JP2014157906A - Semiconductor device manufacturing method and semiconductor device - Google Patents

Semiconductor device manufacturing method and semiconductor device Download PDF

Info

Publication number
JP2014157906A
JP2014157906A JP2013027472A JP2013027472A JP2014157906A JP 2014157906 A JP2014157906 A JP 2014157906A JP 2013027472 A JP2013027472 A JP 2013027472A JP 2013027472 A JP2013027472 A JP 2013027472A JP 2014157906 A JP2014157906 A JP 2014157906A
Authority
JP
Japan
Prior art keywords
conductive layer
layer
semiconductor device
resist film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013027472A
Other languages
Japanese (ja)
Inventor
Isao Kojima
功 小島
Yasuhito Akutagawa
泰人 芥川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP2013027472A priority Critical patent/JP2014157906A/en
Publication of JP2014157906A publication Critical patent/JP2014157906A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/0347Manufacturing methods using a lift-off mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/036Manufacturing methods by patterning a pre-deposited material
    • H01L2224/0361Physical or chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/039Methods of manufacturing bonding areas involving a specific sequence of method steps
    • H01L2224/03912Methods of manufacturing bonding areas involving a specific sequence of method steps the bump being used as a mask for patterning the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/039Methods of manufacturing bonding areas involving a specific sequence of method steps
    • H01L2224/03914Methods of manufacturing bonding areas involving a specific sequence of method steps the bonding area, e.g. under bump metallisation [UBM], being used as a mask for patterning other parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/1147Manufacturing methods using a lift-off mask
    • H01L2224/11472Profile of the lift-off mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13005Structure
    • H01L2224/13007Bump connector smaller than the underlying bonding area, e.g. than the under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device manufacturing method and a semiconductor device, which can avoid decrease in intensity of a connection part such as a micro bump by side etching and a Cu pillar.SOLUTION: A semiconductor device manufacturing method comprises: first forming an electrode 12 and an insulation film 13 on a semiconductor substrate 11; subsequently forming a conductive layer 15 on the insulation film 13 of the semiconductor substrate 11; forming on the conductive layer 15, a resist film having an opening at a part corresponding to the electrode 12; and subsequently forming a metal plating layer 18 on an inner side of the opening of the resist film by electrolytic plating. In this plating process, a plating solution enters between the resist film around the resist opening and the conductive layer to form a flange. The semiconductor device manufacturing method comprises: removing the resist film; subsequently forming an oxide film 15a by oxidizing a surface of the conductive layer 15 at an exposed part; and subsequently removing the oxide film 15a and the conductive layer 15 under the oxide film 15a by etching.

Description

本発明は、半導体装置の製造方法及び半導体装置に関する。   The present invention relates to a semiconductor device manufacturing method and a semiconductor device.

近年、半導体装置のより一層の高密度化及び高性能化が促進されており、それにともなって複数の半導体チップを積層するスタックタイプの半導体装置も増えている。スタックタイプの半導体装置では、チップ間の接合に、従来のバンプよりも小型のマイクロバンプやCuピラーが使用される。   In recent years, higher density and higher performance of semiconductor devices have been promoted, and accordingly, a stack type semiconductor device in which a plurality of semiconductor chips are stacked is also increasing. In a stack type semiconductor device, micro bumps and Cu pillars smaller than conventional bumps are used for bonding between chips.

本願では、UBM(Under Bump Metal)径が85μm以上のバンプを通常バンプ、それよりも小さいものをマイクロバンプと呼んでいる。現状、マイクロバンプやCuピラーのUBM径は、30μm程度である。   In the present application, a bump having a UBM (Under Bump Metal) diameter of 85 μm or more is called a normal bump, and a bump smaller than that is called a micro bump. At present, the UBM diameter of micro bumps and Cu pillars is about 30 μm.

特開2009−302340号公報JP 2009-302340 A

サイドエッチングによるマイクロバンプやCuピラー等の接続部の強度の低下を回避できる半導体装置の製造方法及び半導体装置を提供することを目的とする。   It is an object of the present invention to provide a method for manufacturing a semiconductor device and a semiconductor device capable of avoiding a decrease in the strength of connection portions such as micro bumps and Cu pillars due to side etching.

開示の技術の一観点によれば、半導体基板上に電極を形成する工程と、前記半導体基板上に、前記電極に対応する部分に開口部が設けられた絶縁膜を形成する工程と、前記半導体基板の前記絶縁膜上に導電層を形成する工程と、前記導電層の上に、前記電極に対応する部分に開口部が設けられたレジスト膜を形成する工程と、電解めっき法により、前記レジスト膜の前記開口部の内側の前記導電層上に金属めっき層を形成するとともに、前記レジスト膜の前記開口部の周囲の前記レジスト膜と前記導電層との間に前記金属めっき層と同じ金属からなる鍔部を形成する工程と、前記レジスト膜を除去して前記導電層を露出させる工程と、前記レジスト膜を除去することにより露出した部分の前記導電層の表面を酸化させて酸化膜を形成する工程と、前記酸化膜及びその下の前記導電層をエッチングにより除去する工程とを有する半導体装置の製造方法が提供される。   According to one aspect of the disclosed technology, a step of forming an electrode on a semiconductor substrate, a step of forming an insulating film on a portion corresponding to the electrode on the semiconductor substrate, and the semiconductor A step of forming a conductive layer on the insulating film of the substrate; a step of forming a resist film on the conductive layer with an opening corresponding to the electrode; and an electrolytic plating method to form the resist. A metal plating layer is formed on the conductive layer inside the opening of the film, and the same metal as the metal plating layer is formed between the resist film and the conductive layer around the opening of the resist film. Forming a flange portion, removing the resist film to expose the conductive layer, and oxidizing the surface of the conductive layer exposed by removing the resist film to form an oxide film Process A method of manufacturing a semiconductor device and a step of removing by etching the oxide layer and the conductive layer thereunder are provided.

開示の技術の他の一観点によれば、半導体基板と、前記半導体基板の上方に形成された電極と、前記電極の上に形成された導電層と、前記導電層の上を覆う金属めっき層と、前記金属めっき層の上に形成されて前記金属めっき層よりも小径の金属層とを有する半導体装置が提供される。   According to another aspect of the disclosed technology, a semiconductor substrate, an electrode formed above the semiconductor substrate, a conductive layer formed on the electrode, and a metal plating layer covering the conductive layer And a semiconductor device formed on the metal plating layer and having a metal layer having a smaller diameter than the metal plating layer.

上記一観点に係る半導体装置の製造方法によれば、鍔部の分だけ金属層よりも導電層のほうが大きくなる。これにより、接続部の強度が高い半導体装置が得られる。   According to the method for manufacturing a semiconductor device according to the above aspect, the conductive layer is larger than the metal layer by the amount of the flange portion. As a result, a semiconductor device having a high strength of the connection portion can be obtained.

