JP2014153494A - 測距装置 - Google Patents

測距装置 Download PDF

Info

Publication number
JP2014153494A
JP2014153494A JP2013022149A JP2013022149A JP2014153494A JP 2014153494 A JP2014153494 A JP 2014153494A JP 2013022149 A JP2013022149 A JP 2013022149A JP 2013022149 A JP2013022149 A JP 2013022149A JP 2014153494 A JP2014153494 A JP 2014153494A
Authority
JP
Japan
Prior art keywords
correction coefficient
pixel
imaging
subject
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2013022149A
Other languages
English (en)
Other versions
JP2014153494A5 (ja
Inventor
Hikari Hoshi
光 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013022149A priority Critical patent/JP2014153494A/ja
Publication of JP2014153494A publication Critical patent/JP2014153494A/ja
Publication of JP2014153494A5 publication Critical patent/JP2014153494A5/ja
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Studio Devices (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

【課題】被写体色情報に依る測距誤差を低減し、高精度で距離算出できる測距装置等を提供する。
【解決手段】測距装置は、結像光学系、該光学系の第1瞳領域を通る光束で形成される第1被写体像信号と第2瞳領域を通る光束で形成される第2被写体像信号を生成する撮像素子、第1及び第2の被写体像信号に基づき被写体距離を検出する検出手段を含む。撮像素子で、複数種の画素から構成される複数の撮像画素と、撮像画素の分光感度を包含する分光感度を有する画素から構成される測距画素が、配置される。距離検出手段は、被写体色情報に依る測距誤差を補正する補正係数を算出する工程と、補正係数を用いて被写体距離を算出する工程を実行する。補正係数算出工程は、被写体色情報に基づき算出された評価値を得る工程を含み、評価値に基づき、第一の補正係数算出工程と、この工程とは異なる第二の補正係数算出工程とを切り替えて実行する。
【選択図】図1

Description

本発明は、測距に係る技術に関し、特にデジタルカメラやデジタルビデオカメラなどに用いられる測距装置、測距方法等に関するものである。
デジタルカメラやデジタルビデオカメラにおいて、撮像素子の一部あるいは全部の画素に測距機能を有する画素(以下、測距画素)を配置し、位相差方式で被写体の距離を検出するようにした固体撮像素子が提案されている。測距画素は、複数の光電変換部を備え、カメラレンズの瞳上の異なる領域を通過した光束が、異なる光電変換部に導かれるように構成される。各測距画素に含まれる光電変換部で得た信号により、異なる瞳領域を通過した光束により生成される光像(それぞれA像、B像と呼び、両像をまとめてAB像と呼ぶ)を取得する。このAB像のズレ量(以下、像ズレ量)を検出する。この像ズレ量を、基線長や重心角度(例えば、図2において感度がピークとなる入射角度のところが重心角度である。)などの変換係数を介してデフォーカス量に変換することで、被写体までの距離を算出できる。
これによると、従来のコントラスト方式とは異なり、距離を測定するためにレンズを動かす必要が無いため、高速高精度な測距が可能となる。また、測距画素における光利用効率を向上させる目的で、色フィルターを設けない測距画素を配置した固体撮像素子が提案されている(特許文献1参照)。これによれば、色フィルターによる光損失を回避できる。特許文献1には、異なる分光感度特性を有する複数の撮像用画素を規則的に配列した画素ユニットと、この画素ユニットのすべての分光感度を包含する感度を有する焦点検出用画素とを備えた撮像素子についての記述がある。
以上のように、色フィルターを設けない測距画素を配置することによって、暗い被写体に対しても測距可能な撮像素子を実現することができる。
特開2007−282107号公報
しかしながら、色フィルターを設けない測距画素を配置した撮像素子においては、被写体の色情報に応じた測距誤差が発生するという課題がある。画素特性が有する波長依存性によって、像ズレ量の誤差、及び、デフォーカス量を算出する際に用いる変換係数の誤差が発生する。その結果、デフォーカス量を算出するときに、被写体の色情報に起因した誤差が発生する。また、被写体の色情報を取得するために撮像画素信号を利用する場合、被写体が明るく撮像画素信号が飽和している場合や被写体が暗く撮像画素信号がノイズに埋もれてしまう場合などには、正確な色情報を取得することが困難である。本発明者は、色フィルターを設けない測距画素を配置した撮像素子において、高精度な測距を実施する点に着目して本発明を想起するに至った。本発明は、上記課題を鑑み、高い光利用効率の測距画素を用いながら、被写体の明るさに依存せず、高い精度で距離算出が可能な測距装置、測距方法等を提供することを目的とする
本発明の測距装置は、被写体を結像する結像光学系と、前記結像光学系の第1の瞳領域を通過した光束により形成される第1の被写体像信号と、第2の瞳領域を通過した光束により形成される第2の被写体像信号を生成する撮像素子と、前記第1の被写体像信号と前記第2の被写体像信号とに基づいて被写体までの距離を検出する距離検出手段と、を有し、前記撮像素子において、それぞれ異なる分光感度特性を有する複数種の画素から構成されている複数の撮像画素と、前記撮像画素が有する分光感度を包含する分光感度を有する画素から構成されている測距画素とが、二次元行列状に配置されており、前記距離検出手段は、被写体色情報に起因する測距誤差を補正するための補正係数を算出するための補正係数算出工程と、前記補正係数を用いて被写体までの距離を算出するための距離算出工程を実行する測距装置であって、前記補正係数算出工程は、被写体色情報に基づいて算出された評価値を算出する工程を含み、前記評価値に基づいて、第一の補正係数算出工程と前記第一の補正係数算出工程とは異なる第二の補正係数算出工程とを切り替えて実行する。
本発明によれば、被写体の色情報に起因する測距誤差を低減し、高い精度で距離算出が可能な測距装置、及びこれを用いた撮像装置などを実現することができる。
本発明の実施例1に係る測距装置のブロック図。 実施例1における測距画素の感度の入射角度依存性を示す図。 実施例1の撮像素子に含まれる画素を示す図。 撮像画素と測距画素の分光感度特性を示す図。 被写体距離情報を算出する従来例の処理工程のフローチャート。 射出瞳と撮像素子の位置関係及び瞳感度分布を示す図。 画素感度の入射角度依存性を示す図。 瞳感度分布の波長依存性を説明する図。 被写体のスペクトルの重心波長に対する測距誤差を表すグラフ。 実施例1における距離算出工程のフローチャート。 測距画素信号と撮像画素信号の信号値を説明する図。 測距画素信号とノイズを含む撮像画素信号の信号値を説明する図。 測距画素信号と飽和した撮像画素信号の信号値を説明する図。 撮像素子における撮像画素と測距画素を含む画素群の一部拡大図。 カラーフィルターの透過率スペクトルを示す図。 被写体の色スペクトルと測距画素における色スペクトルを示す図。 測距画素で観測した被写体の色情報として用いる重心波長を示す図。 測距画素信号と一部が飽和した撮像画素信号の信号値を説明する図。 実施例2におけるAB像ズレ量の算出工程のフローチャート。 図19の補正係数算出工程のフローチャート。 画素群の一部を説明する図。 測距画素の具体的な構成例を示す図。
色フィルターを設けない測距画素において、被写体の色情報によらず高精度な測距を実施するためには、像ズレ量や変換係数の波長依存性を考慮した距離算出工程を踏まえることが必要である。また、被写体の明るさに依存せず、高い精度で距離算出が可能な測距装置、測距方法等を提供することが必要である。本発明はこの点に着目し、撮像画素と該撮像画素の分光感度を包含する分光感度をもつ測距画素とが複数配置された撮像素子による第1及び第2の被写体像信号に基づいて被写体距離を検出する距離検出手段が上記補正係数算出工程と距離算出工程を実行する。そして、前記補正係数算出工程は、被写体色情報に基づいて算出された信頼度を算出する工程を含み、前記信頼度に基づいて、第一の補正係数算出工程と前記第一の補正係数算出工程とは異なる第二の補正係数算出工程とを切り替えて実行する。こうした距離検出手段を有する測距装置を備えるカメラなどの撮像装置では、測距装置により算出された被写体までの距離に基づいて結像光学系を駆動制御することができる。
以下、図を用いて本発明の測距装置について説明する。その際、実施の形態にて、測距装置を備えた撮像装置の一例として、デジタルカメラを用いて説明するが、本発明はこれに限定するものではない。例えば、デジタルビデオカメラや、デジタル距離計測器などにも用いることができる。
(実施例1)
本発明の測距装置を備えた実施例1であるデジタルカメラの説明をする。図1において、100は本実施例の測距装置を備えたデジタルカメラである。デジタルカメラ100は、被写体を結像する結像光学系である撮影レンズ101を備える測距装置110などで構成される。測距装置110は、撮像素子102、距離検出手段を含む測距演算部103などをも含む。図1においては、焦点位置120がデフォーカスした状態を示している。被写体105の距離情報を取得するために、撮影レンズ101により、被写体105の像を撮像素子102へ結像する。撮像素子102には、測距画素が複数配置されており、各測距画素は、撮影レンズ101の射出瞳106の異なる領域(第1の瞳領域107及び第2の瞳領域108)を通過した光束の被写体像(A像、B像)を取得する。即ち、測距画素を含む撮像素子102は、結像光学系の第1の瞳領域を通過した光束により形成される第1の被写体像信号と第2の瞳領域を通過した光束により形成される第2の被写体像信号とを生成する。距離検出手段は、第1の被写体像信号と第2の被写体像信号とに基づいて被写体までの距離を検出する。本実施例における測距画素の感度は、図2に示すように、入射角度=0°に関して対称な入射角度依存を有している。図2において、横軸は光線が光軸(図1の130)となす入射角度、縦軸は感度である。実線201は、第1の瞳領域107からの光束を主として受光するA画素の感度、破線202は、第2の瞳領域108からの光束を主として受光するB画素の感度を示している。
さらに後述する処理フローを、測距演算部103にて行うことで、被写体の距離情報を算出する。撮像素子102は、複数の画素から構成されている二次元行列状に配列された画素群を備えている。画素群は、被写体の画像を撮影するための撮像画素と被写体の距離を測定するための上記測距画素とを備えている。加えて、撮像画素は、それぞれ異なる分光感度特性を有する複数種の画素から構成されている。また、測距画素のうち少なくとも1以上の測距画素は、撮像画素が有する分光感度を包含する分光感度を有する画素から構成されている。
撮像素子102の画素群について、図3に一例を挙げる。画素群300は、撮像画素301と測距画素302とから構成されている。撮像画素301は、それぞれ分光感度特性の異なる撮像画素301B、301G、301Rから構成されている。図4に、撮像画素301B、301G、301R、及び測距画素302がそれぞれ有する分光感度特性を示す。横軸は波長、縦軸は分光感度の強度を示している。グラフ401Bは撮像画素301Bにおける分光感度特性を表している。同様に、グラフ401G、401Rは、それぞれ、撮像画素301G、301Rにおける分光感度特性を示している。また、グラフ402は、測距画素302における分光感度特性を示している。このグラフから、測距画素302は、撮像画素302B、301G、301Rが有する分光感度を包含する分光感度を有する測距画素から構成されていることが分かる。つまり、測距画素の感度の光波長領域は、複数種の撮像画素全ての画素感度の光波長領域を包含している。測距画素の各波長における感度の強度は、複数種の撮像画素全ての各波長における感度の強度の和以上であるのが好ましいが、測距画素の有限の感度強度を持つ各波長における感度強度は、こうした和以上である必要は必ずしもない。また、画素群300内に配置する測距画素の感度特性をすべて同一とする必要は必ずしもなく、感度特性が高い測距画素と感度特性が低い測距画素とを配置してもよい。
例えば、撮像画素301B、301G、301Rに、それぞれ、青色カラーフィルター、緑色カラーフィルター、赤色カラーフィルターを設けた場合には、測距画素302にはカラーフィルターを設けない。このことで、撮像画素が有する分光感度を包含する分光感度を有する測距画素を構成することができる。
ここで、従来例において被写体距離情報を算出する処理工程を図5のフローチャートに沿って説明する。ステップ501では、被写体のA像とB像を取得する。ステップ502では、取得したAB像の像ズレ量を算出する。ステップ503では、取得したAB像間の像ズレ量rと変換係数wを用いてデフォーカス量ΔLを算出する。AB像の像ズレ量の算出方法については、公知の様々な演算手法を適用することができる。例えば、A像とB像の相関演算を行い、AB像の重心位置間の距離を像ズレ量とする方法がある。一例を示せば、次の数式1により相関値S(k)を算出し、S(k)=0となるkから、像ズレ量を算出することができる。ここで、A(i)はA像の像信号データ、B(i)はB像の像信号データ、iは画素番号、kはA像とB像の相対的シフト量である。iは、相関値S(k)の算出に用いる対象画素範囲(測距範囲)を表しており、数式1では、pからqの範囲を示している。
Figure 2014153494
変換係数wについては、基線長、または、重心角度、または、基線長や重心角度を導出することができる関数などを用いることができる。
図6(a)は、図1のデジタルカメラ100の中で、射出瞳106と撮像素子102のみを模式的に示した図である。図2に示す画素感度を、撮像素子102内の測距範囲の中心(図6(a)の603)から射出瞳106に射影することで、図6(b)に示す瞳感度分布が生成される。図6(b)は、A画素とB画素それぞれの瞳感度分布であり、色が濃い領域ほど高い感度を有している。また、602は射出瞳の枠を示している。瞳感度分布から、瞳上でのA画素感度の重心位置601A、及びB画素感度の重心位置601Bが算出される。重心位置601Aと重心位置601Bの間の長さが基線長wとなる。これらは、或る基準の波長ないし波長領域の光を用いた場合を想定して算出される。
像ズレ量r、基線長w、を得たのち、以下の数式2の変換式により像ズレ量rを像側のデフォーカス量ΔLに変換する。
ΔL=r・L/(w−r) ・・・数式2
なお、Lは、撮像素子102から射出瞳106までの距離である。ここにおいては、図6(c)に射出瞳106と撮像素子102を模式的に示すように、撮像素子102を基準に−z軸方向のデフォーカス量を負とする。さらに、B像に対しA像が−x軸方向に像ズレしている場合の像ズレ量を負とする。
従来例においては、ステップ502では、測距画素における画素感度特性の波長依存性に起因して、被写体色情報に応じて測距誤差(AB像ズレ量の誤差)が生じるという課題がある。また、ステップ503では、基線長wの波長依存性に起因して、被写体色情報に応じて測距誤差が生じるという課題がある。
以下に、測距誤差が発生する原因について説明する。図7(a)に画素感度の入射角度依存性を示す。ここでは、一例としてA画素における画素感度のグラフを示し、横軸に入射角度、縦軸に感度を表している。グラフ中の701、702、703は、それぞれ、入射光の中心波長が450nm近傍の青色光の場合、530nm近傍の緑色光の場合、620nm近傍の赤色光の場合を示している。入射光波長に依存して、A画素における角度特性が変化していることが分かる。
画素構造によっては、図7(b)のグラフ704、705、706に示すように、入射波長に応じてグラフのピーク角度は変化しないが、グラフ裾付近の形状が変化する場合もある。この場合にも、入射光波長に依存して、A画素における角度特性は変化する。画素感度が波長依存性を有することに起因して、A画素及びB画素における瞳感度分布も波長依存性を有する。
図8に、瞳感度分布の波長依存性を説明した模式図を示す。図8(a)は、入射光の中心波長が530nm近傍の緑色光での瞳感度分布を示している。AB像の瞳感度分布の重心位置802A、802Bから基線長w(λ=530nm)を求める。一方、図8(b)は、入射光の中心波長が620nm近傍の赤色光での瞳感度分布を示している。図8(a)と比較して、重心位置803A、803Bが入射瞳中心から外側へ移動していることが分かる。つまり、被写体の色情報に依存して、基線長w(λ=620nm)が変化することが分かる。AB像の重心位置間の距離の像ズレ量についても、被写体の色情報に依存して、上述の像ズレ量算出法で言えば、A像の像信号データとB像の像信号データが変化してAB像ズレ量が変化する。この像ズレ量を補正して測距誤差を抑制する実施例が、後述する実施例2である。
より具体的に、図9に、被写体が有するスペクトルの重心波長に対する測距誤差を表したグラフを示す。横軸に被写体が有するスペクトルの重心波長を、縦軸に測距誤差量を示す。ここでは、測距画素の基準波長を530nmとし、このときの測距誤差量をゼロとして示した。このグラフから、被写体が有するスペクトルの重心波長と測距画素における基準波長とがずれることによって、測距誤差が発生することが分かる。
このように、カラーフィルターを設けない測距画素においては、被写体の色情報に起因して測距誤差が発生する。この課題を解決するために、本実施例では、図5で示したフローチャートのステップ503で実行する距離算出工程において、補正係数cを用いて変換係数(基線長)wの波長依存性を補正する。
また、実施例1におけるステップ503の工程について、測距画素近傍に配置された撮像画素における撮像画素信号に基づき評価値を算出し、評価値に基づき補正係数算出手段1と補正係数算出手段2とを切り替えて用い距離算出するフローチャートを図10に示す。ステップ1001では、測距画素近傍に配置した撮像画素から各色(R、G、B)の信号を取得する。ステップ1002では、ステップ1001で取得したR、G、B信号に基づいて、評価値を算出する。ステップ1003では、ステップ1002で算出した評価値が或る条件を満たした場合において補正係数算出手段1によって変換係数(基線長)wの波長依存性を補正するための補正係数cを算出する。ステップ1004では、ステップ1002で算出した評価値が或る条件を満たさない場合において補正係数算出手段2によって補正係数cを算出する。ステップ1005においては、像ずれ量r、変換係数(基線長)w、補正係数cを用いて、デフォーカス量ΔLを算出する。
図10にて、開始、ステップ1001、1002、1003、1005、終了、のフローで処理された場合について説明する。ステップ1001で、測距画素近傍に配置された撮像画素から出力される撮像画素信号に基づいて、測距画素における被写体色情報を求める。例として、被写体色情報は、被写体色スペクトルの重心波長などを用いることができる。ステップ1002において算出した評価値に基づいて、評価値を満たすという分岐をし、ステップ1003の補正係数算出手段1の工程に進む。ステップ1003では、予め算出しておいた波長に対する変換係数wの関係式に基づいて、被写体の重心波長に対する補正係数cを算出する。以上のようにして求めた補正係数cを用いて、変換係数wの波長依存性を補正することができる。同様に、図10にて、開始、ステップ1001、1002、1004、1005、終了、のフローで処理された場合について説明する。前記説明と重複する部分の説明は省略する。ステップ1002において算出した評価値に基づいて、評価値を満たさないという分岐をし、ステップ1004の補正係数算出手段2の工程に進む。ステップ1003では、補正係数算出手段2で求めた補正係数cに基づいてデフォーカス量ΔLに変換する。各ステップにおける具体的な方法については後述する。
ステップ1002における評価値算出の一例について説明する。測距画素信号値と撮像画素における各色(R、G、B)の信号値に基づいて評価値を算出する。図11には測距画素1102における測距画素信号値と測距画素1102近傍に配置したRGB撮像画素1101B、1101G、1101Rにおける撮像画素信号値を示す。測距画素1102の分光感度特性は、撮像画素1101B、1101G、1101Rの分光感度特性を包含している。ここで、測距画素1102、撮像画素1101B、1101G、1101Rにおける信号値について、信号値が飽和していない場合、あるいは、ノイズ成分が無視できるほど小さい場合には以下の関係が成立する。
I(dist)=P×{I(B)+I(G)+I(R)}・・・数式3
ここで、I(dist)は、測距画素信号値、I(B)、I(G)、I(R)はそれぞれ撮像画素B、G、Rにおける撮像画素信号値、Pは規格化定数である。数式3の関係は、測距画素信号値と各色R、G、Bにおける撮像画素信号の和を規格化した値とが一致しているということを意味している。言い換えると、測距画素近傍に配置した撮影画素信号値に基づいて測距画素における色情報を推定することができるということを意味している。
次に、図12に撮像画素信号において無視できないノイズ成分が重畳している場合を示す。図12には、測距画素1202における測距画素信号値と測距画素1202近傍に配置したRGB撮像画素1201B、1201G、1201Rにおける撮像画素信号値を示す。測距画素1202の分光感度特性は、撮像画素1201B、1201G、1201Rの分光感度特性を包含している。撮像画素信号において無視できないノイズ成分が重畳している撮影シーンの一例としては、被写体が著しく暗い撮影環境が挙げられる。この場合には、以下の関係が成立する。
I(dist)≠P×{I(B)+I(G)+I(R)}・・・数式4
数式4の関係は、測距画素信号値と各色R、G、Bにおける撮像画素信号の和を規格化した値とが一致しないということを意味している。言い換えると、測距画素近傍に配置した撮影画素信号値に基づいて測距画素における色情報を推定すると誤差が生じるということを意味している。
同様に、図13に撮像画素信号において信号飽和が生じている場合を示す。図13には、測距画素1302における測距画素信号値と測距画素1302の近傍に配置したRGB撮像画素1301B、1301G、1301Rにおける撮像画素信号値を示す。測距画素1302の分光感度特性は、撮像画素1301B、1301G、1301Rの分光感度特性を包含している。ここでは、測距画素1302における信号値が飽和しないように分光感度を補正した構成としている。撮像画素1301B、1301G、1301Rにおいては、信号値が頭打ちとなり飽和している。撮影シーンの一例としては、被写体が著しく明るい撮影環境が挙げられる。この場合にも数式4の関係が成立する。つまり、測距画素近傍に配置した撮影画素信号値に基づいて測距画素における色情報を推定すると誤差が生じるということを意味している。
前記説明によると、測距画素信号値I(dist)と撮像画素B、G、Rにおける撮像画素信号値I(B)、I(G)、I(R)との関係を調べる。このことによって、測距画素近傍に配置した撮影画素信号値に基づいて測距画素における色情報を推定すると誤差が生じるか否かということを評価できる。この関係について、数式5を用いて説明する。
E=I(dist)−P×{I(B)+I(G)+I(R)}・・・数式5
ここでEは評価値と定義する。評価値Eは、測距画素信号値I(dist)と撮像画素B、G、Rにおける撮像画素信号値I(B)、I(G)、I(R)の和を規格化した値との差分で表現している。評価値E=0の場合には、数式3と同様に、測距画素近傍に配置した撮影画素信号値に基づいて測距画素における色情報を推定することができるということを意味している。一方、評価値E≠0の場合には、数式4と同様に、測距画素近傍に配置した撮影画素信号値に基づいて測距画素における色情報を推定すると誤差が生じるということを意味している。評価値に基づいて補正係数算出手段を変更することによって、被写体の明るさに依存せず、被写体の色情報に起因する測距誤差を低減し、高精度で測距することが可能となる。
評価値Eの定義は、数式5に限定するものではない。例えば、誤差の発生量のみに注目する場合には、絶対値を用いて数式6のように表現してもよい。
E=|{I(dist)−P×{I(B)+I(G)+I(R)}|・・・数式6
また、採用する撮像画素信号値について、測距画素と隣接する撮像画素信号値のみに限らず、近傍に配置した撮像画素信号値の平均値を用いるなど、様々な方式を選択することができる。
ステップ1002における分岐処理について説明する。一例として、前記数式5に基づいて算出された評価値に注目する。数式5において評価値E=0をとった場合には、評価値が或る条件を満たすと判断し、補正係数算出手段1(ステップ1003)により補正係数を算出するフローをとる。同様に評価値E≠0をとった場合には評価値が或る条件を満たさないと判断し、補正係数算出手段2(ステップ1004)により補正係数を算出するフローをとる。
ステップ1002における評価値判定について、閾値や範囲を設けてもよい。例えば、数式5においては、評価値Eを満たす範囲について下限と上限を設け、範囲の内外判定に基づいて評価値が或る条件を満たす、または、満たさないを判定してもよい。数式6においても同様の考え方である。閾値や範囲の設定方法については、測距装置の構成、測距要求精度、使用方法など様々な観点から好ましい設定を選択することができる。例えば、ステップ1005で算出されるデフォーカス量ΔLの許容誤差範囲に基づいて、評価値Eの閾値や範囲を設定することができる。より具体的には、デフォーカス量ΔL、および、任意のデフォーカス誤差量を含むΔL’と、補正係数cおよび任意の補正係数誤差量を含む補正係数c’との関係を、前記数式2を適用して表現する。ここで、ΔL’=ΔL+α(αは任意のデフォーカス誤差量)、c’=c+β(βは任意の補正係数誤差量)である。2つの式から算出した補正係数の許容誤差量に基づいて、評価値の閾値や範囲を設定してもよい。
補正係数算出手段1(ステップ1003)について説明する。補正係数算出手段1では、評価値が或る条件を満たす条件下において、補正係数をcを算出する。前述した様に、変換係数wについては、基線長、または、重心角度、または、基線長や重心角度を導出することができる関数を用いることができる。像ズレ量r、変換係数(基線長)w、補正係数cを得たのち、以下の数式7の変換式により像ズレ量rを像側のデフォーカス量ΔLに変換する。
ΔL=r・L/[(w+c)−r)]・・・数式7
Lは、撮像素子102から射出瞳106までの距離である。
数式7では、基線長wが有する波長依存性を補正係数cで補正している。デフォーカス量ΔLを表現する数式は、数式7に示すものに限定されない。基線長wの比例係数としての補正係数cを適用してもよい。測距装置に適した様々な数式を用いることができる。
被写体の色情報を取得する手段としては、測距画素近傍に配置した撮像画素の信号を用いる方法が挙げられる。図14は、撮像素子において、撮像画素と測距画素とを含む画素群の一部を拡大したものである。画素群1400は、撮像画素1401B、1401G、1401R、及び、測距画素1402から構成されている。ここでは、注目する測距画素をD、この測距画素の近傍に配置した撮像画素をそれぞれ、B−L、B−R、G−UL、G−UR、G−DL、G−DR、R−U、R−D、と示した。なお、撮像画素B−L、B−R、G−UL、G−UR、G−DL、G−DR、R−U、R−Dの構造は、撮像画素1401B、1401G、1401Rと同じである。同様に、測距画素Dの構造は、測距画素1402と同じである。撮像画素1401Bは青色カラーフィルターを備え、撮像画素1401Gは緑色カラーフィルターを備え、撮像画素1401Rは赤色カラーフィルターを備えている。測距画素1402はカラーフィルターを備えていない。
図15にカラーフィルターの透過率スペクトルを示す。グラフ1501B、1501G、1501Rは、それぞれ、青色、緑色、赤色カラーフィルターの透過率スペクトルである。図16のグラフは、被写体が有する色スペクトル1601、カラーフィルターを備えていない測距画素Dで被写体を観測したときの色スペクトル1602である。このとき、グラフ1501B、1501G、1501Rの透過率特性を有するカラーフィルターを透過した光のスペクトルは、それぞれ、1603B、1603G、1603Rである。それぞれのカラーフィルターを有する撮像画素で得られる信号強度は、スペクトルの積分値に相当する。そして、図17に示すように、測距画素Dで観測した色スペクトル1702における重心波長λdを、測距画素Dで観測した被写体の色情報として用いることができる。色情報に基づいて補正係数算出手段1(ステップ1003)において、補正係数cを算出することができる。
被写体色情報として別のものを用いる例を説明する。この例では、図10のステップ1001では、測距画素近傍に隣接した撮像画素におけるRGB信号に基づいて被写体色情報を取得することができる。また、精度を高めるために、より多くの撮像画素の信号の平均値を適用するなどの演算処理を合わせて実施してもよい。測距装置に適当な様々な公知の手段を適用することができる。補正係数算出手段1(ステップ1003)では、取得した信号に基づいて、各色(R、G、B)被写体色情報を推定する。推定した被写体色情報と各色R、G、Bの重心波長における基線長wr、wg、wbに基づいて補正係数cを算出することができる。補正後の変換係数(基線長)wは、w+c、或いはwcなど様々な関数で表現することができる。各重心波長における基線長を予め測距装置内部のメモリなどに格納しておき、必要に応じて読み出すことで、演算量を低減することができる。
補正係数算出手段2(ステップ1004)について説明する。補正係数算出手段2は、補正係数算出手段1とは異なる補正係数算出手段である。補正係数算出手段2では、評価値が或る条件を満たさない条件下において、変換係数(基線長)wが有する誤差が低減する手段であることが求められる。ステップ1004の具体的な手段としては、取得した各色(R、G、B)の信号値のうちで、最も信号値が大きな色における重心波長における変換係数を算出する、予め装置に格納してある変換係数(基線長)wを用いる、不良信号(信号値の飽和、ノイズに埋もれた信号など)を算出工程で採用しないで補正係数を算出する、など様々な手段を適用することが可能である。
特に、各色(R、G、B)の信号値のうちで、1つの色における信号値が飽和した場合における、補正係数算出手段2について図18を用いて説明する。測距画素信号値1802、撮像画素信号値(R、G、B)1801B、1801G、1801Rを示している。ここでは、撮像画素信号のうちR画素における信号が飽和した場合を一例として挙げる。また、測距画素信号値については、信号値が飽和しない構成をとっているものとする。例えば、前記撮像画素が有する分光感度(透過率特性)を包含する分光感度を有する減光部材やNDフィルターを備える、低感度なフォトダイオードを備える、入射光量を制御するために開口を小さく構成する、など、様々な構成をとることができる。ここで、以下の数式8に基づいて、飽和したR画素の信号値を算出することができる。
I(Rcalc)=M×I(W)−{I(B)+I(G)}・・・数式8
ここで、I(Rcalc)は、演算によって求めた撮像画素(R)における信号値、I(W)、I(B)、I(G)はそれぞれ、測距画素、撮像画素(B、G)における信号値、Mは規格化定数、である。数式8は、飽和したR画素の信号値について、測距画素信号およびB、G画素信号に基づいて求めることができることを意味している。したがって、補正係数算出手段2において、数式8を含む演算処理を実行することで、飽和信号に起因する測距誤差の拡大や測距不能状態が発生することなく、精度よく測距することができる。
以上の工程を経て、像ズレ量r、基線長w、補正係数c、を得たのち、変換式により像ズレ量rを像側のデフォーカス量ΔLに変換することで、被写体色情報に起因する測距誤差を低減した測距ができる。
(実施例2)
実施例2では、実施例1とは異なる補正方法を説明する。ここでは、像ズレ量rの波長依存性を補正するための補正係数cを求めるフローについて説明する。
図8で示したように、測距画素の画素感度が入射波長に対して変化する場合、AB像が入射波長に応じて変形し、その結果、像ズレ量の算出誤差が発生する。本実施例では、図19に示す測距フローを適用する。ここでは、図5のフローのAB像ズレ量の算出工程502にて、補正係数cを算出する。
ステップ1901では、測距画素近傍に配置した撮像画素から各色(R、G、B)の信号を取得する。ステップ1902では、評価値を算出し、評価値に基づいてステップ1903またはステップ1904の処理を実施する。ステップ1903および1904ではそれぞれ補正係数算出手段1または補正係数算出手段2によって、像ズレ量rの波長依存性を補正するための補正係数cを算出する。ステップ1905では、像ズレ量r、変換係数w、補正係数c、撮像素子102から射出瞳106までの距離Lを用いて、デフォーカス量ΔLを算出する。ステップ1901、ステップ1902、ステップ1903、ステップ1904については、実施例1に記載の既知の手段によって実施することができる。
図20は、補正係数算出手段1(ステップ1903)の工程について、より詳細に記述したものである。ステップ2001は、補正係数cを算出する工程である。ステップ2002は、ステップ2001で算出した補正係数cを考慮した像修正を行う工程である。例えば、上記数式1において、被写体色情報に基づき像信号データを修正する。ステップ1905では、修正された像信号データ用いてA像とB像の相対的シフト量である像ズレ量(r+c)を算出し、以下の数式9の変換式によりデフォーカス量ΔLに変換する。
ΔL=(r+c)・L/(w−r)・・・数式9
この工程では、距離検出手段は、第1の被写体像信号と第2の被写体像信号との像ズレ量を補正するための補正係数を算出する工程を実行する。像ズレ量を補正するための補正係数は、被写体色情報に起因する測距画素感度の変化量に基づいて算出される。そして、距離検出手段は、第1の被写体像信号と第2の被写体像信号の像信号を修正するための像修正関数を演算に用いる像修正工程を実行し、上記像ズレ量を補正するための補正係数は、被写体色情報に起因する像修正関数の変化量に基づいて算出される。
数式9では、像ズレ量rが有する波長依存性を補正係数cで補正している。デフォーカス量ΔLを表現する数式は、数式9に示すものに限定するものではない。測距装置に適した様々な数式を用いることができる。また、一連の工程について、デフォーカス量ΔLがある値に収束するまで繰り返し実行することで、さらに高精度な測距を実行することができる。即ち、初めにLの初期値を用いて数式4でΔLを計算し、順次L+ΔLを数式9のLに入れてΔLを求めていって、ΔLがある値に収束するまで繰り返す。
像修正は、測距画素で得られたAB像の形状を修正し、AB像での重心角度を求める際の誤差を低減する処理である。AB像の重心角度を算出するときに、撮影レンズ枠によるけられ(シェーディング)を補正する処理を適用してもよい。撮影レンズにおけるシェーディングの波長依存性について、予め測距装置内に保管しておき、ステップ2001で、得られた被写体色情報に基づいて、補正係数cを算出することができる。AB像の重心角度を算出するときに、線像分布関数を適用してもよい。線像分布関数の波長依存性について、予め測距装置内に保管しておき、ステップ2001で、得られた被写体色情報に基づいて、補正係数cを算出することができる。ここには記載しないが、補正係数算出手段2(ステップ1904)において、上記の工程を含んでいてもよい。
以上に示した以外にも、AB像の重心位置などを算出するときに必要なパラメータのうち、波長依存性を有するパラメータについて、補正係数cを適用することが可能である。
ここで、撮像画素の構造について説明する。ここでは簡略化のため、配線層などの電子回路の記載は省略している。図21(a)に画素群300の一部を抽出した図を示す。図21(a)の点P1と点P2とを結ぶ線分での断面図を図21(b)に示す。2101G、2101Rはマイクロレンズ、2102Gは緑色カラーフィルター、2102Rは赤色カラーフィルター、2103G、2103Rは光電変換部を表している。
同様に、図21(a)の点P3と点P4とを結ぶ線分での断面図を図21(c)に示す。2101B、2101Dはマイクロレンズ、2102Bは青色カラーフィルター、2103B、2103D、2104Dは光電変換部を表している。なお、測距画素は、2102Dの部分にカラーフィルターは備えておらず、光学特性が透明な樹脂材料や誘電体材料を備えている。
測距画素302では、1つの画素内に光電変換部を2つ配置し、光電変換部2103D、2104Dと射出瞳106を光学的に共役関係になるようにマイクロレンズ2101Dのパワーを設定している。このような配置とすることで、光電変換部2103Dと光電変換部2104Dでは、それぞれ射出瞳106の異なる領域を通過した光束を受光することができる。測距画素では、A画素の像信号とB画素の像信号を用いて画像生成が可能となる。測距画素における色情報は、測距画素近傍に配置した撮像画素の信号に基づき演算することによって、取得することができる。
測距画素302の具体的な構成例を図22に示す。図22(a)では、遮光部2204を設けている。この構成では、A像のみの像を取得することができる。遮光部2204を画素中心に対して右側に配置することによって、B像のみの像を取得することができる。A像取得用の測距画素(ここでは遮光部を画素中心に対して左側に配置する)とB像取得用の測距画素をそれぞれ備えることによって、距離分布を取得することができる。図22(a)において、2201はマイクロレンズ、2202は透明な樹脂材料や誘電体材料、2210は光電変換部を表している。
また、図22(b)や(c)に示すように、透明な樹脂材料や誘電体材料2202と光電変換部2210との間に導波構造2205を設けてもよい。導波構造を配置することによって、画素間のクロストークやA像B像間のクロストークを低減することができる。図22(c)の測距画素では、A像取得用の光電変換部2210RとB像取得用の光電変換部2210Lを配置している。
また、図22(d)に示すように、測距画素302において、減光部材2203を設けてもよい。減光部材を設けることにより、被写体がきわめて明るい撮影条件下においても測距画素信号の飽和が発生しにくくなる。各色の撮像画素に対して測距画素における画素信号飽和耐性が高い(信号値が飽和しにくい)構成の場合には、前記演算によって飽和した撮像画素信号値を推定することができる。減光部材2203の一例としては、前記撮像画素が有する分光感度(透過率特性)を包含する分光感度を有するニュートラルデンシティーフィルター(NDフィルター)が挙げられる。減光部材2203は、図22(d)で示した測距画素構成に限らず、様々な測距画素構造に適用することができる。
以上示した構造に限定することなく、様々な測距画素構造を用いることができる。また、実施例1及び実施例2における測距フローを両方実施して測距誤差を抑制してもよい。これにより、より高精度な測距が実現できる。
(他の実施形態)
本発明の目的は、以下の実施形態によって達成することもできる。即ち、前述した実施例の機能を実現するソフトウェアのプログラムコードを格納した記憶ないし記録媒体を、測距装置に供給する。そして、その演算部のコンピュータ(またはCPU、MPUなど)が記憶媒体に格納されたプログラムコードを読み出し上記機能を実行する。この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施例の機能を実現することになり、そのプログラム、これを格納した記憶媒体は本発明を構成することになる。このプログラムコードは、上記の如き複数の撮像画素と測距画素が二次元行列状に配置された撮像素子により生成された第1の被写体像信号と第2の被写体像信号とに基づき被写体までの距離を検出するためのコンピュータに、次の工程を実行させる。即ち、被写体色情報に起因する測距誤差を補正するための補正係数を算出するための補正係数算出工程と、補正係数を用いて被写体までの距離を算出するための距離算出工程を実行させる。
また、コンピュータが読み出したプログラムコードを実行することにより、そのプログラムコードの指示に基づき、コンピュータ上で稼働しているオペレーティングシステム(OS)などが実際の処理の一部または全部を行う様にもできる。その処理によって前述した実施例の機能が実現される場合も本発明に含まれる。更に、記憶媒体から読み出されたプログラムコードが、コンピュータに挿入された機能拡張カードやコンピュータに接続された機能拡張ユニットに備わるメモリに書込まれたとする。その後、そのプログラムコードの指示に基づき、その機能拡張カードや機能拡張ユニットに備わるCPUなどが実際の処理の一部または全部を行い、その処理によって前述した実施例の機能が実現される場合も本発明に含まれる。本発明を上記記憶媒体に適用する場合、その記憶媒体には、先に説明したフローチャートに対応するプログラムコードが格納されることになる。
カメラ等の撮像装置への本発明の適用を考えると、本発明は、被写体像を撮像する撮像部とは別に距離検出を専用で行う測距装置(一眼レフカメラ等で使用)よりも、撮像部を用いて距離検出をも行う所謂撮像面測距に好適な装置の技術と捉えることができる。上述した様に、本発明の測距装置における演算部は、半導体素子を集積化した集積回路を用いて構成することができ、IC、LSI、システムLSI、マイクロ処理ユニット(MPU)、中央演算装置(CPU)等で構成することができる。演算部をマイクロ処理ユニットや中央演算装置(CPU)等で構成する場合には、演算部は、コンピュータとして捉えることが可能である。本発明のプログラムは、所定の結像光学系、所定の撮像部、コンピュータ、を備えた撮像装置のコンピュータにインストールすることによって、撮像装置を高精度の距離検出が可能なものとなすことができる。本発明のコンピュータは、記録媒体の他、インターネットを通じて頒布することも可能である。
本発明によるデジタルカメラ100などでは、得られた画像と対応する距離分布(距離マップ)を同時に生成することができる。画像内にある被写体のボケ量はデフォーカス量(物側の焦点位置からの距離)に依存する。得られた画像に対して距離分布に基づく処理を行うことで、画像に対する任意のボケ付加処理、撮影後のリフォーカス処理(任意の位置にピントを合わせる処理)等の画像処理を適切に行うことができる。以上のような構成により、被写体の色情報に依存せず、高精度で測距可能なデジタルカメラシステム等を実現することができる。
本発明の測距装置、測距方法、撮像装置、プログラム、記憶媒体は、特にデジタルカメラやデジタルビデオカメラなどの撮像装置に用いることができる。被写体の色情報に依存せず、高精度な距離計測が可能になる。
100・・デジタルカメラ(撮像装置)、110・・測距装置、101・・撮影レンズ(結像光学系)、102・・撮像素子、103・・測距演算部(距離検出手段)、106・・射出瞳、107・・第1の瞳領域、108・・第2の瞳領域

Claims (14)

  1. 被写体を結像する結像光学系と、
    前記結像光学系の第1の瞳領域を通過した光束により形成される第1の被写体像信号と、第2の瞳領域を通過した光束により形成される第2の被写体像信号を生成する撮像素子と、
    前記第1の被写体像信号と前記第2の被写体像信号とに基づいて被写体までの距離を検出する距離検出手段と、
    を有し、
    前記撮像素子において、それぞれ異なる分光感度特性を有する複数種の画素から構成されている複数の撮像画素と、前記撮像画素が有する分光感度を包含する分光感度を有する画素から構成されている測距画素とが、二次元行列状に配置されており、
    前記距離検出手段は
    被写体色情報に起因する測距誤差を補正するための補正係数を算出するための補正係数算出工程と、前記補正係数を用いて被写体までの距離を算出するための距離算出工程を実行する測距装置であって、
    前記補正係数算出工程は、
    被写体色情報に基づいて算出された評価値を算出する工程を含み、
    前記評価値に基づいて、第一の補正係数算出工程と該第一の補正係数算出工程とは異なる第二の補正係数算出工程とを切り替えて実行することを特徴とする測距装置。
  2. 前記評価値は、前記測距画素から出力される信号値と前記撮像画素から出力される信号値とに基づいて算出されることを特徴とする請求項1に記載の測距装置。
  3. 前記評価値は、前記測距画素から出力される信号値と該測距画素の近傍に配置された前記複数の撮像画素から出力される信号値の和を規格化した信号値とに基づいて算出されることを特徴とする請求項2に記載の測距装置。
  4. 前記第一の補正係数算出工程は、前記測距画素の近傍に配置された前記複数の撮像画素の信号値に基づいて補正係数を算出することを特徴とする請求項1から3の何れか1項に記載の測距装置。
  5. 前記第二の補正係数算出工程は、基準波長において算出された変換係数に基づいて演算処理することを特徴とする請求項4に記載の測距装置。
  6. 前記測距画素は、該測距画素における飽和した信号値が、前記撮像画素における飽和した信号値と比較して小さい測距画素を含むことを特徴とする請求項4に記載の測距装置。
  7. 前記測距画素は、前記撮像画素が有する分光感度を包含する分光感度を有する減光部材を備えていることを特徴とする請求項6の測距装置。
  8. 前記第二の補正係数算出工程は、一つの飽和した撮像画素信号値について、飽和していない測距画素信号値と飽和していない複数の撮像画素信号値とから、該飽和した撮像画素信号値を算出する工程を有することを特徴とする請求項7に記載の測距装置。
  9. 前記第二の補正係数算出工程は、一つの飽和した撮像画素信号値に対して、飽和していない測距画素における規格化した画素信号値から飽和していない複数の撮像画素信号値の和を減じた値に基づいて、該飽和した撮像画素信号値を算出する工程を有することを特徴とする請求項8に記載の測距装置。
  10. 請求項1から9の何れか1項に記載の測距装置を備え、前記測距装置により算出された被写体までの距離に基づいて前記結像光学系を駆動制御することを特徴とする撮像装置。
  11. 請求項1から9の何れか1項に記載の測距装置を備え、前記測距装置により算出された被写体までの距離に基づいて前記結像光学系を駆動制御することを特徴とするカメラ。
  12. コンピュータに、
    それぞれ異なる分光感度特性を有する複数種の画素から構成されている複数の撮像画素と、前記撮像画素が有する分光感度を包含する分光感度を有する画素から構成されている測距画素が、二次元行列状に配置された撮像素子により生成された、結像光学系の第1の瞳領域を通過した光束による第1の被写体像信号と第2の瞳領域を通過した光束による第2の被写体像信号とに基づき被写体までの距離を検出し、
    被写体色情報に起因する測距誤差を補正するための補正係数を算出するための補正係数算出工程と、
    前記補正係数を用いて被写体までの距離を算出するための距離算出工程と、
    を実行させるためのプログラムであって、
    被写体色情報に基づいて算出された評価値を算出する工程を実行させ、
    前記評価値の基づいて、第一の補正係数算出工程と、該第一の補正係数算出工程とは異なる第二の補正係数算出工程とを切り替えて実行させることを特徴とするプログラム。
  13. 請求項12に記載のプログラムを格納したことを特徴とする記憶媒体。
  14. それぞれ異なる分光感度特性を有する複数種の画素から構成されている複数の撮像画素と、前記撮像画素が有する分光感度を包含する分光感度を有する画素から構成されている測距画素が、二次元行列状に配置された撮像素子により生成された、結像光学系の第1の瞳領域を通過した光束による第1の被写体像信号と第2の瞳領域を通過した光束による第2の被写体像信号とに基づき被写体までの距離を検出し、
    被写体色情報に起因する測距誤差を補正するための補正係数を算出するための補正係数算出工程と、
    前記補正係数を用いて被写体までの距離を算出するための距離算出工程と、
    を含む測距方法であって、
    被写体色情報に基づいて算出された評価値を算出する工程を含み、
    前記評価値の基づいて、第一の補正係数算出工程と、該第一の補正係数算出工程とは異なる第二の補正係数算出工程とを切り替えて実行することを特徴とする測距方法。
JP2013022149A 2013-02-07 2013-02-07 測距装置 Abandoned JP2014153494A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013022149A JP2014153494A (ja) 2013-02-07 2013-02-07 測距装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013022149A JP2014153494A (ja) 2013-02-07 2013-02-07 測距装置

Publications (2)

Publication Number Publication Date
JP2014153494A true JP2014153494A (ja) 2014-08-25
JP2014153494A5 JP2014153494A5 (ja) 2016-03-17

Family

ID=51575423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013022149A Abandoned JP2014153494A (ja) 2013-02-07 2013-02-07 測距装置

Country Status (1)

Country Link
JP (1) JP2014153494A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016079965A1 (en) * 2014-11-21 2016-05-26 Canon Kabushiki Kaisha Depth detection apparatus, imaging apparatus and depth detection method
US10021282B2 (en) 2015-11-23 2018-07-10 Center For Integrated Smart Sensors Foundation Multi-aperture camera system using disparity
JP2019095562A (ja) * 2017-11-21 2019-06-20 キヤノン株式会社 撮像装置及びその制御方法、プログラム、記憶媒体

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016079965A1 (en) * 2014-11-21 2016-05-26 Canon Kabushiki Kaisha Depth detection apparatus, imaging apparatus and depth detection method
JP2016099247A (ja) * 2014-11-21 2016-05-30 キヤノン株式会社 距離検出装置、撮像装置、および距離検出方法
KR20170087910A (ko) * 2014-11-21 2017-07-31 캐논 가부시끼가이샤 거리검출 장치, 촬상 장치, 및 거리검출 방법
CN107003119A (zh) * 2014-11-21 2017-08-01 佳能株式会社 深度检测设备、摄像设备和深度检测方法
US10006765B2 (en) 2014-11-21 2018-06-26 Canon Kabushiki Kaisha Depth detection apparatus, imaging apparatus and depth detection method
KR101879261B1 (ko) * 2014-11-21 2018-07-17 캐논 가부시끼가이샤 거리검출 장치, 촬상 장치, 및 거리검출 방법
CN107003119B (zh) * 2014-11-21 2019-07-09 佳能株式会社 深度检测设备、摄像设备和深度检测方法
US10021282B2 (en) 2015-11-23 2018-07-10 Center For Integrated Smart Sensors Foundation Multi-aperture camera system using disparity
JP2019095562A (ja) * 2017-11-21 2019-06-20 キヤノン株式会社 撮像装置及びその制御方法、プログラム、記憶媒体
JP7005313B2 (ja) 2017-11-21 2022-01-21 キヤノン株式会社 撮像装置及びその制御方法、プログラム、記憶媒体

Similar Documents

Publication Publication Date Title
JP6202927B2 (ja) 距離検出装置、撮像装置、プログラム、記録媒体および距離検出方法
JP6335423B2 (ja) 情報処理装置および情報処理方法
JP6021780B2 (ja) 画像データ処理装置、距離算出装置、撮像装置および画像データ処理方法
US10477100B2 (en) Distance calculation apparatus, imaging apparatus, and distance calculation method that include confidence calculation of distance information
JP6645682B2 (ja) 距離取得装置、距離画像信号補正装置、撮像装置、距離画像量子化装置、および方法
JP6214271B2 (ja) 距離検出装置、撮像装置、距離検出方法、プログラム及び記録媒体
US20150109518A1 (en) Detection apparatus, image pickup apparatus, image pickup system, and control method of the detection apparatus
WO2015128908A1 (ja) 深さ位置検出装置、撮像素子、及び深さ位置検出方法
JP2023010706A (ja) 分光カメラ、撮像方法、プログラム及び記録媒体
JP6353233B2 (ja) 画像処理装置、撮像装置、及び画像処理方法
JP2014153494A (ja) 測距装置
US9841580B2 (en) Distance measuring apparatus
JP5804693B2 (ja) 撮像装置
JP2017032646A (ja) 撮像装置及びその制御方法
CN110662013B (zh) 摄像装置、图像处理方法和存储介质
US10664984B2 (en) Distance measuring apparatus and distance measuring method
US9402069B2 (en) Depth measurement apparatus, imaging apparatus, and method of controlling depth measurement apparatus
JP6234087B2 (ja) 距離検出装置及び距離検出方法
JP6632406B2 (ja) 距離算出装置、撮像装置、および距離算出方法
JP2015087494A (ja) 撮像装置
JP2015015704A (ja) 測距装置、撮像装置及び測距装置の制御方法
US11263768B2 (en) 3D information calculation apparatuses, 3D measurement apparatuses, 3D information calculation methods, and 3D information calculation programs
US20210258522A1 (en) Camera system with complementary pixlet structure
JP6725060B2 (ja) 画像処理装置、画像処理システム、画像処理方法、及びプログラム
JP6590463B2 (ja) 距離算出装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160130

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20160729