JP2014159618A - Surface treatment agent for silver or silver alloy, light-reflecting substrate, light emitting device and method of producing light emitting device - Google Patents

Surface treatment agent for silver or silver alloy, light-reflecting substrate, light emitting device and method of producing light emitting device Download PDF

Info

Publication number
JP2014159618A
JP2014159618A JP2013031174A JP2013031174A JP2014159618A JP 2014159618 A JP2014159618 A JP 2014159618A JP 2013031174 A JP2013031174 A JP 2013031174A JP 2013031174 A JP2013031174 A JP 2013031174A JP 2014159618 A JP2014159618 A JP 2014159618A
Authority
JP
Japan
Prior art keywords
silver
treatment agent
surface treatment
light
silicate compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013031174A
Other languages
Japanese (ja)
Other versions
JP6098215B2 (en
Inventor
Tomoko Tonai
智子 東内
Nobuaki Takane
信明 高根
Itaru Yamaura
格 山浦
Maki Inada
麻希 稲田
Hiroshi Yokota
弘 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2013031174A priority Critical patent/JP6098215B2/en
Publication of JP2014159618A publication Critical patent/JP2014159618A/en
Application granted granted Critical
Publication of JP6098215B2 publication Critical patent/JP6098215B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Paints Or Removers (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface treatment agent having excellent discoloration (corrosion) prevention properties for various kinds of silver or silver alloys, for example, silver or silver alloys used for an electronic component and a lighting device such as a light-emitting diode and, particularly, capable of imparting excellent discoloration resistance to a silver plated surface.SOLUTION: A surface treatment agent for silver or silver alloys comprises liquid A comprising a cationic electrolyte polymer, and liquid B comprising a laminar silicate compound.

Description

本発明は各種銀又は銀合金の表面処理剤に関し、より詳細には、電子部品、発光装置等に使用される銀又は銀合金の変色を防止するための表面処理剤に関する。また、本発明は、光反射基板、発光装置及び発光装置の製造方法に関する。   The present invention relates to various silver or silver alloy surface treatment agents, and more particularly to a surface treatment agent for preventing discoloration of silver or silver alloys used in electronic parts, light emitting devices and the like. The present invention also relates to a light reflecting substrate, a light emitting device, and a method for manufacturing the light emitting device.

銀又は銀合金は、貴金属として、その優れた光学的性質、電気化学的性質を利用して古くから装飾品、貨幣、食器、電子用材料、照明機器、歯科用材料等として利用されてきた。特に最近では、発光ダイオード用反射材料としての需要が急速に増加している。発光ダイオードの需要も、蛍光灯又は白熱電球に替わる照明機器、自動車用ライト等の用途で急速に増加している。   Silver or a silver alloy has been used as a noble metal as a decorative article, money, tableware, electronic material, lighting device, dental material, etc. for a long time using its excellent optical properties and electrochemical properties. Particularly recently, the demand as a reflective material for light emitting diodes has been rapidly increasing. The demand for light-emitting diodes is also rapidly increasing in applications such as lighting equipment for automobiles and fluorescent lamps or incandescent lamps.

しかし、これらの用途に供する銀又は銀合金は、化学的に非常に不安定で、空気中の酸素、水分、硫化水素、亜硫酸ガス等と容易に反応して、酸化銀又は硫化銀を生成し、それにより銀表面が褐色又は黒色に変色(腐食)するという欠点を有する。銀又は銀合金が変色すると、反射材料としての機能が低下する。   However, silver or silver alloys used for these applications are chemically very unstable and easily react with oxygen, moisture, hydrogen sulfide, sulfurous acid gas, etc. in the air to produce silver oxide or silver sulfide. , Thereby having the disadvantage that the silver surface is discolored (corroded) to brown or black. If silver or a silver alloy changes color, the function as a reflective material will fall.

銀又は銀合金の変色を防止する方法として、例えば下記特許文献1には、塗膜基体成分として、シリコンアクリル樹脂成分を含有した銀被覆塗料用組成物において、銀不活性化成分としてカルボン酸のジルコニウム錯体を塗膜樹脂中0.01〜5重量%含有して成る銀被覆塗料用組成物が開示されている。また下記特許文献2には、特定のイミダゾール化合物を含有する銀及び銀合金の表面処理剤が提案されている。下記特許文献3には、特定の、有機ケイ素化合物、オルガノハイドロジェンポリシロキサン及び白金系触媒を必須成分とする付加硬化型シリコーン樹脂組成物が開示されており、この付加硬化型シリコーン樹脂組成物の硬化物により封止された光半導体素子を備える光半導体装置も示されている。   As a method for preventing discoloration of silver or a silver alloy, for example, in Patent Document 1 below, in a silver coating composition containing a silicon acrylic resin component as a coating film base component, carboxylic acid as a silver deactivating component is used. A composition for silver coating composition comprising 0.01 to 5% by weight of a zirconium complex in a coating film resin is disclosed. Patent Document 2 below proposes a surface treatment agent for silver and a silver alloy containing a specific imidazole compound. Patent Document 3 below discloses an addition-curable silicone resin composition containing specific organosilicon compounds, organohydrogenpolysiloxanes, and platinum-based catalysts as essential components. An optical semiconductor device including an optical semiconductor element sealed with a cured product is also shown.

特開平10−158572号公報JP-A-10-158572 特開2004−238658号公報JP 2004-238658 A 特開2010−248413号公報JP 2010-248413 A

しかし、特許文献1及び2の処理剤は、紫外線に対する耐性が低く、長期間の紫外線暴露によって変色するという欠点を有する。照明機器及び自動車用途で使用される発光ダイオードにおいては、近紫外光が用いられるため、発光ダイオードを備える発光装置の光反射層に上記処理剤を適用しても、発光強度を維持させることは困難である。また、特許文献3の封止用樹脂は展性が不十分であることに加え、発光ダイオード用封止材として使用した場合、駆動時の発熱によって応力が発生し、接着面から剥離するおそれがある。その結果としてガス遮蔽性が低下するため、光反射層として用いられる銀又は銀合金の変色を十分に抑制することができなくなる。   However, the treatment agents of Patent Documents 1 and 2 have the disadvantage that they have low resistance to ultraviolet rays and change color due to long-term exposure to ultraviolet rays. Since light emitting diodes used in lighting equipment and automotive applications use near-ultraviolet light, it is difficult to maintain the light emission intensity even when the treatment agent is applied to the light reflecting layer of a light emitting device including the light emitting diodes. It is. Moreover, in addition to the insufficient malleability of the sealing resin of Patent Document 3, when it is used as a sealing material for a light emitting diode, stress may be generated due to heat generated during driving, and the adhesive resin may be peeled off. is there. As a result, the gas shielding property is lowered, so that discoloration of silver or a silver alloy used as the light reflecting layer cannot be sufficiently suppressed.

本発明の目的は、銀又は銀合金の表面へ優れた耐変色性を付与することのできる、銀又は銀合金の表面処理剤を提供することである。本発明の目的はまた、前記表面処理剤から形成される、クラック及びひび割れのない処理層を備えた、耐変色性に優れた光反射基板、並びに発光強度の低下しにくい発光装置を提供することである。   The objective of this invention is providing the surface treating agent of silver or a silver alloy which can provide the outstanding discoloration resistance to the surface of silver or a silver alloy. Another object of the present invention is to provide a light-reflecting substrate excellent in discoloration resistance and a light-emitting device in which the light emission intensity is unlikely to decrease, provided with a treatment layer free from cracks and cracks formed from the surface treatment agent. It is.

本発明は、カチオン性電解質ポリマーを含有するA液と、層状ケイ酸化合物を含有するB液とからなる、銀又は銀合金の表面処理剤を提供するものである。   The present invention provides a surface treatment agent for silver or a silver alloy, which comprises a liquid A containing a cationic electrolyte polymer and a liquid B containing a layered silicate compound.

本発明の銀又は銀合金の表面処理剤によれば、クラック及びひび割れのない処理層を、銀又は銀合金の表面に設けることができ、銀又は銀合金の変色(腐食)の防止性に優れ、特に銀めっき面へ優れた耐変色性を付与することができる。   According to the surface treatment agent for silver or silver alloy of the present invention, a treatment layer free from cracks and cracks can be provided on the surface of silver or silver alloy, and is excellent in preventing discoloration (corrosion) of silver or silver alloy. In particular, it is possible to impart excellent discoloration resistance to the silver-plated surface.

A液はpHが7〜14であることが好ましく、カチオン性電解質ポリマーは、イオン性基が、塩を形成していてもよいアミノ基、第4級アンモニウム基、第4級ホスホニウム基、からなる群より選ばれる1以上であることが好ましい。この場合において、カチオン性電解質ポリマーのA液中における濃度は、0.0003質量%以上3質量%以下にすることができる。A液をこのような構成にすることで、銀又は銀合金表面に対する耐変色性をさらに向上させることができる。   The liquid A preferably has a pH of 7 to 14, and the cationic electrolyte polymer is composed of an amino group, a quaternary ammonium group, and a quaternary phosphonium group whose ionic groups may form a salt. It is preferably 1 or more selected from the group. In this case, the concentration of the cationic electrolyte polymer in the liquid A can be 0.0003 mass% or more and 3 mass% or less. By making A liquid into such a structure, the discoloration resistance with respect to the surface of silver or a silver alloy can further be improved.