図1は、第1の実施形態に係る半導体装置の製造方法を示す断面図(その1)である。FIG. 1 is a cross-sectional view (part 1) illustrating the method for manufacturing the semiconductor device according to the first embodiment. 図2は、第1の実施形態に係る半導体装置の製造方法を示す断面図(その2)である。FIG. 2 is a cross-sectional view (part 2) illustrating the method for manufacturing the semiconductor device according to the first embodiment. 図3は、第1の実施形態に係る半導体装置の製造方法を示す断面図(その3)である。FIG. 3 is a cross-sectional view (part 3) illustrating the method for manufacturing the semiconductor device according to the first embodiment. 図4は、第1の実施形態に係る半導体装置の製造方法を示す断面図(その4)である。FIG. 4 is a cross-sectional view (part 4) illustrating the method for manufacturing the semiconductor device according to the first embodiment. 図5は、第1の実施形態に係る半導体装置の製造方法を示す断面図(その5)である。FIG. 5 is a cross-sectional view (part 5) illustrating the method for manufacturing the semiconductor device according to the first embodiment. 図6は、レジスト膜と導電層との間の隙間にめっき液が入り込んで形成された鍔部を示す模式図である。FIG. 6 is a schematic view showing a collar portion formed by the plating solution entering the gap between the resist film and the conductive layer. 図7は、導電層の酸化に使用するプラズマアッシング装置を示す模式図である。FIG. 7 is a schematic view showing a plasma ashing apparatus used for oxidizing the conductive layer. 図8は、第1の実施形態に係る方法により形成した半導体チップを、他の半導体チップ上に積層(スタック)して半導体装置を完成させた状態を示す図である。FIG. 8 is a view showing a state where a semiconductor device is completed by stacking (stacking) semiconductor chips formed by the method according to the first embodiment on other semiconductor chips. 図9は、第1の実施形態に係る方法により形成した半導体チップを、パッケージ基板上に搭載して半導体装置を完成させた状態を示す図である。FIG. 9 is a view showing a state where a semiconductor device is completed by mounting a semiconductor chip formed by the method according to the first embodiment on a package substrate. 図10は、導電層の表面を酸化させなることなく導電層をエッチングした場合の不具合を示す図である。FIG. 10 is a diagram showing a problem when the conductive layer is etched without oxidizing the surface of the conductive layer. 図11は、第2の実施形態に係る半導体装置の製造方法を示す断面図(その1)である。FIG. 11 is a cross-sectional view (part 1) illustrating the method for manufacturing the semiconductor device according to the second embodiment. 図12は、第2の実施形態に係る半導体装置の製造方法を示す断面図(その2)である。FIG. 12 is a cross-sectional view (part 2) illustrating the method for manufacturing the semiconductor device according to the second embodiment. 図13は、第2の実施形態に係る半導体装置の製造方法を示す断面図(その3)である。FIG. 13 is a cross-sectional view (part 3) illustrating the method for manufacturing the semiconductor device according to the second embodiment. 図14は、第2の実施形態に係る半導体装置の製造方法を示す断面図(その4)である。FIG. 14 is a cross-sectional view (part 4) illustrating the method for manufacturing the semiconductor device according to the second embodiment. 図15は、第2の実施形態に係る半導体装置の製造方法を示す断面図(その5)である。FIG. 15 is a cross-sectional view (part 5) illustrating the method for manufacturing the semiconductor device according to the second embodiment. 図16は、第2の実施形態に係る方法により形成した半導体チップを、他の半導体チップ上に積層(スタック)して半導体装置を完成させた状態を示す図である。FIG. 16 is a view showing a state where a semiconductor device is completed by stacking (stacking) semiconductor chips formed by the method according to the second embodiment on other semiconductor chips. 図17は、第2の実施形態に係る方法により形成した半導体チップを、パッケージ基板上に搭載して半導体装置を完成させた状態を示す図である。FIG. 17 is a view showing a state where a semiconductor device is completed by mounting a semiconductor chip formed by the method according to the second embodiment on a package substrate.

前述したように、スタックタイプの半導体装置では、通常バンプよりも小型のマイクロバンプやCuピラーが使用される。これらのマイクロバンプやCuピラーの形成には、成膜工程、フォトリソグラフィ工程、及びエッチング工程が使用されるが、エッチング工程においてUBMがサイドエッチングされると、元々小さいUBM径が更に縮小して、強度が著しく低下してしまう。これにより、半導体装置の信頼性が損なわれる。   As described above, in the stack type semiconductor device, micro bumps and Cu pillars smaller than normal bumps are used. For the formation of these micro bumps and Cu pillars, a film forming process, a photolithography process, and an etching process are used, but when the UBM is side-etched in the etching process, the originally small UBM diameter is further reduced, Strength will fall remarkably. This impairs the reliability of the semiconductor device.

以下の実施形態では、サイドエッチングによるマイクロバンプやCuピラー等の接続部の強度の低下を回避できる半導体装置の製造方法について説明する。   In the following embodiments, a method for manufacturing a semiconductor device capable of avoiding a decrease in strength of connection portions such as micro bumps and Cu pillars due to side etching will be described.

(第1の実施形態)
図1〜図5は、第1の実施形態に係る半導体装置の製造方法を工程順に示す断面図である。ここでは、接続部にCuピラーを備えた半導体装置の製造方法について説明している。
(First embodiment)
1 to 5 are cross-sectional views showing the method of manufacturing the semiconductor device according to the first embodiment in the order of steps. Here, a method for manufacturing a semiconductor device provided with a Cu pillar in the connection portion is described.

まず、公知の方法により、半導体基板(ウェハ)にトランジスタ等の素子を形成し、その上に絶縁層及び配線層を形成する。図1(a)中の符号11は、素子、絶縁層及び配線層が形成された半導体基板を示している。   First, an element such as a transistor is formed on a semiconductor substrate (wafer) by a known method, and an insulating layer and a wiring layer are formed thereon. Reference numeral 11 in FIG. 1A denotes a semiconductor substrate on which an element, an insulating layer, and a wiring layer are formed.

この半導体基板11上の所定の位置に、例えばAl(アルミニウム)等の金属により、電極12を形成する。電極12の直径は例えば50μm〜100μm程度、電極12の厚さは例えば数μm程度とする。   An electrode 12 is formed at a predetermined position on the semiconductor substrate 11 by using a metal such as Al (aluminum). The diameter of the electrode 12 is about 50 μm to 100 μm, for example, and the thickness of the electrode 12 is about several μm, for example.

次に、CVD(Chemical Vapor Deposition)法等により、半導体基板11の上側全面に酸化シリコン又は窒化シリコン等の絶縁材料を堆積させて、パッシベーション膜13を形成する。   Next, an insulating material such as silicon oxide or silicon nitride is deposited on the entire upper surface of the semiconductor substrate 11 by a CVD (Chemical Vapor Deposition) method or the like to form a passivation film 13.

その後、フォトリソグラフィ法を使用して、パッシベーション膜13のうち電極12に対応する部分を除去して、電極12の表面を露出させる。   Thereafter, a portion corresponding to the electrode 12 in the passivation film 13 is removed by using a photolithography method to expose the surface of the electrode 12.

次に、図1(b)に示すように、半導体基板11の上側全面に、UBMとなるバリア層14及び導電層15を形成する。本実施形態では、スパッタリング法によりTi(チタン)を100μm程度の厚さに堆積させてバリア層14とし、その上にCu(銅)を250μm程度の厚さに堆積させて導電層15とする。但し、バリア層14及び導電層15の材質及び厚さは、適宜変更してもよい。   Next, as shown in FIG. 1B, a barrier layer 14 and a conductive layer 15 to be UBM are formed on the entire upper surface of the semiconductor substrate 11. In this embodiment, Ti (titanium) is deposited to a thickness of about 100 μm by sputtering to form the barrier layer 14, and Cu (copper) is deposited to a thickness of about 250 μm thereon to form the conductive layer 15. However, the material and thickness of the barrier layer 14 and the conductive layer 15 may be changed as appropriate.

