JP2014150754A - Rice growing method - Google Patents

Rice growing method Download PDF

Info

Publication number
JP2014150754A
JP2014150754A JP2013021951A JP2013021951A JP2014150754A JP 2014150754 A JP2014150754 A JP 2014150754A JP 2013021951 A JP2013021951 A JP 2013021951A JP 2013021951 A JP2013021951 A JP 2013021951A JP 2014150754 A JP2014150754 A JP 2014150754A
Authority
JP
Japan
Prior art keywords
iron
rice
cadmium
absorption inhibitor
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013021951A
Other languages
Japanese (ja)
Other versions
JP6148485B2 (en
Inventor
seiji Nakatsuka
清次 中塚
Tsunehiko Uehara
恒彦 上原
Kosuke Sakurai
康祐 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Technology KK
Original Assignee
Dowa Technology KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Technology KK filed Critical Dowa Technology KK
Priority to JP2013021951A priority Critical patent/JP6148485B2/en
Publication of JP2014150754A publication Critical patent/JP2014150754A/en
Application granted granted Critical
Publication of JP6148485B2 publication Critical patent/JP6148485B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rice growing method which makes it possible to grow rice without flooding management, can be conducted at low cost, and can also reduce the cadmium content of rice without inhibiting rice growth.SOLUTION: This invention provides a rice growing method in which a cadmium absorption inhibitor of an iron precipitate composed of an iron hydroxide is applied to a field and rice is grown. In preferable embodiments, the iron hydroxide (Fe(OH)) content of the cadmium absorption inhibitor is 25 mass% or more, and the cadmium absorption inhibitor is applied to a field at the rate of 25 kg/50 mor more.

Description

本発明は、稲の生長方法に関する。   The present invention relates to a method for growing rice.

カドミウム(Cd)は、天然資源として山地にあって、河川に含まれることもあり、農業用水、土壌で栽培された稲にはカドミウムが微量であるが含まれることがある。このため、米中のカドミウムの含有量を低減させる方法として、例えば、水田で稲を栽培する際の落水時期を調整する水位管理を行っている。しかし、収穫期には湛水管理することは困難である。
また、米へのカドミウム蓄積を減少させる手段として、例えば、人工ゼオライト(特許文献1参照)、糖蜜を主成分とするカドミウム吸収抑制資材(特許文献2参照)、などが提案されている。しかし、人工ゼオライトや糖蜜はコスト増となる方法であり、農家がカドミウム対策にかけられる費用はかなり抑えられることから、一般に採用することは困難である。
したがって、安価であり、かつ稲の生長を阻害することなく米中のカドミウム含有量を低減することができる技術の提供が望まれている。
Cadmium (Cd) is in the mountains as a natural resource and may be contained in rivers. Rice grown in agricultural water and soil may contain a small amount of cadmium. For this reason, as a method for reducing the content of cadmium in rice, for example, water level management is performed to adjust the water falling time when cultivating rice in paddy fields. However, it is difficult to manage flooding during the harvest season.
Further, as means for reducing cadmium accumulation in rice, for example, artificial zeolite (see Patent Document 1), cadmium absorption suppression material mainly composed of molasses (see Patent Document 2), and the like have been proposed. However, artificial zeolite and molasses are methods that increase costs, and it is difficult to adopt them in general because the cost to farmers for cadmium control is considerably reduced.
Therefore, it is desired to provide a technique that is inexpensive and that can reduce the cadmium content in rice without inhibiting the growth of rice.