層状ケイ酸化合物は、平均長辺長さが0.03μm以上50μm以下であることが好ましい。   The layered silicate compound preferably has an average long side length of 0.03 μm or more and 50 μm or less.

B液には、さらに上記層状ケイ酸化合物以外のケイ酸化合物を含有させてもよい。このようなケイ酸化合物を含有させる場合は、層状ケイ酸化合物に対する層状ケイ酸化合物以外のケイ酸化合物の質量比は、層状ケイ酸化合物以外のケイ酸化合物/層状ケイ酸化合物=99/1〜1/99にすることが好適である。   The B liquid may further contain a silicate compound other than the layered silicate compound. When such a silicic acid compound is contained, the mass ratio of the silicic acid compound other than the laminar silicic acid compound to the laminar silicic acid compound is the silicic acid compound other than the laminar silicic acid compound / the lamellar silicic acid compound = 99/1. 1/99 is preferable.

層状ケイ酸化合物としては、天然層状ケイ酸化合物及び合成層状ケイ酸化合物並びにこれらの変性物のうちの1種を単独で又は2種以上を組み合わせて用いることができる。   As the layered silicic acid compound, one of natural layered silicic acid compound, synthetic layered silicic acid compound and modified products thereof can be used alone or in combination of two or more.

天然層状ケイ酸化合物としては、例えば、以下の層状ケイ酸塩を用いることができる。例えば、カオリン、タルク−パイロフィライト、スメクタイト、バーミキュライト、雲母(マイカ)、脆雲母、緑泥石等が挙げられる。代表的な種としては、例えば、リザーダイト、アメサイト、クリソタイル、カオリナイト、ディッカイト、ハロイサイト、タルク、パイロフィライト、サポナイト、ヘクトライト、モンモリロナイト、バイデライト、3八面体型バーミキュライト、2八面体型バーミキュライト、金雲母、黒雲母、レピドライト、イライト、白雲母、パラゴナイト、クリントナイト、マーガライト、クリノクロア、シャモサイト、ニマイト、ドンバサイト、クッケアイト、スドーアイト等が挙げられる。市販品としては、クニピア(クニミネ工業社製、商品名、クニピアF)、湿式粉砕雲母(ヤマグチマイカ社製、Yシリーズ、SAシリーズ)等が挙げられる。   As the natural layered silicate compound, for example, the following layered silicate can be used. Examples include kaolin, talc-pyrophyllite, smectite, vermiculite, mica (mica), brittle mica, chlorite and the like. Representative species include, for example, lizardite, amesite, chrysotile, kaolinite, dickite, halloysite, talc, pyrophyllite, saponite, hectorite, montmorillonite, beidellite, three octahedral vermiculite, two octahedral vermiculite, Examples include phlogopite, biotite, lepidrite, illite, muscovite, paragonite, clintonite, margarite, clinochlore, chamosite, nimite, dombasite, kukeite, and suedeite. Examples of commercially available products include Kunipia (Kunimine Kogyo Co., Ltd., trade name, Kunipia F), wet pulverized mica (Yamaguchi Mica Co., Ltd., Y series, SA series) and the like.

合成層状ケイ酸化合物としては、例えば、フッ素金雲母、カリウム四ケイ素雲母、ナトリウム四ケイ素雲母、Naテニオライト、Liテニオライト、モンモリロナイト、サポナイト、ヘクトライト、スチーブンサイト等が挙げられる。市販品としては、ミクロマイカ、ソマシフ(コープケミカル社製、商品名、MEB−3)、ルーセンタイト(コープケミカル社製、商品名、SWN)、膨潤性マイカゾル(トピー工業社製、NTS−10、NTS−5)等が挙げられる。   Examples of the synthetic layered silicate compound include fluorine phlogopite, potassium tetrasilicon mica, sodium tetrasilicon mica, Na teniolite, Li teniolite, montmorillonite, saponite, hectorite, and stevensite. Commercially available products include micro mica, somasif (trade name, MEB-3, manufactured by Corp Chemical Co., Ltd.), lucentite (trade name, SWN manufactured by Corp Chemical Co., Ltd.), swelling mica sol (manufactured by Topy Industries, NTS-10, NTS-5) and the like.

合成層状ケイ酸化合物の変性物としては、例えば、市販品として、ソマシフ(コープケミカル社製、商品名、MAE)、ルーセンタイト(コープケミカル社製、商品名、SPN)等が挙げられる。   Examples of the modified product of the synthetic layered silicate compound include commercially available products such as Somasif (trade name, MAE, manufactured by Corp Chemical), Lucentite (trade name, SPN, manufactured by Corp Chemical), and the like.

上記層状ケイ酸化合物以外のケイ酸化合物は、一般式MO・nSiO(n=0.5〜4.0、MはLi、Na又はKのアルカリ金属を示す。)で表される化合物のうち1種以上であることが好ましい。 Silicate compounds other than the layered silicate compounds are compounds represented by the general formula M 2 O · nSiO 2 (n = 0.5 to 4.0, M represents an alkali metal of Li, Na, or K). Of these, one or more are preferable.

本発明はまた、基板と、基板上に設けられた銀又は銀合金からなる光反射層と、光反射層上に設けられた、表面処理剤から形成された処理層と、を備える光反射基板を提供する。処理層は、表面処理剤のA液から形成されたカチオン性電解質ポリマー層と、表面処理剤のB液から形成された層状ケイ酸化合物層とを、光反射層側から見てこの順に備えるようにしてもよい。   The present invention also includes a substrate, a light reflection layer made of silver or a silver alloy provided on the substrate, and a treatment layer formed on the light reflection layer and formed from a surface treatment agent. I will provide a. The treatment layer includes a cationic electrolyte polymer layer formed from the liquid A of the surface treatment agent and a layered silicate compound layer formed from the liquid B of the surface treatment agent in this order as viewed from the light reflection layer side. It may be.

本発明の光反射基板は、銀又は銀合金からなる光反射層上に本発明の表面処理剤から形成された処理層を備えていることにより、優れた耐変色性を有することができる。また、B液が、A液と接触していることで、銀又は銀合金の表面での濡れ性が改善されるため、クラック及びひび割れのない処理層を光反射層上に形成することができる。   The light reflecting substrate of the present invention can have excellent discoloration resistance by including a treatment layer formed from the surface treatment agent of the present invention on a light reflection layer made of silver or a silver alloy. Further, since the liquid B is in contact with the liquid A, the wettability on the surface of the silver or silver alloy is improved, so that a treatment layer free from cracks and cracks can be formed on the light reflecting layer. .

本発明はまた、光反射基板と、光反射基板の処理層上に配置された発光ダイオードと、を備える発光装置を提供する。この発光装置においては、発光ダイオードを覆うように処理層上に形成された透明樹脂からなる封止層をさらに備えるようにしてもよい。ガス遮断性の観点から、透明樹脂はシリコーン樹脂又はエポキシ樹脂であることが好ましい。   The present invention also provides a light emitting device including a light reflecting substrate and a light emitting diode disposed on a processing layer of the light reflecting substrate. The light emitting device may further include a sealing layer made of a transparent resin formed on the treatment layer so as to cover the light emitting diode. From the viewpoint of gas barrier properties, the transparent resin is preferably a silicone resin or an epoxy resin.

光反射層の処理層に対向する面は、粗面(例えば、凹凸形状を有する面)であってもよい。凹凸形状を有する面としては、例えば、蒸着の方法によりめっきされた面が挙げられる。   The surface of the light reflecting layer facing the treatment layer may be a rough surface (for example, a surface having an uneven shape). Examples of the surface having an uneven shape include a surface plated by a vapor deposition method.

本発明はまた、光反射層上に、表面処理剤のA液及びB液を順次接触させ、カチオン性電解質ポリマー層及び層状ケイ酸化合物層を形成する、発光装置の製造方法を提供する。この場合において、A液中の揮発成分を除去することによりカチオン性電解質ポリマー層を形成した後に、B液から層状ケイ酸化合物層を形成することが好ましい。   The present invention also provides a method for producing a light emitting device, wherein a cationic electrolyte polymer layer and a layered silicate compound layer are formed on a light reflecting layer by sequentially contacting a solution A and a solution B of a surface treatment agent. In this case, it is preferable to form a layered silicic acid compound layer from the B liquid after forming the cationic electrolyte polymer layer by removing the volatile components in the A liquid.