次に、図1(c)に示すように、導電層15の上にフォトレジストを例えば40μm〜80μmの厚さに塗布して、レジスト膜16を形成する。レジスト膜16の厚さは、後述するCuピラー19及びはんだ層20の厚さに応じて適宜設定する。   Next, as shown in FIG. 1C, a photoresist is applied on the conductive layer 15 to a thickness of, for example, 40 μm to 80 μm to form a resist film 16. The thickness of the resist film 16 is appropriately set according to the thickness of a Cu pillar 19 and a solder layer 20 described later.

次に、レジスト膜16を乾燥させた後、図2(a)に示すように、所定のパターンが設けられた露光マスク17を使用して、レジスト膜16のうち電極12の上方の部分を選択的に露光する。   Next, after drying the resist film 16, as shown in FIG. 2A, a portion of the resist film 16 above the electrode 12 is selected using an exposure mask 17 provided with a predetermined pattern. Exposure.

その後、現像処理を実施して、図2(b)に示すように、導電層15のうち電極12の上方の部分が露出する開口部16aを形成する。開口部16aの直径は、例えば25μm〜35μm程度とする。   Thereafter, development processing is performed to form an opening 16a in which a portion of the conductive layer 15 above the electrode 12 is exposed, as shown in FIG. The diameter of the opening 16a is, for example, about 25 μm to 35 μm.

次に、アッシング装置を使用して、図2(c)に示すようにレジスト膜16をアッシングする。このアッシングは、後述の工程で行う電解めっき時にレジスト膜16の濡れ性を確保して、開口部16a内にめっき液が進入しやすくするために行うものである。   Next, the resist film 16 is ashed using an ashing device as shown in FIG. This ashing is performed in order to ensure the wettability of the resist film 16 and facilitate the penetration of the plating solution into the opening 16a during the electrolytic plating performed in the process described later.

次に、図3(a)に示すように、導電層15を電極としてNi(ニッケル)めっきを行い、開口部16aの導電層15上に、Niめっき層18を形成する。Niめっき層18の厚さは、例えば5μm〜10μm程度とする。   Next, as shown in FIG. 3A, Ni (nickel) plating is performed using the conductive layer 15 as an electrode to form a Ni plating layer 18 on the conductive layer 15 in the opening 16a. The thickness of the Ni plating layer 18 is, for example, about 5 μm to 10 μm.

このとき、開口部16aの内側のエッジ部分では、レジスト膜16と導電層15との間のわずかな隙間にめっき液が入り込んで導電層15上にめっき金属(Ni)が析出し、図6に模式的に示すように、鍔部18aが形成される。鍔部18aの幅aは、例えば2μm〜3μm程度である。   At this time, at the inner edge portion of the opening 16a, the plating solution enters a slight gap between the resist film 16 and the conductive layer 15, and the plating metal (Ni) is deposited on the conductive layer 15. FIG. As schematically shown, a flange 18a is formed. The width a of the flange portion 18a is, for example, about 2 μm to 3 μm.

本実施形態では、上述の如く導電層15とレジスト膜16との界面にめっき液が入り込んで鍔部18aが形成されることが重要である。導電層15とレジスト膜16との界面にどの程度めっき液が入り込むかは、導電層15とレジスト膜16との密着度に関係する。   In the present embodiment, as described above, it is important that the plating solution enters the interface between the conductive layer 15 and the resist film 16 to form the flange portion 18a. The extent to which the plating solution enters the interface between the conductive layer 15 and the resist film 16 is related to the degree of adhesion between the conductive layer 15 and the resist film 16.

市販されている一般的なフォトレジスト(例えば、東京応化工業製フォトレジストPMER P-LA900 PM)を使用した場合、開口部16aのエッジ部分の導電層15とレジスト膜16との界面にめっき液が若干進入して、鍔部18aが必然的に形成される。   When a general photoresist that is commercially available (for example, a photoresist PMER P-LA900 PM manufactured by Tokyo Ohka Kogyo Co., Ltd.) is used, a plating solution is present at the interface between the conductive layer 15 and the resist film 16 at the edge of the opening 16a. Slightly entering, the flange 18a is inevitably formed.

なお、本実施形態では導電層15をCuにより形成し、めっき層18をNiにより形成している。しかし、導電層15及びめっき層18は、それぞれCu、Ni、Au、Ag、Cr及びSnのうちから選択された金属、又はその金属を主成分とする合金により形成してもよい。   In the present embodiment, the conductive layer 15 is made of Cu, and the plating layer 18 is made of Ni. However, the conductive layer 15 and the plating layer 18 may be formed of a metal selected from Cu, Ni, Au, Ag, Cr, and Sn, or an alloy containing the metal as a main component.

次に、図3(b)に示すように、電解めっきにより、Niめっき層18の上にCuを例えば30μm〜60μmの厚さに堆積させて、Cuピラー19を形成する。Cuピラー19の直径は開口部16aの直径と同じになり、めっき層18の直径よりも小径となる。   Next, as shown in FIG. 3B, Cu is deposited on the Ni plating layer 18 to a thickness of, for example, 30 μm to 60 μm by electrolytic plating to form a Cu pillar 19. The diameter of the Cu pillar 19 is the same as the diameter of the opening 16 a and is smaller than the diameter of the plating layer 18.

更に、図3(c)に示すように、Cuピラー19の上にはんだを例えば10μm〜15μmの厚さに電解めっきして、はんだ層20を形成する。   Further, as shown in FIG. 3C, solder is electroplated on the Cu pillar 19 to a thickness of, for example, 10 μm to 15 μm to form a solder layer 20.

次に、レジスト剥離液を使用して、図4(a)に示すようにレジスト膜16を除去する。レジスト膜16を除去した後には、導電層15の上にNiめっき層18(鍔部18aを含む)が残留する。   Next, the resist film 16 is removed using a resist stripper as shown in FIG. After removing the resist film 16, the Ni plating layer 18 (including the flange portion 18 a) remains on the conductive layer 15.

次に、図4(b)に示すように、導電層15のうち露出している部分の表面を酸化させて、酸化層15aを形成する。具体的には、図7に模式的に示すように、プラズマアッシング装置30のチャンバ31内に半導体基板11を配置する。そして、チャンバ31内に例えば酸素(O2)とCF4との混合ガスを供給しながら、真空ポンプ(図示せず)によりチャンバ31内を排気して、チャンバ31内を一定の圧力に維持する。また、上部電極32aと下部電極32bとの間に高周波(RF)電源33から高周波電圧を印加する。これにより、チャンバ31内にプラズマが発生し、Cuにより形成された導電層15の表面が酸化(プラズマアッシング)されて、酸化層15aが形成される。 Next, as shown in FIG. 4B, the surface of the exposed portion of the conductive layer 15 is oxidized to form an oxide layer 15a. Specifically, as schematically shown in FIG. 7, the semiconductor substrate 11 is disposed in the chamber 31 of the plasma ashing apparatus 30. Then, while supplying, for example, a mixed gas of oxygen (O 2 ) and CF 4 into the chamber 31, the inside of the chamber 31 is evacuated by a vacuum pump (not shown) to maintain the inside of the chamber 31 at a constant pressure. . A high frequency voltage is applied from a high frequency (RF) power source 33 between the upper electrode 32a and the lower electrode 32b. As a result, plasma is generated in the chamber 31, the surface of the conductive layer 15 formed of Cu is oxidized (plasma ashing), and the oxide layer 15a is formed.

この場合、酸化層15aの厚さはアッシング時間により決まる。導電層15は、その厚さ方向の半分程度まで酸化すればよい。それよりも多く酸化しようとすると、アッシング時間が長くなり、スループットが低下する。本実施形態のように、O2ガスにCF4を添加することにより、Cuが酸化するときのアッシングレートが上昇する。 In this case, the thickness of the oxide layer 15a is determined by the ashing time. The conductive layer 15 may be oxidized to about half of its thickness direction. If more oxidation is attempted, the ashing time becomes longer and the throughput decreases. As in this embodiment, the addition of CF 4 to O 2 gas increases the ashing rate when Cu is oxidized.

なお、導電層15を酸化するときのアッシングは、等方性アッシングでもよく、異方性アッシングでもよい。   The ashing when oxidizing the conductive layer 15 may be isotropic ashing or anisotropic ashing.

次に、図4(c)に示すように、バリア層14が露出するまで酸化層15a及びその下の導電層15をエッチングする。導電層15及び酸化層15aのエッチングには、エッチング液として例えば過水酢酸(過酸化水素水と酢酸と純水とを混合した液)や過水硫酸(過酸化水素水と硫酸と純水とを混合した液)を使用することができる。   Next, as shown in FIG. 4C, the oxide layer 15a and the underlying conductive layer 15 are etched until the barrier layer 14 is exposed. For etching the conductive layer 15 and the oxide layer 15a, for example, perhydroacetic acid (a mixture of hydrogen peroxide, acetic acid, and pure water) or perhydrosulfuric acid (hydrogen peroxide, sulfuric acid, and pure water) is used as an etchant. Can be used.

本実施形態では、導電層15の表面を酸化させているため、短時間で導電層15をエッチング除去することができる。エッチング終了後は、Niめっき層18(鍔部18aを含む)の下に導電層15が残留する。   In this embodiment, since the surface of the conductive layer 15 is oxidized, the conductive layer 15 can be etched away in a short time. After the etching is completed, the conductive layer 15 remains under the Ni plating layer 18 (including the flange 18a).

一般的な半導体装置の製造工程では、めっき工程においてレジスト開口部の内側のエッジ部分に鍔部が形成されても、その後のエッチング工程等において鍔部が容易に脱落してしまう。しかし、本実施形態では、鍔部18aを残すために、上述したようにエッチング工程の前に導電層15に対し酸化処理(アッシング処理)を行って、エッチング時間の短縮を図っている。   In a general semiconductor device manufacturing process, even if a flange is formed at the edge portion inside the resist opening in the plating process, the flange is easily dropped in the subsequent etching process or the like. However, in the present embodiment, in order to leave the flange portion 18a, as described above, the conductive layer 15 is oxidized (ashed) before the etching process to shorten the etching time.

上述の如く、導電層15及び酸化層15aをエッチングしてバリア層14を露出させた後、図5(a)に示すように、パッシベーション膜13が露出するまでバリア層14をエッチングする。Tiからなるバリア層14のエッチングには、例えばアルカリ性チタンエッチング液(例えば、過酸化水素水に純水と水酸化カリウム等を混合した液)を使用することができる。   As described above, after the conductive layer 15 and the oxide layer 15a are etched to expose the barrier layer 14, the barrier layer 14 is etched until the passivation film 13 is exposed as shown in FIG. For the etching of the barrier layer 14 made of Ti, for example, an alkaline titanium etching solution (for example, a solution obtained by mixing pure water and potassium hydroxide in hydrogen peroxide solution) can be used.

次いで、図5(b)に示すようにはんだ層20を例えば230℃〜240℃程度の低温でリフローして、はんだ層20の表面を滑らかにする。本実施形態では、はんだ層20の厚さが前述の如く10μm〜15μmと薄いので、リフロー後のはんだ層20のCuピラー19から横方向に張り出し量が少ない。従って、狭ピッチの半導体装置に適用できる。   Next, as shown in FIG. 5B, the solder layer 20 is reflowed at a low temperature of about 230 ° C. to 240 ° C., for example, to smooth the surface of the solder layer 20. In the present embodiment, since the thickness of the solder layer 20 is as thin as 10 μm to 15 μm as described above, the amount of lateral protrusion from the Cu pillar 19 of the solder layer 20 after reflow is small. Therefore, it can be applied to a narrow pitch semiconductor device.

次いで、ダイシング装置により半導体基板11を切断して、個々の半導体チップに分離する。そして、その半導体チップを、他の半導体チップ又はパッケージ基板上に実装して、半導体装置を完成する。   Next, the semiconductor substrate 11 is cut by a dicing apparatus and separated into individual semiconductor chips. Then, the semiconductor chip is mounted on another semiconductor chip or a package substrate to complete the semiconductor device.

図8は、上述した方法により形成した半導体チップを、他の半導体チップ上に積層(スタック)して半導体装置を完成させた状態を示す図である。   FIG. 8 is a view showing a state in which the semiconductor device is completed by stacking (stacking) the semiconductor chip formed by the above-described method on another semiconductor chip.

図8に示す半導体装置40は、パッケージ基板41と、半導体チップ44と、半導体チップ45とを有する。   A semiconductor device 40 illustrated in FIG. 8 includes a package substrate 41, a semiconductor chip 44, and a semiconductor chip 45.

半導体チップ44にはロジック回路が形成されており、この半導体チップ44はパッケージ基板41上に搭載されている。パッケージ基板41の下面側には回路基板(図示せず)に形成された電極と接続する通常バンプ42が形成されており、上面側には電極43が形成されている。電極44と半導体チップ44の上面周縁部に形成された電極とは、金属細線(ボンディングワイヤ)47により電気的に接続されている。   A logic circuit is formed on the semiconductor chip 44, and the semiconductor chip 44 is mounted on the package substrate 41. A normal bump 42 connected to an electrode formed on a circuit board (not shown) is formed on the lower surface side of the package substrate 41, and an electrode 43 is formed on the upper surface side. The electrode 44 and the electrode formed on the periphery of the upper surface of the semiconductor chip 44 are electrically connected by a metal thin wire (bonding wire) 47.

半導体チップ45には例えばDRAM(Dynamic Random Access Memory)が形成されており、上述の実施形態に記載した方法により形成されたCuピラー19を介して半導体チップ44の電極に接続されている。   For example, a DRAM (Dynamic Random Access Memory) is formed in the semiconductor chip 45 and is connected to the electrode of the semiconductor chip 44 through the Cu pillar 19 formed by the method described in the above-described embodiment.

図9は、上述した方法により形成した半導体チップを、パッケージ基板上に搭載して半導体装置を完成させた状態を示す図である。   FIG. 9 is a diagram showing a state where the semiconductor chip is completed by mounting the semiconductor chip formed by the above-described method on the package substrate.

図9に示す半導体装置50は、パッケージ基板51と、半導体チップ55とを有する。   A semiconductor device 50 shown in FIG. 9 includes a package substrate 51 and a semiconductor chip 55.

パッケージ基板51の下側には通常バンプ52が形成されている。また、パッケージ基板51の上側には、電極53が形成されている。   A normal bump 52 is formed on the lower side of the package substrate 51. Further, an electrode 53 is formed on the upper side of the package substrate 51.