特開2009−278881号公報JP 2009-278881 A 特開2011−83194号公報JP 2011-83194 A

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、湛水管理を行うことなく稲を栽培でき、安価であり、かつ稲の生長を阻害することなく米中のカドミウム含有量を低減することができる稲の生長方法を提供することを目的とする。   An object of the present invention is to solve the above-described problems and achieve the following objects. That is, the present invention provides a rice growth method that can cultivate rice without performing flooding management, is inexpensive, and can reduce the cadmium content in the rice without inhibiting rice growth. For the purpose.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 鉄水酸化物からなる鉄殿物のカドミウム吸収抑制剤を田圃に散布し、稲を栽培することを特徴とする稲の生長方法である。
<2> 前記カドミウム吸収抑制剤における水酸化鉄(Fe(OH))の含有量が25質量%以上であり、前記カドミウム吸収抑制剤を25kg/50m以上となるように田圃に散布する前記<1>に記載の稲の生長方法である。
<3> 前記カドミウム吸収抑制剤が、
第一鉄及び該第一鉄以外の重金属を含有する液に、第二鉄塩を添加した後、アルカリを加えてpH3.2以上とし、該pH3.2以上の状態を保持しながら水酸化第二鉄の沈殿を形成させ、固液分離により該水酸化物沈殿を除去することにより前記第一鉄以外の重金属を除去する除去工程と、
酸化剤を用いて前記第一鉄以外の重金属を除去後の処理液に含まれる2価鉄を3価鉄に酸化する酸化工程と、
前記酸化工程後の液を第一の中和剤でpH4.0〜4.5に中和する第一の中和工程と、
前記第一の中和工程後の液を、第二の中和剤でpH7.3〜8.3に中和する第二の中和工程と、
を含むカドミウム吸収抑制剤の製造方法により製造される前記<1>から<2>のいずれかに記載の稲の生長方法である。
<4> 前記第二の中和工程後の液を固液分離して、鉄殿物を得る固液分離工程を含む前記<3>に記載の稲の生長方法である。
Means for solving the problems are as follows. That is,
<1> A method for growing rice characterized by cultivating rice by spraying a cadmium absorption inhibitor of iron glaze made of iron hydroxide on rice fields.
<2> The iron spray (Fe (OH) 3 ) content in the cadmium absorption inhibitor is 25% by mass or more, and the cadmium absorption inhibitor is sprayed on the rice field so as to be 25 kg / 50 m 2 or more. The method for growing rice according to <1>.
<3> The cadmium absorption inhibitor is
After adding a ferric salt to a liquid containing ferrous metal and heavy metals other than the ferrous iron, an alkali is added to adjust the pH to 3.2 or higher, while maintaining the pH 3.2 or higher. Removing the heavy metal other than the ferrous iron by forming a ferric precipitate and removing the hydroxide precipitate by solid-liquid separation;
An oxidation step of oxidizing divalent iron contained in the treatment liquid after removing heavy metals other than ferrous iron using an oxidizing agent into trivalent iron;
A first neutralization step of neutralizing the liquid after the oxidation step with a first neutralizer to a pH of 4.0 to 4.5;
A second neutralization step of neutralizing the liquid after the first neutralization step to a pH of 7.3 to 8.3 with a second neutralizing agent;
The method for growing rice according to any one of <1> to <2>, which is produced by a method for producing a cadmium absorption inhibitor comprising
<4> The method for growing rice according to <3>, including a solid-liquid separation step in which the liquid after the second neutralization step is subjected to solid-liquid separation to obtain an iron cake.

本発明によると、従来における前記諸問題を解決することができ、湛水管理を行うことなく稲を栽培でき、安価であり、かつ稲の生長を阻害することなく米中のカドミウム含有量を低減することができる稲の生長方法を提供することができる。   According to the present invention, the conventional problems described above can be solved, rice can be cultivated without flooding management, it is inexpensive, and the cadmium content in rice is reduced without inhibiting rice growth. A method of growing rice that can be provided can be provided.

図1は、本発明で用いられるカドミウム吸収抑制剤の製造方法の一例を示す工程図である。FIG. 1 is a process diagram showing an example of a method for producing a cadmium absorption inhibitor used in the present invention. 図2は、実施例1における米中のカドミウム含有量の分析方法を示す工程図である。FIG. 2 is a process diagram showing a method for analyzing cadmium content in rice in Example 1. 図3は、実施例2〜3及び比較例1の米中のカドミウム含有量の結果を示したグラフである。FIG. 3 is a graph showing the results of cadmium content in rice of Examples 2 to 3 and Comparative Example 1.

(稲の生長方法)
本発明の稲の生長方法は、鉄水酸化物からなる鉄殿物のカドミウム吸収抑制剤を田圃に散布し、稲を栽培することを特徴とする。
(How to grow rice)
The method for growing rice according to the present invention is characterized in that an iron cadmium absorption inhibitor comprising iron hydroxide is sprayed on rice fields and the rice is cultivated.

前記稲の生長方法において用いられるカドミウム吸収抑制剤である鉄殿物は、鉄水酸化物であるが、鉄鉱山の廃液及び鉄精錬工場からの排水を原料として、3価の鉄水酸化物と他の硫酸塩とが複合されているものである。このような鉄殿物のカドミウム吸収抑制剤を生成するための製法について下記に説明する。   The iron cadmium, which is a cadmium absorption inhibitor used in the rice growth method, is an iron hydroxide. It is a composite with other sulfates. A production method for producing such a cadmium absorption inhibitor for iron products will be described below.