上記表面処理剤は、カチオン性電解質ポリマーと、層状ケイ酸化合物粒子単体又は層状ケイ酸化合物粒子と層状ケイ酸化合物以外のケイ酸化合物の混合体とを含むものであり、表面処理剤を銀又は銀合金からなる光反射層上に塗布した後、溶媒を除去することによって、特に銀めっき面へ優れた耐変色性を与えることができる。上記表面処理剤に含有される板状形状の層状ケイ酸化合物粒子が、銀又は銀合金からなる光反射層上に積層することによって、例えば銀又は銀合金の変色要因である大気中の硫化水素ガスの遮蔽性が向上し、銀又は銀合金からなる光反射層に耐変色性を付与することができる。   The surface treatment agent includes a cationic electrolyte polymer, layered silicate compound particles alone or a mixture of layered silicate compound particles and a silicate compound other than the layered silicate compound, and the surface treatment agent is silver or By coating the light reflecting layer made of a silver alloy and then removing the solvent, excellent discoloration resistance can be imparted particularly to the silver-plated surface. The layered silicic acid compound particles contained in the surface treatment agent are laminated on a light reflecting layer made of silver or a silver alloy, so that, for example, hydrogen sulfide in the atmosphere which is a discoloration factor of silver or a silver alloy Gas shielding properties are improved, and discoloration resistance can be imparted to a light reflecting layer made of silver or a silver alloy.

また、表面処理剤に含有される、上記層状ケイ酸化合物以外のケイ酸化合物は、層状ケイ酸化合物粒子と銀又は銀合金との接着性を向上させる作用を有する。すなわち、上記層状ケイ酸化合物以外のケイ酸化合物が含有されることによって、層状ケイ酸化合物粒子と銀又は銀合金界面での応力が緩和され接着力がより向上するものである。これによりさらに高いガス遮断性を達成することが可能になり、銀又は銀合金からなる光反射層の変色をより確実に防ぐことができる。   Further, the silicate compound other than the layered silicate compound contained in the surface treatment agent has an action of improving the adhesion between the layered silicate compound particles and silver or a silver alloy. That is, by containing a silicate compound other than the layered silicate compound, the stress at the interface between the layered silicate compound particles and the silver or silver alloy is relieved, and the adhesive force is further improved. As a result, it is possible to achieve higher gas barrier properties and more reliably prevent discoloration of the light reflecting layer made of silver or a silver alloy.

本発明によれば、耐変色性に優れた光反射基板を有する、発光強度の低下しにくい発光装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the light-emitting device which has a light reflection board | substrate excellent in the color fastness, and is hard to fall in emitted light intensity can be provided.

本発明によれば、各種銀又は銀合金の表面へ優れた耐変色性を与えることのできる、表面処理剤を提供することが可能となる。また、前記表面処理剤から形成される、クラック及びひび割れのない処理層を備えた、耐変色性に優れた光反射基板、並びに発光強度の低下しにくい発光装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the surface treating agent which can give the outstanding discoloration resistance to the surface of various silver or silver alloys. In addition, it is possible to provide a light-reflecting substrate excellent in discoloration resistance and a light-emitting device in which light emission intensity is hardly reduced, which is provided with a treatment layer that is formed from the surface treatment agent and has no cracks and cracks.

本発明に係る発光装置の一実施形態を示す模式断面図である。1 is a schematic cross-sectional view showing an embodiment of a light emitting device according to the present invention.

以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではない。   Hereinafter, although the present invention is explained in detail, the present invention is not limited to the following embodiments.

本発明の銀又は銀合金の表面処理剤は、カチオン性電解質ポリマーを含有するA液と、層状ケイ酸化合物を含有するB液からなることを特徴とする。銀合金としては、例えば、銀−ビスマス合金、銀−ネオジウム合金、銀−銅合金、銀−マグネシウム合金、銀−亜鉛合金、銀−スズ合金、銀−インジウム合金、銀−チタン合金、銀−ジルコニウム合金、銀−金合金、銀−パラジウム合金、銀−白金合金等が挙げられる。A液に含まれるカチオン性電解質ポリマーは、水中で電離可能なカチオンポリマーであり、カチオンを生じるイオン性基を有している。このイオン性基は、第1級アミノ基、第2級アミノ基、第3級アミノ基、第4級アンモニウム基及び第4級ホスホニウム基からなる群より選ばれる1以上を含むことが好ましい。上記第1〜3級アミノ基は塩を形成していてもよい。   The silver or silver alloy surface treatment agent of the present invention is characterized by comprising a liquid A containing a cationic electrolyte polymer and a liquid B containing a layered silicate compound. Examples of the silver alloy include silver-bismuth alloy, silver-neodymium alloy, silver-copper alloy, silver-magnesium alloy, silver-zinc alloy, silver-tin alloy, silver-indium alloy, silver-titanium alloy, silver-zirconium. An alloy, a silver-gold alloy, a silver-palladium alloy, a silver-platinum alloy, and the like can be given. The cationic electrolyte polymer contained in the liquid A is a cationic polymer that can be ionized in water and has an ionic group that generates a cation. This ionic group preferably contains one or more selected from the group consisting of a primary amino group, a secondary amino group, a tertiary amino group, a quaternary ammonium group and a quaternary phosphonium group. The primary to tertiary amino groups may form a salt.

カチオン性電解質ポリマーとしては、例えば、ポリエチレンイミン(PEI)及びその4級化物、ポリアリルアミン及びその4級化物、ポリアリルアミン塩酸塩(PAH)、ポリジアリルジメチルアンモニウムクロリド(PDDA)、ポリビニルピリジン(PVP)、ポリリジン、ポリアクリルアミド、ポリピロール、ポリアニリン、ポリパラフェニレン(+)、ポリパラフェニレンビニレン、ポリエチルイミン、並びにこれらを少なくとも1種以上含む共重合体又は塩の種類を変えたもの等を用いることができる。   Examples of the cationic electrolyte polymer include polyethyleneimine (PEI) and its quaternized product, polyallylamine and its quaternized product, polyallylamine hydrochloride (PAH), polydiallyldimethylammonium chloride (PDDA), and polyvinylpyridine (PVP). , Polylysine, polyacrylamide, polypyrrole, polyaniline, polyparaphenylene (+), polyparaphenylene vinylene, polyethylimine, and a copolymer or a salt containing at least one of these may be used. it can.

カチオン性電解質ポリマーとしてより具体的には、例えば、ポリアリルアミンアミド硫酸塩、アリルアミン塩酸塩とジアリルアミン塩酸塩の共重合体、アリルアミン塩酸塩とジメチルアリルアミン塩酸塩の共重合体、アリルアミン塩酸塩とその他の共重合体、部分メトキシカルボニル化アリルアミン重合体、部分メチルカルボニル化アリルアミン酢酸塩重合体、ジアリルアミン塩酸塩重合体、メチルジアリルアミン塩酸塩重合体、メチルジアリルアミンアミド硫酸塩重合体、メチルジアリルアミン酢酸塩重合体、ジアリルアミン塩酸塩と二酸化硫黄の共重合体、ジアリルアミン酢酸塩と二酸化硫黄の共重合体、ジアリルメチルエチルアンモニウムエチルサルフェイトと二酸化硫黄との共重合体、メチルジアリルアミン塩酸塩と二酸化硫黄との共重合体、ジアリルジメチルアンモニウムクロリドと二酸化硫黄との共重合体、ジアリルジメチルアンモニウムクロリドとアクリルアミドとの共重合体、ジアリルジメチルアンモニウムクロリドとジアリルアミン塩酸塩誘導体との共重合体、ジメチルアミンとエピクロロヒドリンの共重合体、ジメチルアミンとエチレンジアミンとエピクロロヒドリンの共重合体、ポリアミドポリアミンとエピクロロヒドリンとの共重合体等が挙げられる。   More specifically, as the cationic electrolyte polymer, for example, polyallylamine amide sulfate, copolymer of allylamine hydrochloride and diallylamine hydrochloride, copolymer of allylamine hydrochloride and dimethylallylamine hydrochloride, allylamine hydrochloride and other Copolymer, partially methoxycarbonylated allylamine polymer, partially methylcarbonylated allylamine acetate polymer, diallylamine hydrochloride polymer, methyldiallylamine hydrochloride polymer, methyldiallylamine amide sulfate polymer, methyldiallylamine acetate polymer, Copolymer of diallylamine hydrochloride and sulfur dioxide, copolymer of diallylamine acetate and sulfur dioxide, copolymer of diallylmethylethylammonium ethyl sulfate and sulfur dioxide, methyldiallylamine hydrochloride and sulfur dioxide Polymers, copolymers of diallyldimethylammonium chloride and sulfur dioxide, copolymers of diallyldimethylammonium chloride and acrylamide, copolymers of diallyldimethylammonium chloride and diallylamine hydrochloride derivatives, dimethylamine and epichlorohydrin And a copolymer of dimethylamine, ethylenediamine and epichlorohydrin, a copolymer of polyamide polyamine and epichlorohydrin, and the like.