半導体チップ55は、上述の実施形態に記載した方法により形成されたCuピラー19を介して、パッケージ基板51の電極53に接続されている。   The semiconductor chip 55 is connected to the electrode 53 of the package substrate 51 via the Cu pillar 19 formed by the method described in the above embodiment.

本実施形態では、前述したように、導電層15をエッチングする前に導電層15の表面を酸化させて、導電層15のエッチング時間を短縮している。これにより、エッチング終了時には、鍔部18aと、鍔部18aの下方の導電層15及びバリア層14とが残る。   In the present embodiment, as described above, the etching time of the conductive layer 15 is shortened by oxidizing the surface of the conductive layer 15 before etching the conductive layer 15. Thereby, at the end of etching, the flange portion 18a, and the conductive layer 15 and the barrier layer 14 below the flange portion 18a remain.

そして、鍔部18aの下方に導電層15及びバリア層14が残ることにより、UBM径の縮小が回避され、Cuピラー19の強度が高くなる。その結果、半導体装置の信頼性が向上する。   And since the conductive layer 15 and the barrier layer 14 remain below the flange portion 18a, the reduction of the UBM diameter is avoided, and the strength of the Cu pillar 19 is increased. As a result, the reliability of the semiconductor device is improved.

仮に、導電層15の表面を酸化させなることなく導電層15をエッチングした場合は、エッチング時間が長くなり、鍔部18aが除去されてしまう。そのため、例えば図10に示すように導電層15の径が縮小し、更にバリア層14がサイドエッチングされてしまう。これにより、Cuピラー19の強度が減少し、半導体装置の信頼性が低下してしまう。   If the conductive layer 15 is etched without oxidizing the surface of the conductive layer 15, the etching time becomes long and the collar portion 18a is removed. Therefore, for example, as shown in FIG. 10, the diameter of the conductive layer 15 is reduced, and the barrier layer 14 is further side-etched. Thereby, the intensity | strength of Cu pillar 19 reduces and the reliability of a semiconductor device will fall.

(第2の実施形態)
図11〜図15は、第2の実施形態に係る半導体装置の製造方法を工程順に示す断面図である。ここでは、接続部にマイクロバンプを備えた半導体装置の製造方法について説明している。
(Second Embodiment)
11 to 15 are cross-sectional views showing the method of manufacturing the semiconductor device according to the second embodiment in the order of steps. Here, a manufacturing method of a semiconductor device provided with a micro bump in the connection portion is described.

まず、公知の方法により、半導体基板(ウェハ)にトランジスタ等の素子を形成し、その上に絶縁層及び配線層を形成する。図11(a)中の符号61は、素子、絶縁層及び配線層が形成された半導体基板を示している。   First, an element such as a transistor is formed on a semiconductor substrate (wafer) by a known method, and an insulating layer and a wiring layer are formed thereon. Reference numeral 61 in FIG. 11A denotes a semiconductor substrate on which an element, an insulating layer, and a wiring layer are formed.

この半導体基板61上の所定の位置に、例えばAl等の金属により、電極62を形成する。   An electrode 62 is formed at a predetermined position on the semiconductor substrate 61 by using a metal such as Al.

次に、CVD法等により、半導体基板61の上側全面に酸化シリコン又は窒化シリコン等の絶縁材料を堆積させて、パッシベーション膜63を形成する。   Next, a passivation film 63 is formed by depositing an insulating material such as silicon oxide or silicon nitride on the entire upper surface of the semiconductor substrate 61 by a CVD method or the like.

その後、フォトリソグラフィ法を使用して、パッシベーション膜63のうち電極62に対応する部分を除去して、電極62の表面を露出させる。   Thereafter, a portion of the passivation film 63 corresponding to the electrode 62 is removed by using a photolithography method to expose the surface of the electrode 62.

次に、図11(b)に示すように、半導体基板61の上側全面に、UBMとなるバリア層64及び導電層65を形成する。本実施形態では、スパッタリング法によりTi(チタン)を100μm程度の厚さに堆積させてバリア層64とし、その上にCu(銅)を250μm程度の厚さに堆積させて導電層65とする。   Next, as illustrated in FIG. 11B, a barrier layer 64 and a conductive layer 65 to be UBM are formed on the entire upper surface of the semiconductor substrate 61. In this embodiment, Ti (titanium) is deposited to a thickness of about 100 μm by sputtering to form the barrier layer 64, and Cu (copper) is deposited to a thickness of about 250 μm thereon to form the conductive layer 65.

次に、図11(c)に示すように、導電層65の上にフォトレジストを例えば10μm〜20μmの厚さに塗布して、レジスト膜66を形成する。レジスト膜66の厚さは、後述するはんだ層69の厚さに応じて適宜設定する。   Next, as shown in FIG. 11C, a photoresist is applied on the conductive layer 65 to a thickness of, for example, 10 μm to 20 μm to form a resist film 66. The thickness of the resist film 66 is appropriately set according to the thickness of a solder layer 69 described later.

次に、レジスト膜66を乾燥させた後、図12(a)に示すように、所定のパターンが設けられた露光マスク67を使用して、レジスト膜66のうち電極62の上方の部分を選択的に露光する。   Next, after drying the resist film 66, as shown in FIG. 12A, a portion of the resist film 66 above the electrode 62 is selected using an exposure mask 67 provided with a predetermined pattern. Exposure.

その後、現像処理を実施して、図12(b)に示すように、導電層65のうち電極62の上方の部分が露出する開口部66aを形成する。開口部66aの直径は、例えば25μm〜35μm程度とする。   Thereafter, development processing is performed to form an opening 66a in which a portion of the conductive layer 65 above the electrode 62 is exposed, as shown in FIG. The diameter of the opening 66a is, for example, about 25 μm to 35 μm.

次に、アッシング装置を使用して、図12(c)に示すようにレジスト膜66をアッシングする。   Next, using an ashing apparatus, the resist film 66 is ashed as shown in FIG.

次に、図13(a)に示すように、導電層65を電極としてNi(ニッケル)めっきを行い、開口部66a内の導電層65上に、Niめっき層68を形成する。Niめっき層68の厚さは、例えば5μm程度とする。   Next, as shown in FIG. 13A, Ni (nickel) plating is performed using the conductive layer 65 as an electrode to form a Ni plating layer 68 on the conductive layer 65 in the opening 66a. The thickness of the Ni plating layer 68 is, for example, about 5 μm.

このとき、開口部66aの内側のエッジ部分では、レジスト膜66と導電層65との間のわずかな隙間にめっき液が入り込んで導電層65上にめっき金属(Ni)が析出し、鍔部68aが形成される。   At this time, at the inner edge portion of the opening 66a, the plating solution enters a slight gap between the resist film 66 and the conductive layer 65, and the plating metal (Ni) is deposited on the conductive layer 65, so that the flange 68a. Is formed.

次に、図13(b)に示すように、Niめっき層68の上にはんだを例えば10μm〜15μmの厚さに電解めっきして、はんだ層69を形成する。本実施形態では、図13(b)のように、はんだ層69が開口部66aの外側に若干突出するまでNiめっきを行うものとする。   Next, as shown in FIG. 13 (b), a solder layer 69 is formed by electroplating solder on the Ni plating layer 68 to a thickness of 10 μm to 15 μm, for example. In this embodiment, as shown in FIG. 13B, Ni plating is performed until the solder layer 69 slightly protrudes outside the opening 66a.

次に、レジスト剥離液を使用して、図13(c)に示すようにレジスト膜66を除去する。レジスト膜66を除去した後には、導電層65の上にNiめっき層68(鍔部68aを含む)が残留する。   Next, using a resist stripper, the resist film 66 is removed as shown in FIG. After removing the resist film 66, the Ni plating layer 68 (including the flange portion 68a) remains on the conductive layer 65.

次に、図7に例示するプラズマアッシング装置を使用して、図14(a)に示すように導電層65のうち露出している部分の表面を酸化させて、酸化層65aを形成する。   Next, using the plasma ashing apparatus illustrated in FIG. 7, the surface of the exposed portion of the conductive layer 65 is oxidized as shown in FIG. 14A to form an oxide layer 65a.

次に、図14(b)に示すように、バリア層64が露出するまで酸化層65a及びその下の導電層65をエッチングする。導電層65及び酸化層65aのエッチングには、エッチング液として例えば過水酢酸(過酸化水素水と酢酸と純水とを混合した液)や過水硫酸(過酸化水素水と硫酸と純水とを混合した液)を使用することができる。   Next, as shown in FIG. 14B, the oxide layer 65a and the underlying conductive layer 65 are etched until the barrier layer 64 is exposed. For etching the conductive layer 65 and the oxide layer 65a, for example, perhydroacetic acid (a mixture of hydrogen peroxide, acetic acid, and pure water) or perhydrosulfuric acid (hydrogen peroxide, sulfuric acid, and pure water) is used as an etchant. Can be used.

本実施形態では、導電層65の表面を酸化させているため、短時間で導電層65をエッチング除去することができる。エッチング終了後は、Niめっき層68(鍔部68aを含む)の下に導電層65が残留する。   In this embodiment, since the surface of the conductive layer 65 is oxidized, the conductive layer 65 can be removed by etching in a short time. After the etching is completed, the conductive layer 65 remains under the Ni plating layer 68 (including the flange portion 68a).

次に、図14(c)に示すように、パッシベーション膜63が露出するまでバリア層64をエッチングする。Tiからなるバリア層64のエッチングには、例えばアルカリ性チタンエッチング液(例えば、過酸化水素水に純水と水酸化カリウム等を混合した液)を使用することができる。   Next, as shown in FIG. 14C, the barrier layer 64 is etched until the passivation film 63 is exposed. For the etching of the barrier layer 64 made of Ti, for example, an alkaline titanium etching solution (for example, a solution obtained by mixing pure water and potassium hydroxide in hydrogen peroxide solution) can be used.

次いで、図15に示すようにはんだ層69を例えば230℃〜240℃程度の低温でリフローして、はんだからなる表面が滑らかな球状のマイクロバンプ70を形成する。本実施形態では、はんだ層69の厚さが前述の如く10μm〜15μm程度と薄いので、はんだ層69から形成されるマイクロバンプ70の横方向に張り出し量が少ない。従って、狭ピッチの半導体装置に適用できる。   Next, as shown in FIG. 15, the solder layer 69 is reflowed at a low temperature of about 230 ° C. to 240 ° C., for example, to form spherical microbumps 70 having a smooth surface made of solder. In this embodiment, since the thickness of the solder layer 69 is as thin as about 10 μm to 15 μm as described above, the amount of protrusion of the micro bumps 70 formed from the solder layer 69 in the lateral direction is small. Therefore, it can be applied to a narrow pitch semiconductor device.

次いで、ダイシング装置により半導体基板61を切断して、個々の半導体チップに分離する。そして、その半導体チップを、他の半導体チップ又はパッケージ基板上に実装して、半導体装置を完成する。   Next, the semiconductor substrate 61 is cut by a dicing apparatus and separated into individual semiconductor chips. Then, the semiconductor chip is mounted on another semiconductor chip or a package substrate to complete the semiconductor device.

図16は、上述した方法により形成した半導体チップを、他の半導体チップ上に積層(スタック)して半導体装置を完成させた状態を示す図である。   FIG. 16 is a diagram showing a state in which the semiconductor device is completed by stacking (stacking) the semiconductor chip formed by the above-described method on another semiconductor chip.

図16に示す半導体装置80は、パッケージ基板81と、半導体チップ84と、半導体チップ85とを有する。   A semiconductor device 80 illustrated in FIG. 16 includes a package substrate 81, a semiconductor chip 84, and a semiconductor chip 85.

半導体チップ84にはロジック回路が形成されており、この半導体チップ84はパッケージ基板81上に搭載されている。パッケージ基板81の下面側には回路基板(図示せず)に形成された電極と接続する通常バンプ82が形成されており、上面側には電極83が形成されている。電極84と半導体チップ84の上面周縁部に形成された電極とは、金属細線(ボンディングワイヤ)87により電気的に接続されている。   A logic circuit is formed on the semiconductor chip 84, and the semiconductor chip 84 is mounted on the package substrate 81. A normal bump 82 connected to an electrode formed on a circuit board (not shown) is formed on the lower surface side of the package substrate 81, and an electrode 83 is formed on the upper surface side. The electrode 84 and the electrode formed on the periphery of the upper surface of the semiconductor chip 84 are electrically connected by a metal thin wire (bonding wire) 87.

半導体チップ85には例えばDRAMが形成されており、上述の実施形態に記載した方法により形成されたマイクロバンプ70を介して半導体チップ84の電極に接続されている。   For example, a DRAM is formed in the semiconductor chip 85 and is connected to the electrode of the semiconductor chip 84 via the micro bumps 70 formed by the method described in the above-described embodiment.

図17は、上述した方法により形成した半導体チップを、パッケージ基板上に搭載して半導体装置を完成させた状態を示す図である。   FIG. 17 is a view showing a state where a semiconductor device is completed by mounting the semiconductor chip formed by the above-described method on a package substrate.

図17に示す半導体装置90は、パッケージ基板91と、半導体チップ95とを有する。   A semiconductor device 90 illustrated in FIG. 17 includes a package substrate 91 and a semiconductor chip 95.

パッケージ基板91の下側には通常バンプ92が形成されている。また、パッケージ基板91の上側には、電極93が形成されている。   A normal bump 92 is formed on the lower side of the package substrate 91. An electrode 93 is formed on the upper side of the package substrate 91.

半導体チップ95は、上述の実施形態に記載した方法により形成されたマイクロバンプ70を介して、パッケージ基板91の電極93に接続されている。   The semiconductor chip 95 is connected to the electrode 93 of the package substrate 91 through the micro bumps 70 formed by the method described in the above embodiment.

本実施形態においても、第1の実施形態と同様に、導電層65をエッチングする前に導電層65の表面を酸化させて、導電層65のエッチング時間を短縮している。これにより、エッチング終了時には、鍔部68aと、鍔部68aの下方の導電層65及びバリア層64とが残る。   Also in this embodiment, the etching time of the conductive layer 65 is shortened by oxidizing the surface of the conductive layer 65 before the conductive layer 65 is etched, as in the first embodiment. As a result, when the etching is finished, the flange 68a, and the conductive layer 65 and the barrier layer 64 below the flange 68a remain.

そして、鍔部68aの下方に導電層65及びバリア層64が残ることにより、UBM径の縮小が回避され、マイクロバンプ70の強度が高くなる。その結果、半導体装置の信頼性が向上する。   Then, the conductive layer 65 and the barrier layer 64 remain below the flange portion 68a, so that the UBM diameter is prevented from being reduced and the strength of the microbump 70 is increased. As a result, the reliability of the semiconductor device is improved.

以上の諸実施形態に関し、更に以下の付記を開示する。   The following additional notes are disclosed with respect to the above embodiments.

(付記1)半導体基板上に電極を形成する工程と、
前記半導体基板上に、前記電極に対応する部分に開口部が設けられた絶縁膜を形成する工程と、
前記半導体基板の前記絶縁膜上に導電層を形成する工程と、
前記導電層の上に、前記電極に対応する部分に開口部が設けられたレジスト膜を形成する工程と、
電解めっき法により、前記レジスト膜の前記開口部の内側の前記導電層上に金属めっき層を形成するとともに、前記レジスト膜の前記開口部の周囲の前記レジスト膜と前記導電層との間に前記金属めっき層と同じ金属からなる鍔部を形成する工程と、
前記レジスト膜を除去して前記導電層を露出させる工程と、
前記レジスト膜を除去することにより露出した部分の前記導電層の表面を酸化させて酸化膜を形成する工程と、
前記酸化膜及びその下の前記導電層をエッチングにより除去する工程と
を有することを特徴とする半導体装置の製造方法。
(Appendix 1) forming an electrode on a semiconductor substrate;
Forming an insulating film provided with an opening in a portion corresponding to the electrode on the semiconductor substrate;
Forming a conductive layer on the insulating film of the semiconductor substrate;
Forming a resist film having an opening in a portion corresponding to the electrode on the conductive layer;
A metal plating layer is formed on the conductive layer inside the opening of the resist film by an electrolytic plating method, and the resist film and the conductive layer around the opening of the resist film are interposed between the resist film and the conductive layer. Forming a flange made of the same metal as the metal plating layer;
Removing the resist film to expose the conductive layer;
Oxidizing the surface of the conductive layer exposed by removing the resist film to form an oxide film;
And a step of removing the oxide film and the conductive layer therebelow by etching.

(付記2)前記絶縁膜を形成する工程と前記導電層を形成する工程との間に、前記絶縁膜上にバリア層を形成する工程を有することを特徴とする付記1に記載の半導体装置の製造方法。   (Appendix 2) The semiconductor device according to Appendix 1, further comprising a step of forming a barrier layer on the insulating film between the step of forming the insulating film and the step of forming the conductive layer. Production method.

(付記3)前記導電層を銅により形成することを特徴とする付記1又は2に記載の半導体装置の製造方法。   (Additional remark 3) The manufacturing method of the semiconductor device of Additional remark 1 or 2 characterized by forming the said conductive layer with copper.

(付記4)前記金属めっき層をニッケルにより形成することを特徴とする付記1乃至3のいずれか1項に記載の半導体装置の製造方法。   (Additional remark 4) The said metal plating layer is formed with nickel, The manufacturing method of the semiconductor device of any one of Additional remark 1 thru | or 3 characterized by the above-mentioned.

(付記5)前記酸化膜を形成する工程は、CF4を含む酸素雰囲気中で行うことを特徴とする付記1乃至4のいずれか1項に記載の半導体装置の製造方法。 (Supplementary note 5) The method for manufacturing a semiconductor device according to any one of supplementary notes 1 to 4, wherein the step of forming the oxide film is performed in an oxygen atmosphere containing CF 4 .

(付記6)前記金属めっき層を形成する工程と前記レジスト膜を除去する工程との間に、前記金属めっき層の上に金属層をめっきする工程を有することを特徴とする付記1乃至5のいずれか1項に記載の半導体装置の製造方法。   (Additional remark 6) It has the process of plating a metal layer on the said metal plating layer between the process of forming the said metal plating layer, and the process of removing the said resist film, The additional remark 1 thru | or 5 characterized by the above-mentioned A manufacturing method of a semiconductor device given in any 1 paragraph.

(付記7)前記金属層を銅により形成することを特徴とする付記6に記載の半導体装置の製造方法。   (Additional remark 7) The manufacturing method of the semiconductor device of Additional remark 6 characterized by forming the said metal layer with copper.

(付記8)前記金属層をはんだにより形成することを特徴とする付記6に記載の半導体装置の製造方法。   (Additional remark 8) The manufacturing method of the semiconductor device of Additional remark 6 characterized by forming the said metal layer with a solder.

(付記9)半導体基板と、
前記半導体基板の上方に形成された電極と、
前記電極の上に形成された導電層と、
前記導電層の上を覆う金属めっき層と、
前記金属めっき層の上に形成されて前記金属めっき層よりも小径の金属層と
を有することを特徴とする半導体装置。
(Appendix 9) a semiconductor substrate;
An electrode formed above the semiconductor substrate;
A conductive layer formed on the electrode;
A metal plating layer covering the conductive layer;
A semiconductor device comprising: a metal layer formed on the metal plating layer and having a smaller diameter than the metal plating layer.

(付記10)前記導電層が銅により形成され、前記金属めっき層がニッケルにより形成されていることを特徴とする付記9に記載の半導体装置。   (Supplementary note 10) The semiconductor device according to supplementary note 9, wherein the conductive layer is made of copper and the metal plating layer is made of nickel.

(付記11)前記金属層が銅により形成されたCuピラーであることを特徴とする付記9又は10に記載の半導体装置。   (Supplementary note 11) The semiconductor device according to Supplementary note 9 or 10, wherein the metal layer is a Cu pillar formed of copper.

(付記12)前記金属層がはんだにより形成されたマイクロバンプであることを特徴とする付記9又は10に記載の半導体装置。   (Supplementary note 12) The semiconductor device according to Supplementary note 9 or 10, wherein the metal layer is a micro bump formed of solder.

11,61…半導体基板、12,62…電極、13,63…パッシベーション膜、14,64…バリア層、15,65…導電層、15a,65a…酸化層、16,66…レジスト膜、17,67…露光マスク、18,68…めっき層、18a,68a…鍔部、19…Cuピラー、20、69…はんだ層、30…プラズマアッシング装置、31…チャンバ、32a…上部電極、32b…下部電極、33…高周波電源、40,50.80,90…半導体装置、41,51,81,91…パッケージ基板、42,52,82,92…通常バンプ、43,53,83,93…電極、44,45,55,84,85,95…半導体チップ、47,87…金属細線、70…マイクロバンプ。   DESCRIPTION OF SYMBOLS 11, 61 ... Semiconductor substrate, 12, 62 ... Electrode, 13, 63 ... Passivation film, 14, 64 ... Barrier layer, 15, 65 ... Conductive layer, 15a, 65a ... Oxidation layer, 16, 66 ... Resist film, 17, 67 ... Exposure mask, 18, 68 ... Plating layer, 18a, 68a ... Hut, 19 ... Cu pillar, 20, 69 ... Solder layer, 30 ... Plasma ashing device, 31 ... Chamber, 32a ... Upper electrode, 32b ... Lower electrode 33, high frequency power supply, 40, 50.80, 90 ... semiconductor device, 41, 51, 81, 91 ... package substrate, 42, 52, 82, 92 ... normal bump, 43, 53, 83, 93 ... electrode, 44 , 45, 55, 84, 85, 95... Semiconductor chip, 47, 87... Fine metal wire, 70.

Claims (6)

半導体基板上に電極を形成する工程と、
前記半導体基板上に、前記電極に対応する部分に開口部が設けられた絶縁膜を形成する工程と、
前記半導体基板の前記絶縁膜上に導電層を形成する工程と、
前記導電層の上に、前記電極に対応する部分に開口部が設けられたレジスト膜を形成する工程と、
電解めっき法により、前記レジスト膜の前記開口部の内側の前記導電層上に金属めっき層を形成するとともに、前記レジスト膜の前記開口部の周囲の前記レジスト膜と前記導電層との間に前記金属めっき層と同じ金属からなる鍔部を形成する工程と、
前記レジスト膜を除去して前記導電層を露出させる工程と、
前記レジスト膜を除去することにより露出した部分の前記導電層の表面を酸化させて酸化膜を形成する工程と、
前記酸化膜及びその下の前記導電層をエッチングにより除去する工程と
を有することを特徴とする半導体装置の製造方法。
Forming an electrode on a semiconductor substrate;
Forming an insulating film provided with an opening in a portion corresponding to the electrode on the semiconductor substrate;
Forming a conductive layer on the insulating film of the semiconductor substrate;
Forming a resist film having an opening in a portion corresponding to the electrode on the conductive layer;
A metal plating layer is formed on the conductive layer inside the opening of the resist film by an electrolytic plating method, and the resist film and the conductive layer around the opening of the resist film are interposed between the resist film and the conductive layer. Forming a flange made of the same metal as the metal plating layer;
Removing the resist film to expose the conductive layer;
Oxidizing the surface of the conductive layer exposed by removing the resist film to form an oxide film;
And a step of removing the oxide film and the conductive layer therebelow by etching.
前記絶縁膜を形成する工程と前記導電層を形成する工程との間に、前記絶縁膜上にバリア層を形成する工程を有することを特徴とする請求項1に記載の半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, further comprising a step of forming a barrier layer on the insulating film between the step of forming the insulating film and the step of forming the conductive layer. 前記導電層を銅により形成することを特徴とする請求項1又は2に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 1, wherein the conductive layer is formed of copper. 前記金属めっき層をニッケルにより形成することを特徴とする請求項1乃至3のいずれか1項に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 1, wherein the metal plating layer is formed of nickel. 前記金属めっき層を形成する工程と前記レジスト膜を除去する工程との間に、前記金属めっき層の上に金属層をめっきする工程を有することを特徴とする請求項1乃至4のいずれか1項に記載の半導体装置の製造方法。   5. The method according to claim 1, further comprising a step of plating a metal layer on the metal plating layer between the step of forming the metal plating layer and the step of removing the resist film. A method for manufacturing the semiconductor device according to the item. 半導体基板と、
前記半導体基板の上方に形成された電極と、
前記電極の上に形成された導電層と、
前記導電層の上を覆う金属めっき層と、
前記金属めっき層の上に形成されて前記金属めっき層よりも小径の金属層と
を有することを特徴とする半導体装置。
A semiconductor substrate;
An electrode formed above the semiconductor substrate;
A conductive layer formed on the electrode;
A metal plating layer covering the conductive layer;
A semiconductor device comprising: a metal layer formed on the metal plating layer and having a smaller diameter than the metal plating layer.
JP2013027472A 2013-02-15 2013-02-15 Semiconductor device manufacturing method and semiconductor device Pending JP2014157906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013027472A JP2014157906A (en) 2013-02-15 2013-02-15 Semiconductor device manufacturing method and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013027472A JP2014157906A (en) 2013-02-15 2013-02-15 Semiconductor device manufacturing method and semiconductor device

Publications (1)

Publication Number Publication Date
JP2014157906A true JP2014157906A (en) 2014-08-28

Family

ID=51578617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013027472A Pending JP2014157906A (en) 2013-02-15 2013-02-15 Semiconductor device manufacturing method and semiconductor device

Country Status (1)

Country Link
JP (1) JP2014157906A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190013551A (en) 2017-07-28 2019-02-11 아스리트 에프에이 가부시키가이샤 Columnar member mounting device and columnar member mounting method
US10964658B2 (en) 2019-02-14 2021-03-30 Toshiba Memory Corporation Semiconductor device having a metallic oxide or metallic hydroxide barrier layer
US11145513B2 (en) 2018-09-25 2021-10-12 Nichia Corporation Method of manufacturing semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274201A (en) * 1998-03-18 1999-10-08 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JP2008028112A (en) * 2006-07-20 2008-02-07 Toshiba Corp Manufacturing method for semiconductor device
JP2012204391A (en) * 2011-03-23 2012-10-22 Sony Corp Semiconductor device, semiconductor device manufacturing method, and circuit board manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274201A (en) * 1998-03-18 1999-10-08 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JP2008028112A (en) * 2006-07-20 2008-02-07 Toshiba Corp Manufacturing method for semiconductor device
JP2012204391A (en) * 2011-03-23 2012-10-22 Sony Corp Semiconductor device, semiconductor device manufacturing method, and circuit board manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190013551A (en) 2017-07-28 2019-02-11 아스리트 에프에이 가부시키가이샤 Columnar member mounting device and columnar member mounting method
US11145513B2 (en) 2018-09-25 2021-10-12 Nichia Corporation Method of manufacturing semiconductor device
US10964658B2 (en) 2019-02-14 2021-03-30 Toshiba Memory Corporation Semiconductor device having a metallic oxide or metallic hydroxide barrier layer

Similar Documents

Publication Publication Date Title
TWI460836B (en) Conductive pillar for semiconductor substrate and method of manufacture
US9391036B2 (en) Semiconductor device and manufacturing method thereof
JP5419167B2 (en) Semiconductor device manufacturing method and semiconductor device
KR102306796B1 (en) Methods and apparatuses to form self-aligned caps
US9437563B2 (en) Bump structures in semiconductor packages and methods of fabricating the same
TWI690000B (en) Method of manufacturing package
US20060175686A1 (en) Semiconductor device and fabrication method thereof
TWI724525B (en) Package and method for forming the same
US20120009777A1 (en) UBM Etching Methods
JP2012160512A (en) Semiconductor device manufacturing method and semiconductor device
US10269748B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2003203940A (en) Semiconductor chip and wiring base board and manufacturing method of them, semiconductor wafer, semiconductor device, circuit base board and electronic instrument
WO2011055825A1 (en) Etching liquid for etching silicon substrate rear surface in through silicon via process and method for manufacturing semiconductor chip having through silicon via using the etching liquid
TW201103093A (en) Metal pillar bump structure and method for forming the same
US8866293B2 (en) Semiconductor structure and fabrication method thereof
JP4533436B2 (en) Manufacturing method of semiconductor device
JP2010232400A (en) Semiconductor substrate, method of manufacturing semiconductor substrate, and semiconductor package
JP2014157906A (en) Semiconductor device manufacturing method and semiconductor device
JP2014110284A (en) Semiconductor device manufacturing method
TWI677057B (en) Methods of forming integrated circuit structure for joining wafers and resulting structure
JP2019083250A (en) Semiconductor device and manufacturing method of semiconductor device
US8093148B2 (en) Method for manufacturing semiconductor device having electrode for external connection
CN103367243A (en) Shallow via formation by oxidation
JP2009302340A (en) Method for manufacturing semiconductor device
JP2012119444A (en) Semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170214