<カドミウム吸収抑制剤の製造方法>
前記カドミウム吸収抑制剤の製造方法は、第一鉄及び該第一鉄以外の重金属を含有する液に対し、除去工程と、酸化工程と、中和工程(第一の中和工程及び第二の中和工程)とを含み、固液分離工程を含むことが好ましく、更に必要に応じてその他の工程を含んでなる。
<Method for producing cadmium absorption inhibitor>
The method for producing the cadmium absorption inhibitor includes a removal step, an oxidation step, and a neutralization step (first neutralization step and second neutralization step) for a liquid containing ferrous metal and heavy metals other than the ferrous iron. Neutralization step), preferably a solid-liquid separation step, and further includes other steps as necessary.

本発明においては、米中のカドミウム蓄積を低減する方法として、第一鉄及び該第一鉄以外の重金属を含有する液を所定の処理を行って得られた水酸化鉄Fe(OH)を25質量%以上含有する鉄殿物を田圃の土壌に散布することにより、米中のカドミウムの含有量を減少できることを知見した。これにより、鉄鉱山の廃液及び鉄精錬工場からの排水を処理して発生した鉄殿物を利用するため、費用は安価であり、かつ鉄鉱山の廃液及び鉄精錬工場からの排水のリサイクルが可能となる。 In the present invention, as a method of reducing cadmium accumulation in rice, iron hydroxide Fe (OH) 3 obtained by subjecting a liquid containing ferrous metal and a heavy metal other than ferrous iron to a predetermined treatment is used. It was found that the content of cadmium in rice can be reduced by spraying iron-containing products containing 25% by mass or more on the soil of rice fields. As a result, iron waste generated from processing wastewater from the iron mine and the wastewater from the iron smelting plant is used, so the cost is low and the wastewater from the iron mine and the wastewater from the iron smelting plant can be recycled. It becomes.

<<除去工程>>
前記除去工程は、第一鉄及び該第一鉄以外の重金属を含有する液に、第二鉄塩を添加した後、アルカリを加えてpH3.2以上とし、該pH3.2以上の状態を保持しながら水酸化第二鉄の沈殿を形成させ、固液分離により該水酸化物沈殿を除去することにより前記第一鉄以外の重金属を除去する工程である。
<< Removal process >>
In the removing step, a ferric salt is added to a liquid containing ferrous metal and heavy metals other than the ferrous iron, and then an alkali is added to adjust the pH to 3.2 or higher, and the pH of 3.2 or higher is maintained. This is a step of removing heavy metals other than ferrous iron by forming a precipitate of ferric hydroxide while removing the hydroxide precipitate by solid-liquid separation.

−第一鉄及び該第一鉄以外の重金属を含有する液−
前記第一鉄及び該第一鉄以外の重金属を含有する液としては、少なくとも第一鉄及び該鉄以外の重金属を含有していれば特に制限はなく、目的に応じて適宜選択することができ、例えば、自然環境に存在する各種の水(例えば、河川水、湖沼水、温泉排水、地熱水、又は鉱山跡地からの排水)、産業排水(例えば、農薬工場、薬品工場、硫酸精錬工場、木材防腐処理施設、ガラス製造工場、金属製錬工場、非鉄精錬工場、電子部品製造施設、ゴミ処理施設、又は地熱発電所からの産業排水)、化学実験室、生物実験室などで生成される排水、などが挙げられる。これらの中でも、鉄鉱山の廃液及び鉄精錬工場からの排水は酸性水であり、量が多く、半永久的に処理しなければならないことから、安全かつ有効に処理することが望まれている。
-Liquid containing ferrous metal and heavy metals other than ferrous iron-
The liquid containing the ferrous metal and the heavy metal other than the ferrous iron is not particularly limited as long as it contains at least the ferrous metal and the heavy metal other than the iron, and can be appropriately selected according to the purpose. , For example, various waters existing in the natural environment (for example, river water, lake water, hot spring drainage, geothermal water, drainage from mine sites), industrial drainage (for example, agricultural chemical factory, chemical factory, sulfuric acid refining factory, Wastewater generated in wood preservative treatment facilities, glass manufacturing plants, metal smelting plants, non-ferrous smelting plants, electronic component manufacturing facilities, garbage processing facilities, or geothermal power plants), chemical laboratories, biological laboratories, etc. , Etc. Among these, the wastewater from the iron mine and the wastewater from the iron smelting factory are acidic water, and the amount is large and must be treated semipermanently. Therefore, it is desired to treat it safely and effectively.