これらのカチオン性電解質ポリマーは、いずれも水溶性又は水と有機溶媒との混合液に可溶なものであり、カチオン性電解質ポリマーの重量平均分子量としては、用いる電解質ポリマーの種類にもよるが、400〜300,000が好ましい。ここで、カチオン性電解質ポリマーの重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準ポリスチレンを用いた検量線から換算した値である。   These cationic electrolyte polymers are both water-soluble or soluble in a mixture of water and an organic solvent, and the weight average molecular weight of the cationic electrolyte polymer depends on the type of electrolyte polymer used. 400-300,000 is preferred. Here, the weight average molecular weight of the cationic electrolyte polymer is a value converted from a calibration curve using standard polystyrene by gel permeation chromatography (GPC).

なお、カチオン性電解質ポリマーの濃度は、A液全量基準で、0.0003質量%以上3質量%以下が好ましく、0.001質量%以上1質量%以下がより好ましく、0.01質量%以上1質量%以下がさらに好ましい。カチオン性電解質ポリマーの濃度が低すぎると、カチオン性電解質ポリマー層が銀又は銀合金からなる光反射層の表面に形成できず、濃度が高すぎると余剰なカチオン性電解質ポリマーが凝集物を生成するために、その上に形成する層状ケイ酸化合物層の透明性及び平坦性を損なう。   The concentration of the cationic electrolyte polymer is preferably 0.0003% by mass or more and 3% by mass or less, more preferably 0.001% by mass or more and 1% by mass or less, and 0.01% by mass or more and 1% by mass based on the total amount of the liquid A. A mass% or less is more preferable. If the concentration of the cationic electrolyte polymer is too low, the cationic electrolyte polymer layer cannot be formed on the surface of the light reflecting layer made of silver or a silver alloy, and if the concentration is too high, the excess cationic electrolyte polymer generates aggregates. Therefore, the transparency and flatness of the layered silicate compound layer formed thereon are impaired.

また、カチオン性電解質ポリマーを含有するA液のpHは、7以上14以下が好ましく、9以上12以下がより好ましく、9以上11以下がさらに好ましい。pHが低すぎると、銀又は銀合金表面へのカチオン性電解質ポリマーの吸着が起こりにくい。pHが高すぎると、銀又は銀合金表面を侵しやすい。   Moreover, 7 or more and 14 or less are preferable, as for pH of the A liquid containing a cationic electrolyte polymer, 9 or more and 12 or less are more preferable, and 9 or more and 11 or less are more preferable. If the pH is too low, adsorption of the cationic electrolyte polymer on the surface of silver or the silver alloy is difficult to occur. If the pH is too high, the surface of the silver or silver alloy is likely to be affected.

B液は、層状ケイ酸塩等の層状ケイ酸化合物を含有する。この層状ケイ酸化合物粒子は厚さ約1nmが好ましく、平均長辺長さが0.03μm以上50μm以下の板状形状を有していることが好ましい。層状ケイ酸化合物は、水及びアルコール等の溶媒との混合によって膨潤して溶媒に分散する性質を有する。   Liquid B contains a layered silicate compound such as a layered silicate. The layered silicate compound particles preferably have a thickness of about 1 nm, and preferably have a plate-like shape having an average long side length of 0.03 μm or more and 50 μm or less. The layered silicate compound has a property of swelling and dispersing in a solvent by mixing with a solvent such as water and alcohol.

また、B液には、上記層状ケイ酸化合物以外のケイ酸化合物を含有することが好ましい。このようなケイ酸化合物も層状ケイ酸化合物と同様に、水及びアルコール等の溶媒との混合によって膨潤して溶媒に分散する性質を有する。   Moreover, it is preferable that B liquid contains silicic acid compounds other than the said layered silicic acid compound. Similar to the layered silicate compound, such a silicate compound also has a property of being swollen by being mixed with a solvent such as water and alcohol and dispersed in the solvent.

なお、B液に含有される層状ケイ酸化合物に対する層状ケイ酸化合物以外のケイ酸化合物の質量比は、層状ケイ酸化合物以外のケイ酸化合物/層状ケイ酸化合物=99/1〜1/99であることが好ましい。なお、質量比とは、溶剤等を含まない固形分状態での比である。   The mass ratio of the silicate compound other than the layered silicate compound to the layered silicate compound contained in the liquid B is silicate compound other than the layered silicate compound / layered silicate compound = 99/1 to 1/99. Preferably there is. In addition, mass ratio is ratio in the solid content state which does not contain a solvent etc.

層状ケイ酸化合物に対する層状ケイ酸化合物以外のケイ酸化合物の固体含有量が、層状ケイ酸化合物の99質量部に対して、1質量部以上であると、本ケイ酸化合物が銀又は銀合金への接着性向上作用を有するため、層状ケイ酸化合物粒子の銀又は銀合金からなる光反射層上への密着性が向上する。その結果、接着界面からの硫化水素等のガス透過量が減少し、銀又は銀合金の変色抑制効果をより向上させることができる。   When the solid content of the silicate compound other than the layered silicate compound relative to the layered silicate compound is 1 part by mass or more with respect to 99 parts by mass of the layered silicate compound, the present silicate compound is converted into silver or a silver alloy. Therefore, the adhesion of the layered silicate compound particles onto the light reflecting layer made of silver or a silver alloy is improved. As a result, the gas permeation amount of hydrogen sulfide or the like from the adhesion interface is reduced, and the discoloration suppressing effect of silver or a silver alloy can be further improved.

また、層状ケイ酸化合物の固体含有量が、層状ケイ酸化合物以外のケイ酸化合物の99質量部に対して、1質量部以上であると、ガス遮蔽性を有する層状ケイ酸化合物粒子含有量がより多くなる。その結果、硫化水素等のガス透過量がより減少し、銀又は銀合金の変色抑制効果がより向上する。   Further, when the solid content of the layered silicate compound is 1 part by mass or more with respect to 99 parts by mass of the silicate compound other than the layered silicate compound, the content of the layered silicate compound particles having gas shielding properties is increased. Become more. As a result, the gas permeation amount of hydrogen sulfide or the like is further reduced, and the discoloration suppressing effect of silver or a silver alloy is further improved.

なお、銀又は銀合金への接着性向上作用及び硫化水素等のガス遮蔽性向上作用の観点から、層状ケイ酸化合物に対する層状ケイ酸化合物以外のケイ酸化合物の質量比は、層状ケイ酸化合物以外のケイ酸化合物/層状ケイ酸化合物=95/5〜5/95であることがより好ましく、80/20〜20/80であることがさらに好ましい。   In addition, from the viewpoint of improving the adhesion to silver or a silver alloy and improving the gas shielding properties such as hydrogen sulfide, the mass ratio of the silicate compound other than the layered silicate compound to the layered silicate compound is other than the layered silicate compound. The silicate compound / layered silicate compound is more preferably 95/5 to 5/95, and further preferably 80/20 to 20/80.

厚さ約1nm、平均長辺長さが0.03μm以上50μm以下の扁平な板状形状を有する層状ケイ酸化合物粒子が、銀又は銀合金からなる光反射層上に積層することによって、例えば硫化水素等のガス遮蔽性を発現するものである。   By laminating layered silicate compound particles having a flat plate shape with a thickness of about 1 nm and an average long side length of 0.03 μm to 50 μm on a light reflecting layer made of silver or a silver alloy, for example, sulfide It exhibits gas shielding properties such as hydrogen.

ガス遮蔽性並びに銀又は銀合金本来の光沢を維持する観点から、B液に含有される層状ケイ酸化合物粒子は、平均長辺長さが0.03μm以上50μm以下であることが好ましく、平均長辺長さが0.05μm以上50μm以下であることがより好ましく、平均長辺長さが0.10μm以上50μm以下であることがさらに好ましい。   From the viewpoint of maintaining the gas shielding property and the original gloss of silver or silver alloy, the layered silicate compound particles contained in the liquid B preferably have an average long side length of 0.03 μm or more and 50 μm or less. The side length is more preferably 0.05 μm or more and 50 μm or less, and the average long side length is further preferably 0.10 μm or more and 50 μm or less.

なお、層状ケイ酸化合物粒子の平均長辺長さは、例えば透過型電子顕微鏡等を用いることによって測定することができる。なお、平均長辺長さとは、扁平な板状形状の粒子において、長辺部分の平均の長さである。具体的には、25万倍の画像中に写っている全ての層状ケイ酸化合物30個の長辺部分の測定値の平均を平均長辺長さとする。   The average long side length of the layered silicate compound particles can be measured by using, for example, a transmission electron microscope. The average long side length is the average length of the long side portion of the flat plate-like particles. Specifically, the average long side length is defined as the average of the measured values of the long side portions of all 30 layered silicate compounds in the 250,000-fold image.

層状ケイ酸化合物以外のケイ酸化合物としては、一般式MO・nSiO(n=0.5〜4.0、MはLi、Na又はKのアルカリ金属を示す。)で表される化合物のうち1種以上を好適に用いることができる。 As a silicate compound other than the layered silicate compound, a compound represented by a general formula M 2 O.nSiO 2 (n = 0.5 to 4.0, M represents an alkali metal of Li, Na, or K). Of these, one or more can be suitably used.

