JP2014157037A - Magnetic prospecting method for metallic elongate member - Google Patents

Magnetic prospecting method for metallic elongate member Download PDF

Info

Publication number
JP2014157037A
JP2014157037A JP2013026852A JP2013026852A JP2014157037A JP 2014157037 A JP2014157037 A JP 2014157037A JP 2013026852 A JP2013026852 A JP 2013026852A JP 2013026852 A JP2013026852 A JP 2013026852A JP 2014157037 A JP2014157037 A JP 2014157037A
Authority
JP
Japan
Prior art keywords
magnetic
elongate member
earth anchor
ground
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013026852A
Other languages
Japanese (ja)
Inventor
Masayoshi Watanabe
正嘉 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON CHIKA TANSA KK
Taisei Corp
Original Assignee
NIPPON CHIKA TANSA KK
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON CHIKA TANSA KK, Taisei Corp filed Critical NIPPON CHIKA TANSA KK
Priority to JP2013026852A priority Critical patent/JP2014157037A/en
Publication of JP2014157037A publication Critical patent/JP2014157037A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic prospecting method for a metallic elongate member capable of accurately performing magnetic survey of an embedded state of an elongate member such as an earth anchor.SOLUTION: Disclosed is a magnetic prospecting method for a metallic elongate member in which, out of the metallic elongate member 1 (earth anchor) which is embedded in the underground G and left therein, a head part 1a exposed onto the ground is made to pass through a conductive coil 2, the conductive coil 2 is energized to intensify the disturbance of a magnetic field from the elongate member 1, and an embedded state of the elongate member 1 is searched by a magnetic searcher 4.

Description

本発明は、アースアンカーをはじめとする金属製の細長部材の磁気探査方法に関するものである。   The present invention relates to a magnetic exploration method for an elongated metal member such as an earth anchor.

山留めの控え工としてタイロッド等からなる金属製の細長部材がアースアンカーとして一般に適用されている。そして、既にアースアンカーが地中に埋設されている地盤に対して地盤改良工事や新規の建造物(半地下構造のビルや駅舎、地下トンネルなど)の建設をおこなう場合に、このアースアンカーを避けて施工する必要がある。なお、このように既に地中に埋設されている構造物としてはインフラ設備として使用されていた管路(鋼管等)、鋼管杭などもある。   A metal elongated member made of a tie rod or the like is generally applied as a ground anchor as a retaining work for a mountain stop. And avoid the earth anchor when the ground improvement work or the construction of a new structure (semi-underground building, station building, underground tunnel, etc.) is performed on the ground where the earth anchor is already buried in the ground. Need to be installed. In addition, there are pipes (steel pipes, etc.), steel pipe piles, etc. that have been used as infrastructure equipment as structures already buried in the ground.

このようなアースアンカーや鋼管杭等の埋設状態や埋設位置はこれらが施工された工事で用いられた設計図面等でおよそ確認することができるものの、必ずしも設計図面等から精緻に特定できるとは限らない。   Although the burial state and burial position of such earth anchors and steel pipe piles can be roughly confirmed with the design drawings used in the construction in which they are constructed, they cannot always be precisely identified from the design drawings etc. Absent.

ここで、「埋設状態」とは、たとえば埋設対象がアースアンカーの場合には、アースアンカーの長さやその三次元的な埋設角度などの情報を意味している。   Here, the “embedding state” means information such as the length of the earth anchor and its three-dimensional embedding angle when the object to be buried is an earth anchor, for example.

このような地下埋設物が金属製のものの場合には、磁気センサをはじめとする磁気探査器を使用し、地中にある金属製の磁性体がその長さ方向に磁化されていることを利用して地中の磁性体の磁化強度を検出する方法が一般に適用されている。   When such underground objects are made of metal, a magnetic probe such as a magnetic sensor is used, and the metal magnetic material in the ground is magnetized in the length direction. Thus, a method of detecting the magnetization intensity of a magnetic substance in the ground is generally applied.

たとえば、インフラ施設や杭等で適用されている大径の鋼管等、地中に埋設されている金属製の磁性体の体積がある程度大きなものの場合は、磁性体から発生する磁場の乱れも大きく、磁気探査による埋設状態の特定をある程度精度よく実行することができる。   For example, if the volume of a metal magnetic material buried in the ground is large to some extent, such as large-diameter steel pipes applied in infrastructure facilities and piles, the magnetic field generated from the magnetic material is greatly disturbed, The buried state can be identified with a certain degree of accuracy by magnetic exploration.

しかしながら、上記するアースアンカー等は断面が比較的小さいことから発生する磁場の乱れも小さく、したがって地中に存在しているアースアンカー等を地上から磁気探査器にてその埋設状態を精度よく特定することは極めて困難である。   However, since the above-mentioned earth anchors and the like have a relatively small cross section, the disturbance of the magnetic field generated is small, so that the earth anchors existing in the ground can be accurately identified from the ground with a magnetic probe. It is extremely difficult.

そこで、このように磁場の乱れの小さなアースアンカーの磁場を強化することでその埋設状態の特定を容易に実行できる方策として、以下2つの磁場強化方法を挙げることができる。   In view of this, the following two magnetic field strengthening methods can be cited as measures for easily identifying the embedded state by strengthening the magnetic field of the earth anchor having a small magnetic field disturbance.

磁場強化法の一つは、アースアンカーの頭部に強力な永久磁石を設置してアースアンカーの磁場を強化する方法である。現在市販されていて入手が容易な永久磁石としては、フェライト磁石やアルニコ磁石、ネオジム磁石などが挙げられるが、その中でも、最大エネルギ積が最も大きく、最も強力な磁石がネオジム磁石であることから、このネオジム磁石を磁気探査器の頭部に設置することで探査対象物の磁気量を効果的に増大させることができる。   One of the magnetic field enhancement methods is a method of strengthening the magnetic field of the earth anchor by installing a strong permanent magnet on the head of the earth anchor. Permanent magnets that are currently commercially available and easy to obtain include ferrite magnets, alnico magnets, neodymium magnets, etc., among them, because the maximum energy product is the largest and the most powerful magnet is a neodymium magnet, By installing this neodymium magnet on the head of the magnetic probe, the magnetic quantity of the object to be searched can be effectively increased.

しかしながら、この磁場強化法では、磁石の磁力が強いことから磁石そのものの取扱いに注意を要する必要があり、さらには、磁石の有する磁気量を超えた磁気量を期待できないという課題がある。   However, in this magnetic field enhancement method, since the magnetic force of the magnet is strong, it is necessary to be careful in handling the magnet itself, and further, there is a problem that a magnetic amount exceeding the magnetic amount of the magnet cannot be expected.

一方、磁場強化法の他の一つは、アースアンカーに直接電流を流してやることにより、アースアンカーに磁界を発生させる方法である。アースアンカー等の導電体に電流を流すと磁場が発生するため、探査対象であるアースアンカー自体に電流を流すことでアースアンカーから直接磁界を発生させ、発生した磁界を検出できる可能性がある。なお、磁界の強さは電流の大きさに依存することから、大きな電流を流すことが必要である。   On the other hand, the other one of the magnetic field enhancement methods is a method of generating a magnetic field in the earth anchor by passing a current directly through the earth anchor. When a current is passed through a conductor such as an earth anchor, a magnetic field is generated. Therefore, there is a possibility that a magnetic field is directly generated from the earth anchor by flowing a current through the earth anchor itself to be searched and the generated magnetic field can be detected. Since the strength of the magnetic field depends on the magnitude of the current, it is necessary to pass a large current.

しかしながら、この磁場強化法では、アースアンカー等が存在する周囲の土質が高比抵抗であった場合に効果が期待できるだけの電流が流れない可能性があり、さらには、電流を流すための遠電極の設置が必要となるといった課題がある。   However, in this magnetic field strengthening method, there is a possibility that the current that can be expected to be effective does not flow when the surrounding soil where the earth anchor is present has a high specific resistance, and further, the far electrode for flowing the current There is a problem that it is necessary to install.

また、特許文献1には、ガス・水道管が埋設されているか否かを磁気探査する磁気探査方法に関し、地表面から励磁コイルによってガス・水道管を磁化し、その磁界分布を測定する方法が開示されている。   Patent Document 1 relates to a magnetic exploration method for magnetic exploration of whether or not a gas / water pipe is buried, and a method for magnetizing the gas / water pipe from the ground surface with an exciting coil and measuring the magnetic field distribution. It is disclosed.

しかし、この方法は、地上の励磁コイルで埋設物を磁化することから、磁場強化の効果が少なく、アースアンカー等の細長部材をその対象としていないことから、仮に探査対象が細長部材のアースアンカー等の場合にその埋設状態を精度よく特定するのは難しい。   However, since this method magnetizes the embedded object with the ground excitation coil, the effect of strengthening the magnetic field is small, and the elongated object such as an earth anchor is not the target. In this case, it is difficult to accurately identify the buried state.

特開平11−295437号公報JP 11-295437 A

本発明は上記する問題に鑑みてなされたものであり、アースアンカー等の細長部材の埋設状態を精度よく磁気探査することのできる金属製の細長部材の磁気探査方法を提供することを目的としている。   The present invention has been made in view of the above-described problems, and an object thereof is to provide a magnetic exploration method for a metal elongated member capable of accurately magnetically exploring the embedded state of an elongated member such as an earth anchor. .

前記目的を達成すべく、本発明による金属製の細長部材の磁気探査方法は、地中に埋設されて残置されている金属製の細長部材のうち、地上に露出している頭部に導電コイルをくぐらせ、導電コイルに通電して細長部材からの磁場の乱れを大きくして、磁気探査器にて細長部材の埋設状態を探査するものである。   In order to achieve the above-mentioned object, the method for magnetic exploration of a metal elongated member according to the present invention includes a conductive coil formed on the head exposed to the ground among the metal elongated members embedded and left in the ground. In this case, the conductive coil is energized to increase the disturbance of the magnetic field from the elongated member, and the embedded state of the elongated member is probed by a magnetic probe.

本発明の磁気探査方法は、磁気探査対象がタイロッドを含む鉄筋(異径、丸棒)やPC鋼棒、PC鋼線、PC鋼より線などの比較的断面積が小さく、したがってそれ自身の磁場の乱れが小さな金属製の細長部材である。   In the magnetic exploration method of the present invention, the magnetic exploration target has a relatively small cross-sectional area such as a reinforcing bar (different diameter, round bar) including a tie rod, PC steel bar, PC steel wire, PC steel wire, etc., and therefore its own magnetic field. This is a metal elongated member with a small disturbance.

このような金属製の細長部材に対し、電流を直接流したり、永久磁石を設置する方法ではなく、本発明では導電コイルを細長部材の頭部にくぐらせ、導電コイルに通電することで細長部材を電磁石を構成するコイル内の鉄芯として磁気強度の増大を図るものである。   Rather than a method of directly passing an electric current or installing a permanent magnet to such a metal elongated member, in the present invention, the elongated member is formed by passing the conductive coil through the head of the elongated member and energizing the conductive coil. Is used as an iron core in a coil constituting an electromagnet to increase the magnetic strength.

導電コイルに通電して細長部材からの磁場の乱れを大きくして、磁気探査器にて細長部材の埋設状態を探査することで、細長部材の埋設状態、すなわち、細長部材の長さやその三次元的な埋設角度、細長部材の先端の三次元的な位置などを精度よく特定することができる。   By energizing the conductive coil to increase the disturbance of the magnetic field from the elongated member and exploring the embedded state of the elongated member with a magnetic probe, the embedded state of the elongated member, that is, the length of the elongated member and its three-dimensional It is possible to accurately identify a typical embedding angle, the three-dimensional position of the tip of the elongated member, and the like.

磁気探査器による磁気探査は、地上で磁気探査器を移動させながらおこなう方法や、鉛直もしくは水平もしくは傾斜した方法に測定用ボーリング孔を穿孔し、ここに磁気探査器を落とし込みながらおこなう方法などがあるが、本発明の磁気探査方法を適用することで、小断面の細長部材であってもその磁場の乱れを大きくすることができ、磁気探査器を地上に走行させながら精度よく細長部材の埋設状態の特定をおこなうことができる。   Magnetic exploration using a magnetic probe includes a method of moving the magnetic probe on the ground and a method of drilling a measurement borehole in a vertical, horizontal, or inclined method and dropping the magnetic probe into it. However, by applying the magnetic exploration method of the present invention, it is possible to increase the disturbance of the magnetic field even for an elongated member having a small cross section, and the embedded state of the elongated member with high accuracy while running the magnetic probe on the ground. Can be specified.

特に、電磁石の磁気強さは導電コイルの単位長さ当たりの巻数や電流値に比例することから、コイルの巻数と電流値のいずれか一方もしくは双方を適宜調整することで発生させたい磁気強度を容易に得ることができる。   In particular, since the magnetic strength of an electromagnet is proportional to the number of turns and current value per unit length of a conductive coil, the magnetic strength desired to be generated can be set by appropriately adjusting either or both of the number of turns of the coil and the current value. Can be easily obtained.

また、細長部材の頭部から導電コイルをくぐらせて仮固定し、ここに通電して磁気探査器にて磁気探査をおこなうといった簡易な探査方法であることから、磁気探査対象エリアが狭隘な場所である等、探査に制約がある場合でも効率的に磁気探査を実行することができる。   In addition, it is a simple exploration method in which a conducting coil is temporarily fixed by passing it through the head of an elongated member, and then the magnetic exploration is performed by energizing the conductive coil. Even when there are restrictions on the exploration, such as, the magnetic exploration can be executed efficiently.

以上の説明から理解できるように、本発明の金属製の細長部材の磁気探査方法によれば、地中に埋設されて残置されている金属製の細長部材の頭部に導電コイルをくぐらせ、導電コイルに通電して細長部材からの磁場の乱れを大きくして磁気探査をおこなうことにより、効率的で精度よく細長部材の埋設状態を特定することができる。   As can be understood from the above description, according to the magnetic exploration method of the metal elongated member of the present invention, the conductive coil is passed through the head of the metal elongated member embedded and left in the ground, By conducting the magnetic exploration by energizing the conductive coil and increasing the disturbance of the magnetic field from the elongated member, the embedded state of the elongated member can be identified efficiently and accurately.

本発明の磁気探査方法を説明したフロー図である。It is a flowchart explaining the magnetic exploration method of this invention. 図1に続いて磁気探査方法を説明したフロー図である。FIG. 2 is a flowchart illustrating a magnetic exploration method following FIG. 1. 磁性体の有無、磁性体までの離間を変化させて磁場の乱れを測定した結果を示す図である。It is a figure which shows the result of having measured the disorder of the magnetic field by changing the presence or absence of a magnetic body and the separation to a magnetic body.

以下、図面を参照して、本発明の金属製の細長部材の磁気探査方法の実施の形態を説明する。なお、図示例は、土留め壁の控え工として適用されるアースアンカーの埋設状態を特定するものであるが、図示例以外にも、多様な形態の金属製の細長部材が地中に多様な形態で埋設された埋設状態(鉛直方向に埋設されている状態、水平方向に埋設されている状態など)の特定に本発明の磁気探査方法が適用できることは勿論のことである。   Hereinafter, an embodiment of a magnetic exploration method for a metal elongated member according to the present invention will be described with reference to the drawings. In addition, although the example of illustration specifies the embedment state of the earth anchor applied as a construction work of a retaining wall, in addition to the example of illustration, various forms of metal elongated members are various in the ground. It goes without saying that the magnetic exploration method of the present invention can be applied to the identification of the embedded state embedded in the form (the state embedded in the vertical direction, the state embedded in the horizontal direction, etc.).

(金属製の細長部材の磁気探査方法の実施の形態)
図1,2はその順で、本発明の磁気探査方法を説明したフロー図である。
(Embodiment of magnetic exploration method for metal elongated member)
1 and 2 are flowcharts illustrating the magnetic exploration method of the present invention in that order.

図示するように、地盤Gを鉛直方向に延びるコンクリート製もしくは鋼製の土留め壁Dが支持し、この土留め壁Dをアースアンカー1が控え工として控えて土留め壁Dを介した地盤Gの支保がおこなわれている。   As shown in the drawing, the ground G is supported by a concrete or steel retaining wall D that extends in the vertical direction, and the ground G through the retaining wall D with the earth anchor 1 refraining from the earth anchor 1 as a back-up work. Is supported.

たとえばこの地盤Gの上方にビルや駅舎等の構造物を建設するに当たり、構造物を支持する支持杭を地盤G内に施工するに当たって、地中G内に斜め方向に延設するアースアンカー1を避けて施工する必要がある。   For example, in constructing a structure such as a building or a station building above the ground G, when constructing a support pile for supporting the structure in the ground G, an earth anchor 1 extending obliquely in the underground G is provided. It is necessary to avoid construction.

そこで、地中Gにあるアースアンカー1(磁性体)がその長さ方向に磁化されていることを利用し、アースアンカー1の有する磁化強度を検出してその埋設状態、すなわち、アースアンカー1の長さや三次元的な埋設角度、先端の三次元的な位置などを特定する磁気探査方法を実行する。   Therefore, by utilizing the fact that the earth anchor 1 (magnetic material) in the ground G is magnetized in the length direction, the magnetization strength of the earth anchor 1 is detected and the embedded state, that is, the earth anchor 1 A magnetic exploration method that identifies the length, three-dimensional embedding angle, three-dimensional position of the tip, etc. is executed.

この磁気探査方法の実行に当たり、PC鋼より線等のPC鋼材からなるアースアンカー1は断面が小さく、磁気強度も磁場の乱れも小さい。そのため、磁気探査にて精度よくアースアンカー1の埋設状態の特定が困難である。   In carrying out this magnetic exploration method, the earth anchor 1 made of a PC steel material such as a wire rather than a PC steel has a small cross section and a small magnetic strength and magnetic field disturbance. For this reason, it is difficult to accurately identify the buried state of the earth anchor 1 by magnetic exploration.

そこで、まず、図1で示すように、アースアンカー1の頭部1aに導電コイル2をくぐらせ(X方向)、図2で示すように、アースアンカー1の頭部1aで導電コイル2を仮固定し、導電コイル2を電源回路3に繋いで通電する。   Therefore, first, as shown in FIG. 1, the conductive coil 2 is passed through the head 1a of the earth anchor 1 (X direction), and the conductive coil 2 is temporarily attached to the head 1a of the earth anchor 1 as shown in FIG. The conductive coil 2 is connected to the power supply circuit 3 and energized.

本来的には小さな磁場の乱れが小さかったアースアンカー1に対して、導電コイル3に通電することでアースアンカー1が電磁石を構成するコイル内の鉄芯として作用し、アースアンカー1自体の磁場MFの強度が増大し、その磁場の乱れも大きくなる。   The earth anchor 1 that originally had a small disturbance of the magnetic field is energized to the conductive coil 3 so that the earth anchor 1 acts as an iron core in the coil constituting the electromagnet, and the magnetic field MF of the earth anchor 1 itself. The intensity of the magnetic field increases and the disturbance of the magnetic field also increases.

アースアンカー1の磁場の乱れが大きくなった段階で、土留め壁Dの表面を磁気探査器4を走行させて(Y方向)アースアンカー1から発する磁場の乱れを検知することにより、アースアンカー1の埋設状態を精度よく特定することができる。   At the stage where the disturbance of the magnetic field of the earth anchor 1 becomes large, the earth anchor 1 is detected by running the magnetic probe 4 on the surface of the retaining wall D (Y direction) and detecting the disturbance of the magnetic field emitted from the earth anchor 1. Can be accurately identified.

図示する磁気探査方法によれば、断面が小さくて磁場の乱れも小さなアースアンカーであっても、導電コイル2を用いて強制的に磁気を増大させることにより、その埋設状態を精度よく、しかも簡易な方法で特定することができる。さらに、図示する磁気探査方法によれば、電磁石の磁気強さは導電コイルの単位長さ当たりの巻数や電流に比例することから、導電コイル2の巻数と電流値のいずれか一方もしくは双方を適宜調整することによって、発生させたい磁気強度を容易に得ることが可能となる。   According to the magnetic exploration method shown in the figure, even if an earth anchor has a small cross section and a small magnetic field disturbance, the embedded state can be accurately and easily simplified by forcibly increasing magnetism using the conductive coil 2. Can be identified in a simple way. Further, according to the illustrated magnetic exploration method, since the magnetic strength of the electromagnet is proportional to the number of turns and current per unit length of the conductive coil, either or both of the number of turns and the current value of the conductive coil 2 are appropriately set. By adjusting, it is possible to easily obtain the magnetic intensity desired to be generated.

[磁気量が金属製の磁性体の大きさ等に依存するか否かを検証した実験とその結果]
本発明者等は、磁気量が金属製の磁性体の大きさ等に依存するか否かを検証するべく、以下で示す種々の実験をおこなった。具体的には、磁気探査器(島津製作所社製 MB101)の校正試験、構造物の根入れ調査、さらには地中埋設物の調査である。
[Experiment to verify whether magnetic quantity depends on the size of metallic magnetic material, etc. and its results]
The present inventors conducted various experiments shown below in order to verify whether or not the amount of magnetism depends on the size of a metallic magnetic material. Specifically, it is a calibration test of a magnetic probe (MB101 manufactured by Shimadzu Corporation), a structure penetration investigation, and a survey of underground objects.

(磁気探査器の校正試験)
長さ1.0mに切断した単管パイプを他の磁性体の影響を受けない場所に設置し、離間距離を0.5mと1.0mの2つの位置で測定をおこなった。測定結果を図3に示す。
(Magnetic probe calibration test)
A single-pipe pipe cut to a length of 1.0 m was installed in a place not affected by other magnetic materials, and the separation distance was measured at two positions of 0.5 m and 1.0 m. The measurement results are shown in FIG.

図3より、1.0mの単管パイプの磁気量は、離隔0.50mにおいて最大3.0μT程度であり、離隔1.00mで最大1.0μT程度であることが分った。   From FIG. 3, it was found that the magnetic quantity of a 1.0 m single pipe was about 3.0 μT at a distance of 0.50 m and about 1.0 μT at a distance of 1.00 m.

(水平ボーリング孔を用いた地中埋設物調査)
水平ボーリングの位置や方向、平面図への調査孔の位置プロットより、調査孔近傍(最短離隔距離0.15mおよび0.30m)に200mm×200mmのH形鋼が杭として建て込まれていた。この際に検知した磁気量は、離隔0.15mにおいて最大40μT程度であり、離隔0.30mにおいて20μT程度であることが分った。
(Investigation of underground objects using horizontal boring holes)
From the position and direction of horizontal boring and the plot of the position of the survey hole on the plan view, a 200mm x 200mm H-section steel was built as a pile near the survey hole (the shortest separation distances 0.15m and 0.30m). It was found that the magnetic quantity detected at this time was about 40 μT at a distance of 0.15 m and about 20 μT at a distance of 0.30 m.

(鉛直磁気探査による鋼管杭根入れ深度調査)
鋼管杭の根入れ深度を把握することを目的に鉛直磁気探査を実施した。鋼管杭と測定孔の離隔は0.60m、鋼管杭の径は600mmである。探査の結果、杭下端部付近において最大10μT程度の反応を示した。
(Investigation of steel pipe pile penetration depth by vertical magnetic survey)
A vertical magnetic survey was conducted to understand the depth of steel pipe pile penetration. The distance between the steel pipe pile and the measurement hole is 0.60m, and the diameter of the steel pipe pile is 600mm. As a result of the exploration, a maximum response of 10μT was shown near the bottom of the pile.

(総合所見)
以上3種の実験結果より、磁気量は金属製の磁性体の大きさ等に依存すると結論付けることができる。
(Comprehensive findings)
From the above three types of experimental results, it can be concluded that the amount of magnetism depends on the size of the metal magnetic material.

すなわち、アースアンカー等の小断面の磁性体では磁気量が小さいことから、本発明の磁気探査方法を適用することでその埋設状態を精度よく、しかも簡易に特定することが可能となる。   That is, since the magnetic quantity is small in a small cross-section magnetic material such as an earth anchor, the embedded state can be accurately and easily specified by applying the magnetic exploration method of the present invention.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

1…細長部材(アースアンカー)、1a…頭部、2…導電コイル、3…電源回路、4…磁気探査器、G…地中(地盤)、D…山留め壁、MF…磁場   DESCRIPTION OF SYMBOLS 1 ... Elongated member (earth anchor), 1a ... Head, 2 ... Conductive coil, 3 ... Power supply circuit, 4 ... Magnetic probe, G ... Underground (ground), D ... Mountain retaining wall, MF ... Magnetic field

Claims (3)

地中に埋設されて残置されている金属製の細長部材のうち、地上に露出している頭部に導電コイルをくぐらせ、
導電コイルに通電して細長部材からの磁場の乱れを大きくして、磁気探査器にて細長部材の埋設状態を探査する金属製の細長部材の磁気探査方法。
Among the metal elongated members that are buried and left in the ground, the conductive coil is passed through the head exposed on the ground,
A magnetic elongate member magnetic exploration method in which a conductive coil is energized to increase a magnetic field disturbance from an elongate member, and an embedded state of the elongated member is explored by a magnetic probe.
地上にある磁気探査器で金属製の細長部材の埋設状態を探査する請求項1に記載の金属製の細長部材の磁気探査方法。   The magnetic exploration method for a metal elongated member according to claim 1, wherein the buried state of the metal elongated member is explored by a magnetic probe on the ground. 金属製の細長部材が、山留めの控え工であるアースアンカーである請求項1または2に記載の金属製の細長部材の磁気探査方法。   The magnetic elongate member magnetic exploration method according to claim 1 or 2, wherein the metal elongate member is an earth anchor that is a construction for retaining a mountain.
JP2013026852A 2013-02-14 2013-02-14 Magnetic prospecting method for metallic elongate member Pending JP2014157037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013026852A JP2014157037A (en) 2013-02-14 2013-02-14 Magnetic prospecting method for metallic elongate member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013026852A JP2014157037A (en) 2013-02-14 2013-02-14 Magnetic prospecting method for metallic elongate member

Publications (1)

Publication Number Publication Date
JP2014157037A true JP2014157037A (en) 2014-08-28

Family

ID=51577992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013026852A Pending JP2014157037A (en) 2013-02-14 2013-02-14 Magnetic prospecting method for metallic elongate member

Country Status (1)

Country Link
JP (1) JP2014157037A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017129388A (en) * 2016-01-18 2017-07-27 株式会社豊神建設 Hazardous material search method by casing-type earth retaining construction, and casing-type earth retaining construction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568078U (en) * 1978-11-02 1980-05-10
JPS58186071A (en) * 1982-04-24 1983-10-29 Nippon Denzai Kogyo Kenkyusho:Kk Detecting device of magnetic pipe position

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568078U (en) * 1978-11-02 1980-05-10
JPS58186071A (en) * 1982-04-24 1983-10-29 Nippon Denzai Kogyo Kenkyusho:Kk Detecting device of magnetic pipe position

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017129388A (en) * 2016-01-18 2017-07-27 株式会社豊神建設 Hazardous material search method by casing-type earth retaining construction, and casing-type earth retaining construction

Similar Documents

Publication Publication Date Title
US9678241B2 (en) Magnetic ranging tool and method
RU2556330C2 (en) Methods for improved active ranging and target well magnetisation
CN105044792B (en) Ground-well time-frequency electromagnetic survey data harvester and method
US20160370166A1 (en) Method and Apparatus for Metal Thickness Measurement in Pipes with a Focused Magnetic Field
US20140002071A1 (en) Probe for analyzing an assembly of rods or tubes
EP0301671B1 (en) Method of magnetizing well tubulars
GB2575386A (en) Using magnetism to evaluate tubing string integrity in a wellbore with multiple tubing strings
JP2014157037A (en) Magnetic prospecting method for metallic elongate member
JP2008051502A (en) Multi-electrode electrical logging method for small diameter
US20140182842A1 (en) Method of injection fluid monitoring
CN103499838A (en) Transient electromagnetic measuring device and recognizing method for anomalous body orientation recognition
CN107728220B (en) Artificial magnetization device and detection method for deep buried abandoned well
CN103176216A (en) Pipeline detection method and borehole antenna
Gobov et al. Magnetic method for nondestructive testing of rebar in concrete
CN203480046U (en) Transient electromagnetic measuring device for anomalous body azimuth recognition
JP2005291818A (en) Penetration implement used for magnetic prospecting and magnetic prospecting method
RU2016114654A (en) METHOD FOR MAGNETIC DEFECTOSCOPY AND DEVICE FOR ITS IMPLEMENTATION
WO2006103910A1 (en) Nondestructive inspection method and device
CN204405071U (en) Geodetic Surveying is with easily finding triangulation pillar system
CN203083968U (en) On-line reinforcing steel bar detection technique based on reluctance method
US20200408947A1 (en) Power-efficient transient electromagnetic evaluation system and method
RU2801354C1 (en) Method for increasing the noise immunity of the technology for locating sleeve joints of casing strings of geological exploration wells and a device for its implementation
CN211692312U (en) Non-excavation underground guiding system
Xu et al. Measurement of wall thinning through insulation with ferromagnetic cladding using pulsed eddy current testing
CN102168943B (en) Method for detecting embedment depth of ferromagnetic tubes/rods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170509