前記第一鉄及び該第一鉄以外の重金属を含有する液に含まれる2価の鉄イオンの濃度としては、特に制限はなく、目的に応じて適宜選択することができるが、500ppm〜3,000ppmが好ましい。
前記第一鉄及び該第一鉄以外の重金属を含有する液に含まれる前記第一鉄以外の重金属としては、例えば、砒酸、亜砒酸、セレン酸、亜セレン酸、クロム酸などの酸素酸アニオン、銅、亜鉛、マンガン、カドミウム、などが挙げられる。
There is no restriction | limiting in particular as a density | concentration of the bivalent iron ion contained in the liquid containing heavy metals other than said ferrous iron and this ferrous iron, Although it can select suitably according to the objective, 500 ppm-3, 000 ppm is preferred.
Examples of the heavy metal other than the ferrous iron contained in the liquid containing the ferrous iron and heavy metals other than the ferrous iron include, for example, oxyacid anions such as arsenic acid, arsenous acid, selenic acid, selenous acid, and chromic acid, Copper, zinc, manganese, cadmium, etc. are mentioned.

−第二鉄塩−
前記第二鉄塩としては、特に制限はなく、目的に応じて適宜選択することができるが、ポリ硫酸第二鉄が好ましい。
前記ポリ硫酸第二鉄は、式:[Fe(OH)(SO3−n/2〔ただし、式中、n<2であり、m>10である。〕で表される化合物である。
前記ポリ硫酸第二鉄としては、適宜合成したものを使用してもよいし、市販品を使用してもよい。前記市販品としては、例えば、ポリテツ R(日鉄鉱業株式会社製)、バイオフェリック(卯根倉鉱業株式会社製)、などが挙げられる。
前記第一鉄及び該第一鉄以外の重金属を含有する液に前記ポリ硫酸第二鉄を添加すると、水酸化第二鉄が析出し、この析出した水酸化第二鉄が凝集して沈降する。水酸化第二鉄が析出して凝集する際に、第一鉄及び該第一鉄以外の重金属を含有する液中の前記第一鉄以外の重金属を捕捉するものと考えられる。
-Ferric salt-
There is no restriction | limiting in particular as said ferric salt, Although it can select suitably according to the objective, Poly ferric sulfate is preferable.
The polyferric sulfate has the formula: [Fe 2 (OH) n (SO 4 ) 3 -n / 2 ] m [wherein n <2 and m> 10. It is a compound represented by this.
As said polyferric sulfate, what was synthesize | combined suitably may be used and a commercial item may be used. Examples of the commercially available products include Polytetsu R (manufactured by Nippon Steel Mining Co., Ltd.), Bioferric (manufactured by Sonekura Mining Co., Ltd.), and the like.
When the ferric polysulfate is added to the liquid containing the ferrous metal and the heavy metal other than the ferrous iron, ferric hydroxide precipitates, and the precipitated ferric hydroxide aggregates and settles. . When ferric hydroxide precipitates and aggregates, it is considered that heavy metals other than ferrous iron in a liquid containing ferrous metal and heavy metals other than ferrous iron are captured.

前記第二鉄塩としてのポリ硫酸第二鉄の添加量は、特に制限はなく、目的に応じて適宜選択することができるが、前記第一鉄及び該第一鉄以外の重金属を含有する液に対して、10g/L以下が好ましく、0.5g/L〜10g/Lがより好ましく、1g/L〜5g/Lが更に好ましい。
前記添加量が、0.5g/L未満であると、第一鉄以外の重金属の除去効果が低下してしまうことがあり、10g/Lを超えると、アルカリ消費量が多くなり、コストが高くなってしまう。
The amount of polyferric sulfate added as the ferric salt is not particularly limited and may be appropriately selected according to the purpose. However, the liquid contains heavy metal other than the ferrous iron and the ferrous iron. On the other hand, 10 g / L or less is preferable, 0.5 g / L to 10 g / L is more preferable, and 1 g / L to 5 g / L is more preferable.
If the amount added is less than 0.5 g / L, the effect of removing heavy metals other than ferrous iron may be reduced. If it exceeds 10 g / L, the amount of alkali consumption increases and the cost is high. turn into.

−アルカリ−
前記アルカリとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、苛性ソーダ(NaOH)、苛性カリ(KOH);石灰、生石灰(CaO)、消石灰(Ca(OH))、炭酸カルシウム等のカルシウム(Ca)系アルカリ剤;酸化マグネシウム、水酸化マグネシウム等のマグネシウム(Mg)系アルカリ剤などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
-Alkali-
There is no restriction | limiting in particular as said alkali, According to the objective, it can select suitably, For example, caustic soda (NaOH), caustic potash (KOH); lime, quicklime (CaO), slaked lime (Ca (OH) 2 ), carbonic acid Examples include calcium (Ca) -based alkali agents such as calcium; magnesium (Mg) -based alkali agents such as magnesium oxide and magnesium hydroxide. These may be used individually by 1 type and may use 2 or more types together.

