JP2014160587A - Planar heating element - Google Patents

Planar heating element Download PDF

Info

Publication number
JP2014160587A
JP2014160587A JP2013030709A JP2013030709A JP2014160587A JP 2014160587 A JP2014160587 A JP 2014160587A JP 2013030709 A JP2013030709 A JP 2013030709A JP 2013030709 A JP2013030709 A JP 2013030709A JP 2014160587 A JP2014160587 A JP 2014160587A
Authority
JP
Japan
Prior art keywords
heating element
electrode
planar heating
polymer resistor
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013030709A
Other languages
Japanese (ja)
Other versions
JP6074619B2 (en
Inventor
Kazuya Osugi
和也 大杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2013030709A priority Critical patent/JP6074619B2/en
Publication of JP2014160587A publication Critical patent/JP2014160587A/en
Application granted granted Critical
Publication of JP6074619B2 publication Critical patent/JP6074619B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive safe planar heating element.SOLUTION: A planar heating element includes: a base 2 made of an electrical insulating material; a polymer resistor 3 formed on the base 2; an electrodes 4 for supplying the power to the polymer resistor 3; and a coating material 5 made of an electrical insulating material, which covers the polymer resistor 3 and the electrode 4 and is adhered to the base 2. The electrode 4 includes: a core wire 4a made of a thermal shrinkable material; and a conductor wire 4b spirally wound on the core wire 4a. Thus, an inexpensive safe planar heating element can be provided with a simple configuration.

Description

本発明は、暖房器具やその他加熱器具の発熱体として有用な面状発熱体に関するものである。   The present invention relates to a planar heating element useful as a heating element for heating appliances and other heating appliances.

従来から面状発熱体の発熱部として、カーボンブラックや金属粉末、グラファイトなどの導電性物質を樹脂に分散して得られたものが知られている。なかでも導電性物質と樹脂との組合せにより、自己温度制御機能を示すPTC発熱体(正の抵抗温度特性を意味する英語Positive Temperature Coefficientの略を意味する)を用いた場合には、温度制御回路が不要となり、部品点数を少なくできるなど、メリットのあるデバイスとして知られている。   2. Description of the Related Art Conventionally, as a heat generating portion of a planar heating element, a material obtained by dispersing a conductive material such as carbon black, metal powder, or graphite in a resin is known. In particular, in the case of using a PTC heating element (which means an abbreviation of English Positive Temperature Coefficient, which means a positive resistance temperature characteristic) by a combination of a conductive material and a resin, a temperature control circuit is provided. Is known as a device that has advantages such as eliminating the need for components and reducing the number of components.

PTC特性を有する面状発熱体11は、例えば、図8及び図9に示すように、電極細線12が被覆電材13で被覆された直線状の電極14に、高分子抵抗体15を熱溶着して形成されている。電極細線12を覆う被覆電材13と高分子抵抗体15は共に熱可塑性樹脂とカーボン等の導電性粒子から形成されている。高分子抵抗体15と電極14は、両面から電気絶縁性材料からなる基材16で覆うことにより、面状発熱体11が構成される。面状発熱体11は連続的にシート状に形成され、用途に合わせて適宜寸法に切断される(例えば特許文献1参照)。   For example, as shown in FIGS. 8 and 9, the planar heating element 11 having PTC characteristics is obtained by thermally welding a polymer resistor 15 to a linear electrode 14 in which an electrode thin wire 12 is covered with a covering electric material 13. Is formed. The covering electric material 13 and the polymer resistor 15 covering the electrode thin wire 12 are both made of a thermoplastic resin and conductive particles such as carbon. The polymer heating element 15 and the electrode 14 are covered with a base material 16 made of an electrically insulating material from both sides, thereby forming the planar heating element 11. The planar heating element 11 is continuously formed into a sheet shape, and is appropriately cut according to the application (see, for example, Patent Document 1).

切断した面状発熱体11は、図8に示すように、面状発熱体11の一方の切断面の電極14にリード線17を接続すると共に、両方の切断面に絶縁処理を行っている。切断面の絶縁処理としては、ホットメルトを塗布した電気絶縁性材料からなる封止材18により切断面を封止する方法などが用いられている。   As shown in FIG. 8, the cut sheet heating element 11 has a lead wire 17 connected to the electrode 14 on one cutting surface of the sheet heating element 11, and an insulation treatment is performed on both cutting surfaces. As the insulation treatment of the cut surface, a method of sealing the cut surface with a sealing material 18 made of an electrically insulating material coated with hot melt is used.