なお、B液に使用される溶媒としては、例えば、水、水溶性液体等が挙げられる。   In addition, as a solvent used for B liquid, water, a water-soluble liquid, etc. are mentioned, for example.

水としては、例えば、超純水が使用される。超純水は、イオン性不純物が極微量含まれる水であって、電気抵抗率(比抵抗、MΩ・cm)(JIS K0552)を指標として、25℃における理論値が15MΩ・cm以上の水、好ましくは18MΩ・cm以上の水を用いることができる。   As water, for example, ultrapure water is used. Ultrapure water is water that contains a very small amount of ionic impurities, and has an electrical resistivity (specific resistance, MΩ · cm) (JIS K0552) as an index, and has a theoretical value of 15 MΩ · cm or more at 25 ° C., Preferably, water of 18 MΩ · cm or more can be used.

水溶性液体としては、例えば、アルコール等の極性溶媒が挙げられる。アルコール及びその他の水溶性液体として、具体的には、エタノール、メタノール、イソプロピルアルコール、n−プロピルアルコール、n−ブチルアルコール、t−ブチルアルコール、ジオキサン、アセトン、アセトニトリル、ジエチルアミン、ピリジン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、N−メチルピロリドン、炭酸プロピレン、γ−ブチロラクトン、ホルムアミド、アリルアルコール、アクリル酸、酢酸、エチレングリコール、プロピレングリコール、グリセリン、メタクリル酸、酪酸、トリメチルアミン、トリエチルアミン、アンモニア、ジエチルスルファイト等の液体を採用することができる。水溶性液体とは、1気圧において、温度20℃で同容量の純水と穏やかにかき混ぜた場合、流動が収まった後も当該混合液が均一な外観を維持するものをいう。水溶性液体は、1種を単独で又は2種以上を混合して用いることができる。   Examples of the water-soluble liquid include polar solvents such as alcohol. Specific examples of alcohol and other water-soluble liquids include ethanol, methanol, isopropyl alcohol, n-propyl alcohol, n-butyl alcohol, t-butyl alcohol, dioxane, acetone, acetonitrile, diethylamine, pyridine, N, N- Dimethylformamide, dimethylsulfoxide, sulfolane, N-methylpyrrolidone, propylene carbonate, γ-butyrolactone, formamide, allyl alcohol, acrylic acid, acetic acid, ethylene glycol, propylene glycol, glycerin, methacrylic acid, butyric acid, trimethylamine, triethylamine, ammonia, diethyl A liquid such as sulfite can be employed. A water-soluble liquid refers to a liquid that maintains a uniform appearance even after the flow has subsided when gently mixed with pure water of the same volume at a temperature of 20 ° C. at 1 atm. A water-soluble liquid can be used individually by 1 type or in mixture of 2 or more types.

本実施形態においては、水と水溶性液体との混合物を溶媒として用いる場合、形成する銀硫化防止膜の銀硫化防止性を向上させる観点から、水と水溶性液体との質量比は、99/1〜5/95であることが好ましく、95/5〜10/80であることがより好ましく、90/10〜50/50であることがさらに好ましい。   In the present embodiment, when a mixture of water and a water-soluble liquid is used as a solvent, the mass ratio of water to the water-soluble liquid is 99 / It is preferably 1 to 5/95, more preferably 95/5 to 10/80, and still more preferably 90/10 to 50/50.

本実施形態に係る表面処理剤を用いることによって、基板と、該基板上に設けられた銀又は銀合金からなる光反射層を備え、該光反射層の表面に、表面処理剤に含有される固体成分からなる処理層が形成されている、光反射基板を提供することが可能である。すなわち具体的には、基板上に設けられた銀又は銀合金からなる光反射層上に、表面処理剤のA液及びB液を順次、積層させることで、表面処理剤に含まれる固体成分からなる処理層が設けられている、光反射基板を作製できる。本実施形態の表面処理剤を銀又は銀合金からなる光反射層上に塗布した後、溶媒を除去することによって、銀又は銀合金からなる光反射層上に表面処理剤に含有される層状ケイ酸化合物及び層状ケイ酸化合物以外のケイ酸化合物を含む層を形成できる。   By using the surface treatment agent according to the present embodiment, a substrate and a light reflection layer made of silver or a silver alloy provided on the substrate are provided, and the surface treatment agent contains the surface of the light reflection layer. It is possible to provide a light reflecting substrate on which a treatment layer made of a solid component is formed. That is, specifically, by sequentially laminating the liquid A and liquid B of the surface treatment agent on the light reflection layer made of silver or a silver alloy provided on the substrate, the solid component contained in the surface treatment agent is removed. A light-reflecting substrate can be produced in which a treatment layer is provided. After the surface treatment agent of the present embodiment is applied on the light reflection layer made of silver or silver alloy, the layered silica contained in the surface treatment agent on the light reflection layer made of silver or silver alloy is removed by removing the solvent. A layer containing a silicate compound other than the acid compound and the layered silicate compound can be formed.

なお、本実施形態に係る表面処理剤の、銀又は銀合金への塗布方法としては、例えばバーコート、ディップコート、スピンコート、スプレーコート、ポッティング等の方法を好適に用いることができる。   As a method for applying the surface treating agent according to the present embodiment to silver or a silver alloy, for example, methods such as bar coating, dip coating, spin coating, spray coating, and potting can be suitably used.

また、表面処理剤から溶媒を除去する方法としては、乾燥を好適に用いることができ、乾燥温度は室温以上であれば特に限定されない。なお、本実施形態において、室温とは、20〜25℃である。   In addition, as a method for removing the solvent from the surface treatment agent, drying can be suitably used, and the drying temperature is not particularly limited as long as the drying temperature is room temperature or higher. In the present embodiment, the room temperature is 20 to 25 ° C.

本実施形態では、上記光反射基板と、該光反射基板の処理層上に配置された発光ダイオードと、を備える発光装置を提供することが可能である。すなわち具体的には、基板上に、表面処理剤から形成される処理層を備える銀又は銀合金からなる光反射層が形成されている光反射基板の、処理層上に、発光ダイオードを実装する方法、又は銀若しくは銀合金からなる光反射層を備える光反射基板上に発光ダイオードを実装した後、光反射層上に表面処理剤を塗布し、溶媒を除去する方法、によって、表面処理剤に含有される固体成分からなる処理層を具備する光反射基板を具備する発光装置を提供することが可能である。   In the present embodiment, it is possible to provide a light emitting device including the light reflecting substrate and a light emitting diode disposed on the processing layer of the light reflecting substrate. Specifically, a light emitting diode is mounted on a processing layer of a light reflecting substrate in which a light reflecting layer made of silver or a silver alloy having a processing layer formed of a surface treatment agent is formed on the substrate. A surface treatment agent is applied by a method, or a method in which a light-emitting diode is mounted on a light reflection substrate including a light reflection layer made of silver or a silver alloy, and then a surface treatment agent is applied onto the light reflection layer and a solvent is removed. It is possible to provide a light emitting device including a light reflecting substrate including a treatment layer made of a contained solid component.

図1は、本実施形態に係る発光装置の一実施形態を示す模式断面図である。図1に示される発光装置20は、基板1と、基板1上に設けられた銀又は銀合金からなる光反射層3と、光反射層3上に設けられた処理層5と、処理層5上に設けられた発光ダイオード7と、発光ダイオード7を覆うように処理層5上に設けられた封止層10から構成されている。封止層10は透明樹脂から形成されている。   FIG. 1 is a schematic cross-sectional view showing an embodiment of a light emitting device according to this embodiment. A light emitting device 20 shown in FIG. 1 includes a substrate 1, a light reflection layer 3 made of silver or a silver alloy provided on the substrate 1, a treatment layer 5 provided on the light reflection layer 3, and a treatment layer 5. The light-emitting diode 7 is provided on the top, and the sealing layer 10 is provided on the treatment layer 5 so as to cover the light-emitting diode 7. The sealing layer 10 is formed from a transparent resin.

なお、発光装置においては、処理層を形成させた後に発光ダイオードを設けても、発光ダイオードを設けた後に処理層を形成してもよい。   Note that in the light-emitting device, the light-emitting diode may be provided after the treatment layer is formed, or the treatment layer may be formed after the light-emitting diode is provided.

以下、実施例及び比較例によって、本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited to a following example.

<スチーブンサイトの合成>
(合成例)
コロイダルシリカ(Ludox TM 50、SigmaAldrich社製)60gと蒸留水120mlとを混合した分散液に硝酸20mlを添加した。これに硝酸マグネシウム(一級試薬)91gと蒸留水128mlとを混合した溶液を入れて攪拌しながら、アンモニア水(28質量%水溶液)をゆっくりと滴下した。pH10になったところで滴下を止め、室温で一晩熟成させ、均一複合沈殿を得た。その後、蒸留水の添加、振盪、固液分離の過程による水洗浄をアンモニア臭がなくなるまで繰り返した。充分に洗浄を行った均一複合沈殿の分散液に、10質量%の水酸化リチウム水溶液を25.4ml添加し、よく混合し、出発原料スラリーを得た。出発原料スラリーをオートクレーブに仕込み、200℃で48時間水熱反応させた。冷却後、オートクレーブ内の反応生成物を取り出し、60℃で乾燥した後、粉砕し、スチーブンサイトに分類されるスメクタイトを得た。
(実施例1)
<Combination of steven sites>
(Synthesis example)
20 ml of nitric acid was added to a dispersion obtained by mixing 60 g of colloidal silica (Ludox ™ 50, manufactured by SigmaAldrich) and 120 ml of distilled water. A solution prepared by mixing 91 g of magnesium nitrate (primary reagent) and 128 ml of distilled water was added thereto, and ammonia water (28 mass% aqueous solution) was slowly added dropwise thereto while stirring. The dripping was stopped when the pH reached 10, and the mixture was aged at room temperature overnight to obtain a uniform composite precipitate. Thereafter, water washing by adding distilled water, shaking, and solid-liquid separation was repeated until the ammonia odor disappeared. 25.4 ml of a 10% by weight lithium hydroxide aqueous solution was added to the well-mixed homogeneous composite precipitation dispersion and thoroughly mixed to obtain a starting raw material slurry. The starting material slurry was charged into an autoclave and hydrothermally reacted at 200 ° C. for 48 hours. After cooling, the reaction product in the autoclave was taken out, dried at 60 ° C., and then pulverized to obtain a smectite classified as a steven site.
Example 1

A液としてはポリジアリルジメチルアンモニウムクロリド(PDDA、アルドリッチ社製)の濃度を0.0028質量%に調整し、さらにpHを0.1重量%の炭酸ナトリウム水溶液にて調整し、pH10とした水溶液をカチオン性電解質ポリマー溶液として用いた。B液としては、合成例で得られた、平均長辺長さ100nmのスチーブンサイト1gを層状ケイ酸化合物として使用し、蒸留水を添加して全重量100gとした後、自転・公転ミキサー(シンキー社製、ARE−310)を用いて2000rpm、10分混合、2200rpm10分脱泡を行い、平均長辺長さ1007nmの合成スメクタイト1質量%のB液を得た。   The liquid A was prepared by adjusting the concentration of polydiallyldimethylammonium chloride (PDDA, manufactured by Aldrich) to 0.0028% by mass, adjusting the pH with a 0.1% by weight sodium carbonate aqueous solution, and adjusting the pH to 10. Used as a cationic electrolyte polymer solution. As the liquid B, 1 g of stevensite having an average long side length of 100 nm obtained in the synthesis example was used as a layered silicate compound, and distilled water was added to make the total weight 100 g, followed by a rotation / revolution mixer (Sinky ARE-310) manufactured by the company, mixed at 2000 rpm for 10 minutes, and defoamed at 2200 rpm for 10 minutes to obtain a liquid B of 1% by mass of synthetic smectite having an average long side length of 1007 nm.

<光反射基板上への表面処理剤塗布>
ソーダガラス製のスライドガラスを基板とし、基板に厚さ100nmの銀を蒸着した光反射基板上に、wet厚12μmのバーコーターを用いて、上記A液を塗布し、1分間置いた後、エアブローによって表面の水分を除去、乾燥した。その後、1質量%の上記B液を塗布後、70℃で5分間静置して溶媒である水を除去し、層状ケイ酸化合物層を表面に具備する光反射基板を得た。なお、wet厚とは、溶媒を除去する前の表面処理剤の塗布直後の厚みである。
<Application of surface treatment agent on light reflecting substrate>
Using a soda glass slide glass as a substrate and applying 100 parts of silver on the light-reflective substrate having a thickness of 100 nm deposited on the light reflective substrate, the above-mentioned solution A was applied using a bar coater with a wet thickness of 12 μm. The water on the surface was removed and dried. Thereafter, 1% by mass of the above-mentioned B solution was applied, and then allowed to stand at 70 ° C. for 5 minutes to remove water as a solvent to obtain a light reflecting substrate having a layered silicate compound layer on the surface. In addition, wet thickness is the thickness immediately after application | coating of the surface treating agent before removing a solvent.

<発光装置への表面処理剤塗布>   <Application of surface treatment agent to light emitting device>

上記光反射基板上に、発光波長467.5nm〜470nm、キャビティー容量3.7μLの発光ダイオードチップを金ワイヤで接続し、発光装置を作製した。その後、発光装置上に、上記A液をポッティング法、すなわちマイクロピペットで3μL滴下し、70℃で5分間乾燥して溶媒である水を除去し、さらに、1質量%の上記B液をポッティング法、すなわちマイクロピペットで3μL滴下し、70℃で5分間乾燥して溶媒である水を除去し、層状ケイ酸化合物層を表面に具備する発光装置を得た。   On the light reflection substrate, a light emitting diode chip having an emission wavelength of 467.5 nm to 470 nm and a cavity capacity of 3.7 μL was connected with a gold wire to produce a light emitting device. Thereafter, 3 μL of the solution A was dropped on the light emitting device with a micropipette, and the solvent was removed by drying at 70 ° C. for 5 minutes. Further, 1% by mass of the solution B was potted. That is, 3 μL was dropped with a micropipette and dried at 70 ° C. for 5 minutes to remove water as a solvent to obtain a light emitting device having a layered silicate compound layer on the surface.

<表面処理剤を塗布した光反射基板の硫化水素ガス耐性評価>
まず、上記の方法で作製した光反射基板の波長550nmの可視光反射率を、分光光度計(日本分光、V−570)を用いて測定し、[硫化水素暴露前反射率(%)]とした。上記光反射基板を、10ppm硫化水素ガス気流、40℃、90%RH(相対湿度)中に96時間静置した後、波長550nmの可視光反射率を測定し、[硫化水素暴露後反射率(%)]とした。
<Hydrogen sulfide gas resistance evaluation of a light reflective substrate coated with a surface treatment agent>
First, the visible light reflectance at a wavelength of 550 nm of the light reflecting substrate produced by the above method was measured using a spectrophotometer (JASCO, V-570), and [reflectance before hydrogen sulfide exposure (%)] did. The light reflecting substrate was allowed to stand in a 10 ppm hydrogen sulfide gas stream, 40 ° C., 90% RH (relative humidity) for 96 hours, and then the visible light reflectance at a wavelength of 550 nm was measured. %)].

[硫化水素暴露前反射率]−[硫化水素暴露後反射率]=[反射低下率(%)]とし、反射低下率が20%以内である場合を硫化水素ガス耐性「有り」、20%を超える場合を硫化水素ガス耐性「無し」と評価した。   [Reflectivity before exposure to hydrogen sulfide]-[Reflectivity after exposure to hydrogen sulfide] = [Reflectance reduction rate (%)]. When the reflection reduction rate is within 20%, the resistance to hydrogen sulfide gas is "Yes", and 20% The case where it exceeded was evaluated as "no hydrogen sulfide gas resistance".

<表面処理剤を塗布した発光装置の硫化水素ガス耐性評価>
上記の方法で表面処理剤を塗布した発光装置を、順電流20mA、順電圧3.3Vで発光させ、マルチ測光計(大塚電子社製、MCPD−3700)を用いて露光時間30ミリ秒で発光強度を測定し、[硫化水素暴露前発光強度]とした。上記発光装置を、10ppm硫化水素ガス気流、40℃、90%RH(相対湿度)中に96時間静置した後、順電流20mA、順電圧3.3Vで発光させ、マルチ測光計を用いて露光時間30ミリ秒で発光強度を測定し、[硫化水素暴露後発光強度]とした。
<Hydrogen sulfide gas resistance evaluation of light emitting device coated with surface treatment agent>
The light emitting device coated with the surface treatment agent by the above method emits light at a forward current of 20 mA and a forward voltage of 3.3 V, and emits light with an exposure time of 30 milliseconds using a multiphotometer (MCPD-3700, manufactured by Otsuka Electronics Co., Ltd.). The intensity was measured and was defined as [emission intensity before exposure to hydrogen sulfide]. The light emitting device was allowed to stand in a 10 ppm hydrogen sulfide gas stream, 40 ° C., 90% RH (relative humidity) for 96 hours, and then emitted with a forward current of 20 mA and a forward voltage of 3.3 V, and exposed using a multiphotometer. The luminescence intensity was measured at a time of 30 milliseconds and was defined as [luminescence intensity after exposure to hydrogen sulfide].

([硫化水素暴露後発光強度]/[硫化水素暴露前発光強度])×100=[発光強度維持率(%)]とし、発光強度維持率が80%以上である場合を硫化水素ガス耐性「有り」、80%未満である場合を硫化水素ガス耐性「無し」と評価した。   ([Emission intensity after exposure to hydrogen sulfide] / [Emission intensity before exposure to hydrogen sulfide]) × 100 = [Emission intensity maintenance rate (%)], and when the emission intensity maintenance rate is 80% or more, hydrogen sulfide gas resistance “ The case of “Yes” and less than 80% was evaluated as “No” for hydrogen sulfide gas resistance.