−pHの調整−
前記第一鉄及び該第一鉄以外の重金属を含有する液に、前記第二鉄塩としてのポリ硫酸第二鉄を添加した後、アルカリを加えてpHを3.2以上が好ましく、pHを3.6〜4.5に調整することがより好ましい。前記pH3.2以上の状態を保持しながら水酸化第二鉄の沈殿を形成させ、固液分離により該水酸化物沈殿を除去する。
前記pHが、3.2未満であると、第一鉄以外の重金属の除去能力が低下してしまうことがあり、pHが4.5を超えると、第一鉄の殿物の量が徐々に増加し、pHが6以上になると殿物の発生量が急激に増加するので、pH3.6〜4.5がより好ましい。前記pHが、前記より好ましい範囲であると、第一鉄以外の重金属の除去の観点から有利である。
前記pHは、例えば、市販のpHメーターにより測定することができる。
-PH adjustment-
After adding ferric sulfate as a ferric salt to the liquid containing heavy metal other than the ferrous iron and the ferrous iron, an alkali is added and the pH is preferably 3.2 or more. It is more preferable to adjust to 3.6-4.5. A ferric hydroxide precipitate is formed while maintaining the pH of 3.2 or higher, and the hydroxide precipitate is removed by solid-liquid separation.
If the pH is less than 3.2, the ability to remove heavy metals other than ferrous iron may decrease. If the pH exceeds 4.5, the amount of ferrous iron gradually increases. When the pH is increased to 6 or more, the amount of the residue is rapidly increased. Therefore, pH 3.6 to 4.5 is more preferable. When the pH is in the more preferable range, it is advantageous from the viewpoint of removing heavy metals other than ferrous iron.
The pH can be measured by, for example, a commercially available pH meter.

<<酸化工程>>
前記酸化工程は、酸化剤を用いて前記第一鉄以外の重金属を除去後の処理液に含まれる2価鉄を3価鉄に酸化する工程である。
前記第一鉄の酸化法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、鉄酸化細菌、次亜塩素酸塩、過酸化水素、空気、酸素ガス、オゾンガス、オゾン水、などが挙げられる。これらの中でも、薬剤コストと、酸化効率の観点から、鉄酸化細菌が特に好ましい。
<< Oxidation process >>
The oxidation step is a step of oxidizing divalent iron contained in the treatment liquid after removing heavy metals other than ferrous iron to trivalent iron using an oxidizing agent.
The ferrous iron oxidation method is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include iron-oxidizing bacteria, hypochlorite, hydrogen peroxide, air, oxygen gas, ozone gas, and ozone. Water, etc. Among these, iron-oxidizing bacteria are particularly preferable from the viewpoint of drug cost and oxidation efficiency.

前記鉄酸化細菌としては、前記除去工程後の処理液中で酸化力を有するものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、チオバチルス・フェロオキシダント(Thiobachillus ferrooxidans)などが挙げられる。これらの中でも、チオバチルス・フェロオキシダントが特に好ましい。チオバチルス・フェロオキシダントは、pH2〜3で生息し、酸化活性を有するので、pHが低い環境下で2価鉄を3価鉄まで迅速に酸化することができる。
前記鉄酸化細菌による2価鉄の酸化反応は、以下の式で表される。
Fe2+ + H+1/4O → Fe3+ + 1/2H
前記鉄酸化細菌の前記除去工程後の処理液への添加は、一度に行ってもよいが、数回に分けて行ってもよい。連続酸化処理を行う場合には、鉄酸化細菌を適宜補充することが好ましい。
前記鉄酸化細菌の前記除去工程後の処理液への添加量は、前記除去工程後の処理液中の2価鉄の濃度などに応じて適宜選択することができる。
As the iron-oxidizing bacteria, not as long as it has an oxidizing power particularly limited in the treatment solution after said removing step, may be appropriately selected depending on the intended purpose, for example, Thiobacillus Ferro oxidant (Thiobachillus ferrooxidans) Etc. Among these, thiobacillus ferrooxidant is particularly preferable. Thiobacillus ferrooxidant lives at pH 2 to 3 and has oxidative activity. Therefore, divalent iron can be rapidly oxidized to trivalent iron in an environment having a low pH.
The oxidation reaction of divalent iron by the iron-oxidizing bacteria is represented by the following formula.
Fe 2+ + H + +1/4 O 2 → Fe 3+ + 1/2 H 2 O
The addition of the iron-oxidizing bacteria to the treatment solution after the removing step may be performed at once, or may be performed in several times. When continuous oxidation treatment is performed, it is preferable to appropriately supplement iron-oxidizing bacteria.
The amount of the iron-oxidizing bacteria added to the treatment solution after the removal step can be appropriately selected according to the concentration of divalent iron in the treatment solution after the removal step.