特開平3−84888号公報JP-A-3-84888

しかしながら、封止材18を必要とすると共に、封止処理工程を必要とし、コストアップになる問題がある。また、切断面を封止材18により封止する際に気泡が生じた場合、長期使用による高分子抵抗体の変質や、封止材18の剥がれなどの安全上、品質上の問題が生じる虞がある。   However, there is a problem that the sealing material 18 is required and a sealing process step is required, resulting in an increase in cost. In addition, when bubbles are generated when the cut surface is sealed with the sealing material 18, there is a risk that quality problems may occur in terms of safety, such as deterioration of the polymer resistor due to long-term use and peeling of the sealing material 18. There is.

本発明は、上記従来の問題を解決するためになされたもので、低コストで安全な面状発熱体を提供することを目的とする。   The present invention has been made to solve the above-described conventional problems, and an object thereof is to provide a low-cost and safe planar heating element.

本発明は、上記課題を解決するために、電気絶縁性材料からなる基材と、前記基材に配設した高分子抵抗体と、前記高分子抵抗体に給電する電極と、前記高分子抵抗体と前記電極とを覆い前記基材と接着される電気絶縁性材料からなる被覆材とを備え、前記電極は、熱収縮する構成とするものである。   In order to solve the above problems, the present invention provides a base material made of an electrically insulating material, a polymer resistor disposed on the base material, an electrode for supplying power to the polymer resistor, and the polymer resistor. A covering material made of an electrically insulating material that covers a body and the electrode and is bonded to the base material is provided, and the electrode is configured to thermally contract.

本発明によれば、簡単な構成で、低コストで安全な面状発熱体を提供できる。   According to the present invention, it is possible to provide a low-cost and safe planar heating element with a simple configuration.

(a)本発明の実施の形態1における面状発熱体のラミネート加工後の状態を示す概略構成図、(b)面状発熱体の熱処理工程後の状態を示す概略構成図(A) Schematic configuration diagram showing a state after laminating the planar heating element in Embodiment 1 of the present invention, (b) Schematic configuration diagram showing a state after the heat treatment step of the planar heating element 本実施の形態1における面状発熱体の図1(b)のA−A断面図Sectional view taken along the line AA of FIG. 1B of the sheet heating element according to the first embodiment. 本実施の形態1における面状発熱体の電極の側面図Side view of electrode of planar heating element in the first embodiment 本実施の形態1における面状発熱体のラミネート加工設備の概略図Schematic of laminating equipment for planar heating element in the first embodiment (a)本実施の形態1における面状発熱体の熱処理加工前の図1(b)のB−B断面図、(b)面状発熱体の熱処理加工後の図1(b)のB−B断面図(A) BB sectional view of FIG. 1 (b) before the heat treatment of the planar heating element in the first embodiment, (b) B- of FIG. 1 (b) after the thermal treatment of the planar heating element. B cross section (a)本発明の実施の形態2における面状発熱体のラミネート加工後の状態を示す概略構成図、(b)面状発熱体の熱処理工程後の状態を示す概略工製図(A) Schematic configuration diagram showing a state after laminating a planar heating element in Embodiment 2 of the present invention, (b) Schematic engineering drawing showing a state after the heat treatment step of the planar heating element 本実施の形態2における面状発熱体のラミネート加工設備の概略図Schematic of laminating equipment for planar heating elements in the second embodiment 従来の面状発熱体を示す平面図Plan view showing a conventional planar heating element 従来の面状発熱体を示す斜視図A perspective view showing a conventional sheet heating element

第1の発明は、電気絶縁性材料からなる基材と、前記基材に配設した高分子抵抗体と、前記高分子抵抗体に給電する電極と、前記高分子抵抗体と前記電極とを覆い前記基材と接着される電気絶縁性材料からなる被覆材とを備え、前記電極は、熱収縮する構成としたものである。   According to a first aspect of the present invention, there is provided a base material made of an electrically insulating material, a polymer resistor disposed on the base material, an electrode for supplying power to the polymer resistor, the polymer resistor and the electrode. And a covering material made of an electrically insulating material to be bonded to the base material. The electrode is configured to thermally shrink.

この構成により、面状発熱体の製造工程において、面状発熱体を加熱処理することにより、電極が収縮し、電極が基材と被覆材の内部へ入り込み、基材と被覆材の端縁が封止される。したがって、封止材を用いることなく、切断面を封止することができ、コスト低減が可能となり、気泡の巻き込みを抑制でき、安全性向上、品質向上が図れる。   With this configuration, in the manufacturing process of the planar heating element, by heating the planar heating element, the electrode contracts, the electrode enters the base material and the coating material, and the edges of the base material and the coating material are formed. Sealed. Therefore, the cut surface can be sealed without using a sealing material, cost can be reduced, entrainment of bubbles can be suppressed, and safety and quality can be improved.

第2の発明は、第1の発明において、前記電極は、熱収縮性を有する材料からなる芯線と、前記芯線に螺旋状に巻回された導線とから構成したものである。   According to a second invention, in the first invention, the electrode is composed of a core wire made of a heat-shrinkable material and a conductive wire spirally wound around the core wire.

この構成により、面状発熱体の加熱処理により、芯線が収縮し、芯線の収縮に追従して芯線に巻装された導線が収縮するので、電極を収縮させることができる。   With this configuration, the heat treatment of the planar heating element causes the core wire to contract, and the conductor wound around the core wire contracts following the contraction of the core wire, so that the electrode can be contracted.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment.

(実施の形態1)
図1は本発明の実施の形態1における面状発熱体の概略構成図で、図1(a)は面状発熱体のラミネート加工後の状態を示し、図1(b)は面状発熱体の熱処理工程後の状態を示している。図2は図1(b)のA−A断面図、図3は電極の側面図、図4はラミネート加工設備の概略図、図5は熱処理加工を示す概略図で、図5(a)は熱処理加工前の面状発熱体を示す図1(b)のB−B断面図、図5(b)は熱処理加工後の面状発熱体を示す図1(b)のB−B断面図である。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of a planar heating element according to Embodiment 1 of the present invention. FIG. 1 (a) shows a state after lamination of the planar heating element, and FIG. 1 (b) shows a planar heating element. The state after the heat treatment process is shown. 2 is a cross-sectional view taken along the line AA of FIG. 1B, FIG. 3 is a side view of the electrode, FIG. 4 is a schematic view of a laminating apparatus, FIG. 5 is a schematic view showing heat treatment, and FIG. 1B is a cross-sectional view taken along the line BB in FIG. 1B showing the planar heating element before the heat treatment, and FIG. 5B is a cross-sectional view taken along the line BB in FIG. 1B showing the planar heating element after the heat treatment. is there.

面状発熱体1は、ポリエチレンテレフタレート等の電気絶縁性材料からなる基材2と、基材2上に配設した高分子抵抗体3と、高分子抵抗体3に給電する一対の電極4と、高分子抵抗体3及び電極4を覆い、基材2に熱溶着されるポリエチレンテレフタレート等の電気絶縁性材料からなる被覆材5とから構成されており、被覆材5の基材2側の面には、ホットメルト6が塗布されている。本実施の形態においては、高分子抵抗体3として、PTC特性を有する高分子抵抗体を用いている。   The planar heating element 1 includes a base material 2 made of an electrically insulating material such as polyethylene terephthalate, a polymer resistor 3 disposed on the base material 2, and a pair of electrodes 4 for supplying power to the polymer resistor 3. And a covering material 5 made of an electrically insulating material such as polyethylene terephthalate, which covers the polymer resistor 3 and the electrode 4 and is thermally welded to the base material 2, and the surface of the covering material 5 on the base material 2 side. The hot melt 6 is applied. In the present embodiment, a polymer resistor having PTC characteristics is used as the polymer resistor 3.

図3は、実施の形態1における電極4の側面図である。電極4は、芯線4aと、芯線4aが外周に螺旋状に巻回した導線4bから構成しており、導線4bは、図3に示すように、間隔を有した状態に巻回している。   FIG. 3 is a side view of electrode 4 in the first embodiment. The electrode 4 is composed of a core wire 4a and a conducting wire 4b in which the core wire 4a is spirally wound around the outer periphery, and the conducting wire 4b is wound in a state having an interval as shown in FIG.

芯線4aとしては、熱収縮を起こす絶縁性線材が使用できる。具体的には、ポリエステル、ポリアミド、ポリ塩化ビニル、ポリアクリロニトレリル、ポリウレタン、ポリエチレンナフタレート、ポリプロピレン、ポリ乳酸繊維などの耐熱性を有する有機材料が使用できる。   As the core wire 4a, an insulating wire which causes thermal contraction can be used. Specifically, organic materials having heat resistance such as polyester, polyamide, polyvinyl chloride, polyacrylonitrile, polyurethane, polyethylene naphthalate, polypropylene, and polylactic acid fiber can be used.

導線4bとしては、従来公知のものを使用することができ、例えば、銅線、ニッケル線、銅合金線、アルミニウム線、鉄線などが使用できる。導線4bは、1本の素線から構成してよく、複数の素線を縒り合せたもので構成してもよい。   A conventionally well-known thing can be used as the conducting wire 4b, for example, a copper wire, a nickel wire, a copper alloy wire, an aluminum wire, an iron wire etc. can be used. The conducting wire 4b may be composed of one strand, or may be composed of a plurality of strands.

図4に実施の形態1のラミネート加工設備の概略図を示している。   FIG. 4 shows a schematic diagram of the laminating equipment of the first embodiment.

ラミネート加工設備は、基材2と高分子抵抗体3と電極4と被覆材5とを連続的に貼り合わせ、シート状に加工する設備である。7はラミネートロールで、約180℃に加熱されている。ラミネートロール7が回転することにより、基材2とホットメルトが塗布された被覆材5が引き込まれる構成となっている。被覆材5のホットメルト6が塗布された面が基材2側である。   The laminating equipment is equipment for continuously bonding the base material 2, the polymer resistor 3, the electrode 4, and the covering material 5 into a sheet shape. Reference numeral 7 denotes a laminate roll, which is heated to about 180 ° C. By rotating the laminating roll 7, the base material 2 and the coating material 5 coated with hot melt are drawn. The surface of the covering material 5 on which the hot melt 6 is applied is the base material 2 side.

基材2と被覆材5との間に、電極4を所定の間隔を有して配設すると共に、予め所定の大きさに形成した高分子抵抗体3を電極4に接触するように配置し、その状態でラミネートロール7の間に導入する。ラミネートロール7により加熱、加圧することにより、基材2と被覆材5をホットメルト6により貼り合わせ、基材2と被覆材5との間に高分子抵抗体3と電極4を密封する。このラミネート加工後、冷却してホットメルト6を固化させて基材2と高分子抵抗体3と電極4と被覆材5とを一体化し、用途に応じたサイズに切断する。切断した高分子抵抗体3の状態を図1(a)に示している。   Between the base material 2 and the covering material 5, the electrode 4 is disposed with a predetermined interval, and the polymer resistor 3 formed in advance with a predetermined size is disposed in contact with the electrode 4. In this state, it is introduced between the laminate rolls 7. By heating and pressurizing with the laminating roll 7, the base material 2 and the covering material 5 are bonded together by the hot melt 6, and the polymer resistor 3 and the electrode 4 are sealed between the base material 2 and the covering material 5. After the laminating process, the hot melt 6 is cooled to solidify the base material 2, the polymer resistor 3, the electrode 4, and the covering material 5, and cut into a size according to the application. The state of the cut polymer resistor 3 is shown in FIG.

所定サイズに切断した面状発熱体1は、高分子抵抗体3の抵抗値を安定化させるために熱処理工程を行う。   The planar heating element 1 cut to a predetermined size is subjected to a heat treatment process in order to stabilize the resistance value of the polymer resistor 3.

熱処理工程における熱処理温度は、ホットメルト6の融点以上で、電極4の芯線4aが収縮する温度以上に設定している。   The heat treatment temperature in the heat treatment step is set to be equal to or higher than the melting point of the hot melt 6 and equal to or higher than the temperature at which the core wire 4a of the electrode 4 contracts.

熱処理工程は、図5(a)に示すように、面状発熱体1の変形を阻止するために面状発熱体1上にステンレス板8を載置した状態で面状発熱体1を加熱する。面状発熱体1がホットメルト6の融点まで加熱され、電極4の芯線4aの収縮する温度に達すると、電極4が収縮し、電極4の両端が基材2と被覆材5の両端縁より内側に移動する。電極4が移動した空間には、溶融したホットメルト6が流れ込み、面状発熱体1の両端が封止される。この状態で冷却すると、ホットメルトが再び固化し、基材2と被覆材5の両端縁が密閉される。電極4が収縮した状態を図1(b)及び図5(b)に示している。   In the heat treatment step, as shown in FIG. 5A, the planar heating element 1 is heated in a state where the stainless steel plate 8 is placed on the planar heating element 1 in order to prevent deformation of the planar heating element 1. . When the sheet heating element 1 is heated to the melting point of the hot melt 6 and reaches a temperature at which the core 4 a of the electrode 4 contracts, the electrode 4 contracts, and both ends of the electrode 4 are exposed from both edges of the base material 2 and the covering material 5. Move inward. The molten hot melt 6 flows into the space in which the electrode 4 has moved, and both ends of the planar heating element 1 are sealed. If it cools in this state, a hot melt will solidify again and the both ends of the base material 2 and the coating | covering material 5 will be sealed. The state in which the electrode 4 is contracted is shown in FIGS. 1 (b) and 5 (b).

高分子抵抗体3の抵抗値を安定化させるための熱処理工程と同時に、面状発熱体1の両端を封止することができ、作業工程を簡素化することができる。面状発熱体1の両端を封止するための別部品が不要となり、面状発熱体1を安価に提供することができる。   Simultaneously with the heat treatment process for stabilizing the resistance value of the polymer resistor 3, both ends of the planar heating element 1 can be sealed, and the work process can be simplified. Separate parts for sealing both ends of the sheet heating element 1 are not required, and the sheet heating element 1 can be provided at low cost.

なお、ステンレス板8は、電極4に対応する位置に溝を形成することが好ましい。溝を形成することにより、ステンレス板8によって面状発熱体1のほぼ全面を押さえることができ、より確実に面状発熱体1の変形を阻止できると共に、電極4の芯線4aが収縮する
のが妨げられることがない。また、溝には、電極4の長手方向中央部分を押える押え部を形成することが好ましい。溝に電極4の長手方向中央部分を押える押え部を形成することにより、電極4が長手方向中央部分を中心として収縮するので、電極4の両端が面状発熱体1の両端で略均一に収縮するように構成することができる。
(実施の形態2)
本発明の実施の形態2を図6および図7に基づいて以下に説明する。実施の形態2において実施の形態1と同一部品は同一符号を付して説明を省略する。
The stainless steel plate 8 preferably has a groove at a position corresponding to the electrode 4. By forming the groove, almost the entire surface of the sheet heating element 1 can be pressed by the stainless steel plate 8, and the deformation of the sheet heating element 1 can be more reliably prevented, and the core wire 4a of the electrode 4 contracts. There is no hindrance. In addition, it is preferable to form a pressing portion for pressing the central portion in the longitudinal direction of the electrode 4 in the groove. By forming a holding portion that holds the center part in the longitudinal direction of the electrode 4 in the groove, the electrode 4 contracts around the center part in the longitudinal direction, so that both ends of the electrode 4 contract substantially uniformly at both ends of the sheet heating element 1. Can be configured to.
(Embodiment 2)
A second embodiment of the present invention will be described below with reference to FIGS. In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

図6は本発明の実施の形態2における面状発熱体の概略構成図で、図6(a)は面状発熱体のラミネート加工後の状態を示し、図6(b)は面状発熱体の熱処理工程後の状態を示している。図7はラミネート加工設備の概略図である。   FIG. 6 is a schematic configuration diagram of a planar heating element according to Embodiment 2 of the present invention, FIG. 6 (a) shows a state after lamination of the planar heating element, and FIG. 6 (b) is a planar heating element. The state after the heat treatment process is shown. FIG. 7 is a schematic view of the laminating equipment.

実施の形態1では、図4に示すラミネート加工工程において、予め所定の長さに形成した高分子抵抗体3を供給したが、実施の形態2では、長尺状に形成した高分子抵抗体9を連続して供給する構成としている。   In the first embodiment, the polymer resistor 3 formed in advance to a predetermined length is supplied in the laminating process shown in FIG. 4, but in the second embodiment, the polymer resistor 9 formed in a long shape is used. Is continuously supplied.

図7に示すラミネート加工設備において、実施の形態1と同様に、ラミネートロール7は、約180℃に加熱されており、ラミネートロール7が回転することにより、基材2とホットメルト6が塗布された被覆材5が引き込まれる構成となっている。   In the laminating apparatus shown in FIG. 7, as in the first embodiment, the laminating roll 7 is heated to about 180 ° C., and the base roll 2 and the hot melt 6 are applied by rotating the laminating roll 7. The covering material 5 is pulled in.

基材2と被覆材5との間に、電極4が所定の間隔を有した状態で引き込まれる共に、電極4に接触するように高分子抵抗体9が張力を掛けられた状態でラミネートロール7の間に導入される。ラミネートロール7により加熱、加圧することにより、基材2と被覆材5をホットメルト6により貼り合わせ、基材2と被覆材5との間に高分子抵抗体9と電極4を密封する。このラミネート加工後、冷却して基材2と高分子抵抗体3と電極4と被覆材5とを一体化し、用途に応じたサイズに切断する。切断した状態の面状発熱体10を図6(a)に示す。   The laminate roll 7 is pulled between the base material 2 and the covering material 5 in a state where the electrode 4 is pulled in a state having a predetermined interval and the polymer resistor 9 is tensioned so as to come into contact with the electrode 4. Introduced between. By heating and pressurizing with the laminating roll 7, the base material 2 and the covering material 5 are bonded together by the hot melt 6, and the polymer resistor 9 and the electrode 4 are sealed between the base material 2 and the covering material 5. After the laminating process, the substrate 2, the polymer resistor 3, the electrode 4, and the covering material 5 are integrated and cut into a size according to the application. The planar heating element 10 in a cut state is shown in FIG.

所定サイズに切断した面状発熱体10は、実施の形態1と同様に、高分子抵抗体9の抵抗値を安定化させる熱処理工程を行う。   The planar heating element 10 cut into a predetermined size is subjected to a heat treatment process for stabilizing the resistance value of the polymer resistor 9 as in the first embodiment.

熱処理工程は、実施の形態1と同様に、面状発熱体10の変形を阻止するために面状発熱体10上にステンレス板を載置した状態で面状発熱体10の加熱を行う。実施の形態2のステンレス板は、面状発熱体10の高分子抵抗体9および電極4が配置されていない部分を押える構成になっている。   In the heat treatment step, the planar heating element 10 is heated in a state where a stainless steel plate is placed on the planar heating element 10 in order to prevent deformation of the planar heating element 10 as in the first embodiment. The stainless steel plate of the second embodiment is configured to press the portion of the sheet heating element 10 where the polymer resistor 9 and the electrode 4 are not disposed.

面状発熱体10がホットメルト6の融点まで加熱され、電極4の芯線4aの収縮する温度に達すると、電極4が収縮し、電極4の両端が基材2と被覆材5の両端縁より内側に移動する。また、ホットメルト6が固化した状態では、高分子抵抗体9はホットメルト6によりラミネート加工時の張力により引っ張られた状態に保持されているが、ホットメルト6が溶融することにより元の状態に収縮し、高分子抵抗体9の両端が基材2と被覆材5の両端縁より内側に移動する。電極4と高分子抵抗体9の収縮量はほぼ同じになるように調整している。電極4と高分子抵抗体9が移動した空間には、溶融したホットメルト6が流れ込み、面状発熱体10の両端が封止される。この状態で冷却すると、ホットメルトが再び固化し、基材2と被覆材5の両端縁が密閉される。電極4及び高分子抵抗体9の両端が移動した状態の面状発熱体10を図6(b)に示す。   When the sheet heating element 10 is heated to the melting point of the hot melt 6 and reaches the temperature at which the core wire 4a of the electrode 4 contracts, the electrode 4 contracts, and both ends of the electrode 4 are exposed from both edges of the base material 2 and the covering material 5. Move inward. Further, in the state in which the hot melt 6 is solidified, the polymer resistor 9 is held in a state of being pulled by the hot melt 6 due to the tension at the time of lamination. The both ends of the polymer resistor 9 move to the inner side from both edges of the base material 2 and the covering material 5. The amount of contraction between the electrode 4 and the polymer resistor 9 is adjusted to be substantially the same. The molten hot melt 6 flows into the space in which the electrode 4 and the polymer resistor 9 are moved, and both ends of the planar heating element 10 are sealed. If it cools in this state, a hot melt will solidify again and the both ends of the base material 2 and the coating | covering material 5 will be sealed. FIG. 6B shows the planar heating element 10 in a state where both ends of the electrode 4 and the polymer resistor 9 are moved.

高分子抵抗体9の抵抗値を安定化させるための熱処理工程と同時に、面状発熱体10の両端を封止することができ、作業工程を簡素化することができる。面状発熱体10の両端を封止するための別部品が不要となり、面状発熱体10を安価に提供することができる。   Simultaneously with the heat treatment step for stabilizing the resistance value of the polymer resistor 9, both ends of the sheet heating element 10 can be sealed, and the work process can be simplified. Separate parts for sealing both ends of the sheet heating element 10 are not required, and the sheet heating element 10 can be provided at low cost.

なお、ステンレス板は、面状発熱体10の長手中央部分を押さえる押え部を形成することが好ましい。押え部で面状発熱体10の長手方向中央部分の電極4と高分子抵抗体9を押さえることにより、電極4と高分子抵抗体9が長手方向中央部分を中心に収縮し、電極4と高分子抵抗体9の両端が面状発熱体10の両端で略均一に収縮するように構成することができる。   In addition, it is preferable that the stainless steel plate forms a pressing portion that presses the longitudinal center portion of the planar heating element 10. By pressing the electrode 4 and the polymer resistor 9 in the center portion in the longitudinal direction of the planar heating element 10 with the holding portion, the electrode 4 and the polymer resistor 9 contract around the center portion in the longitudinal direction. The both ends of the molecular resistor 9 can be configured to contract substantially uniformly at both ends of the planar heating element 10.

なお、本発明の実施の形態においては、被覆材5にホットメルト6を塗布しているが、基材2にホットメルト6を塗布してもよく、基材2と被覆材5の両方にホットメルト6を塗布してもよい。   In the embodiment of the present invention, the hot melt 6 is applied to the covering material 5, but the hot melt 6 may be applied to the base material 2, and both the base material 2 and the covering material 5 are hot. Melt 6 may be applied.

また、本発明の実施の形態においては、高分子抵抗体9の抵抗値を安定化させるための熱処理工程と、電極4を収縮させる熱処理工程を兼用したが、各工程の必要とする温度が異なるように設定して、別々に熱処理を行ってもよい。   Further, in the embodiment of the present invention, the heat treatment process for stabilizing the resistance value of the polymer resistor 9 and the heat treatment process for contracting the electrode 4 are combined, but the temperature required for each process is different. Thus, the heat treatment may be performed separately.

以上のように、本発明にかかる面状発熱体は、分割カット面の絶縁加工を施さず、電気的に安全を保つことができるため、低コストで製造可能な安全性の高い面状発熱体として床暖房器具や露・霜除去用として自動車のドアミラーや洗面台のミラー、車載用バッテリーヒータ、その他部位の暖房装置に供することができる。   As described above, the planar heating element according to the present invention does not perform the insulation processing of the divided cut surface, and can maintain electrical safety, so that the highly safe planar heating element that can be manufactured at low cost. It can be used for floor heating appliances, automobile door mirrors, washstand mirrors, in-vehicle battery heaters, and other heating devices for dew / frost removal.

1、10 面状発熱体
2 基材
3、9 高分子抵抗体
4 電極
4a 芯線
4b 導線
5 被覆材
6 ホットメルト
DESCRIPTION OF SYMBOLS 1, 10 Planar heating element 2 Base material 3, 9 Polymer resistance body 4 Electrode 4a Core wire 4b Conductor 5 Coating material 6 Hot melt

Claims (2)

電気絶縁性材料からなる基材と、前記基材に配設した高分子抵抗体と、前記高分子抵抗体に給電する電極と、前記高分子抵抗体と前記電極とを覆い前記基材と接着される電気絶縁性材料からなる被覆材とを備え、前記電極は、熱収縮する構成としたことを特徴とする面状発熱体。 A base material made of an electrically insulating material, a polymer resistor disposed on the base material, an electrode for supplying power to the polymer resistor, and covering the polymer resistor and the electrode and bonding to the base material And a covering material made of an electrically insulating material, wherein the electrode is configured to thermally shrink. 前記電極は、熱収縮性を有する材料からなる芯線と、前記芯線に螺旋状に巻回した導線とから構成したことを特徴とする請求項1に記載の面状発熱体。 The planar heating element according to claim 1, wherein the electrode is composed of a core wire made of a heat-shrinkable material and a conductive wire spirally wound around the core wire.
JP2013030709A 2013-02-20 2013-02-20 Manufacturing method of planar heating element Expired - Fee Related JP6074619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013030709A JP6074619B2 (en) 2013-02-20 2013-02-20 Manufacturing method of planar heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013030709A JP6074619B2 (en) 2013-02-20 2013-02-20 Manufacturing method of planar heating element

Publications (2)

Publication Number Publication Date
JP2014160587A true JP2014160587A (en) 2014-09-04
JP6074619B2 JP6074619B2 (en) 2017-02-08

Family

ID=51612146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013030709A Expired - Fee Related JP6074619B2 (en) 2013-02-20 2013-02-20 Manufacturing method of planar heating element

Country Status (1)

Country Link
JP (1) JP6074619B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014114889A1 (en) 2013-10-15 2015-04-16 Toyota Jidosha Kabushiki Kaisha Drive unit for vehicles
KR102226912B1 (en) * 2020-04-17 2021-03-11 송재범 Method For Manufacturing Flat Type Heating Element, Flat type Heating Element Manufactured By The Method, Heater Comprising The Flat Type Heating Element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01258384A (en) * 1988-04-05 1989-10-16 Toray Ind Inc Plane-form heating body and its manufacture
JPH01258387A (en) * 1988-04-05 1989-10-16 Toray Ind Inc Thermal contractible helical wire and plane-form heating body using thermal contractible helical wire
JP2003017226A (en) * 2001-06-27 2003-01-17 Susumu Kiyokawa Conductive plastic sheet and its manufacturing method
WO2012063473A1 (en) * 2010-11-08 2012-05-18 パナソニック株式会社 Planar heating element and production method for same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01258384A (en) * 1988-04-05 1989-10-16 Toray Ind Inc Plane-form heating body and its manufacture
JPH01258387A (en) * 1988-04-05 1989-10-16 Toray Ind Inc Thermal contractible helical wire and plane-form heating body using thermal contractible helical wire
JP2003017226A (en) * 2001-06-27 2003-01-17 Susumu Kiyokawa Conductive plastic sheet and its manufacturing method
WO2012063473A1 (en) * 2010-11-08 2012-05-18 パナソニック株式会社 Planar heating element and production method for same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014114889A1 (en) 2013-10-15 2015-04-16 Toyota Jidosha Kabushiki Kaisha Drive unit for vehicles
KR102226912B1 (en) * 2020-04-17 2021-03-11 송재범 Method For Manufacturing Flat Type Heating Element, Flat type Heating Element Manufactured By The Method, Heater Comprising The Flat Type Heating Element

Also Published As

Publication number Publication date
JP6074619B2 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
JP3823076B2 (en) Induction heating coil
JP2017070140A (en) Cylindrical coil body formed by bending, method of manufacturing the coil body, and rotary electric machine using the coil body
JP2012057980A (en) Temperature detector
JP6074619B2 (en) Manufacturing method of planar heating element
JP2014232626A (en) Terminal-equipped electrical wire
JP2008300050A (en) Polymer heating element
WO2017169759A1 (en) Wire harness
JP2011165472A (en) Method of manufacturing coaxial cable harness
JP5806622B2 (en) Impulse heat sealer
JPH04139709A (en) Manufacture of planar winding and plane inductance element
JP5061769B2 (en) Planar heating element
WO2014178238A1 (en) Laminate-type secondary battery manufacturing device and manufacturing method
JP4872593B2 (en) Planar heating element
US20170338709A1 (en) Generator stator bar having profile strip and process for manufacturing generator stator bar
JP2009181732A (en) Sheet heating element
JP6515788B2 (en) Electric heater and method of manufacturing electric heater
JP2007273132A (en) Planer heating element
JP5153472B2 (en) Method for manufacturing exothermic sheet, and exothermic sheet
JP5194726B2 (en) Planar heating element
JP2007052944A (en) Planar exothermic body
JP5907119B2 (en) Wire harness manufacturing method and wire harness
JPS63292594A (en) Face heating element
KR20190086616A (en) Manufacturing method of carbon paper type heating element
WO2015072019A1 (en) Electrical product manufacturing method
WO2019098147A1 (en) Terminal-attached electric wire and method of manufacturing terminal-attached electric wire

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150805

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161205

R151 Written notification of patent or utility model registration

Ref document number: 6074619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees