JP2014156809A - 可変ノズルユニット及び可変容量型過給機 - Google Patents

可変ノズルユニット及び可変容量型過給機 Download PDF

Info

Publication number
JP2014156809A
JP2014156809A JP2013027770A JP2013027770A JP2014156809A JP 2014156809 A JP2014156809 A JP 2014156809A JP 2013027770 A JP2013027770 A JP 2013027770A JP 2013027770 A JP2013027770 A JP 2013027770A JP 2014156809 A JP2014156809 A JP 2014156809A
Authority
JP
Japan
Prior art keywords
blade
variable nozzle
base ring
rod
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013027770A
Other languages
English (en)
Other versions
JP6197302B2 (ja
Inventor
Akihiro Yamagata
章弘 山方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2013027770A priority Critical patent/JP6197302B2/ja
Publication of JP2014156809A publication Critical patent/JP2014156809A/ja
Application granted granted Critical
Publication of JP6197302B2 publication Critical patent/JP6197302B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Control Of Turbines (AREA)

Abstract

【課題】タービン効率を高いレベルまで向上させること。
【解決手段】各可変ノズル翼61における第1インナ鍔65は、翼長さ方向SDの中央側に、第1翼軸63の軸心を曲率中心とする円弧状の第1インナ鍔頂部65tを有し、翼長さ方向SDの両端側に、第1インナ鍔頂部65tに滑らかに接続しかつ凹状に湾曲した第1インナ鍔裾部65sをそれぞれ有し、各可変ノズル翼61における第1インナ鍔65の各第1インナ鍔裾部65sの曲率半径R1は、第1翼軸63の軸径D1よりも大きく設定されていること。
【選択図】 図1

Description

本発明は、可変容量型過給機、ガスタービン等のターボ回転機械におけるタービンインペラ側へ供給される排気ガス等のガスの流路面積(流量)を可変とする可変ノズルユニット等に関する。
近年、可変容量型過給機に用いられる可変ノズルユニットについて種々の開発がなされており、本願の出願人も既に可変ノズルユニットについて開発して出願し、その内容も公開されている(特許文献1及び特許文献2等参照)。そして、その従来の可変ノズルユニットの具体的な構成は、次のようになる。
可変容量型過給機におけるタービンハウジング内には、第1ベースリングがタービンインペラと同心状に配設されており、この第1ベースリングには、複数の支持穴が円周方向に等間隔に貫通形成されている。また、第1ベースリングに対してタービンインペラの軸方向に離隔対向した位置には、第2ベースリングが第1ベースリングと一体的かつ同心状に設けられている。
第1ベースリングの対向面と第2ベースリングの対向面との間には、複数の可変ノズル翼が円周方向に等間隔に配設されており、各可変ノズル翼は、タービンインペラの軸心に平行な軸心周りに開閉方向(正逆方向)へ回動可能である。また、各可変ノズル翼の前記軸方向一方側の側面には、翼軸が一体形成されており、この翼軸は、第1ベースリングの対応する支持穴に回動可能に支持されている。そして、各可変ノズル翼の径方向内側翼面における翼軸の基端側には、第1ベースリングの対向面に接触可能なアウタ鍔が一体形成されており、このアウタ鍔は、翼軸の軸心を曲率中心とした円弧状を呈している。更に、可変ノズル翼の径方向内側翼面における翼軸の基端側には、第1ベースリングの対向面に接触可能なインナ鍔が一体形成されており、このインナ鍔は、翼軸の軸心を曲率中心とした円弧状を呈している。
ノズルリングの対向面の反対側には、複数の可変ノズル翼を同期して回動させるためのリンク機構(同期機構)が配設されている。ここで、複数の可変ノズル翼を開方向(正方向)へ同期して回動させると、複数の可変ノズル翼の開度が開かれ、タービンインペラ側へ供給される排気ガスの流路面積が大きくなると共に、複数の可変ノズル翼を閉方向(逆方向)へ同期して回動させると、複数の可変ノズル翼の開度が絞られ、前記排気ガスの流路面積が小さくなるようになっている。
特開2009−243431号公報 特開2009−243300号公報
ところで、各可変ノズル翼におけるインナ鍔及びアウタ鍔はノズルリンクの支持穴からの排気ガスの漏れ及び可変ノズル翼の渋りの低減等のために必要であるものの、複数の可変ノズル翼の開度を絞った際に、高速の流れ(排気ガスの流れ)が各可変ノズル翼におけるインナ鍔(各インナ鍔)及びアウタ鍔(各アウタ鍔)に衝突すると、各インナ鍔及び各アウタ鍔の直下流側の流れが乱れて、各インナ鍔及び各アウタ鍔の直下流側の圧力損失が増大する。特に、各インナ鍔の直下流側の圧力損失の増大が顕著である。そのため、複数の可変ノズル翼の開度を絞った際における各インナ鍔の直下流側の圧力損失の増大を十分に抑制して、可変ノズルユニットを用いた可変容量型過給機の効率(タービン効率)をより高いレベルまで向上させることが強く望まれている。
なお、前述の要望は、可変ノズルユニットを可変容量型過給機に用いた場合だけでなく、ガスタービンに用いた場合においても同様に生じるものである。
そこで、本発明は、前述の要望に応えることができる、新規な構成の可変ノズルユニット等を提供することを目的とする。
本発明の発明者は、前述の課題を解決するために、試行錯誤を繰り返した結果、各可変ノズル翼におけるインナ鍔が翼長さ方向の中央側に円弧状のインナ鍔頂部を有し、翼長さ方向の両端側にインナ鍔頂部に滑らかに接続しかつ凹状に湾曲したインナ鍔裾部をそれぞれ有し、インナ鍔の各インナ鍔裾部の曲率半径が翼軸の軸径よりも大きく設定された場合(図7(a)に示す発明例に係る可変ノズル翼100を用いた場合)には、各可変ノズル翼におけるインナ鍔全体が円弧状を呈している場合(図7(b)に示す従来例に係る可変ノズル翼200を用いた場合)に比べて、図8(a)(b)及び図9(a)(b)に示すように、複数の可変ノズル翼100(200)の開度を絞った際における各可変ノズル翼におけるインナ鍔の直下流側の圧力損失の大きな領域を十分に低減できるという、新規な知見を得ることができ、本発明を完成するに至った。これは、インナ鍔の形状を変更したことにより、各可変ノズル翼におけるインナ鍔(各インナ鍔)の直下流側の流れの乱れを抑えたことによるものと考えられる。なお、発明例に係る可変ノズル翼100においては、一例として、インナ鍔の各インナ鍔裾部のフィレットアールが先端方向に向かって漸次小さくなるように設定されている。また、発明例に係る可変ノズル翼100におけるアウタ鍔は、インナ鍔と同様の構成になっているが、従来例に係る可変ノズル翼200におけるアウタ鍔と同様の構成にしても構わない。
ここで、図7(a)は、発明例に係る可変ノズル翼の斜視図、図7(b)は、従来例に係る可変ノズル翼の斜視図、図8(a)は、発明例に係る可変ノズル翼を用いた可変ノズルユニットにおける第1ベースリングの対向面側の圧力損失の大きな領域を示す図、図8(b)は、従来例に係る可変ノズル翼を用いた可変ノズルユニットにおける第1ベースリングの対向面側の圧力損失の大きな領域を示す図、図9(a)は、発明例に係る可変ノズル翼を用いた可変ノズルユニットにおける第2ベースリングの対向面側の圧力損失の大きな領域を示す図、図9(b)は、従来例に係る可変ノズル翼を用いた可変ノズルユニットにおける第2ベースリングの対向面側の圧力損失の大きな領域を示す図である。また、 第1ベースリングの対向面側の圧力損失の大きな領域、及び第2ベースリングの対向面側の圧力損失の大きな領域は、複数の可変ノズル翼の開度(全開状態に対する開口比)を0.25として、3次元定常粘性CFD(Computational Fluid Dynamics)解析により求めたものであって、この3次元定常粘性CFD解析においては、可変ノズル翼を第2ベースリングの対向面側に寄せた状態を想定している。なお、図8及び図9に示すとおり、「RD」は、タービンインペラの回転方向である。
本発明の第1の特徴は、ターボ回転機械におけるタービンインペラ側へ供給されるガスの流路面積(流量)を可変とする可変ノズルユニットにおいて、前記ターボ回転機械におけるタービンハウジング内に前記タービンインペラと同心状に配設され、複数の支持穴が円周方向に等間隔に貫通形成された第1ベースリングと、前記第1ベースリングに対して前記タービンインペラの軸方向に離隔対向した位置に前記第1ベースリングと一体的かつ同心状に設けられた第2ベースリングと、前記第1ベースリングの対向面と前記第2ベースリングの対向面との間に円周方向に等間隔に配設され、前記タービンインペラの軸心に平行な軸心周りに開閉方向へ回動可能であって、前記軸方向一方側の側面に前記第1ベースリングの対応する前記支持穴に回動可能に支持される翼軸が一体形成され、径方向内側翼面における前記翼軸の基端側に前記第1ベースリングの対向面に接触可能(摺動可能)なインナ鍔が一体形成され、径方向外側翼面における前記翼軸の基端側に前記第1ベースリングの対向面に接触可能(摺動可能)なアウタ鍔が一体形成された複数の可変ノズル翼と、複数の前記可変ノズル翼を同期して回動させるためのリンク機構と、を具備し、各可変ノズル翼における前記インナ鍔は、翼長さ方向の中央側に、円弧状のインナ鍔頂部を有し、前記翼長さ方向の両端側に、前記インナ鍔頂部に滑らかに接続し(繋がり)かつ凹状に湾曲したインナ鍔裾部をそれぞれ有し、各可変ノズル翼における前記インナ鍔の各インナ鍔裾部の曲率半径が前記翼軸の軸径よりも大きく設定されていることを要旨とする。
なお、本願の明細書及び特許請求の範囲において、「ターボ回転機械」とは、可変容量型過給機、ガスタービンを含む意である。また、「配設され」とは、直接的に配設されたことの他に、別部材を介して間接的に配設されたことを含む意であって、「設けられ」とは、直接的に設けられたことの他に、別部材を介して間接的に設けられたことを含む意である。更に、「翼長さ方向」とは、可変ノズル翼の上流側の縁(前縁)と下流側の縁(後縁)を結ぶ方向のことをいう。
第1の特徴によると、エンジン回転数が高回転域にあって、ガスの流量が多い場合には、前記リンク機構を作動させつつ、複数の前記可変ノズル翼を開方向(正方向)へ同期して回動させることにより、複数の前記可変ノズル翼の開度を開いて、前記タービンインペラ側へ供給されるガスの流路面積を大きくし、多くのガスを供給する。一方、エンジン回転数が低回転域にあって、ガスの流量が少ない場合には、複数の前記可変ノズル翼を閉方向(逆方向)へ同期して回動させることにより、複数の前記可変ノズル翼の開度を絞って、前記タービンインペラ側へ供給されるガスの流路面積を小さくし、ガスの流速を高めて、前記タービンインペラの仕事量を十分に確保する。これにより、ガスの流量の多少に関係なく、前記タービンインペラによって回転力を十分かつ安定的に発生させることができる。
前述の作用を奏する他に、各可変ノズル翼における前記インナ鍔が前記翼長さ方向の中央側に前記インナ鍔頂部を有し、前記翼長さ方向の両端側に前記インナ鍔裾部をそれぞれ有し、各可変ノズル翼における前記インナ鍔の各インナ鍔裾部の曲率半径が前記翼軸の軸径よりも大きく設定されているため、前述の新規な知見を適用すると、従来例に係る可変ノズル翼200(図7(b)参照)を用いた場合に比べて、各可変ノズル翼におけるインナ鍔(各インナ鍔)の直下流側の流れの乱れを抑えて、複数の前記可変ノズル翼の開度を絞った際における各インナ鍔の直下流側の圧力損失の大きな領域を十分に低減できる。換言すれば、複数の前記可変ノズル翼の開度を絞った際における各インナ鍔の直下流側の圧力損失の増大を十分に抑制できる。
本発明の第2の特徴は、エンジンからのガスのエネルギーを利用して、前記エンジン側に供給される空気を過給する可変容量型過給機において、第1の特徴からなる可変ノズルユニットを具備したことを要旨とする。
第2の特徴によると、第1の特徴による作用と同様の作用を奏する。
本発明によれば、複数の前記可変ノズル翼の開度を絞った際における各インナ鍔の直下流側の圧力損失を十分に抑制できるため、前記可変ノズルユニットを用いた前記可変容量型過給機又は前記ガスタービンの効率(タービン効率)をより高いレベルまで向上させることができる。
図1(a)は、ノズルリングの対向面側から見た可変ノズルの断面図、図1(b)は、シュラウドリングの対向面側から見た可変ノズルの断面図である。 図2(a)は、図1(a)におけるIIA-IIA線に沿った拡大断面図、図2(b)は、図1(a)におけるIIB-IIB線に沿った拡大断面図、図2(c)は、図1(a)におけるIIC-IIC線に沿った拡大断面図であって、可変ノズル翼の一部のみ図示してある。 図3は、図5におけるIII-III線に沿った拡大断面図であって、複数の可変ノズル翼の開度を絞った状態を示している。 図4は、図5におけるIII-III線に沿った拡大断面図であって、複数の可変ノズル翼の開度を開いた状態を示している。 図5は、図6における矢視部Vの拡大図である。 図6は、本発明の実施形態に係る可変容量型過給機の正断面図である。 図7(a)は、発明例に係る可変ノズル翼の斜視図、図7(b)は、従来例に係る可変ノズル翼の斜視図である。 図8(a)は、発明例に係る可変ノズル翼を用いた可変ノズルユニットにおける第1ベースリングの対向面側の圧力損失の大きな領域を示す図、図8(b)は、従来例に係る可変ノズル翼を用いた可変ノズルユニットにおける第1ベースリングの対向面側の圧力損失の大きな領域を示す図である。 図9(a)は、発明例に係る可変ノズル翼を用いた可変ノズルユニットにおける第2ベースリングの対向面側の圧力損失の大きな領域を示す図、図9(b)は、従来例に係る可変ノズル翼を用いた可変ノズルユニットにおける第2ベースリングの対向面側の圧力損失の大きな領域を示す図である。 図10は、複数の可変ノズル翼の開度と圧力損失係数の改善度との関係を示す図である。
本発明の実施形態について図1から図6、図10を参照して説明する。なお、図面に示すとおり、「AD」は、左方向、「BD」は、右方向、「RD」は、タービンインペラの回転方向である。
図6に示すように、本発明の実施形態に係る可変容量型過給機1は、エンジン(図示省略)からの排気ガスのエネルギーを利用して、エンジンに供給される空気を過給(圧縮)するものである。そして、可変容量型過給機1の具体的な構成等は、以下のようになる。
可変容量型過給機1は、ベアリングハウジング3を具備しており、ベアリングハウジング3内には、ラジアルベアリング5及び一対のスラストベアリング7が設けられている。また、複数のベアリング5,7には、左右方向へ延びたロータ軸(タービン軸)9が回転可能に設けられており、換言すれば、ベアリングハウジング3には、ロータ軸9が複数のベアリング5,7を介して回転可能に設けられている。
ベアリングハウジング3の右側には、コンプレッサハウジング11が設けられており、このコンプレッサハウジング11内には、遠心力を利用して空気を圧縮するコンプレッサインペラ13がその軸心(換言すれば、ロータ軸9の軸心)C周りに回転可能に設けられている。また、コンプレッサインペラ13は、ロータ軸9の右端部に一体的に連結されたコンプレッサホイール15と、このコンプレッサホイール15の外周面に周方向に等間隔に設けられた複数のコンプレッサブレード17とを備えている。
コンプレッサハウジング11におけるコンプレッサインペラ13の入口側(コンプレッサハウジング11の右側部)には、空気を導入するための空気導入口19が形成されており、この空気導入口19は、空気を浄化するエアクリーナ(図示省略)に接続可能である。また、ベアリングハウジング3とコンプレッサハウジング11との間におけるコンプレッサインペラ13の出口側には、圧縮された空気を昇圧する環状のディフューザ流路21が形成されており、このディフューザ流路21は、空気導入口19に連通してある。更に、コンプレッサハウジング11の内部には、渦巻き状のコンプレッサスクロール流路23が形成されており、このコンプレッサスクロール流路23は、ディフューザ流路21に連通してある。そして、コンプレッサハウジング11の適宜位置には、圧縮された空気を排出するための空気排出口25が形成されており、この空気排出口25は、コンプレッサスクロール流路23に連通してあって、エンジンの吸気マニホールド(図示省略)に接続可能である。
図5及び図6に示すように、ベアリングハウジング3の左側には、タービンハウジング27が設けられており、このタービンハウジング27内には、排気ガスの圧力エネルギーを利用して回転力(回転トルク)を発生させるタービンインペラ29が軸心(タービンインペラ29の軸心、換言すれば、ロータ軸9の軸心)C周りに回転可能に設けられている。また、タービンインペラ29は、ロータ軸9の左端部に一体的に設けられたタービンホイール31と、このタービンホイール31の外周面に周方向に等間隔に設けられた複数のタービンブレード33とを備えている。
タービンハウジング27の適宜位置には、排気ガスを導入するためのガス導入口35が形成されており、このガス導入口35は、エンジンの排気マニホールド(図示省略)に接続可能である。また、タービンハウジング27の内部には、渦巻き状のタービンスクロール流路37が形成されており、このタービンスクロール流路37は、ガス導入口35に連通してある。そして、タービンハウジング27におけるタービンインペラ29の出口側(タービンハウジング27の左側部)には、排気ガスを排出するためのガス排出口39が形成されており、このガス排出口39は、タービンスクロール流路37に連通してあって、排気ガスを浄化する排気ガス浄化装置(図示省略)に接続可能である。
なお、ベアリングハウジング3の左側面には、タービンインペラ29側からの熱を遮蔽する環状の遮熱板41が設けられており、ベアリングハウジング3の左側面と遮熱板41の外縁部との間には、波ワッシャ43が設けられている。
タービンハウジング27内には、タービンインペラ29側へ供給される排気ガスの流路面積(流量)を可変とする可変ノズルユニット45がタービンインペラ29を囲むように配設されており、この可変ノズルユニット45の具体的な構成は、次のようになる。
図5に示すように、タービンハウジング27内には、第1ベースリングとしてのノズルリング47が取付リング49を介してタービンインペラ29と同心状に配設されており、このノズルリング47の内周縁部は、遮熱板41の外周縁部に嵌合してある。また、ノズルリング47には、複数(1つのみ図示)の第1支持穴51が円周方向に等間隔に貫通形成されている。なお、取付リング49の外周縁部は、ベアリングハウジング3とタービンハウジング27によって挟持されている。
ノズルリング47に対して左右方向(タービンインペラ29の軸方向)に離隔対向した位置には、第2ベースリングとしてのシュラウドリング53が複数の連結ピン55を介してノズルリング47と一体的かつ同心状に設けられている。また、シュラウドリング53は、内周縁側に、ガス排出口39側(ノズルリング47の反対側)へ突出しかつ複数のタービンブレード33の外縁を覆う筒状のシュラウド部57を有している。そして、シュラウドリング53には、複数(1つのみ図示)の第2支持穴59がノズルリング47の複数の第1支持穴51に整合するように円周方向に等間隔に形成されている。なお、複数の連結ピン55は、ノズルリング47の対向面とシュラウドリング53の対向面との間隔を設定する機能を有している。
図1(a)(b)、図3、図4、及び図5に示すように、ノズルリング47の対向面とシュラウドリング53の対向面との間には、複数の可変ノズル翼61が円周方向に等間隔に配設されており、各可変ノズル翼61は、タービンインペラ29の軸心Cに平行な軸心周りに開閉方向(正逆方向)へ回動可能である。そして、各可変ノズル翼61の右側面(タービンインペラ29の軸方向一方側の側面)には、第1翼軸63が一体形成されており、この第1翼軸63は、ノズルリング47の対応する第1支持穴51に回動可能に支持されている。また、各可変ノズル翼61の径方向内側翼面61iにおける第1翼軸63の基端側には、ノズルリング47の対向面に接触可能(摺動可能)な第1インナ鍔65が一体形成されており、各可変ノズル翼61の径方向外側翼面61eにおける第1翼軸63の基端側には、ノズルリング47の対向面に接触可能な第1アウタ鍔67が一体形成されている。同様に、各可変ノズル翼61の左側面(タービンインペラ29の軸方向他方側の側面)には、第2翼軸69が第1翼軸63と同心状に一体形成されており、この第2翼軸69は、シュラウドリング53の対応する第2支持穴59に回動可能に支持されている。また、各可変ノズル翼61の径方向内側翼面61iにおける第2翼軸69の基端側には、シュラウドリング53の対向面に接触可能な第2インナ鍔71が一体形成されており、各可変ノズル翼61の径方向外側翼面61eにおける第2翼軸69の基端側には、シュラウドリング53の対向面に接触可能な第2アウタ鍔73が一体形成されている。
図5に示すように、ノズルリング47の対向面の反対側に形成した環状のリンク室77内には、複数の可変ノズル翼61を同期して回動させるためのリンク機構79が配設されている。また、リンク機構79は、特開2009−243431号公報及び特開2009−243300号公報等に示す公知の構成からなるものであって、複数の可変ノズル翼61を開閉方向へ回動させるモータ又はシリンダ等の回動アクチュエータ(図示省略)に動力伝達機構81を介して接続されている。
続いて、本発明の実施形態に係る可変ノズルユニット45の特徴部分について説明する。
図1(a)に示すように、各可変ノズル翼61における第1インナ鍔65は、翼長さ方向SDの中央側に、第1翼軸63の軸心を曲率中心とする円弧状の第1インナ鍔頂部65tを有してあって、翼長さ方向SDの両端側に、第1インナ鍔頂部65tに滑らかに接続し(繋がり)かつ凹状に湾曲した第1インナ鍔裾部65sをそれぞれ有している。また、前述の新規な知見を適用するために、各可変ノズル翼61における第1インナ鍔65の各第1インナ鍔裾部65sの曲率半径R1は、第1翼軸63の軸径D1よりも大きく設定されている。
ここで、図2(a)に示すように、各可変ノズル翼61における第1インナ鍔65の直下流側の流れ(排気ガスの流れ)の乱れをより小さくするため、各可変ノズル翼61における第1インナ鍔65の第1インナ鍔頂部65tのフィレットアール(フィレットの曲率半径)F1は、可変ノズル翼61の翼高さHの1/10以下に設定されている。また、図2(b)(c)に示すように、各可変ノズル翼61における第1インナ鍔65の各第1インナ鍔裾部65sのフィレットアールF2は、先端方向(各第1インナ鍔裾部65sの先端方向、即ち、図1の翼長さ方向SDに沿う方向)に向かって漸次小さくなるように設定されている。
各可変ノズル翼61における第1アウタ鍔67も第1インナ鍔65と同様の構成になっている。具体的には、図1(a)に示すように、各可変ノズル翼61における第1アウタ鍔67は、翼長さ方向SDの中央側に、第1翼軸63の軸心を曲率中心とする円弧状の第1アウタ鍔頂部67tを有してあって、翼長さ方向SDの両端側に、第1アウタ鍔頂部67tに滑らかに接続しかつ凹状に湾曲した第1アウタ鍔裾部67sをそれぞれ有している。また、各可変ノズル翼61における第1アウタ鍔67の各第1アウタ鍔裾部67sの曲率半径R2は、第1インナ鍔65の各第1インナ鍔裾部65sの曲率半径R1と同じに設定されている。更に、図2(a)(b)(c)に示すように、各可変ノズル翼61における第1アウタ鍔67の第1アウタ鍔頂部67tのフィレットアールF3は、第1インナ鍔頂部65tのフィレットアールF1と同じに設定され、各可変ノズル翼61における第1インナ鍔65の各第1インナ鍔裾部65sのフィレットアールF4は、各第1インナ鍔裾部65sのフィレットアールF2と同じに設定されている。
同様に、図1(b)に示すように、各可変ノズル翼61における第2インナ鍔71は、翼長さ方向SDの中央側に、第2翼軸69の軸心を曲率中心とする円弧状の第2インナ鍔頂部71tを有してあって、翼長さ方向SDの両端側に、第2インナ鍔頂部71tに滑らかに接続しかつ凹状に湾曲した第2インナ鍔裾部71sをそれぞれ有している。また、前述の新規な知見を適用するために、各可変ノズル翼61における第2インナ鍔71の各第2インナ鍔裾部71sの曲率半径R3は、第2翼軸69の軸径D2(D2=D1)よりも大きく設定されている。
ここで、図2(a)に示すように、各可変ノズル翼61における第2インナ鍔71の直下流側の流れの乱れをより小さくするため、各可変ノズル翼61における第2インナ鍔71の第2インナ鍔頂部71tのフィレットアールF5は、可変ノズル翼61の翼高さHの1/10以下に設定されている。また、図2(b)(c)に示すように、各可変ノズル翼61における第2インナ鍔71の各第2インナ鍔裾部71sのフィレットアールF6は、先端方向(各第2インナ鍔裾部71sの先端方向)に向かって漸次小さくなるように設定されている。
各可変ノズル翼61における第2アウタ鍔73も第2インナ鍔71と同様の構成になっている。具体的には、図1(b)に示すように、各可変ノズル翼61における第2アウタ鍔73は、翼長さ方向SDの中央側に、第2翼軸69の軸心を曲率中心とする円弧状の第2アウタ鍔頂部73tを有してあって、翼長さ方向SDの両端側に、第2アウタ鍔頂部73tに滑らかに接続しかつ凹状に湾曲した第2アウタ鍔裾部73sをそれぞれ有している。また、各可変ノズル翼61における第2アウタ鍔73の各第2アウタ鍔裾部73sの曲率半径R4は、第2インナ鍔71の各第2インナ鍔裾部71sの曲率半径R3と同じに設定されている。更に、図2(a)(b)(c)に示すように、各可変ノズル翼61における第2アウタ鍔73の第2アウタ鍔頂部73tのフィレットアールF7は、第2インナ鍔頂部71tのフィレットアールF5と同じに設定され、各可変ノズル翼61における第2アウタ鍔73の各第2アウタ鍔裾部73sのフィレットアールF8は、各第2インナ鍔裾部71sのフィレットアールF6と同じに設定されている。
続いて、本発明の実施形態の作用及び効果について説明する。
ガス導入口35から導入した排気ガスがタービンスクロール流路37を経由してタービンインペラ29の入口側から出口側へ流通することにより、排気ガスの圧力エネルギーを利用して回転力(回転トルク)を発生させて、ロータ軸9及びコンプレッサインペラ13をタービンインペラ29と一体的に回転させることができる。これにより、空気導入口19から導入した空気を圧縮して、ディフューザ流路21及びコンプレッサスクロール流路23を経由して空気排出口25から排出することができ、エンジンに供給される空気を過給(圧縮)することができる。
可変容量型過給機1の運転中、エンジン回転数が高回転域にあって、排気ガスの流量が多い場合には、回動アクチュエータによってリンク機構79を作動させつつ、複数の可変ノズル翼61を正方向(開方向)へ同期して回動させることにより、複数の可変ノズル翼61の開度を開いて、タービンインペラ29側へ供給される排気ガスの流路面積(可変ノズル翼61のスロート面積)を大きくし、多くの排気ガスを供給する。一方、エンジン回転数が低回転域にあって、排気ガスの流量が少ない場合には、回動アクチュエータによってリンク機構79を作動させつつ、複数の可変ノズル翼61を逆方向(閉方向)へ同期して回動させることにより、複数の可変ノズル翼61の開度を絞って、タービンインペラ29側へ供給される排気ガスの流路面積を小さくし、排気ガスの流速を高めて、タービンインペラ29の仕事量を十分に確保する。これにより、排気ガスの流量の多少に関係なく、タービンインペラ29によって回転力を十分かつ安定的に発生させることができる。
前述の作用を奏する他に、各可変ノズル翼61における第1インナ鍔65が翼長さ方向SDの中央側に第1インナ鍔頂部65tを有し、翼長さ方向SDの両端側に第1インナ鍔裾部65sをそれぞれ有し、各可変ノズル翼61における第1インナ鍔65の各第1インナ鍔裾部65sの曲率半径R1が第1翼軸63の軸径D1よりも大きく設定されているため、前述の新規な知見を適用すると、従来例に係る可変ノズル翼200(図7(b)参照)を用いた場合に比べて、各可変ノズル翼61における第1インナ鍔65(各第1インナ鍔65)の直下流側の流れの乱れを抑えて、複数の可変ノズル翼61の開度を絞った際における各第1インナ鍔65の直下流側の圧力損失の大きな領域を十分に低減できる。換言すれば、複数の可変ノズル翼61の開度を絞った際における各第1インナ鍔65の直下流側の圧力損失を十分に抑制できる。特に、各可変ノズル翼61における第1インナ鍔65の各第1インナ鍔裾部65sのフィレットアールF2が先端方向に向かって漸次小さくなるように設定されているため、各可変ノズル翼61における第1インナ鍔65の直下流側の流れの乱れをより抑えることができる。更に、各可変ノズル翼61における第1アウタ鍔67も第1インナ鍔65と同様の構成になっているため、前述の新規な知見を類推適用すると、各可変ノズル翼61における第1アウタ鍔67の直下流側の流れの乱れを抑えることができる。
同様に、各可変ノズル翼61における第2インナ鍔71が翼長さ方向SDの中央側に第2インナ鍔頂部71tを有し、翼長さ方向SDの両端側に第2インナ鍔裾部71sをそれぞれ有し、各可変ノズル翼61における第2インナ鍔71の各第2インナ鍔裾部71sの曲率半径R3が第2翼軸69の軸径D2よりも大きく設定されているため、前述の新規な知見を適用すると、従来例に係る可変ノズル翼200を用いた場合に比べて、各可変ノズル翼61における第2インナ鍔71(各第2インナ鍔71)の直下流側の流れの乱れを抑えて、複数の可変ノズル翼61の開度を絞った際における各第2インナ鍔71の直下流側の圧力損失の大きな領域を十分に低減できる。換言すれば、複数の可変ノズル翼61の開度を絞った際における各第2インナ鍔71の直下流側の圧力損失を十分に抑制できる。特に、各可変ノズル翼61における第2インナ鍔71の各第2インナ鍔裾部71sのフィレットアールF6が先端方向に向かって漸次小さくなるように設定されているため、各可変ノズル翼61における第2インナ鍔71の直下流側の流れの乱れをより抑えることができる。更に、各可変ノズル翼61における第2アウタ鍔73も第2インナ鍔71と同様の構成になっているため、前述の新規な知見を類推適用すると、各可変ノズル翼61における第2アウタ鍔73の直下流側の流れの乱れを抑えることができる。
具体的には、図10に示すように、複数の可変ノズル翼61を絞って、複数の可変ノズル翼61の開度(全開状態に対する開口比)が小さくなる程、圧力損失係数の改善度が向上することが3次元定常粘性CFD解析結果によって確認された。なお、圧力損失係数の改善度は、従来例に係る可変ノズル翼200(図7(b)参照)を用いた場合の圧力損失係数に対する発明例に係る可変ノズル翼100(図7(a)参照)を用いた場合の圧力損失係数の割合(比)のことをいい、圧力損失係数は、タービン入口圧力とタービン出口圧力との差に対する可変ノズル翼100(又は200)のノズル入口圧力とノズル出口圧力との差の割合のことをいう。
従って、本発明の実施形態によれば、複数の可変ノズル翼61の開度を絞った際における各第1インナ鍔65及び各第2インナ鍔71の直下流側の圧力損失を十分に抑制できるため、可変容量型過給機1の効率(タービン効率)をより高いレベルまで向上させることができる。
本発明は、前述の実施形態の説明に限るものでなく、例えば、次のように種々の態様で実施可能である。
即ち、ノズルリング47を第1ベースリングとしかつシュラウドリング53を第2ベースリングとする代わりに、シュラウドリング53を第1ベースリングとしかつノズルリング47を第2ベースリングとしても構わなく、この場合には、シュラウドリング53の対向面の反対面側に形成したリンク室(図示省略)内にリンク機構79が設けられることになる。また、各可変ノズル翼61は第1翼軸63と第2翼軸69を備えた両持ちタイプであるが、第2翼軸69を省略して片持ちタイプにしても構わなく、この場合には、第2インナ鍔71及び第2アウタ鍔73も省略することになる。更に、第1アウタ鍔67を第1インナ鍔65と同様の構成にする代わりに、第1アウタ鍔67を第1翼軸65の軸心を曲率中心として円弧状を呈するようにしたり、第2アウタ鍔73を第2インナ鍔71と同様の構成にする代わりに、第2アウタ鍔73を第2翼軸69の軸心を曲率中心として円弧状を呈するようにしたりしても構わない。
そして、本発明に包含される権利範囲は、これらの実施形態に限定されないものでなく、例えば、可変ノズルユニット45と同様の構成の可変ノズルユニット(図示省略)をガスタービン(図示省略)に用いた場合にも及ぶものである。
1 可変容量型過給機
3 ベアリングハウジング
9 ロータ軸
11 コンプレッサハウジング
13 コンプレッサインペラ
27 タービンハウジング
29 タービンインペラ
45 可変ノズルユニット
47 ノズルリング
51 第1支持穴
53 シュラウドリング
55 連結ピン
57 シュラウド部
59 第2支持穴
61 可変ノズル翼
61e 径方向外側翼面
61i 径方向内側翼面
63 第1翼軸
65 第1インナ鍔
65t 第1インナ鍔頂部
65s 第1インナ鍔裾部
67 第1アウタ鍔
67t 第1アウタ鍔頂部
67s 第1アウタ鍔裾部
69 第2翼軸
71 第2インナ鍔
71t 第2インナ鍔頂部
71s 第2インナ鍔裾部
73 第2アウタ鍔
73t 第2アウタ鍔頂部
73s 第2アウタ鍔裾部
77 リンク室
79 リンク機構
100 発明例に係る可変ノズル翼
200 従来例に係る可変ノズル翼

Claims (8)

  1. ターボ回転機械におけるタービンインペラ側へ供給されるガスの流路面積を可変とする可変ノズルユニットにおいて、
    ターボ回転機械におけるタービンハウジング内に前記タービンインペラと同心状に配設され、複数の支持穴が円周方向に等間隔に貫通形成された第1ベースリングと、
    前記第1ベースリングに対して前記タービンインペラの軸方向に離隔対向した位置に前記第1ベースリングと一体的かつ同心状に設けられた第2ベースリングと、
    前記第1ベースリングの対向面と前記第2ベースリングの対向面との間に円周方向に等間隔に配設され、前記タービンインペラの軸心に平行な軸心周りに開閉方向へ回動可能であって、前記軸方向一方側の側面に前記第1ベースリングの対応する前記支持穴に回動可能に支持される翼軸が一体形成され、径方向内側翼面における前記翼軸の基端側に前記第1ベースリングの対向面に接触可能なインナ鍔が一体形成され、径方向外側翼面における前記翼軸の基端側に前記第1ベースリングの対向面に接触可能なアウタ鍔が一体形成された複数の可変ノズル翼と、
    複数の前記可変ノズル翼を同期して回動させるためのリンク機構と、を具備し、
    各可変ノズル翼における前記インナ鍔は、翼長さ方向の中央側に、円弧状のインナ鍔頂部を有し、前記翼長さ方向の両端側に、前記インナ鍔頂部に滑らかに接続しかつ凹状に湾曲したインナ鍔裾部をそれぞれ有し、各可変ノズル翼における前記インナ鍔の各インナ鍔裾部の曲率半径が前記翼軸の軸径よりも大きく設定されていることを特徴とする可変ノズルユニット。
  2. 各可変ノズル翼における前記インナ鍔の各インナ鍔裾部のフィレットアールは、先端方向に向かって漸次小さくなるように設定されていることを特徴とする請求項1に記載の可変ノズルユニット。
  3. 各可変ノズル翼における前記インナ鍔の前記インナ鍔頂部のフィレットアールは、前記可変ノズル翼の翼高さの1/10以下に設定されていることを特徴とする請求項1又は請求項2に記載の可変ノズルユニット。
  4. 前記支持穴は、第1支持穴、前記翼軸は、第1翼軸であって、前記第2ベースリングに複数の第2支持穴が前記第1ベースリングの複数の前記第1支持穴に整合するように円周方向に等間隔に貫通形成され、各可変ノズル翼の前記軸方向他方側の側面に前記第2ベースリングの対応する前記第2支持穴に回動可能に支持される第2翼軸が一体形成され、
    前記インナ鍔は、第1インナ鍔、前記アウタ鍔は、第1アウタ鍔、前記インナ鍔頂部は、第1インナ鍔頂部、前記インナ鍔裾部は、第1インナ鍔裾部であって、各可変ノズル翼の径方向内側翼面における前記第2翼軸の基端側に前記第2ベースリングの対向面に接触可能な第2インナ鍔が一体形成され、各可変ノズル翼の径方向外側翼面における前記第2翼軸の基端側に前記第2ベースリングの対向面に接触可能な第2アウタ鍔が一体形成され、
    各可変ノズル翼における前記第2インナ鍔は、前記翼長さ方向の中央側に、円弧状の第2インナ鍔頂部を有し、前記翼長さ方向の両端側に、前記第2インナ鍔頂部に滑らかに接続しかつ凹状に湾曲した第2インナ鍔裾部をそれぞれ有し、各可変ノズル翼における前記第2インナ鍔の各第2インナ鍔裾部の曲率半径が前記第2翼軸の軸径よりも大きく設定されていることを特徴とする請求項1から請求項3のうちのいずれか1項に記載の可変ノズルユニット。
  5. 各可変ノズル翼における前記第2インナ鍔の前記第2インナ鍔頂部のフィレットアールは、前記可変ノズル翼の翼高さの1/10以下に設定され、各可変ノズル翼における前記第2インナ鍔の前記第2インナ鍔裾部のフィレットアールは、先端方向に向かって漸次小さくなるように設定されていることを特徴とする請求項4に記載の可変ノズルユニット。
  6. 各可変ノズル翼における前記アウタ鍔は、翼長さ方向の中央側に、円弧状のアウタ鍔頂部を有し、前記翼長さ方向の両端側に、前記アウタ鍔頂部に滑らかに接続しかつ凹状に湾曲したアウタ鍔裾部をそれぞれ有し、各可変ノズル翼における前記アウタ鍔の各アウタ鍔裾部の曲率半径が前記翼軸の軸径よりも大きく設定されていることを特徴とする請求項1から請求項3のうちのいずれか1項に記載の可変ノズルユニット。
  7. 前記支持穴は、第1支持穴、前記翼軸は、第1翼軸であって、前記第2ベースリングに複数の第2支持穴が前記第1ベースリングの複数の前記第1支持穴に整合するように円周方向に等間隔に貫通形成され、各可変ノズル翼の前記軸方向他方側の側面に前記第2ベースリングの対応する前記第2支持穴に回動可能に支持される第2翼軸が一体形成され、
    前記インナ鍔は、第1インナ鍔、前記アウタ鍔は、第1アウタ鍔、前記インナ鍔頂部は、第1インナ鍔頂部、前記インナ鍔裾部は、第1インナ鍔裾部であって、各可変ノズル翼の径方向内側翼面における前記第2翼軸の基端側に前記第2ベースリングの対向面に接触可能な第2インナ鍔が一体形成され、各可変ノズル翼の径方向外側翼面における前記第2翼軸の基端側に前記第2ベースリングの対向面に接触可能な第2アウタ鍔が一体形成され、
    各可変ノズル翼における前記第2インナ鍔は、前記翼長さ方向の中央側に、円弧状の第2インナ鍔頂部を有し、前記翼長さ方向の両端側に、前記第2インナ鍔頂部に滑らかに接続しかつ凹状に湾曲した第2インナ鍔裾部をそれぞれ有し、各可変ノズル翼における前記第2インナ鍔の各第2インナ鍔裾部の曲率半径が前記第2翼軸の軸径よりも大きく設定され、
    各可変ノズル翼における前記第2アウタ鍔は、前記翼長さ方向の中央側に、円弧状の第2アウタ鍔頂部を有し、前記翼長さ方向の両端側に、前記第2アウタ鍔頂部に滑らかに接続しかつ凹状に湾曲した第2アウタ鍔裾部をそれぞれ有し、各可変ノズル翼における前記第2アウタ鍔の各第2アウタ鍔裾部の曲率半径が前記第2翼軸の軸径よりも大きく設定されていることを特徴とする請求項6に記載の可変ノズルユニット。
  8. エンジンからのガスのエネルギーを利用して、前記エンジン側に供給される空気を過給する可変容量型過給機において、
    請求項1から請求項7のうちのいずれか1項に記載の可変ノズルユニットを具備したことを特徴とする可変容量型過給機。
JP2013027770A 2013-02-15 2013-02-15 可変ノズルユニット及び可変容量型過給機 Active JP6197302B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013027770A JP6197302B2 (ja) 2013-02-15 2013-02-15 可変ノズルユニット及び可変容量型過給機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013027770A JP6197302B2 (ja) 2013-02-15 2013-02-15 可変ノズルユニット及び可変容量型過給機

Publications (2)

Publication Number Publication Date
JP2014156809A true JP2014156809A (ja) 2014-08-28
JP6197302B2 JP6197302B2 (ja) 2017-09-20

Family

ID=51577829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013027770A Active JP6197302B2 (ja) 2013-02-15 2013-02-15 可変ノズルユニット及び可変容量型過給機

Country Status (1)

Country Link
JP (1) JP6197302B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047356A1 (ja) * 2015-09-14 2017-03-23 株式会社Ihi 可変ノズルユニット及び可変容量型過給機
US11047256B2 (en) 2016-11-10 2021-06-29 Ihi Corporation Variable nozzle unit and turbocharger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392502U (ja) * 1989-12-29 1991-09-20
JP2010013983A (ja) * 2008-07-02 2010-01-21 Ihi Corp ターボチャージャ
JP2010216283A (ja) * 2009-03-13 2010-09-30 Akita Fine Blanking:Kk Vgsタイプターボチャージャの可変翼

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392502U (ja) * 1989-12-29 1991-09-20
JP2010013983A (ja) * 2008-07-02 2010-01-21 Ihi Corp ターボチャージャ
JP2010216283A (ja) * 2009-03-13 2010-09-30 Akita Fine Blanking:Kk Vgsタイプターボチャージャの可変翼

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047356A1 (ja) * 2015-09-14 2017-03-23 株式会社Ihi 可変ノズルユニット及び可変容量型過給機
JPWO2017047356A1 (ja) * 2015-09-14 2018-01-18 株式会社Ihi 可変ノズルユニット及び可変容量型過給機
CN108026831A (zh) * 2015-09-14 2018-05-11 株式会社Ihi 可变喷嘴单元以及可变容量型增压器
US10612411B2 (en) 2015-09-14 2020-04-07 Ihi Corporation Variable nozzle unit and variable displacement-type turbocharger
CN108026831B (zh) * 2015-09-14 2020-04-10 株式会社Ihi 可变喷嘴单元以及可变容量型增压器
US11047256B2 (en) 2016-11-10 2021-06-29 Ihi Corporation Variable nozzle unit and turbocharger

Also Published As

Publication number Publication date
JP6197302B2 (ja) 2017-09-20

Similar Documents

Publication Publication Date Title
JP6225515B2 (ja) 可変ノズルユニット及び可変容量型過給機
JP6326912B2 (ja) 可変ノズルユニット及び可変容量型過給機
JP5949164B2 (ja) 可変ノズルユニット及び可変容量型過給機
JP6163789B2 (ja) 可変ノズルユニット及び可変容量型過給機
JP6107395B2 (ja) 可変ノズルユニット及び可変容量型過給機
JP6349745B2 (ja) 可変ノズルユニット及び可変容量型過給機
JP6098233B2 (ja) 可変容量型過給機
JP2016017408A (ja) 可変ノズルユニット及び可変容量型過給機
WO2018146753A1 (ja) 遠心圧縮機、ターボチャージャ
JP2013245655A (ja) 可変ノズルユニット及び可変容量型過給機
JP5949363B2 (ja) 可変ノズルユニット及び可変容量型過給機
JP5849445B2 (ja) 可変ノズルユニット及び可変容量型過給機
JP2013130116A (ja) 可変ノズルユニット及び可変容量型過給機
JP2013253521A (ja) 可変ノズルユニット及び可変容量型過給機
JP6690730B2 (ja) 可変ノズルユニットおよび過給機
JP6197302B2 (ja) 可変ノズルユニット及び可変容量型過給機
JP2015031237A (ja) 可変ノズルユニット及び可変容量型過給機
JP2012002140A (ja) タービン及び過給機
JP5915394B2 (ja) 可変ノズルユニット及び可変容量型過給機
JP2013194546A (ja) 可変ノズルユニット及び可変容量型過給機
JP6146507B2 (ja) 可変ノズルユニット及び可変容量型過給機
JPWO2019123565A1 (ja) タービン及びターボチャージャ
JP2014234803A (ja) 可変容量型タービン及び可変容量型過給機
JP6051569B2 (ja) 結合構造、可変ノズルユニット、及び可変容量型過給機
JP6089791B2 (ja) 可変ノズルユニット及び可変容量型過給機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170807

R151 Written notification of patent or utility model registration

Ref document number: 6197302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250