%希釈液1部を加えて混合し、攪拌しながら50℃に昇温した。これに水を8部30分間かけて滴下した後、60℃で4時間反応させた。その後、安定性向上剤としてアセチルアセトン4部を加えて1時間撹拌した後、室温まで冷却し、固形分濃度が30重量%、Mwが18000の重合体(3)溶液を得た。
<Synthesis Example 3>
In a reactor equipped with a stirrer and a reflux condenser, 17 parts of methyltrimethoxysilane and 25 parts of phenyltrimethoxysilane, 43 parts of the polymer (2) solution, 50 parts of methyl isobutyl ketone as the organic solvent, and hydrolysis / As a condensation reaction catalyst, 1 part of a 10% diluted solution of di-i-propoxyethylacetoacetate aluminum in 10% i-propyl alcohol was added and mixed, and the temperature was raised to 50 ° C. with stirring. Water was added dropwise to this over 8 parts 30 minutes, and then reacted at 60 ° C. for 4 hours. Thereafter, 4 parts of acetylacetone as a stability improver was added and stirred for 1 hour, and then cooled to room temperature to obtain a polymer (3) solution having a solid content concentration of 30% by weight and Mw of 18000.
<合成例4>
 還流冷却器および攪拌機を備えた反応器に、メチルトリメトキシシラン50部、フェニルトリメトキシシラン29部、ジメチルジメトキシシラン27部、溶媒としてプロピレングリコールモノメチルエーテル74部、水18部、触媒としてトリエチルアミンのi-プロピルアルコール10%希釈液2部を混合し、75℃で3時間加水分解縮合反応させた。室温に冷却し、固形分濃度が30重量%、Mwが2500の重合体(4)溶液を得た。
<Synthesis Example 4>
In a reactor equipped with a reflux condenser and a stirrer, 50 parts of methyltrimethoxysilane, 29 parts of phenyltrimethoxysilane, 27 parts of dimethyldimethoxysilane, 74 parts of propylene glycol monomethyl ether as a solvent, 18 parts of water, iethyl triethylamine as a catalyst -2 parts of a 10% propyl alcohol dilution were mixed and subjected to a hydrolytic condensation reaction at 75 ° C for 3 hours. After cooling to room temperature, a polymer (4) solution having a solid content concentration of 30% by weight and Mw of 2500 was obtained.
<合成例5>
 撹拌機および還流冷却器を備えた反応器に、メチルトリメトキシシラン24部とフェニルトリメトキシシラン14部、トリメチルメトキシシラン11部、上記重合体(2)溶液43部、有機溶媒としてメチルイソブチルケトン41部、および加水分解・縮合反応触媒としてシュウ酸10%希釈液3部を加えて混合し、攪拌しながら50℃に昇温した。
 これに水8部を30分間かけて滴下した後、60℃で4時間反応させた。その後、安定性向上剤としてアセチルアセトン4部を加えて1時間撹拌した後、室温まで冷却し、固形分濃度が30重量%、Mwが17000の重合体(5)溶液を得た。
<Synthesis Example 5>
In a reactor equipped with a stirrer and a reflux condenser, 24 parts of methyltrimethoxysilane, 14 parts of phenyltrimethoxysilane, 11 parts of trimethylmethoxysilane, 43 parts of the polymer (2) solution, and methyl isobutyl ketone 41 as an organic solvent. And 3 parts of a 10% oxalic acid diluent as a hydrolysis / condensation reaction catalyst were mixed and heated to 50 ° C. with stirring.
8 parts of water was added dropwise thereto over 30 minutes, and then reacted at 60 ° C. for 4 hours. Thereafter, 4 parts of acetylacetone as a stability improver was added and stirred for 1 hour, and then cooled to room temperature to obtain a polymer (5) solution having a solid content concentration of 30% by weight and Mw of 17,000.
<合成例6>
 還流冷却器および攪拌機を備えた反応器に、メチルトリメトキシシラン108部、3-グリシドキシプロピルトリメトキシシラン10部、溶媒としてプロピレングリコールモノメチルエーテル58部、水23部、触媒としてトリエチルアミンのi-プロピルアルコール10%希釈液1部を混合し、75℃で3時間加水分解縮合反応させた。室温に冷却し、固形分濃度が30重量%、Mwが3500の重合体(6)溶液を得た。
<Synthesis Example 6>
In a reactor equipped with a reflux condenser and a stirrer, 108 parts of methyltrimethoxysilane, 10 parts of 3-glycidoxypropyltrimethoxysilane, 58 parts of propylene glycol monomethyl ether as a solvent, 23 parts of water, i- of triethylamine as a catalyst 1 part of a 10% propyl alcohol dilution was mixed and subjected to a hydrolytic condensation reaction at 75 ° C. for 3 hours. After cooling to room temperature, a polymer (6) solution having a solid content concentration of 30% by weight and Mw of 3500 was obtained.
<合成例7>
 還流冷却器および攪拌機を備えた反応器に、メチルトリメトキシシラン38部、フェニルトリメトキシシラ22部、トリフルオロプロピルトリメトキシシラン37部、溶媒としてプロピレングリコールモノメチルエーテル87部、水15部、触媒としてトリエチルアミンのi-プロピルアルコール10%希釈液1部を混合し、75℃で3時間加水分解縮合反応させた。室温に冷却し、固形分濃度が30重量%、Mwが2400の重合体(7)溶液を得た。
<Synthesis Example 7>
In a reactor equipped with a reflux condenser and a stirrer, 38 parts of methyltrimethoxysilane, 22 parts of phenyltrimethoxysila, 37 parts of trifluoropropyltrimethoxysilane, 87 parts of propylene glycol monomethyl ether as a solvent, 15 parts of water, as a catalyst One part of a 10% diluted solution of triethylamine in i-propyl alcohol was mixed and subjected to a hydrolytic condensation reaction at 75 ° C. for 3 hours. After cooling to room temperature, a polymer (7) solution having a solid concentration of 30% by weight and Mw of 2400 was obtained.
<合成例8>
 還流冷却器および攪拌機を備えた反応器に、テトラメトキシシラン39部、メチルトリメトキシシラン43部、フェニルトリメトキシシラン25部、溶媒としてプロピレングリコールモノメチルエーテル73部、水19部、触媒としてトリエチルアミンのi-プロピルアルコール10%希釈液1部を混合し、75℃で3時間加水分解縮合反応させた。室温に冷却し、固形分濃度が30重量%、Mwが3500の重合体(8)溶液を得た。
<Synthesis Example 8>
In a reactor equipped with a reflux condenser and a stirrer, 39 parts of tetramethoxysilane, 43 parts of methyltrimethoxysilane, 25 parts of phenyltrimethoxysilane, 73 parts of propylene glycol monomethyl ether as a solvent, 19 parts of water, iethyl triethylamine as a catalyst -1 part of a 10% propyl alcohol dilution was mixed and subjected to a hydrolytic condensation reaction at 75 ° C for 3 hours. After cooling to room temperature, a polymer (8) solution having a solid content concentration of 30% by weight and Mw of 3500 was obtained.
〔組成物の調製〕
<調製例1>
 本発明の重合体(1)溶液27部に対し、一次粒径10nmの酸化チタン粉体を4部およびメチルイソブチルケトン18部、トリエチルアミン0.01部を加えてペイントシェーカーで4時間分散し、固形分濃度25重量%の組成物(X-1)を得た。保存安定性はAであった。
(Preparation of composition)
<Preparation Example 1>
To 27 parts of the polymer (1) solution of the present invention, 4 parts of titanium oxide powder having a primary particle size of 10 nm, 18 parts of methyl isobutyl ketone and 0.01 part of triethylamine are added and dispersed for 4 hours using a paint shaker. A composition (X-1) having a partial concentration of 25% by weight was obtained. The storage stability was A.
<調製例2>
 本発明の重合体(1)溶液15部に対し、一次粒径10nmの酸化ジルコニウム粉体を8部およびメチルイソブチルケトン28部、トリエチルアミン0.01部を加えてペイントシェーカーで4時間分散し、固形分濃度25重量%の組成物(X-2)を得た。保存安定性はAであった。
<Preparation Example 2>
To 15 parts of the polymer (1) solution of the present invention, 8 parts of zirconium oxide powder having a primary particle size of 10 nm, 28 parts of methyl isobutyl ketone and 0.01 part of triethylamine are added and dispersed for 4 hours with a paint shaker. A composition (X-2) having a partial concentration of 25% by weight was obtained. The storage stability was A.
<調製例3>
 本発明の重合体(1)溶液15部に対し、一次粒径10nmの酸化亜鉛粉体を8部およびメチルイソブチルケトン28部、トリエチルアミン0.01部を加えてペイントシェーカーで4時間分散し、固形分濃度25重量%の組成物(X-3)を得た。保存安定性はAであった。
<Preparation Example 3>
To 15 parts of the polymer (1) solution of the present invention, 8 parts of zinc oxide powder having a primary particle size of 10 nm, 28 parts of methyl isobutyl ketone and 0.01 part of triethylamine are added and dispersed for 4 hours with a paint shaker. A composition (X-3) having a partial concentration of 25% by weight was obtained. The storage stability was A.
<調製例4>
 本発明の重合体(3)溶液30部に対し、一次粒径10nmの酸化チタン粉体を4部およびメチルイソブチルケトン17部、トリエチルアミン0.01部を加えてペイントシェーカーで4時間分散し、固形分濃度25重量%の組成物(X-4)を得た。保存安定性はAであった。
<Preparation Example 4>
To 30 parts of the polymer (3) solution of the present invention, 4 parts of titanium oxide powder having a primary particle size of 10 nm, 17 parts of methyl isobutyl ketone and 0.01 part of triethylamine are added and dispersed for 4 hours with a paint shaker. A composition (X-4) having a partial concentration of 25% by weight was obtained. The storage stability was A.
<調製例5>
 本発明の重合体(3)溶液17部に対し、一次粒径10nmの酸化ジルコニウム粉体を8部およびメチルイソブチルケトン25部、トリエチルアミン0.01部を加えてペイントシェーカーで4時間分散し、固形分濃度25重量%の組成物(X-5)を得た。保存安定性はAであった。
<Preparation Example 5>
To 17 parts of the polymer (3) solution of the present invention, 8 parts of zirconium oxide powder having a primary particle diameter of 10 nm, 25 parts of methyl isobutyl ketone and 0.01 part of triethylamine are added and dispersed for 4 hours with a paint shaker. A composition (X-5) having a partial concentration of 25% by weight was obtained. The storage stability was A.
<調製例6>
 本発明の重合体(3)溶液17部に対し、一次粒径10nmの酸化亜鉛粉体を8部およびメチルイソブチルケトン25部、トリエチルアミン0.01部を加えてペイントシェーカーで4時間分散し、固形分濃度25重量%の組成物(X-6)を得た。保存安定性はAであった。
<Preparation Example 6>
To 17 parts of the polymer (3) solution of the present invention, 8 parts of zinc oxide powder having a primary particle size of 10 nm, 25 parts of methyl isobutyl ketone and 0.01 part of triethylamine are added and dispersed for 4 hours with a paint shaker. A composition (X-6) having a partial concentration of 25% by weight was obtained. The storage stability was A.
<調製例7>
 本発明の重合体(4)溶液15部に対し、一次粒径10nmの酸化ジルコニウム粉体を8部およびメチルイソブチルケトン28部、トリエチルアミン0.01部を加えてペイントシェーカーで4時間分散し、固形分濃度25重量%の組成物(X-7)を得た。保存安定性はAであった。
<Preparation Example 7>
To 15 parts of the polymer (4) solution of the present invention, 8 parts of zirconium oxide powder having a primary particle diameter of 10 nm, 28 parts of methyl isobutyl ketone and 0.01 part of triethylamine are added and dispersed in a paint shaker for 4 hours. A composition (X-7) having a partial concentration of 25% by weight was obtained. The storage stability was A.
<調製例8>
 本発明の重合体(5)溶液15部に対し、一次粒径10nmの酸化チタン粉体を8部およびメチルイソブチルケトン28部、トリエチルアミン0.01部を加えてペイントシェーカーで4時間分散し、固形分濃度25重量%の組成物(X-8)を得た。保存安定性はAであった。
<Preparation Example 8>
To 15 parts of the polymer (5) solution of the present invention, 8 parts of titanium oxide powder having a primary particle diameter of 10 nm, 28 parts of methyl isobutyl ketone and 0.01 part of triethylamine are added and dispersed for 4 hours with a paint shaker. A composition (X-8) having a partial concentration of 25% by weight was obtained. The storage stability was A.
<調製例9>
 本発明の重合体(6)溶液25部に対し、一次粒径10nmの酸化チタン粉体を5部およびメチルイソブチルケトン20部、トリエチルアミン0.01部を加えてペイントシェーカーで4時間分散し、固形分濃度25重量%の組成物(X-9)を得た。保存安定性はAであった。
<Preparation Example 9>
To 25 parts of the polymer (6) solution of the present invention, 5 parts of titanium oxide powder having a primary particle size of 10 nm, 20 parts of methyl isobutyl ketone and 0.01 part of triethylamine are added and dispersed for 4 hours with a paint shaker. A composition (X-9) having a partial concentration of 25% by weight was obtained. The storage stability was A.
<調製例10>
 本発明の重合体(8)溶液15部に対し、一次粒径10nmの酸化ジルコニウム粉体を8部およびメチルイソブチルケトン28部、トリエチルアミン0.01部を加えてペイントシェーカーで4時間分散し、固形分濃度25重量%の組成物(X-10)を得た。保存安定性はAであった。
<Preparation Example 10>
To 15 parts of the polymer (8) solution of the present invention, 8 parts of zirconium oxide powder having a primary particle size of 10 nm, 28 parts of methyl isobutyl ketone and 0.01 part of triethylamine are added and dispersed for 4 hours with a paint shaker. A composition (X-10) having a partial concentration of 25% by weight was obtained. The storage stability was A.
<調製例11>
 本発明の重合体(6)溶液4部に対し、触媒化成工業株式会社製JX1012SIVを6部およびメチルイソブチルケトン42部を加えてウェブローターにて30分攪拌し、固形分濃度5重量%の組成物(Y-1)を得た。保存安定性はAであった。
<Preparation Example 11>
To 4 parts of the polymer (6) solution of the present invention, 6 parts of JX1012SIV made by Catalyst Kasei Kogyo Co., Ltd. and 42 parts of methyl isobutyl ketone were added and stirred for 30 minutes with a web rotor, and the composition with a solid content concentration of 5% by weight was added. A product (Y-1) was obtained. The storage stability was A.
<調製例12>
 本発明の重合体(6)溶液4部に対し、触媒化成工業株式会社製JX1012SIVを6部および和光純薬製VPS-1001を0.1部、メチルイソブチルケトン42部を加えてウェブローターにて30分攪拌し、固形分濃度5重量%の組成物(Y-2)を得た。保存安定性はAであった。
<Preparation Example 12>
To 4 parts of the polymer (6) solution of the present invention, 6 parts of JX1012SIV manufactured by Catalytic Chemical Industry Co., Ltd., 0.1 part of VPS-1001 manufactured by Wako Pure Chemical Industries, and 42 parts of methyl isobutyl ketone were added to the web rotor. The mixture was stirred for 30 minutes to obtain a composition (Y-2) having a solid content concentration of 5% by weight. The storage stability was A.
<調製例13>
 本発明の重合体(7)溶液4部に対し、触媒化成工業株式会社製JX1012SIVを6部、メチルイソブチルケトン42部を加えてウェブローターにて30分攪拌し、固形分濃度5重量%の組成物(Y-3)を得た。保存安定性はAであった。
<Preparation Example 13>
To 4 parts of the polymer (7) solution of the present invention, 6 parts of JX1012SIV manufactured by Catalytic Chemical Industry Co., Ltd. and 42 parts of methyl isobutyl ketone were added and stirred for 30 minutes with a web rotor. A product (Y-3) was obtained. The storage stability was A.
<調製例14>
 本発明の重合体(6)溶液4部に対し、密実粒子である日産化学株式会社製MEK-STを6部およびメチルイソブチルケトン42部を加えてウェブローターにて30分攪拌し、固形分濃度5重量%の組成物(Y-4)を得た。保存安定性はAであった。
<Preparation Example 14>