(実施例2)
平均長辺長さ950nmのスメクタイトを使用した以外は実施例1と同様にして表面処理剤を作製し、実施例1と同様に評価を行った。
(Example 2)
A surface treatment agent was prepared in the same manner as in Example 1 except that smectite having an average long side length of 950 nm was used, and evaluation was performed in the same manner as in Example 1.

(実施例3)
平均長辺長さ780nmのスメクタイトを使用した以外は実施例1と同様にして表面処理剤を作製し、実施例1と同様に評価を行った。
(Example 3)
A surface treatment agent was prepared in the same manner as in Example 1 except that smectite having an average long side length of 780 nm was used, and evaluation was performed in the same manner as in Example 1.

(実施例4)
平均長辺長さ190nmのスメクタイトを使用した以外は実施例1と同様にして表面処理剤を作製し、実施例1と同様に評価を行った。
Example 4
A surface treatment agent was prepared in the same manner as in Example 1 except that smectite having an average long side length of 190 nm was used, and evaluation was performed in the same manner as in Example 1.

(実施例5)
平均長辺長さ178nmのスメクタイトを使用した以外は実施例1と同様にして表面処理剤を作製し、実施例1と同様に評価を行った。
(Example 5)
A surface treatment agent was prepared in the same manner as in Example 1 except that smectite having an average long side length of 178 nm was used, and evaluation was performed in the same manner as in Example 1.

(実施例6)
平均長辺長さ140nmのスメクタイトを使用した以外は実施例1と同様にして表面処理剤を作製し、実施例1と同様に評価を行った。
(Example 6)
A surface treatment agent was prepared in the same manner as in Example 1 except that smectite having an average long side length of 140 nm was used, and evaluation was performed in the same manner as in Example 1.

(実施例7)
平均長辺長さ124nmのスメクタイトを使用した以外は実施例1と同様にして表面処理剤を作製し、実施例1と同様に評価を行った。
(Example 7)
A surface treatment agent was prepared in the same manner as in Example 1 except that smectite having an average long side length of 124 nm was used, and evaluation was performed in the same manner as in Example 1.

(実施例8)
平均長辺長さ120nmのスメクタイトを使用した以外は実施例1と同様にして表面処理剤を作製し、実施例1と同様に評価を行った。
(Example 8)
A surface treatment agent was prepared in the same manner as in Example 1 except that smectite having an average long side length of 120 nm was used, and evaluation was performed in the same manner as in Example 1.

(実施例9)
平均長辺長さ100nmのスメクタイトを使用した以外は実施例1と同様にして表面処理剤を作製し、実施例1と同様に評価を行った。
Example 9
A surface treatment agent was prepared in the same manner as in Example 1 except that smectite having an average long side length of 100 nm was used, and evaluation was performed in the same manner as in Example 1.

(実施例10)
合成例で得られた、平均長辺長さ1007nmのスチーブンサイトを含む0.99gを層状ケイ酸化合物として、リチウムシリケート(日産化学社製、LSS35)0.01gを、層状ケイ酸化合物以外のケイ酸化合物としてそれぞれ使用した以外は実施例1と同様にして表面処理剤を作製し、実施例1と同様に評価を行った。
(Example 10)
0.99 g containing a steven site having an average long side length of 1007 nm obtained in the synthesis example was used as a layered silicate compound, and 0.01 g of lithium silicate (manufactured by Nissan Chemical Industries, Ltd., LSS35) was added to a silica other than the layered silicate compound. A surface treatment agent was prepared in the same manner as in Example 1 except that each was used as an acid compound, and evaluation was performed in the same manner as in Example 1.

(実施例11)
平均長辺長さ190nmのスメクタイトを使用した以外は実施例10と同様にして表面処理剤を作製し、実施例1と同様に評価を行った。
(Example 11)
A surface treatment agent was prepared in the same manner as in Example 10 except that smectite having an average long side length of 190 nm was used, and evaluation was performed in the same manner as in Example 1.

(実施例12)
平均長辺長さ100nmのスメクタイトを使用した以外は実施例10と同様にして表面処理剤を作製し、実施例1と同様に評価を行った。
(Example 12)
A surface treatment agent was prepared in the same manner as in Example 10 except that smectite having an average long side length of 100 nm was used, and evaluation was performed in the same manner as in Example 1.

(比較例1)
A液を用いずに、B液を直接塗布した以外は、実施例1と同様にして表面処理剤を作製し、実施例1と同様に評価を行った。
(Comparative Example 1)
A surface treatment agent was prepared in the same manner as in Example 1 except that the B solution was directly applied without using the A solution, and evaluation was performed in the same manner as in Example 1.

評価の結果、実施例1〜12は、光反射基板の硫化水素ガス耐性、発光装置の硫化水素ガス耐性が全て「有り」であったのに対して、比較例では全て「無し」であった。また、実施例1〜12全てにおいて、光反射基板上の表面処理剤から形成された処理層には、クラック及びひび割れがないことが観察により確認された。   As a result of evaluation, in Examples 1 to 12, the hydrogen sulfide gas resistance of the light reflecting substrate and the hydrogen sulfide gas resistance of the light emitting device were all “present”, whereas in the comparative examples, all were “none”. . Further, in all of Examples 1 to 12, it was confirmed by observation that the treatment layer formed from the surface treatment agent on the light reflecting substrate was free from cracks and cracks.

本発明によれば、各種銀又は銀合金、例えば電子部品、発光ダイオード等の照明機器などに使用される銀又は銀合金の変色(腐食)防止性に優れ、特に銀めっき面へ優れた耐変色性を与えることのできる、表面処理剤を提供することが可能となる。また、基板と、該基板上に設けられた銀又は銀合金からなる光反射層と、を備え、光反射層の表面に、銀又は銀合金の表面処理剤から形成された処理層が設けられている、光反射基板を提供することが可能である。さらにはその光反射基板と、発光ダイオードと、を備える発光装置を提供することが可能となる。   According to the present invention, various silver or silver alloys, for example, silver or silver alloys used for lighting devices such as electronic parts and light-emitting diodes, etc. have excellent discoloration (corrosion) prevention properties, and particularly excellent discoloration resistance to silver-plated surfaces. It becomes possible to provide a surface treatment agent capable of imparting properties. Further, a substrate and a light reflecting layer made of silver or a silver alloy provided on the substrate are provided, and a treatment layer made of a surface treatment agent of silver or a silver alloy is provided on the surface of the light reflecting layer. It is possible to provide a light reflecting substrate. Furthermore, it is possible to provide a light emitting device including the light reflecting substrate and the light emitting diode.

1…基板、3…光反射層、5…処理層、7…発光ダイオード、10…封止層、20…発光装置。   DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 3 ... Light reflection layer, 5 ... Processing layer, 7 ... Light emitting diode, 10 ... Sealing layer, 20 ... Light-emitting device.

Claims (16)

カチオン性電解質ポリマーを含有するA液と、
層状ケイ酸化合物を含有するB液と、からなる、銀又は銀合金の表面処理剤。
Liquid A containing a cationic electrolyte polymer;
A surface treatment agent of silver or a silver alloy, comprising a liquid B containing a layered silicate compound.
前記A液は、pHが7〜14である、請求項1に記載の銀又は銀合金の表面処理剤。   The surface treatment agent for silver or silver alloy according to claim 1, wherein the solution A has a pH of 7 to 14. 前記カチオン性電解質ポリマーは、イオン性基が、塩を形成していてもよいアミノ基、第4級アンモニウム基及び第4級ホスホニウム基からなる群より選ばれる1以上である請求項1又は2に記載の銀又は銀合金の表面処理剤。   In the cationic electrolyte polymer, the ionic group is one or more selected from the group consisting of an amino group, a quaternary ammonium group and a quaternary phosphonium group which may form a salt. The surface treatment agent of the silver or silver alloy of description. 前記A液は、前記カチオン性電解質ポリマーの濃度が、0.0003質量%以上3質量%以下である、請求項1〜3のいずれか一項に記載の銀又は銀合金の表面処理剤。   The said A liquid is a surface treatment agent of the silver or silver alloy as described in any one of Claims 1-3 whose density | concentration of the said cationic electrolyte polymer is 0.0003 mass% or more and 3 mass% or less. 前記層状ケイ酸化合物は、平均長辺長さが0.03μm以上50μm以下である、請求項1〜4のいずれか一項に記載の銀又は銀合金の表面処理剤。   The surface treatment agent for silver or silver alloy according to any one of claims 1 to 4, wherein the layered silicate compound has an average long side length of 0.03 µm or more and 50 µm or less. 前記B液は、さらに前記層状ケイ酸化合物以外のケイ酸化合物を含有する、請求項1〜5のいずれか一項に記載の銀又は銀合金の表面処理剤。   The said B liquid is a surface treatment agent of the silver or silver alloy as described in any one of Claims 1-5 which contains silicic acid compounds other than the said layered silicic acid compound further. 前記層状ケイ酸化合物に対する前記層状ケイ酸化合物以外のケイ酸化合物の質量比は、99/1〜1/99である、請求項6に記載の銀又は銀合金の表面処理剤。   The silver or silver alloy surface treatment agent according to claim 6, wherein a mass ratio of the silicate compound other than the layered silicate compound to the layered silicate compound is 99/1 to 1/99. 前記層状ケイ酸化合物以外のケイ酸化合物は、MO・nSiO(n=0.5〜4.0、MはLi、Na又はKのアルカリ金属を示す。)で表される化合物のうち1種以上である、請求項6又は7に記載の銀又は銀合金の表面処理剤。 Among the compounds represented by M 2 O · nSiO 2 (n = 0.5 to 4.0, M represents an alkali metal of Li, Na, or K), the silicate compound other than the layered silicate compound. The surface treatment agent for silver or silver alloy according to claim 6 or 7, wherein the surface treatment agent is one or more. 基板と、該基板上に設けられた銀又は銀合金からなる光反射層と、該光反射層上に設けられた、請求項1〜8のいずれか一項に記載の銀又は銀合金の表面処理剤から形成された処理層と、を備える、光反射基板。   The surface of the silver or silver alloy as described in any one of Claims 1-8 provided on the board | substrate, the light reflection layer which consists of silver or a silver alloy provided on this board | substrate, and this light reflection layer And a treatment layer formed from the treatment agent. 前記処理層は、前記表面処理剤のA液から形成されたカチオン性電解質ポリマー層と、前記表面処理剤のB液から形成された層状ケイ酸化合物層とを、前記光反射層側から見てこの順に備える、請求項9に記載の光反射基板。   The treatment layer includes a cationic electrolyte polymer layer formed from the liquid A of the surface treatment agent and a layered silicate compound layer formed from the liquid B of the surface treatment agent when viewed from the light reflection layer side. The light reflection board according to claim 9 provided in this order. 請求項9又は10に記載の光反射基板と、該光反射基板の前記処理層上に配置された発光ダイオードと、を備える、発光装置。   A light emitting device comprising: the light reflecting substrate according to claim 9 or 10; and a light emitting diode disposed on the processing layer of the light reflecting substrate. 前記発光ダイオードを覆うように前記処理層上に形成された透明樹脂からなる封止層をさらに備える、請求項11に記載の発光装置。   The light emitting device according to claim 11, further comprising a sealing layer made of a transparent resin formed on the processing layer so as to cover the light emitting diode. 前記透明樹脂がシリコーン樹脂又はエポキシ樹脂である、請求項12に記載の発光装置。   The light emitting device according to claim 12, wherein the transparent resin is a silicone resin or an epoxy resin. 前記光反射層の前記処理層に対向する面は粗面である、請求項11〜13のいずれか一項に記載の発光装置。   The light emitting device according to any one of claims 11 to 13, wherein a surface of the light reflecting layer facing the processing layer is a rough surface. 請求項11〜14のいずれか一項に記載の発光装置を製造する製造方法であって、
前記光反射層上に、前記表面処理剤のA液及びB液を順次接触させ、カチオン性電解質ポリマー層及び層状ケイ酸化合物層を形成する、発光装置の製造方法。
It is a manufacturing method which manufactures the light-emitting device as described in any one of Claims 11-14,
A method for manufacturing a light emitting device, wherein a cationic electrolyte polymer layer and a layered silicate compound layer are formed by sequentially contacting the surface treatment agent A solution and the B solution on the light reflection layer.
前記A液中の揮発成分を除去することにより前記カチオン性電解質ポリマー層を形成した後に、前記B液から前記層状ケイ酸化合物層を形成する、請求項15に記載の発光装置の製造方法。   The method for manufacturing a light-emitting device according to claim 15, wherein after forming the cationic electrolyte polymer layer by removing volatile components in the liquid A, the layered silicate compound layer is formed from the liquid B.
JP2013031174A 2013-02-20 2013-02-20 Silver or silver alloy surface treatment agent, light reflecting substrate, light emitting device, and method of manufacturing light emitting device Expired - Fee Related JP6098215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013031174A JP6098215B2 (en) 2013-02-20 2013-02-20 Silver or silver alloy surface treatment agent, light reflecting substrate, light emitting device, and method of manufacturing light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013031174A JP6098215B2 (en) 2013-02-20 2013-02-20 Silver or silver alloy surface treatment agent, light reflecting substrate, light emitting device, and method of manufacturing light emitting device

Publications (2)

Publication Number Publication Date
JP2014159618A true JP2014159618A (en) 2014-09-04
JP6098215B2 JP6098215B2 (en) 2017-03-22

Family

ID=51611495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013031174A Expired - Fee Related JP6098215B2 (en) 2013-02-20 2013-02-20 Silver or silver alloy surface treatment agent, light reflecting substrate, light emitting device, and method of manufacturing light emitting device

Country Status (1)

Country Link
JP (1) JP6098215B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021106781A1 (en) * 2019-11-29 2021-06-03

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285040A (en) * 2001-03-27 2002-10-03 Nichias Corp Aqueous inorganic coating agent
JP2012251204A (en) * 2011-06-02 2012-12-20 Hitachi Chemical Co Ltd Surface treatment agent for silver and silver alloy, substrate coated with light-reflective film, and light-emitting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285040A (en) * 2001-03-27 2002-10-03 Nichias Corp Aqueous inorganic coating agent
JP2012251204A (en) * 2011-06-02 2012-12-20 Hitachi Chemical Co Ltd Surface treatment agent for silver and silver alloy, substrate coated with light-reflective film, and light-emitting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016041710; '"Formation of Ultrathin Multilayer and Hydrated Gel from Monmorironite and Linear Polycations"' Langmuir No.12, 1996, p.3038-3044 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021106781A1 (en) * 2019-11-29 2021-06-03
WO2021106781A1 (en) * 2019-11-29 2021-06-03 日亜化学工業株式会社 Method for manufacturing metal structure for optical semiconductor device, package, and solution containing polyallylamine polymer
JP7339566B2 (en) 2019-11-29 2023-09-06 日亜化学工業株式会社 METHOD FOR MANUFACTURING METAL STRUCTURE FOR OPTO-SEMICONDUCTOR DEVICE, PACKAGE, AND SOLUTION CONTAINING POLYALLYLAMINE POLYMER

Also Published As

Publication number Publication date
JP6098215B2 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
JP5637322B2 (en) Silver surface treatment agent and light emitting device
JP6144001B2 (en) Silver and silver alloy surface treatment agent, substrate with light reflecting film, and light emitting device
JP5378771B2 (en) Base material with antireflection film and coating liquid for forming antireflection film
US20150175811A1 (en) Silver-sulfidation-preventing material and method for forming silver-sulfidation-preventing film, and method for producing light-emitting device and light-emitting device
JP2015214604A (en) Transparent fluorescent material and light-emitting device
Liu et al. High refractive index and transparent nanocomposites as encapsulant for high brightness LED packaging
JP6098215B2 (en) Silver or silver alloy surface treatment agent, light reflecting substrate, light emitting device, and method of manufacturing light emitting device
WO2015087970A1 (en) Optical semiconductor, method for producing same, surface treatment agent for silver, and light-emitting device
CN104955782B (en) Glass plate and its manufacture method with low reflectance coating
JP6085991B2 (en) Silver or silver alloy surface treatment agent, light reflecting substrate, light emitting device, and method of manufacturing light emitting device
JP4727297B2 (en) Semiconductor light emitting device
AU2014279389B2 (en) Coating liquid for suppressing deterioration of solar cell, thin film of same, and method for suppressing deterioration of solar cell
JP5635189B2 (en) Improvement of phosphor
CN114762135A (en) Photoresist ink
JP2015102666A (en) Anti-reflection film-forming coating liquid, base material with anti-reflection film, manufacturing method and application thereof
WO2017022433A1 (en) Aqueous coating liquid, film and method for producing same, laminate, and solar cell module
Shen et al. Encapsulation of perovskite nanocrystals into an organic polymer for improved stability
JP2016125069A (en) Surface treatment agent and light-emitting device
JP2012251205A (en) Surface treatment agent for silver and silver alloy, substrate with light reflecting film, and light emitting device
JP6079025B2 (en) Silver discoloration preventing material, silver discoloration preventing film forming method, light emitting device manufacturing method, and light emitting device
JP2013144836A (en) Surface treatment agent for silver and silver alloy, silver and silver alloy, and light emitting diode
JP6051820B2 (en) Silver sulfide prevention material, method of forming silver sulfide prevention film, and method of manufacturing light emitting device
US10256377B2 (en) Light-emitting device and image display apparatus
JP2015207633A (en) Surface preparation agent for silver and light-emitting device
TWI474967B (en) Improvements to phosphors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170206

R151 Written notification of patent or utility model registration

Ref document number: 6098215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees