JP2014159859A - Apparatus for re-liquefaction/pressure-rise of boil-off gas of low-temperature liquid gas - Google Patents

Apparatus for re-liquefaction/pressure-rise of boil-off gas of low-temperature liquid gas Download PDF

Info

Publication number
JP2014159859A
JP2014159859A JP2013031392A JP2013031392A JP2014159859A JP 2014159859 A JP2014159859 A JP 2014159859A JP 2013031392 A JP2013031392 A JP 2013031392A JP 2013031392 A JP2013031392 A JP 2013031392A JP 2014159859 A JP2014159859 A JP 2014159859A
Authority
JP
Japan
Prior art keywords
gas
evaporative gas
low
pressure
temperature liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013031392A
Other languages
Japanese (ja)
Other versions
JP6036390B2 (en
Inventor
Kanetoshi Hayashi
謙年 林
Mochimasa Yamaguchi
以昌 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2013031392A priority Critical patent/JP6036390B2/en
Publication of JP2014159859A publication Critical patent/JP2014159859A/en
Application granted granted Critical
Publication of JP6036390B2 publication Critical patent/JP6036390B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for re-liquefaction/pressure-rise of boil-off gas, which uses a method for re-liquefying the boil-off gas by directly contacting the boil-off gas with delivered LNG and which sufficiently secures an interfacial area between both of the LNG and the boil-off gas and also can reduce pressure-rise power for rising the pressure of re-liquefied liquid to a supply pressure.SOLUTION: The apparatus for re-liquefaction/pressure-rise of boil-off gas includes: a boil-off gas compressor 7 compressing boil-off gas generated from low-temperature liquid stored in a storage tank 3; and a mixing device 15 mixing the boil-off gas compressed by the boil-off gas compressor 7 and the low-temperature liquid delivered from the storage tank 3. The mixing device 15 includes: a diameter-reduced portion 27 where the diameter of a flow passage is reduced; a diameter-enlarged portion 29 where the diameter of the flow passage is enlarged at the downstream of the diameter-reduced portion 27; a low-temperature liquid spouting part 31 located at the upstream side of the diameter-reduced portion 27 and spouting the low-temperature liquid delivered via a low-temperature liquid delivery pipe 13; and a boil-off gas spouting part 32 located at the upstream side of the diameter-reduced portion 27 and spouting the boil-off gas compressed by the boil-off gas compressor 7.

Description

本発明は、液化天然ガス(以下、「LNG」と言う場合あり)をはじめとする低温液化ガス(以下、低温液体)が貯留された貯留槽内で発生する蒸発ガス(「ボイルオフガス」、「BOG」)を再液化する装置に関するものである。   The present invention relates to evaporative gas ("boil-off gas", "boil-off gas", "liquefied natural gas (hereinafter sometimes referred to as" LNG ") generated in a storage tank in which low-temperature liquefied gas (hereinafter referred to as" low-temperature liquid ") is stored. BOG ").

液化天然ガス(LNG)を始めとする低温液体をタンクで貯蔵する場合、タンクへの入熱によりタンク内の低温液体の一部が蒸発し、蒸発ガスが発生する。低温液体がLNGの場合には、メタンを主成分とする蒸発ガスが発生する。
都市ガス製造プラントの場合、LNGから発生した蒸発ガスは、そのまま圧縮して都市ガスとして供給することも可能であるが、圧縮動力が非常に大きくなる。そこで、動力を削減するために、蒸発ガスを再液化して液の状態で昇圧した後再びガス化して都市ガスとして供給することが考えられる。再液化するには、蒸発ガスを圧縮し、冷却する工程を経ることになるが、蒸発ガスの冷却を払出LNGの冷熱で冷却する、つまり低温液体であるLNGと圧縮された蒸発ガスを熱交換する再液化装置の例が、特許文献1〜3に提案されている。
When low temperature liquid such as liquefied natural gas (LNG) is stored in a tank, a part of the low temperature liquid in the tank evaporates due to heat input to the tank, and evaporative gas is generated. When the low-temperature liquid is LNG, an evaporating gas mainly composed of methane is generated.
In the case of a city gas production plant, the evaporated gas generated from LNG can be compressed as it is and supplied as city gas, but the compression power becomes very large. Therefore, in order to reduce power, it is conceivable to re-liquefy the vaporized gas, pressurize it in a liquid state, and then gasify it again to supply it as city gas. In order to reliquefy, the evaporative gas is compressed and cooled, but the evaporative gas is cooled and cooled by the cold heat of the LNG, that is, the low temperature liquid LNG and the compressed evaporated gas are heat exchanged. Patent Documents 1 to 3 propose examples of the reliquefaction apparatus.

特許文献1では、LNGと圧縮された蒸発ガスを熱交換器で熱交換する方式(間接熱交換方式)が開示されている。
特許文献2では、圧縮された蒸発ガスを払出LNG内に直接吹き込む方式(直接接触熱交換方式)が開示されている。
特許文献3においては、蒸発ガスのLNG中への吹込み方法として、払い出されるLNGの流れ方向と直交する方向もしくはLNGの流れ方向に逆らう方向になるように蒸発ガス供給ノズルを配置するものが開示されている。
In patent document 1, the system (indirect heat exchange system) which heat-exchanges LNG and the compressed vapor gas with a heat exchanger is disclosed.
Patent Document 2 discloses a method (direct contact heat exchange method) in which compressed evaporative gas is directly blown into the discharge LNG.
In Patent Document 3, as a method of injecting evaporative gas into LNG, a method in which an evaporative gas supply nozzle is arranged so as to be in a direction orthogonal to the flow direction of discharged LNG or in a direction opposite to the flow direction of LNG is disclosed. Has been.

特開S55-145897号公報JP S55-145897 特開H9-59657号公報JP H9-59657 特開H8-173781号公報JP H8-173781

特許文献1に開示されたように、LNGと圧縮された蒸発ガスを熱交換器で熱交換する方式(間接熱交換方式)では、伝熱面積を確保するために大型の熱交換器が必要となるという問題がある。
また、特許文献2に開示された直接接触熱交換方式は、伝熱面を介さずに熱交換するため両者が接している界面での伝熱性能は向上する。しかし、直接接触熱交換方式では、気体である蒸発ガスと液体であるLNGの密度の違いから二相に分離しやすく、界面面積(伝熱面積)が十分に確保できないため液化効率が悪くなりやすい。そのため、気体の蒸発ガスと液体のLNGの界面面積をいかにして確保するかが重要であるが、特許文献2にはこの点については何らの開示もない。
しかしながら、特許文献3の方法でも、気体の蒸発ガスと液体のLNGの界面面積(伝熱面積)を十分に確保できるとは言い難い。
As disclosed in Patent Document 1, in the method of exchanging heat between the LNG and the compressed evaporative gas with a heat exchanger (indirect heat exchange method), a large heat exchanger is required to secure a heat transfer area. There is a problem of becoming.
Moreover, since the direct contact heat exchange system disclosed in Patent Document 2 performs heat exchange without passing through the heat transfer surface, the heat transfer performance at the interface where both are in contact is improved. However, in the direct contact heat exchange method, it is easy to separate into two phases due to the difference in density between gas evaporative gas and liquid LNG, and the liquefaction efficiency tends to deteriorate because the interface area (heat transfer area) cannot be sufficiently secured. . Therefore, it is important how to secure the interface area between the gaseous evaporative gas and the liquid LNG, but Patent Document 2 does not disclose anything about this point.
However, even with the method of Patent Document 3, it is difficult to say that the interface area (heat transfer area) between the gaseous evaporative gas and the liquid LNG can be sufficiently secured.

また特許文献1〜3のいずれの技術においても、BOGを冷却する熱交換部分において圧力損失が生じるため、再液化装置出口側の液化したBOGや熱交換後のLNGの圧力は、装置供給前のそれぞれの圧力より低くなる。このため、所定供給圧力に対して再液化装置の圧力損失分だけ余分に昇圧することが必要となり、昇圧動力(ポンプ動力、圧縮機動力)が大きくなるという問題があった。   In any of the techniques of Patent Documents 1 to 3, pressure loss occurs in the heat exchange part that cools the BOG. Therefore, the pressure of the liquefied BOG at the outlet side of the reliquefaction apparatus and the LNG after the heat exchange are It becomes lower than each pressure. For this reason, it is necessary to increase the pressure by an amount corresponding to the pressure loss of the reliquefaction device with respect to the predetermined supply pressure, and there has been a problem that the boosting power (pump power, compressor power) increases.

以上のように、払い出されるLNGに蒸発ガスを直接接触させる方法においては、両者間の界面面積を十分に確保することが重要なポイントとなるが、従来技術においては、この点を満足できるものはなく、かかる技術の開発が望まれていた。
また、再液化後の液の昇圧動力が大きくならないような装置の開発が望まれていた。
As described above, in the method in which the evaporated gas is brought into direct contact with the LNG to be dispensed, it is important to ensure a sufficient interface area between the two. However, the development of such technology has been desired.
In addition, it has been desired to develop an apparatus that does not increase the pressure increase power of the liquid after re-liquefaction.

インジェクタは通常、水と水蒸気で作動し、水蒸気が水に凝縮する際に生ずる低圧で水と水蒸気を吸引しつつ、水蒸気が凝縮・混合した液が昇圧されて吐出される機構であり、水蒸気で駆動される一種の液ポンプである。
インジェクタが機能するためには、その作動流体が、気相(上記の水蒸気に相当)が液相(上記の水に相当)に凝縮する性質を有することが必須となる。
この点、貯留槽から送出される低温液体と蒸発ガスとの関係がこの要件を満たすことに着眼し、インジェクタの原理を利用することで、低温液体と蒸発ガスを混合すると共に混合液を昇圧して吐出することができると考えた。
本発明はかかる知見に基づくものであり、具体的には以下の構成からなるものである。
The injector is usually a mechanism that operates with water and water vapor, sucks water and water vapor at a low pressure generated when water vapor condenses into water, and pressurizes and discharges the liquid condensed and mixed with water vapor. It is a kind of driven liquid pump.
In order for the injector to function, it is essential that the working fluid has a property that the gas phase (corresponding to the water vapor) is condensed into the liquid phase (corresponding to the water).
In this regard, focusing on the fact that the relationship between the low-temperature liquid delivered from the storage tank and the evaporative gas satisfies this requirement, and using the principle of the injector, the low-temperature liquid and the evaporative gas are mixed and the mixed liquid is pressurized. It was thought that it can be discharged.
The present invention is based on such knowledge, and specifically comprises the following configuration.

(1)本発明に係る蒸発ガス再液化・昇圧装置は、貯留槽内に貯留された低温液体から発生する蒸発ガスを圧縮する蒸発ガス圧縮機と、前記貯留槽から低温液体を送出する低温液体送出管と、該低温液体送出管に設けられた送出ポンプと、前記蒸発ガス圧縮機によって圧縮された前記蒸発ガスと前記貯留槽から送出された低温液体とを混合する混合装置とを備えてなり、
前記混合装置は、流路が縮径する縮径部と、該縮径部の下流側で流路が拡径する拡径部と、前記縮径部の上流側であって前記低温液体送出管によって送出された低温液体を噴出する低温液体噴出部と、同じく前記縮径部の上流側であって前記蒸発ガス圧縮機によって圧縮された蒸発ガスを噴出する蒸発ガス噴出部とを有し、
前記混合装置において、前記蒸発ガスが凝縮して内圧が低下することで、前記低温液体と前記蒸発ガスを、それぞれ前記低温液体噴出部と前記蒸発ガス噴出部を介して連続的に噴出させて混合し、混合液を前記拡径部の通過時に昇圧して吐出するようにしたことを特徴とするものである。
(1) An evaporative gas reliquefaction / pressure-increasing apparatus according to the present invention includes an evaporative gas compressor that compresses evaporative gas generated from a low-temperature liquid stored in a storage tank, and a low-temperature liquid that delivers low-temperature liquid from the storage tank. A delivery pipe; a delivery pump provided in the cryogenic liquid delivery pipe; and a mixing device for mixing the evaporative gas compressed by the evaporative gas compressor and the cryogenic liquid delivered from the storage tank. ,
The mixing device includes a reduced diameter portion in which the flow path is reduced, a diameter enlarged portion in which the flow path is enlarged on the downstream side of the reduced diameter portion, and the cryogenic liquid delivery pipe on the upstream side of the reduced diameter portion. A low-temperature liquid jet part for jetting a low-temperature liquid sent out by an evaporating gas jet part for jetting evaporative gas which is also upstream of the reduced diameter part and compressed by the evaporative gas compressor,
In the mixing device, the evaporative gas is condensed and the internal pressure is reduced, so that the low-temperature liquid and the evaporative gas are continuously ejected and mixed through the low-temperature liquid ejection portion and the evaporative gas ejection portion, respectively. In addition, the liquid mixture is pressurized and discharged when passing through the enlarged diameter portion.

本発明に係る蒸発ガス再液化・昇圧装置においては、混合装置を用いて蒸発ガスと低温液体を高速で噴出させて混合するようにしたので、蒸発ガスを低温液体に効果的に接触させて再液化させることができ、また、混合装置によって混合液の液圧が昇圧されるので、供給圧力まで昇圧するためのポンプや圧縮機の昇圧幅を小さくすることができ、昇圧動力が低減される。   In the evaporative gas reliquefaction / pressure-increasing apparatus according to the present invention, the evaporative gas and the low-temperature liquid are jetted and mixed at high speed using the mixing device. Further, since the liquid pressure of the mixed liquid is increased by the mixing device, the pressure increase range of the pump or the compressor for increasing the pressure to the supply pressure can be reduced, and the pressure increasing power is reduced.

本発明の一実施の形態に係る蒸発ガス再液化・昇圧装置の説明図である。It is explanatory drawing of the evaporative gas reliquefaction and pressure | voltage rise apparatus which concerns on one embodiment of this invention. 本発明の一実施の形態に係る蒸発ガス再液化・昇圧装置の一部を詳細に説明する説明図である。It is explanatory drawing explaining in detail a part of evaporative gas reliquefaction and pressure | voltage rise apparatus which concerns on one embodiment of this invention.

図1に基づいて本発明の一実施形態を説明する。
本発明に係る蒸発ガス再液化・昇圧装置1は、貯留槽3内の低温液体4(例えば、LNG)から発生する蒸発ガスを抜き出す蒸発ガス抜出し管5によって供給される蒸発ガスを圧縮する蒸発ガス圧縮機7と、該蒸発ガス圧縮機7によって圧縮された蒸発ガスを混合装置15に送出する蒸発ガス送出管9と、貯留槽3内に設けられたプライマリポンプ11(本発明の「送出ポンプ」に相当する)によって低温液体を送出する低温液体送出管13と、低温液体送出管13と蒸発ガス送出管9とが連結され、蒸発ガスと低温液体とを混合する混合装置15とを備えている。
混合装置15の下流側には混合装置15によって再液化された蒸発ガスと低温液体との混合液を送出する混合液送出管17が設けられている。都市ガス製造プラントの場合、高圧のガス状態で供給するために、混合液送出管17には混合液をさらに昇圧するセカンダリポンプ19が設けられ、さらにその下流側には低温液体を気化する気化器21が設けられている。
蒸発ガス再液化・昇圧装置1を構成する主な機器を詳細に説明する。
An embodiment of the present invention will be described with reference to FIG.
The evaporative gas reliquefaction / pressure-increasing apparatus 1 according to the present invention compresses evaporative gas supplied by an evaporative gas extraction pipe 5 that extracts evaporative gas generated from a low-temperature liquid 4 (for example, LNG) in a storage tank 3. Compressor 7, evaporative gas delivery pipe 9 for delivering evaporative gas compressed by evaporative gas compressor 7 to mixing device 15, and primary pump 11 provided in storage tank 3 (“delivery pump” of the present invention) A cryogenic liquid delivery pipe 13 for delivering a cryogenic liquid, a cryogenic liquid delivery pipe 13 and an evaporative gas delivery pipe 9 are connected, and a mixing device 15 for mixing the evaporative gas and the cryogenic liquid is provided. .
On the downstream side of the mixing device 15, there is provided a mixed solution delivery pipe 17 that sends out a mixed solution of the evaporated gas re-liquefied by the mixing device 15 and the low-temperature liquid. In the case of a city gas production plant, in order to supply in a high-pressure gas state, a secondary pump 19 for further boosting the mixed solution is provided in the mixed solution delivery pipe 17, and further, a vaporizer that vaporizes a low-temperature liquid downstream thereof. 21 is provided.
The main equipment constituting the evaporative gas reliquefaction / pressure-increasing apparatus 1 will be described in detail.

<蒸発ガス送出管>
該蒸発ガス圧縮機7によって圧縮された蒸発ガスを混合装置15に送出する。
なお、蒸発ガス送出管9には、貯留槽3から払い出される低温液体の流量に応じて混合装置15に供給する蒸発ガスの流量を制御する蒸発ガス流量制御弁23が設けられている。
なお、図1では蒸発ガス流量制御弁23は蒸発ガス圧縮機の下流側に設けられているが、蒸発ガス圧縮機の上流側に設けても良い。
<Evaporative gas delivery pipe>
The evaporative gas compressed by the evaporative gas compressor 7 is sent to the mixing device 15.
The evaporative gas delivery pipe 9 is provided with an evaporative gas flow rate control valve 23 that controls the flow rate of the evaporative gas supplied to the mixing device 15 according to the flow rate of the low temperature liquid discharged from the storage tank 3.
In FIG. 1, the evaporative gas flow control valve 23 is provided on the downstream side of the evaporative gas compressor, but may be provided on the upstream side of the evaporative gas compressor.

<低温液体送出管>
低温液体送出管13は、貯留槽3内に設けられたプライマリポンプ11によって低温液体を混合装置15に向けて送出する管体である。
低温液体送出管13には、送出される低温液体の流量を調整する低温液体流量制御弁25が設けられている。
<Cryogenic liquid delivery pipe>
The cryogenic liquid delivery pipe 13 is a tubular body that delivers the cryogenic liquid toward the mixing device 15 by the primary pump 11 provided in the storage tank 3.
The cryogenic liquid delivery pipe 13 is provided with a cryogenic liquid flow rate control valve 25 for adjusting the flow rate of the delivered cryogenic liquid.

<蒸発ガス圧縮機>
蒸発ガス圧縮機7は、蒸発ガスをプライマリポンプ11の吐出圧と同等程度まで昇圧する。
<Evaporative gas compressor>
The evaporative gas compressor 7 raises the evaporative gas to the same level as the discharge pressure of the primary pump 11.

<混合装置>
混合装置15は、図2に示すように、流路が縮径する縮径部27と、縮径部27の下流側で流路が拡径する拡径部29と、縮径部27の上流側であって低温液体送出管13によって送出された低温液体を噴出する低温液体噴出部31と、同じく縮径部27の上流側であって蒸発ガス圧縮機7によって圧縮された蒸発ガスを噴出する蒸発ガス噴出部32とを有している。縮径部27と拡径部29の間に直管部を設けても良い。また、蒸発ガス噴出部32は縮径形状とすることにより、蒸発ガスの噴出流速を増大することができる。
なお、図2では、低温液体噴出部31の周囲に蒸発ガス噴出部32を設けてあるが、逆に蒸発ガス噴出部の周囲に低温液体噴出部を設ける構造としても良い。
混合装置15は、インジェクタを構成しており、以下のような作用を有している。
混合装置15において、蒸発ガス送出管9から供給された蒸発ガスは、低温液体送出管13から供給された低温液体と混じり合うことで凝縮し、これによって混合装置15の内部は低温液体送出管13から混合装置15に供給される低温液体の圧力より低圧状態となり、低温液体を自吸する。一方、混合装置15に供給される蒸発ガスは、混合装置15に供給される低温液体と同等程度の圧力まで蒸発ガス圧縮機7により昇圧されており、蒸発ガスについても混合装置15内部の方が低圧状態であるため自吸することになる。
<Mixing device>
As shown in FIG. 2, the mixing device 15 includes a reduced diameter portion 27 where the diameter of the flow path is reduced, an enlarged diameter portion 29 where the diameter of the flow path is increased on the downstream side of the reduced diameter section 27, and an upstream side of the reduced diameter portion 27. The low-temperature liquid ejection part 31 that ejects the low-temperature liquid delivered by the low-temperature liquid delivery pipe 13 and the evaporative gas compressed by the evaporative gas compressor 7 are also upstream of the reduced diameter part 27. And an evaporating gas ejection part 32. A straight pipe portion may be provided between the reduced diameter portion 27 and the enlarged diameter portion 29. Moreover, the evaporating gas ejection part 32 can be reduced in diameter to increase the evaporating gas ejection flow rate.
In FIG. 2, the evaporative gas ejection part 32 is provided around the low temperature liquid ejection part 31, but conversely, a low temperature liquid ejection part may be provided around the evaporative gas ejection part.
The mixing device 15 constitutes an injector and has the following operation.
In the mixing device 15, the evaporative gas supplied from the evaporative gas delivery tube 9 is condensed by being mixed with the low temperature liquid supplied from the low temperature liquid delivery tube 13, whereby the inside of the mixing device 15 is condensed into the low temperature liquid delivery tube 13. From the pressure of the low-temperature liquid supplied to the mixing device 15, and the low-temperature liquid is self-primed. On the other hand, the evaporative gas supplied to the mixing device 15 is boosted by the evaporative gas compressor 7 to a pressure equivalent to that of the low-temperature liquid supplied to the mixing device 15, and the evaporative gas is also inside the mixing device 15. Since it is in a low pressure state, it will self-prime.

蒸発ガスと低温液体は混合装置15における低圧状態の縮径部27に向かって吸引され、それぞれ低温液体噴出部31と蒸発ガス噴出部32から縮径部内に噴出する。気相の蒸発ガスは特に高速で噴出することになり、その速度を保ったまま低温液体噴流と接触して凝縮し、低温液体と一体となり混合液となる。
高速噴流となっている蒸発ガスの運動エネルギーは混合液にそのまま受け渡され、混合液は、低温液体の低温液体噴出部31からの噴出速度よりも加速される。縮径部終端ではちょうど蒸発ガスが全量凝縮しきった混合液の単相状態となり、この加速された混合液の運動エネルギーは、混合液が拡径部29を通過する際に減速されて圧力エネルギーに変換される。その結果、混合液は、供給される低温液体や供給される蒸発ガスの圧力より高い吐出圧を得て、混合液送出管17に吐出される。
The evaporative gas and the low-temperature liquid are sucked toward the reduced-diameter portion 27 in the low pressure state in the mixing device 15 and are ejected from the low-temperature liquid ejection portion 31 and the evaporative gas ejection portion 32 into the reduced-diameter portion, respectively. The vapor-phase evaporating gas is ejected at a particularly high speed, and is condensed by contacting with the low-temperature liquid jet while maintaining the speed, and becomes a mixed liquid together with the low-temperature liquid.
The kinetic energy of the evaporating gas that is a high-speed jet is transferred to the mixed liquid as it is, and the mixed liquid is accelerated more than the ejection speed of the low-temperature liquid from the low-temperature liquid ejection section 31. At the end of the reduced diameter portion, the mixed liquid in which the entire amount of the evaporated gas is completely condensed becomes a single-phase state, and the kinetic energy of the accelerated mixed liquid is decelerated when passing through the enlarged diameter portion 29 to become pressure energy. Converted. As a result, the mixed liquid obtains a discharge pressure higher than the pressure of the supplied low temperature liquid or the supplied evaporative gas, and is discharged to the mixed liquid delivery pipe 17.

なお、本実施の形態では、一端側が混合装置15の縮径部27に連結され、他端が混合液送出管17における後述する圧力制御バルブ37の下流側に接続されているドレン管33が設けられている。
ドレン管33には、混合装置15側の圧力が、混合液送出管17における圧力制御バルブ37の下流側の圧力より一定値以上高くなった場合に開放するバルブ35を設ける。
ドレン管33は、起動時において、縮径部27に滞留するドレン(凝縮した低温液体)を抜き出して、蒸発ガスを縮径部27に供給しやすくして、起動時における蒸発ガスの連続的な凝縮を円滑にできるようにするものである。
なお、ドレン管33に設けるバルブ35は逆止弁でもよい。
In the present embodiment, a drain pipe 33 is provided in which one end side is connected to the reduced diameter portion 27 of the mixing device 15 and the other end is connected to a downstream side of a pressure control valve 37 described later in the mixed liquid delivery pipe 17. It has been.
The drain pipe 33 is provided with a valve 35 that is opened when the pressure on the mixing device 15 side becomes higher than the pressure on the downstream side of the pressure control valve 37 in the mixed liquid delivery pipe 17 by a certain value or more.
The drain pipe 33 draws out the drain (condensed low-temperature liquid) staying in the reduced diameter portion 27 at the time of start-up, makes it easy to supply the evaporated gas to the reduced diameter portion 27, and the continuous evaporative gas at the start-up time. It is intended to facilitate the condensation.
The valve 35 provided in the drain pipe 33 may be a check valve.

<混合液送出管>
混合液送出管17は、下流側には混合装置15によって再液化された蒸発ガスと低温液体との混合液を送出する。
混合液送出管17には、吐出圧力を制御する圧力制御バルブ37を設ける。また、圧力制御バルブ37上流側に圧力計測手段と温度計測手段を設置し、混合装置15吐出側の圧力と温度を計測してもよい。
<Mixed liquid delivery pipe>
The mixed liquid delivery pipe 17 sends the mixed liquid of the evaporated gas and the low-temperature liquid reliquefied by the mixing device 15 to the downstream side.
The mixed liquid delivery pipe 17 is provided with a pressure control valve 37 for controlling the discharge pressure. Further, a pressure measuring unit and a temperature measuring unit may be installed on the upstream side of the pressure control valve 37, and the pressure and temperature on the discharge side of the mixing device 15 may be measured.

<動作説明>
上記のように構成された蒸発ガス再液化・昇圧装置1の動作を説明する。
貯留槽3内の低温液体(例えば、LNG)は、プライマリポンプ11によって送出されて混合装置15に導入される。また、蒸発ガスは、蒸発ガス抜出し管5を介して蒸発ガス圧縮機7に供給され、蒸発ガス圧縮機7によって昇圧された後、蒸発ガス送出管9を介して混合装置15に導入される。
<Description of operation>
The operation of the evaporative gas reliquefaction / boosting device 1 configured as described above will be described.
The low temperature liquid (for example, LNG) in the storage tank 3 is sent out by the primary pump 11 and introduced into the mixing device 15. Further, the evaporative gas is supplied to the evaporative gas compressor 7 through the evaporative gas extraction pipe 5, and after being pressurized by the evaporative gas compressor 7, is introduced into the mixing device 15 through the evaporative gas delivery pipe 9.

混合装置15に導入された蒸発ガスは低温液体によって冷却されて凝縮する。蒸発ガスの凝縮によって、混合装置15の圧力は低圧になって、低温液体送出管13から低温液体が連続して吸い込まれ、低温液体噴出部31から縮径部27内に噴出する。同じく、蒸発ガスも混合装置15内の低圧に向かって連続して吸い込まれ、蒸発ガス噴出部32から縮径部27内に噴出する。気相の蒸発ガスは特に高速で噴出することになり、その速度を保ったまま低温液体噴流と接触して凝縮し、低温液体と一体となり混合液となる。
高速噴流となっている蒸発ガスの運動エネルギーは混合液にそのまま受け渡され、混合液は、低温液体の低温液体噴出部からの噴出速度よりも加速される。縮径部終端ではちょうど蒸発ガスが全量凝縮しきった状態となり、この加速された混合液の運動エネルギーは、混合液が拡径部を通過する際に減速されて圧力エネルギーに変換される。その結果、混合液は、供給される低温液体や供給される蒸発ガスの圧力より高い吐出圧を得る。混合液は、混合液送出管17に吐出される。都市ガス製造プラントの場合、混合液送出管17に吐出された混合液はセカンダリポンプ19に送り出され、セカンダリポンプ19で昇圧され、気化器21で気化されて都市ガスとして需要側に送出される。
The evaporative gas introduced into the mixing device 15 is cooled and condensed by the low-temperature liquid. Due to the condensation of the evaporative gas, the pressure of the mixing device 15 becomes a low pressure, the low temperature liquid is continuously sucked from the low temperature liquid delivery pipe 13, and is ejected from the low temperature liquid ejection part 31 into the reduced diameter part 27. Similarly, the evaporative gas is continuously sucked toward the low pressure in the mixing device 15 and ejected from the evaporative gas ejection portion 32 into the reduced diameter portion 27. The vapor-phase evaporating gas is ejected at a particularly high speed, and is condensed by contacting with the low-temperature liquid jet while maintaining the speed, and becomes a mixed liquid together with the low-temperature liquid.
The kinetic energy of the evaporating gas that is a high-speed jet is transferred to the mixed liquid as it is, and the mixed liquid is accelerated more than the ejection speed of the low-temperature liquid from the low-temperature liquid ejection portion. At the end of the reduced diameter portion, the entire amount of the evaporated gas is completely condensed, and the kinetic energy of the accelerated mixed liquid is decelerated and converted into pressure energy when the mixed liquid passes through the enlarged diameter portion. As a result, the mixed liquid obtains a discharge pressure higher than the pressure of the supplied low-temperature liquid or supplied evaporative gas. The mixed solution is discharged to the mixed solution delivery pipe 17. In the case of a city gas production plant, the mixed solution discharged to the mixed solution delivery pipe 17 is sent to the secondary pump 19, boosted by the secondary pump 19, vaporized by the vaporizer 21, and sent to the demand side as city gas.

縮径部27の圧力が、混合液送出管17における圧力制御バルブ37の下流側の圧力より高い状態ではドレン管33に設けたバルブ35が開となり、ドレン管33を介して低温液体が混合液送出管17へ排出される。縮径部27の圧力が低下するとバルブ35が閉じるとともに、拡径部29下流端における混合液の圧力が高くなり、圧力制御バルブ37が開放して混合液が混合液送出管17に吐出される。   When the pressure of the reduced diameter portion 27 is higher than the pressure downstream of the pressure control valve 37 in the mixed solution delivery pipe 17, the valve 35 provided in the drain pipe 33 is opened, and the low temperature liquid is mixed with the mixed liquid through the drain pipe 33. It is discharged to the delivery pipe 17. When the pressure of the reduced diameter portion 27 is reduced, the valve 35 is closed, the pressure of the mixed liquid at the downstream end of the enlarged diameter portion 29 is increased, the pressure control valve 37 is opened, and the mixed liquid is discharged to the mixed liquid delivery pipe 17. .

また、混合液送出管17の圧力制御バルブ37上流側に圧力計測手段と温度計測手段を設置し、これらによって計測される混合液の圧力と温度によって、低温液体と蒸発ガスの流量を制御するようにしても良い。
あらかじめ得られている、低温液体の飽和液の圧力と温度の関係から、圧力計測手段で計測された混合液の圧力Pmからその飽和温度Tsを算出し、温度計測手段で計測された混合液の温度Tmが前記飽和温度Tsより低く維持されるように低温液体流量調節弁25および、蒸発ガス流量調節弁23を調整する。
Further, a pressure measuring means and a temperature measuring means are installed upstream of the pressure control valve 37 of the mixed liquid delivery pipe 17, and the flow rates of the low temperature liquid and the evaporative gas are controlled by the pressure and temperature of the mixed liquid measured by these means. Anyway.
The saturation temperature Ts is calculated from the pressure Pm of the mixed liquid measured by the pressure measuring means from the relationship between the pressure and temperature of the saturated liquid of the low temperature liquid obtained in advance, and the saturated liquid temperature measured by the temperature measuring means is calculated. The low-temperature liquid flow rate adjustment valve 25 and the evaporative gas flow rate adjustment valve 23 are adjusted so that the temperature Tm is maintained lower than the saturation temperature Ts.

なお、低温液体流量調節弁25を制御する代わりに、液ポンプであるプライマリポンプ11にインバータなどの容量制御手段を付加して、直接プライマリポンプ11の運転容量を制御してもよい。同じく、蒸発ガス流量調節弁23を制御する代わりに、蒸発ガス圧縮機7にインバータなどの容量制御手段を付加して、直接蒸発ガス圧縮機7の運転容量を制御してもよい。   Instead of controlling the low-temperature liquid flow rate adjustment valve 25, a capacity control means such as an inverter may be added to the primary pump 11 that is a liquid pump to directly control the operating capacity of the primary pump 11. Similarly, instead of controlling the evaporative gas flow control valve 23, a capacity control means such as an inverter may be added to the evaporative gas compressor 7 to directly control the operating capacity of the evaporative gas compressor 7.

なお、低温液体流量に対する蒸発ガス流量が大きくなるほど混合液温度Tmは高くなる傾向にあるため、混合液温度Tmが上昇して前記飽和温度Tsに近づいた場合には、低温液体流量を増大させるか、蒸発ガス流量を減少させるように制御するとよい。一般的には低温液体の送出流量は他の要因、例えば都市ガス需要などにより決められる場合が多く、その場合には蒸発ガス流量側を制御することになる。また、低温液体と蒸発ガスの圧力、温度条件がほぼ一定で変動の少ない場合には、低温液体と蒸発ガスのそれぞれの流量を計測する流量計測手段(図示せず)で得られる流量情報により、蒸発ガスと低温液体の流量比(=蒸発ガス流量/低温液体流量)が所定値以下となるように制御するようにしても良い。   Since the liquid mixture temperature Tm tends to increase as the evaporative gas flow rate increases with respect to the low temperature liquid flow rate, if the liquid mixture temperature Tm rises and approaches the saturation temperature Ts, is the low temperature liquid flow rate increased? The evaporative gas flow rate may be controlled to decrease. In general, the delivery flow rate of the cryogenic liquid is often determined by other factors, such as city gas demand, and in this case, the evaporation gas flow rate side is controlled. In addition, when the pressure and temperature conditions of the cryogenic liquid and the evaporative gas are almost constant and less fluctuating, the flow rate information obtained by the flow rate measuring means (not shown) that measures the respective flow rates of the cryogenic liquid and the evaporative gas, You may make it control so that the flow rate ratio (= evaporation gas flow rate / low-temperature liquid flow rate) of evaporation gas and low-temperature liquid may become below a predetermined value.

本実施の形態においては、混合装置15によって混合液の液圧が昇圧されるので、供給圧力まで昇圧するためのポンプや圧縮機の昇圧幅を小さくすることができ、昇圧動力が低減される。
また、混合装置15を用いて蒸発ガスと低温液体を高速で噴出させて混合するようにしたので、蒸発ガスを低温液体と効果的に接触させて再液化させることができ、後段のプロセスへの制約を低減することが可能となる。例えば都市ガス製造プラントの場合、混合装置15下流側に設置されたセカンダリポンプ19に蒸発ガスが気体のまま流入してセカンダリポンプ19に障害が発生するのを防止できる。
また、蒸発ガスの再液化が効率よく短時間で完了するため、混合装置15からセカンダリポンプ19までの距離を短く設定することができ、機器レイアウトの自由度が向上し、設置面積を低減できるという効果もある。
なお、図1で示した実施形態では、本発明の蒸発ガス再液化・昇圧装置を都市ガス製造プラントに適用した例を示したが、蒸発ガス再液化・昇圧装置を他の用途に適用する場合には、混合液送出管17にセカンダリポンプ19や気化器21を設置する必要は必ずしもない。
In the present embodiment, since the liquid pressure of the mixed liquid is increased by the mixing device 15, the pressure increase range of the pump or the compressor for increasing the pressure to the supply pressure can be reduced, and the pressure increase power is reduced.
Further, since the evaporative gas and the low temperature liquid are jetted and mixed at high speed using the mixing device 15, the evaporative gas can be effectively brought into contact with the low temperature liquid and reliquefied, and the process to the subsequent process can be performed. Restrictions can be reduced. For example, in the case of a city gas manufacturing plant, it is possible to prevent the evaporative gas from flowing into the secondary pump 19 installed on the downstream side of the mixing device 15 and causing a failure in the secondary pump 19.
Further, since the re-liquefaction of the evaporative gas is completed efficiently in a short time, the distance from the mixing device 15 to the secondary pump 19 can be set short, the degree of freedom of equipment layout can be improved, and the installation area can be reduced. There is also an effect.
In the embodiment shown in FIG. 1, the evaporative gas reliquefaction / boosting device of the present invention is applied to a city gas production plant. However, the evaporative gas reliquefaction / boosting device is applied to other uses. Therefore, it is not always necessary to install the secondary pump 19 or the vaporizer 21 in the mixed solution delivery pipe 17.

1 蒸発ガス再液化・昇圧装置
3 貯留槽
4 低温液体
5 蒸発ガス抜出し管
7 蒸発ガス圧縮機
9 蒸発ガス送出管
11 プライマリポンプ
13 低温液体送出管
15 混合装置
17 混合液送出管
19 セカンダリポンプ
21 気化器
23 蒸発ガス流量制御弁
25 低温液体流量制御弁
27 縮径部
29 拡径部
31 低温液体噴出部
32 蒸発ガス噴出部
33 ドレン管
35 バルブ
37 圧力制御バルブ
DESCRIPTION OF SYMBOLS 1 Evaporative gas reliquefaction and pressure booster 3 Reservoir 4 Low temperature liquid 5 Evaporative gas extraction pipe 7 Evaporative gas compressor 9 Evaporative gas delivery pipe 11 Primary pump 13 Low temperature liquid delivery pipe 15 Mixing device 17 Mixed liquid delivery pipe 19 Secondary pump 21 Evaporation 23 Evaporative gas flow control valve 25 Low temperature liquid flow control valve 27 Reduced diameter portion 29 Expanded diameter portion 31 Low temperature liquid ejection portion 32 Evaporative gas ejection portion 33 Drain pipe 35 Valve 37 Pressure control valve

Claims (1)

貯留槽内に貯留された低温液体から発生する蒸発ガスを圧縮する蒸発ガス圧縮機と、前記貯留槽から低温液体を送出する低温液体送出管と、該低温液体送出管に設けられた送出ポンプと、前記蒸発ガス圧縮機によって圧縮された前記蒸発ガスと前記貯留槽から送出された低温液体とを混合する混合装置とを備えてなり、
前記混合装置は、流路が縮径する縮径部と、該縮径部の下流側で流路が拡径する拡径部と、前記縮径部の上流側であって前記低温液体送出管によって送出された低温液体を噴出する低温液体噴出部と、同じく前記縮径部の上流側であって前記蒸発ガス圧縮機によって圧縮された蒸発ガスを噴出する蒸発ガス噴出部とを有し、
前記混合装置において、前記蒸発ガスが凝縮して内圧が低下することで、前記低温液体と前記蒸発ガスを、それぞれ前記低温液体噴出部と前記蒸発ガス噴出部を介して連続的に噴出させて混合し、混合液を前記拡径部の通過時に昇圧して吐出するようにしたことを特徴とする蒸発ガス再液化・昇圧装置。
An evaporative gas compressor for compressing evaporative gas generated from the cryogenic liquid stored in the storage tank; a cryogenic liquid delivery pipe for delivering the cryogenic liquid from the storage tank; and a delivery pump provided in the cryogenic liquid delivery pipe; A mixing device for mixing the evaporative gas compressed by the evaporative gas compressor and the low-temperature liquid sent from the storage tank,
The mixing device includes a reduced diameter portion in which the flow path is reduced, a diameter enlarged portion in which the flow path is enlarged on the downstream side of the reduced diameter portion, and the cryogenic liquid delivery pipe on the upstream side of the reduced diameter portion. A low-temperature liquid jet part for jetting a low-temperature liquid sent out by an evaporating gas jet part for jetting evaporative gas which is also upstream of the reduced diameter part and compressed by the evaporative gas compressor,
In the mixing device, the evaporative gas is condensed and the internal pressure is reduced, so that the low-temperature liquid and the evaporative gas are continuously ejected and mixed through the low-temperature liquid ejection portion and the evaporative gas ejection portion, respectively. The evaporative gas reliquefaction / pressure-increasing apparatus is characterized in that the mixed liquid is pressurized and discharged when passing through the enlarged diameter portion.
JP2013031392A 2013-02-20 2013-02-20 Evaporative gas reliquefaction / pressure booster for low-temperature liquefied gas Active JP6036390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013031392A JP6036390B2 (en) 2013-02-20 2013-02-20 Evaporative gas reliquefaction / pressure booster for low-temperature liquefied gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013031392A JP6036390B2 (en) 2013-02-20 2013-02-20 Evaporative gas reliquefaction / pressure booster for low-temperature liquefied gas

Publications (2)

Publication Number Publication Date
JP2014159859A true JP2014159859A (en) 2014-09-04
JP6036390B2 JP6036390B2 (en) 2016-11-30

Family

ID=51611679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013031392A Active JP6036390B2 (en) 2013-02-20 2013-02-20 Evaporative gas reliquefaction / pressure booster for low-temperature liquefied gas

Country Status (1)

Country Link
JP (1) JP6036390B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190598A (en) * 2014-03-28 2015-11-02 千代田化工建設株式会社 Vaporized gas re-liquefaction facility and vaporized gas re-liquefaction method
JP2016216526A (en) * 2015-05-14 2016-12-22 Jfeエンジニアリング株式会社 Heat reduction method for liquid gas and device therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57103996A (en) * 1980-12-22 1982-06-28 Mitsui Ekika Gas Kk Method of retaining internal pressure of liquefied gas reservoir
JPS57134100A (en) * 1981-02-10 1982-08-19 Ishikawajima Harima Heavy Ind Co Ltd Shipping device of low temperature liquefied gas
WO1999035436A1 (en) * 1998-01-08 1999-07-15 Bg Plc A method of and apparatus for returning a boil-off gas to its liquid phase
JP2004076825A (en) * 2002-08-13 2004-03-11 Nippon Gas Kaihatsu Kk Liquefied gas treatment device
US20080264492A1 (en) * 2006-12-28 2008-10-30 Hyun Cho Methods for pressurizing boil off gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57103996A (en) * 1980-12-22 1982-06-28 Mitsui Ekika Gas Kk Method of retaining internal pressure of liquefied gas reservoir
JPS57134100A (en) * 1981-02-10 1982-08-19 Ishikawajima Harima Heavy Ind Co Ltd Shipping device of low temperature liquefied gas
WO1999035436A1 (en) * 1998-01-08 1999-07-15 Bg Plc A method of and apparatus for returning a boil-off gas to its liquid phase
JP2004076825A (en) * 2002-08-13 2004-03-11 Nippon Gas Kaihatsu Kk Liquefied gas treatment device
US20080264492A1 (en) * 2006-12-28 2008-10-30 Hyun Cho Methods for pressurizing boil off gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190598A (en) * 2014-03-28 2015-11-02 千代田化工建設株式会社 Vaporized gas re-liquefaction facility and vaporized gas re-liquefaction method
JP2016216526A (en) * 2015-05-14 2016-12-22 Jfeエンジニアリング株式会社 Heat reduction method for liquid gas and device therefor

Also Published As

Publication number Publication date
JP6036390B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
KR101489737B1 (en) System for supplying fuel gas in ships
KR101711997B1 (en) Fuel supply system
KR101701713B1 (en) Fuel supply system
JP2013209000A (en) Vessel, liquefied fuel gas transfer device and liquefied fuel gas transfer method
KR102082362B1 (en) Apparatus, system and method for the capture, utilization and sendout of latent heat in boil off gas onboard a cryogenic storage vessel
JP4275061B2 (en) Fuel supply apparatus and LNG ship equipped with the same
JP2016070301A (en) Hydrogen fuel supply system
WO2014129558A1 (en) Natural gas fuel evaporator, natural gas fuel supply device, and method for supplying natural gas fuel to ships and motors
JP2012076561A (en) Fuel supply system for ship
JP5884995B2 (en) Condensation and mixing apparatus and evaporative gas reliquefaction apparatus having the same
EP3088792A1 (en) Liquefied fuel gas evaporation promoting device and fuel gas supply system for ships
CN104797878A (en) Configurations and methods of vapor recovery and lng sendout systems for lng import terminals
KR20200093571A (en) Apparatus and method for supplying liquefied natural gas
JP6036390B2 (en) Evaporative gas reliquefaction / pressure booster for low-temperature liquefied gas
KR200477658Y1 (en) Efficiency Test Apparatus of Partial Re-liquefaction System for Vessels
JPH1163396A (en) Boiloff gas condensing device and liquefied gas storage equipment
KR101732554B1 (en) Fuel gas supplying system in ships
KR20080099209A (en) Apparatus for supplying fuel gas of lng carrier
JP2011117562A (en) Evaporated gas re-liquefying apparatus
KR20140143038A (en) A Treatment System Of Liquefied Natural Gas
KR102189079B1 (en) A Treatment System of Gas for Vessel
JPH03236588A (en) Method and device for processing boil-off gas of lng
JP2014159857A (en) Apparatus for re-liquefying boil-off gas of low-temperature liquefied gas
KR101732551B1 (en) Fuel gas supplying system in ships
KR20150062382A (en) System for supplying fuel gas in ships

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6036390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350