To 4 parts of the polymer (6) solution of the present invention, 6 parts of MEK-ST made by Nissan Chemical Co., Ltd. and 42 parts of methyl isobutyl ketone were added and stirred with a web rotor for 30 minutes. A composition (Y-4) having a concentration of 5% by weight was obtained. The storage stability was A.
<調製例15>
 本発明の重合体(1)溶液40部に対し、メチルイソブチルケトン8部を加えてウェブローターにて30分攪拌し、固形分濃度25重量%の組成物(Z-1)を得た。保存安定性はAであった。
<Preparation Example 15>
To 40 parts of the polymer (1) solution of the present invention, 8 parts of methyl isobutyl ketone was added and stirred with a web rotor for 30 minutes to obtain a composition (Z-1) having a solid content concentration of 25% by weight. The storage stability was A.
<調製例16>
 本発明の重合体(2)溶液40部に対し、メチルイソブチルケトン8部を加えてウェブローターにて30分攪拌し、固形分濃度25重量%の組成物(Z-2)を得た。保存安定性はAであった。
<Preparation Example 16>
To 40 parts of the polymer (2) solution of the present invention, 8 parts of methyl isobutyl ketone was added and stirred with a web rotor for 30 minutes to obtain a composition (Z-2) having a solid content concentration of 25% by weight. The storage stability was A.
<調製例17>
 本発明の重合体(6)溶液6部に対し、メチルイソブチルケトン30部を加えてウェブローターにて30分攪拌し、固形分濃度5重量%の組成物(α-1)を得た。保存安定性はAであった。
<Preparation Example 17>
To 6 parts of the polymer (6) solution of the present invention, 30 parts of methyl isobutyl ketone was added and stirred for 30 minutes with a web rotor to obtain a composition (α-1) having a solid content concentration of 5% by weight. The storage stability was A.
 屋外ディスプレイ用途を想定した反射防止層の評価として、実施例1~17、比較例1~6を実施した。結果を表1、2に示す。 Examples 1 to 17 and Comparative Examples 1 to 6 were carried out as evaluation of the antireflection layer assuming an outdoor display application. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<実施例1>
 ガラス基板上に、組成物(X-1)をスピンコーターを用いて乾燥後の膜厚が1.5μmになるように塗布し、200℃で30分乾燥した(1段目の乾燥)。得られた(X-1)層の上から組成物(Y-1)をスピンコーターを用いて乾燥後の膜厚が100nmになるように塗布し、200℃で30分乾燥させ(2段目の乾燥)、試料を作製した。試料は複数作製し、初期評価として視感反射率、鉛筆硬度、耐擦傷性、耐クラック性を測定した。試料のうち1枚については促進耐候試験を実施し、試験後の外観観察・視感反射率測定を実施した。結果を表1に示す。
<Example 1>
The composition (X-1) was applied onto a glass substrate using a spin coater so that the film thickness after drying was 1.5 μm, and dried at 200 ° C. for 30 minutes (first stage drying). The composition (Y-1) was applied from above the obtained (X-1) layer using a spin coater so that the film thickness after drying was 100 nm, and dried at 200 ° C. for 30 minutes (second stage) The sample was prepared. A plurality of samples were prepared, and luminous reflectance, pencil hardness, scratch resistance, and crack resistance were measured as initial evaluation. One of the samples was subjected to an accelerated weathering test, and the appearance observation and luminous reflectance measurement after the test were performed. The results are shown in Table 1.
 <実施例2>
 組成物(X-1)の代わりに組成物(X-2)を用いた他は、実施例1と同様に反射防止層を有する試料を作製し、同様の評価を実施した。結果を表1に示す。
<実施例3>
 組成物(X-1)の代わりに組成物(X-3)を用いた他は、実施例1と同様に反射防止層を有する試料を作製し、同様の評価を実施した。結果を表1に示す。
<実施例4>
 組成物(Y-1)の代わりに組成物(Y-2)を用いた他は、実施例1と同様に反射防止層を有する試料を作製し、同様の評価を実施した。結果を表1に示す。
<実施例5>
 組成物(X-1)の代わりに組成物(X-2)を用いた他は、実施例4と同様に反射防止層を有する試料を作製し、同様の評価を実施した。結果を表1に示す。
<実施例6>
 組成物(X-1)の代わりに組成物(X-3)を用いた他は、実施例4と同様に反射防止層を有する試料を作製し、同様の評価を実施した。結果を表1に示す。
<Example 2>
A sample having an antireflection layer was prepared in the same manner as in Example 1 except that the composition (X-2) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 1.
<Example 3>
A sample having an antireflection layer was prepared in the same manner as in Example 1 except that the composition (X-3) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 1.
<Example 4>
A sample having an antireflection layer was prepared in the same manner as in Example 1 except that the composition (Y-2) was used instead of the composition (Y-1), and the same evaluation was performed. The results are shown in Table 1.
<Example 5>
A sample having an antireflection layer was prepared in the same manner as in Example 4 except that the composition (X-2) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 1.
<Example 6>
A sample having an antireflection layer was prepared in the same manner as in Example 4 except that the composition (X-3) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 1.
<実施例7>
 組成物(X-1)の代わりに組成物(X-4)を用いた他は、実施例1と同様に反射防止層を有する試料を作製し、同様の評価を実施した。結果を表1に示す。
<実施例8>
 組成物(X-1)の代わりに組成物(X-5)を用いた他は、実施例1と同様に反射防止層を有する試料を作製し、同様の評価を実施した。結果を表1に示す。
<実施例9>
 組成物(X-1)の代わりに組成物(X-6)を用いた他は、実施例1と同様に反射防止層を有する試料を作製し、同様の評価を実施した。結果を表1に示す。
<実施例10>
 組成物(Y-1)の代わりに組成物(Y-2)を用いた他は、実施例7と同様に反射防止層を有する試料を作製し、同様の評価を実施した。結果を表1に示す。
<実施例11>
 組成物(X-4)の代わりに組成物(X-5)を用いた他は、実施例10と同様に反射防止層を有する試料を作製し、同様の評価を実施した。結果を表1に示す。
<Example 7>
A sample having an antireflection layer was prepared in the same manner as in Example 1 except that the composition (X-4) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 1.
<Example 8>
A sample having an antireflection layer was prepared in the same manner as in Example 1 except that the composition (X-5) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 1.
<Example 9>
A sample having an antireflection layer was prepared in the same manner as in Example 1 except that the composition (X-6) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 1.
<Example 10>
A sample having an antireflection layer was prepared in the same manner as in Example 7 except that the composition (Y-2) was used instead of the composition (Y-1), and the same evaluation was performed. The results are shown in Table 1.
<Example 11>
A sample having an antireflection layer was prepared in the same manner as in Example 10 except that the composition (X-5) was used instead of the composition (X-4), and the same evaluation was performed. The results are shown in Table 1.
<実施例12>
 組成物(X-4)の代わりに組成物(X-6)を用いた他は、実施例10と同様に反射防止層を有する試料を作製し、同様の評価を実施した。結果を表1に示す。
<実施例13>
 組成物(X-1)の代わりに組成物(X-7)を用いた他は、実施例1と同様に反射防止層を有する試料を作製し、同様の評価を実施した。結果を表1に示す。
<実施例14>
 組成物(Y-1)の代わりに組成物(Y-2)を用いた他は、実施例13と同様に反射防止層を有する試料を作製し、同様の評価を実施した。結果を表1に示す。
<実施例15>
 組成物(X-1)の代わりに組成物(X-8)を用いた他は、実施例1と同様に反射防止層を有する試料を作製し、同様の評価を実施した。結果を表1に示す。
<実施例16>
 組成物(X-1)の代わりに組成物(X-9)を用いた他は、実施例4と同様に反射防止層を有する試料を作製し、同様の評価を実施した。結果を表1に示す。
<実施例17>
 組成物(X-1)の代わりに組成物(X-10)を用いた他は、実施例1と同様に反射防止層を有する試料を作製し、同様の評価を実施した。結果を表1に示す。
<Example 12>
A sample having an antireflection layer was prepared in the same manner as in Example 10 except that the composition (X-6) was used instead of the composition (X-4), and the same evaluation was performed. The results are shown in Table 1.
<Example 13>
A sample having an antireflection layer was prepared in the same manner as in Example 1 except that the composition (X-7) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 1.
<Example 14>
A sample having an antireflection layer was prepared in the same manner as in Example 13 except that the composition (Y-2) was used instead of the composition (Y-1), and the same evaluation was performed. The results are shown in Table 1.
<Example 15>
A sample having an antireflection layer was prepared in the same manner as in Example 1 except that the composition (X-8) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 1.
<Example 16>
A sample having an antireflection layer was prepared in the same manner as in Example 4 except that the composition (X-9) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 1.
<Example 17>
A sample having an antireflection layer was prepared in the same manner as in Example 1 except that the composition (X-10) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 1.
<比較例1>
 組成物(X-1)の代わりに組成物(Z-1)を用いた他は、実施例1と同様に反射防止層を有する試料を作製し、同様の評価を実施した。結果を表2に示す。
<比較例2>
 組成物(Y-1)の代わりに組成物(Y-3)を用いた他は、実施例1と同様に反射防止層を有する試料を作製し、同様の評価を実施した。結果を表2に示す。
<比較例3>
 組成物(Y-1)の代わりに組成物(α-1)を用いた他は、実施例7と同様に反射防止層を有する試料を作製し、同様の評価を実施した。結果を表2に示す。
<比較例4>
 組成物(X-1)の代わりに組成物(Z-2)を用いた他は、実施例4と同様に反射防止層を有する試料を作製し、同様の評価を実施した。結果を表2に示す。
<比較例5>
 組成物(Y-1)の代わりに組成物(Y-4)を用いた他は、実施例1と同様に反射防止層を有する試料を作製し、同様の評価を実施した。結果を表2に示す。
<Comparative Example 1>
A sample having an antireflection layer was prepared in the same manner as in Example 1 except that the composition (Z-1) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 2.
<Comparative Example 2>
A sample having an antireflection layer was prepared in the same manner as in Example 1 except that the composition (Y-3) was used instead of the composition (Y-1), and the same evaluation was performed. The results are shown in Table 2.
<Comparative Example 3>
A sample having an antireflection layer was prepared in the same manner as in Example 7 except that the composition (α-1) was used instead of the composition (Y-1), and the same evaluation was performed. The results are shown in Table 2.
<Comparative Example 4>
A sample having an antireflection layer was prepared in the same manner as in Example 4 except that the composition (Z-2) was used instead of the composition (X-1), and the same evaluation was performed. The results are shown in Table 2.
<Comparative Example 5>
A sample having an antireflection layer was prepared in the same manner as in Example 1 except that the composition (Y-4) was used instead of the composition (Y-1), and the same evaluation was performed. The results are shown in Table 2.
<比較例6>
 組成物(X-1)の代わりに25重量部のジペンタエリスリトールペンタ/ヘキサアクリレート(商品名:DPHA、日本化薬(株)製)、25重量部のウレタンアクリレートオリゴマー(商品名:UV-6300B、日本合成化学工業(株)製)、2重量部の光重合開始剤(商品名:イルガキュアー907、チバ-ガイギー社製)及び0.5重量部の増感剤(商品名:カヤキュアーDETX、日本化薬(株)製)を50重量部のメチルエチルケトンに溶解した塗布液を塗布し、塗布膜に紫外線照射してハードコート層(屈折率:1.53、層厚:5μm )を形成した他は、実施例1と同様に反射防止層を有する試料を作製し、同様の評価を実施した。結果を表2に示す。
<Comparative Example 6>
In place of the composition (X-1), 25 parts by weight of dipentaerythritol penta / hexaacrylate (trade name: DPHA, manufactured by Nippon Kayaku Co., Ltd.), 25 parts by weight of urethane acrylate oligomer (trade name: UV-6300B) Manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), 2 parts by weight of a photopolymerization initiator (trade name: Irgacure 907, manufactured by Ciba-Geigy) and 0.5 parts by weight of a sensitizer (trade name: Kayacure DETX, In addition to coating a coating solution of Nippon Kayaku Co., Ltd. dissolved in 50 parts by weight of methyl ethyl ketone, and irradiating the coating film with ultraviolet rays to form a hard coat layer (refractive index: 1.53, layer thickness: 5 μm) Produced a sample having an antireflection layer in the same manner as in Example 1, and carried out the same evaluation. The results are shown in Table 2.
 結晶シリコン型の太陽電池用途を想定した反射防止層の評価として実施例18~34、比較例7~12を実施した。結果を表3、4に示す。 Examples 18 to 34 and Comparative Examples 7 to 12 were carried out as evaluation of the antireflection layer assuming a crystalline silicon type solar cell application. The results are shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
<実施例18>
 ガラス基板上に、組成物(X-1)をスピンコーターを用いて乾燥後の膜厚が1.0μmになるように塗布し、200℃で30分乾燥した(1段目の乾燥)。得られた(X-1)層の上から組成物(Y-1)をスピンコーターを用いて乾燥後の膜厚が200nmになるように塗布し、200℃で30分乾燥させ(2段目の乾燥)、試料を作製した。試料は複数作製し、初期評価として反射率、鉛筆硬度、耐擦傷性、耐クラック性を測定した。試料のうち1枚については促進耐候試験を実施し、試験後の外観観察・反射率測定を実施した。結果を表3に示す。
<Example 18>
The composition (X-1) was applied onto a glass substrate using a spin coater so that the film thickness after drying was 1.0 μm, and dried at 200 ° C. for 30 minutes (first stage drying). The composition (Y-1) was applied from above the obtained (X-1) layer using a spin coater so that the film thickness after drying was 200 nm, and dried at 200 ° C. for 30 minutes (second stage) The sample was prepared. A plurality of samples were prepared, and reflectance, pencil hardness, scratch resistance, and crack resistance were measured as initial evaluation. One of the samples was subjected to an accelerated weathering test, and an appearance observation and a reflectance measurement were performed after the test. The results are shown in Table 3.
<実施例19~34>
 実施例18における組成物(X-1)、(Y-1)の代わりに表3に示した組成物を用いて同様に反射防止層を作成し、評価を実施した。結果を表3に示す。
<Examples 19 to 34>
An antireflection layer was prepared in the same manner using the compositions shown in Table 3 instead of the compositions (X-1) and (Y-1) in Example 18, and evaluated. The results are shown in Table 3.
<比較例7~12>
 実施例18における組成物(X-1)、(Y-1)の代わりに表4に示した組成物を用いて同様に反射防止層を作成し、評価を実施した。結果を表4に示す。
<Comparative Examples 7-12>
An antireflection layer was prepared in the same manner using the compositions shown in Table 4 instead of the compositions (X-1) and (Y-1) in Example 18, and evaluated. The results are shown in Table 4.

Claims (7)

  1.  ポリオルガノシロキサン(A)および金属酸化物粒子(B)を含んだ層(I)と、ポリオルガノシロキサン(C)および数平均粒径1~100nmのシリカを主成分とする中空若しくは多孔質の粒子(D)を含んだ層(II)との積層体よりなる反射防止層を有することを特徴とする屋外設置用デバイス。 A layer (I) containing polyorganosiloxane (A) and metal oxide particles (B), and hollow or porous particles mainly composed of polyorganosiloxane (C) and silica having a number average particle diameter of 1 to 100 nm A device for outdoor installation, comprising an antireflection layer comprising a laminate with a layer (II) containing (D).
  2.  前記層(I)が、下記式(1)
     R1 n Si(OR2 )4-n  (1)
    (式中、R1 は、炭素数1~12の非加水分解性の有機基を示し、2個以上存在する場合には互いに同じであっても異なっていてもよい。R2 は、それぞれ独立に、炭素数1~5のアルキル基または炭素数1~6のアシル基を示す。nは0~3の整数である。)
    で表される少なくとも1種のオルガノシラン、該オルガノシランの加水分解物および該オルガノシランの縮合物からなる群から選択される少なくとも1種のシラン化合物(a1)および金属酸化物粒子(B)を含有する組成物(I)の硬化物から得られ、
     前記層(II)が、下記式(2)
     R3 m Si(OR4 )4-m  (2)
    (式中、R3 は、炭素数1~12の非加水分解性の有機基を示し、2個以上存在する場合には互いに同じであっても異なっていてもよい。R4 は、それぞれ独立に、炭素数1~5のアルキル基または炭素数1~6のアシル基を示す。mは0~3の整数である。)
    で表される少なくとも1種のオルガノシラン、該オルガノシランの加水分解物および該オルガノシランの縮合物からなる群から選択される少なくとも1種のシラン化合物(c1)および数平均粒径1~100nmのシリカを主成分とする中空若しくは多孔質の粒子(D)を含有する組成物(II)の硬化物から得られることを特徴とする請求項1に記載の屋外設置用デバイス。
    The layer (I) has the following formula (1)
    R 1 n Si (OR 2 ) 4-n (1)
    (Wherein, R 1 represents a non-hydrolyzable organic group having 1 to 12 carbon atoms, optionally .R 2 be different be the same as each other if there are two or more are each independently Represents an alkyl group having 1 to 5 carbon atoms or an acyl group having 1 to 6 carbon atoms, and n is an integer of 0 to 3.)
    At least one silane compound (a1) selected from the group consisting of at least one organosilane, a hydrolyzate of the organosilane, and a condensate of the organosilane represented by the formula: Obtained from a cured product of the composition (I) containing,
    The layer (II) is represented by the following formula (2)
    R 3 m Si (OR 4 ) 4-m (2)
    (Wherein, R 3 represents a non-hydrolyzable organic group having 1 to 12 carbon atoms, optionally .R 4 be different be the same as each other if there are two or more are each independently Represents an alkyl group having 1 to 5 carbon atoms or an acyl group having 1 to 6 carbon atoms, and m is an integer of 0 to 3.)
    At least one silane compound (c1) selected from the group consisting of at least one organosilane represented by the formula: a hydrolyzate of the organosilane and a condensate of the organosilane; The device for outdoor installation according to claim 1, wherein the device is obtained from a cured product of the composition (II) containing hollow or porous particles (D) mainly composed of silica.
  3.  前記組成物(I)のシラン化合物(a1)は、前記式(1)におけるR1 の少なくとも1つがフェニル基であるシラン化合物を含有することを特徴とする請求項2に記載の屋外設置用デバイス。 The device for outdoor installation according to claim 2, wherein the silane compound (a1) of the composition (I) contains a silane compound in which at least one of R 1 in the formula (1) is a phenyl group. .
  4.  前記組成物(I)のシラン化合物(a1)は、前記式(1)における全てのR1 の5~80モル%がフェニル基のものであることを特徴とする請求項3に記載の屋外設置用デバイス。 The outdoor installation according to claim 3, wherein the silane compound (a1) of the composition (I) is such that 5 to 80 mol% of all R 1 in the formula (1) is a phenyl group. Device.
  5.   ポリオルガノシロキサン(A)および金属酸化物粒子(B)を含んだ層(I)と、ポリオルガノシロキサン(C)および数平均粒径1~100nmのシリカを主成分とする中空若しくは多孔質の粒子(D)を含んだ層(II)との積層体よりなる反射防止層を有することを特徴とする屋外設置用ディスプレイ。 A layer (I) containing polyorganosiloxane (A) and metal oxide particles (B), and hollow or porous particles mainly composed of polyorganosiloxane (C) and silica having a number average particle diameter of 1 to 100 nm A display for outdoor installation, comprising an antireflection layer comprising a laminate with a layer (II) containing (D).
  6.   ポリオルガノシロキサン(A)および金属酸化物粒子(B)を含んだ層(I)と、ポリオルガノシロキサン(C)および数平均粒径1~100nmのシリカを主成分とする中空若しくは多孔質の粒子(D)を含んだ層(II)との積層体よりなる反射防止層を有することを特徴とする太陽電池。 A layer (I) containing polyorganosiloxane (A) and metal oxide particles (B), and hollow or porous particles mainly composed of polyorganosiloxane (C) and silica having a number average particle diameter of 1 to 100 nm A solar cell comprising an antireflection layer comprising a laminate with a layer (II) containing (D).
  7.   ポリオルガノシロキサン(A)および金属酸化物粒子(B)を含んだ層(I)と、ポリオルガノシロキサン(C)および数平均粒径1~100nmのシリカを主成分とする中空若しくは多孔質の粒子(D)を含んだ層(II)との積層体よりなることを特徴とする屋外設置用デバイス用反射防止層。 A layer (I) containing polyorganosiloxane (A) and metal oxide particles (B), and hollow or porous particles mainly composed of polyorganosiloxane (C) and silica having a number average particle diameter of 1 to 100 nm An antireflection layer for a device for outdoor installation, comprising a laminate with a layer (II) containing (D).
PCT/JP2011/052716 2010-02-15 2011-02-09 Outdoor device, and antireflective layer for outdoor device WO2011099505A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127018169A KR20120126068A (en) 2010-02-15 2011-02-09 Outdoor device, and antireflective layer for outdoor device
JP2011553857A JPWO2011099505A1 (en) 2010-02-15 2011-02-09 Outdoor installation device and antireflection layer for outdoor installation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010030482 2010-02-15
JP2010-030482 2010-12-21

Publications (1)

Publication Number Publication Date
WO2011099505A1 true WO2011099505A1 (en) 2011-08-18

Family

ID=44367775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052716 WO2011099505A1 (en) 2010-02-15 2011-02-09 Outdoor device, and antireflective layer for outdoor device

Country Status (4)

Country Link
JP (1) JPWO2011099505A1 (en)
KR (1) KR20120126068A (en)
TW (1) TW201141914A (en)
WO (1) WO2011099505A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161791A (en) * 2014-02-27 2015-09-07 旭硝子株式会社 Base material with anti-reflection film, and article
JP2022506660A (en) * 2018-12-07 2022-01-17 コーロン インダストリーズ インク Anti-glare coating resin composition and anti-glare coating film produced containing the same.
EP3892695A4 (en) * 2018-12-07 2022-08-31 Kolon Industries, Inc. Resin composition for anti-glare coating and anti-glare coating film prepared thereby

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201443A (en) * 2001-10-25 2003-07-18 Matsushita Electric Works Ltd Coating material composition and article bearing coating film formed thereof
JP2007011033A (en) * 2005-06-30 2007-01-18 Fujifilm Holdings Corp Antireflection film, polarizing plate using the same and display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201443A (en) * 2001-10-25 2003-07-18 Matsushita Electric Works Ltd Coating material composition and article bearing coating film formed thereof
JP2007011033A (en) * 2005-06-30 2007-01-18 Fujifilm Holdings Corp Antireflection film, polarizing plate using the same and display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161791A (en) * 2014-02-27 2015-09-07 旭硝子株式会社 Base material with anti-reflection film, and article
JP2022506660A (en) * 2018-12-07 2022-01-17 コーロン インダストリーズ インク Anti-glare coating resin composition and anti-glare coating film produced containing the same.
EP3892695A4 (en) * 2018-12-07 2022-08-31 Kolon Industries, Inc. Resin composition for anti-glare coating and anti-glare coating film prepared thereby

Also Published As

Publication number Publication date
JPWO2011099505A1 (en) 2013-06-13
KR20120126068A (en) 2012-11-20
TW201141914A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP5034301B2 (en) High refractive material forming composition and cured body thereof, and method for producing high refractive material forming composition
JP5034283B2 (en) High refractive material forming composition and cured body thereof, and method for producing high refractive material forming composition
JP3846545B2 (en) Coating agent composition, coating method and coated article
JP5195084B2 (en) COATING MATERIAL FOR METAL SURFACE, LIGHT EMITTING DEVICE, AND METAL SURFACE PROTECTION METHOD
EP2085411A2 (en) Metal-coating material, method for protecting metal, and light emitting device
JP2010202731A (en) Uv-shielding silicone coating composition and coated article
JP6360836B2 (en) Anti-reflective coating composition containing siloxane compound, and anti-reflection film having surface energy controlled using the same
JP2007270056A (en) Metal oxide particulate-containing polysiloxane composition and method for producing the same
JP5382310B2 (en) Coating liquid for forming a film, manufacturing method thereof, coating film thereof, and antireflection material
JP2007277505A (en) Oxide particulate dispersion and manufacturing method thereof
WO2014069215A1 (en) Protective plate and display device
JP2012077267A (en) Ultraviolet shielding silicone coating composition and coated article
KR20090061659A (en) Oxide fine particle-containing organic-inorganic hybrid polymer composition and method for producing the same
JP2011173738A (en) Transparent fired body
JP2016505162A (en) Superhydrophilic antireflection coating composition containing a siloxane compound, superhydrophilic antireflection film using the same, and method for producing the same
JP2009235238A (en) Aqueous coating composition, organic-inorganic composite coating film, metal alkoxide condensate dispersion, and production method thereof
JP6032417B2 (en) Active energy ray-curable composition, laminate and method for producing laminate
JP2007277072A (en) Oxide microparticle dispersion and method for producing the same
JP2011116975A (en) Method for producing siloxane oligomer, method for producing molding and molding
WO2011099505A1 (en) Outdoor device, and antireflective layer for outdoor device
JP2012116969A (en) Coating composition
JP4893103B2 (en) Coating liquid for coating film formation, coating film therefor, and coating film forming method
JP2012220556A (en) Antireflection film, composition for forming high refractive layer of the antireflection film, and display for outdoor installation
JP2009280692A (en) Metal-coating material, light emitting device, and method for protecting metal surface
JP2007277073A (en) Oxide microparticle dispersion and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742248

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011553857

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127018169

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11742248

Country of ref document: EP

Kind code of ref document: A1