<<第一の中和工程>>
前記第一の中和工程は、前記酸化工程後の液を第一の中和剤でpH4.0〜4.5に中和する工程である。
前記第一の中和剤としては、特に制限はなく、目的に応じて適宜選択することができるが、薬剤コストの点から、炭酸カルシウムが好ましい。
前記第一の中和剤の前記酸化工程後の液への添加は、一度に行ってもよいが、数回に分けて行ってもよい。
<< First neutralization step >>
The first neutralization step is a step of neutralizing the liquid after the oxidation step to pH 4.0 to 4.5 with a first neutralizing agent.
There is no restriction | limiting in particular as said 1st neutralizing agent, Although it can select suitably according to the objective, From the point of chemical | medical agent cost, a calcium carbonate is preferable.
The addition of the first neutralizing agent to the solution after the oxidation step may be performed at once, or may be performed in several steps.

<<第二の中和工程>>
前記第二の中和工程は、前記第一の中和工程後の液を、第二の中和剤でpH7.3〜8.3に中和する工程である。前記pHは、中和処理水の排水基準により規定される。
前記第二の中和剤としては、特に制限はなく、目的に応じて適宜選択することができるが、発生殿物の沈降性の点から、消石灰が好ましい。
前記第二の中和剤の前記第一の中和工程後の液への添加は、一度に行ってもよいが、数回に分けて行ってもよい。
<< Second neutralization step >>
The second neutralization step is a step of neutralizing the liquid after the first neutralization step to a pH of 7.3 to 8.3 with a second neutralizing agent. The pH is defined by the drainage standard for neutralized treated water.
There is no restriction | limiting in particular as said 2nd neutralizing agent, Although it can select suitably according to the objective, Slaked lime is preferable from the point of the sedimentation property of a generated residue.
The addition of the second neutralizing agent to the liquid after the first neutralization step may be performed at once, or may be performed in several steps.

<<固液分離工程>>
前記固液分離工程は、前記第二の中和工程後の液を固液分離して、鉄殿物を得る工程である。
前記固液分離としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、膜濾過、吸引濾過、加圧濾過、沈降分離、遠心分離、などが挙げられる。
前記固液分離工程は、具体的には、シックナーで固液分離した後、フィルタープレスにより水分を除去して、含水率60%以下の鉄殿物が得られる。
<< Solid-liquid separation process >>
The solid-liquid separation step is a step in which the liquid after the second neutralization step is subjected to solid-liquid separation to obtain an iron product.
There is no restriction | limiting in particular as said solid-liquid separation, According to the objective, it can select suitably, For example, membrane filtration, suction filtration, pressure filtration, sedimentation separation, centrifugation, etc. are mentioned.
In the solid-liquid separation step, specifically, after solid-liquid separation with a thickener, moisture is removed by a filter press, and an iron product having a moisture content of 60% or less is obtained.

得られた鉄殿物の水酸化鉄(Fe(OH))の含有量は、特に制限はなく、目的に応じて適宜選択することができるが、25質量%以上が好ましく、50質量%以上がより好ましい。前記水酸化鉄の含有量が、25質量%未満であると、十分なカドミウム吸収抑制効果が得られないことがある。即ち、前記鉄殿物は、水酸化鉄のみであってもよく、水酸化鉄が含まれており、田圃に散布後に分解されない状態であればよい。
前記鉄殿物は水酸化鉄以外にも、CaSO、CaO、水酸化アルミニウム、SiOなどを含有しているが、Cd、Cr、As等の重金属は含有していない。
The content of iron hydroxide (Fe (OH) 3 ) in the obtained iron temple is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 25% by mass or more, and 50% by mass or more. Is more preferable. When the content of the iron hydroxide is less than 25% by mass, a sufficient cadmium absorption suppression effect may not be obtained. That is, the iron temple may be iron hydroxide alone, or may be in a state in which iron hydroxide is contained and is not decomposed after being spread on the rice field.
In addition to iron hydroxide, the iron temple contains CaSO 4 , CaO, aluminum hydroxide, SiO 2 and the like, but does not contain heavy metals such as Cd, Cr, As.

得られた鉄殿物は、優れたカドミウム吸収抑制効果を有しており、そのままカドミウム吸収抑制剤として、本発明の稲の生長方法に用いることができる。   The obtained iron porcelain has an excellent cadmium absorption inhibitory effect, and can be used as it is as a cadmium absorption inhibitor in the rice growth method of the present invention.

本発明の稲の生長方法によれば、前記カドミウム吸収抑制剤を田圃に散布し、湛水管理を行うことなく稲を栽培することにより、安価にかつ稲の生長を阻害することなく、米中のカドミウム含有量を低減することができ、無カドミウム含有米を製造できる。なお、前記米は、玄米であっても白米であっても構わない。
ここで、前記無カドミウム含有米における「カドミウムを含有していない」とは、誘導結合プラズマ質量分析装置(Agilent社製、Agilent7500 ICP−MS)を用いた測定により、0.04質量ppm以下であることを意味する。
According to the rice growth method of the present invention, the cadmium absorption inhibitor is sprayed on the rice field, and the rice is grown without irrigation management, so that the rice is grown inexpensively and without inhibiting rice growth. Thus, the cadmium-free rice can be produced. The rice may be brown rice or white rice.
Here, “does not contain cadmium” in the cadmium-free rice is 0.04 mass ppm or less as measured by using an inductively coupled plasma mass spectrometer (Agilent 7500 ICP-MS, manufactured by Agilent). Means that.

前記稲の栽培は、落水時期を調整する水位管理を行うことなく、普通に行われている方法で行うことができる。
前記カドミウム吸収抑制剤の田圃への散布は、特に制限はなく、目的に応じて適宜選択することができるが、田圃を隆起し、田圃の土壌に散布する方法、などが挙げられる。
前記カドミウム吸収抑制剤の田圃への散布量は、特に制限はなく、目的に応じて適宜選択することができるが、水酸化鉄の含有量が25質量%以上のカドミウム吸収抑制剤であれば、25kg/50m以上が好ましく、50kg/50m以上がより好ましい。前記田圃へのカドミウム吸収抑制剤の散布量が、25kg/50m未満であると、十分なカドミウム吸収抑制効果が得られないことがある。
Cultivation of the rice can be performed by a usual method without performing water level management for adjusting the water falling time.
There is no restriction | limiting in particular in the dispersion | distribution of the said cadmium absorption inhibitor in a rice field, Although it can select suitably according to the objective, The method of raising a rice field and spraying on the soil of a rice field, etc. are mentioned.
The amount of the cadmium absorption inhibitor sprayed onto the rice field is not particularly limited and can be appropriately selected according to the purpose, but if the cadmium absorption inhibitor is an iron hydroxide content of 25% by mass or more, 25 kg / 50 m 2 or more is preferable, and 50 kg / 50 m 2 or more is more preferable. When the amount of the cadmium absorption inhibitor applied to the rice field is less than 25 kg / 50 m 2 , a sufficient cadmium absorption inhibitory effect may not be obtained.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

(実施例1)
−カドミウム吸収抑制剤の作製−
下記表1に示す組成の硫化鉄鉱床の鉱山廃水を用い、図1に示す方法により、カドミウム吸収抑制剤としての鉄殿物を製造した。
Example 1
-Production of cadmium absorption inhibitor-
Using the mine wastewater of the iron sulfide deposit having the composition shown in Table 1 below, an iron temple as a cadmium absorption inhibitor was produced by the method shown in FIG.

まず、硫化鉄鉱床の鉱山廃水に28℃で、第二鉄塩としてのポリ硫酸第二鉄(バイオフェリック、卯根倉鉱業株式会社製)を0.7g/L添加した。ポリ硫酸第二鉄を含む排水を撹拌し、次いで、24%苛性ソーダを添加しながら、pHを3.6とした。pH3.6の状態を保持しながら水酸化第二鉄の沈殿を形成させ、シックナーにより殿物スラリーと上澄水とに分離した(除去工程)。なお、pHは、pHメーター(株式会社堀場製作所製、HORIBA 9625−10D)を用いて測定した。   First, 0.7 g / L of polyferric sulfate (Bioferric, manufactured by Sonekura Mining Co., Ltd.) as a ferric salt was added to the mine wastewater of the iron sulfide deposit at 28 ° C. The waste water containing ferric sulfate was stirred and then the pH was adjusted to 3.6 while adding 24% caustic soda. While maintaining the pH of 3.6, a ferric hydroxide precipitate was formed and separated into a slurry slurry and a supernatant by a thickener (removal step). In addition, pH was measured using the pH meter (HORIBA, Ltd. make, HORIBA 9625-10D).

次に、鉄酸化細菌としてチオバチルス・フェロオキシダンス(Thiobachillus ferrooxidans)を用いて、前記除去工程後の濾液に含まれる2価鉄を3価鉄に酸化した(酸化工程)。
次に、酸化工程後の処理液をシックナーによりバクテリア酸化殿物スラリーと上澄水に分離した。
次に、前記酸化工程後の上澄水を炭酸カルシウムでpH4.0〜4.5に中和した(第一の中和工程)。
次に、前記第一の中和工程後の液を消石灰でpH7.3〜8.3に中和した(第二の中和工程)。
次に、第二の中和工程後の液をシックナーで固液分離した後、フィルタープレスにより含水率60%以下の鉄殿物を得た。
得られたカドミウム吸収抑制剤としての鉄殿物の組成を下記表2に示した。
Next, using the iron Thiobacillus-ferrooxidans as oxidizing bacteria (Thiobachillus ferrooxidans), it was oxidized divalent iron contained in the filtrate after the removing step trivalent iron (oxidation step).
Next, the treatment liquid after the oxidation step was separated into bacterial oxide slurry and supernatant water by a thickener.
Next, the supernatant water after the oxidation step was neutralized with calcium carbonate to pH 4.0 to 4.5 (first neutralization step).
Next, the liquid after the first neutralization step was neutralized with slaked lime to pH 7.3-8.3 (second neutralization step).
Next, after the liquid after the second neutralization step was subjected to solid-liquid separation with a thickener, an iron product having a moisture content of 60% or less was obtained by a filter press.
Table 2 below shows the composition of the iron product as the obtained cadmium absorption inhibitor.

表2の結果から、得られたカドミウム吸収抑制剤としての鉄殿物は、水酸化鉄(Fe(OH))を52質量%含み、Cd、Cr、As等の重金属は含有しないことがわかった。なお、Cd、Cr、Asの含有量の単位は質量ppmである。 From the results shown in Table 2, it was found that the obtained iron cadmium as a cadmium absorption inhibitor contained 52% by mass of iron hydroxide (Fe (OH) 3 ) and no heavy metals such as Cd, Cr and As. It was. In addition, the unit of content of Cd, Cr, As is mass ppm.

<稲の栽培>
稲の栽培は国内の試験田圃で実施した。この田圃には窒素、カリウム、及びリン酸を含む肥料を0.25kg/mとなるように散布した。
<Cultivation of rice>
Rice cultivation was carried out in domestic test fields. This rice field was sprayed with fertilizer containing nitrogen, potassium, and phosphoric acid at 0.25 kg / m 2 .

(実施例2)
50mの前記試験田圃を降起し、カドミウム吸収抑制剤としての前記実施例1の鉄殿物を0.5kg/m散布した後、代掻きを実施し、水位管理を行わないで稲を栽培した。前記試験田圃の落水は夏に実施した。稲刈りは42日後に実施した。収穫した稲を乾燥させ、以下のようにして、玄米の収穫量を測定したところ0.55kg/mであった。また、以下のようにして、玄米中のカドミウム含有量を測定した。結果を表3及び図3に示した。
(Example 2)
After raising 50 m 2 of the test paddy field and spraying 0.5 kg / m 2 of the iron porcelain of Example 1 as a cadmium absorption inhibitor, cultivating rice without water level control did. The test paddy was dropped in summer. Rice harvesting was carried out 42 days later. The harvested rice was dried and the yield of brown rice was measured as follows and found to be 0.55 kg / m 2 . Moreover, the cadmium content in brown rice was measured as follows. The results are shown in Table 3 and FIG.

<玄米の収穫量の測定>
実施例で収穫した玄米を風乾後、重量を測定し、単位面積当たりの収穫量を算出した。
<Measurement of the yield of brown rice>
The brown rice harvested in the examples was air-dried and then weighed to calculate the yield per unit area.

<玄米中のカドミウム含有量の測定>
収穫した玄米に含まれるカドミウム含有量の分析方法を図2に示す。
玄米2gを秤取し、王水〔有害金属測定用塩酸(関東化学株式会社製)と有害金属測定用硝酸(関東化学株式会社製)を3:1(体積比)で混合したもの〕で3回湿式分解した。分解後の残渣は有害金属測定用硝酸(関東化学株式会社製)で溶解した。カドミウムの測定には、誘導結合プラズマ質量分析装置(Agilent社製、Agilent7500 ICP−MS)を用いた。なお、カドミウムの核種はz/m=110、111、112、114を用いた。
<Measurement of cadmium content in brown rice>
The analysis method of cadmium content contained in the harvested brown rice is shown in FIG.
2 g of brown rice was weighed and added with aqua regia [mixed hydrochloric acid for measuring harmful metals (manufactured by Kanto Chemical Co., Ltd.) and nitric acid for measuring hazardous metals (manufactured by Kanto Chemical Co., Ltd.) at a ratio of 3: 1 (volume ratio)] Wet and wet decomposition. The residue after decomposition was dissolved with nitric acid for measuring harmful metals (manufactured by Kanto Chemical Co., Inc.). For the measurement of cadmium, an inductively coupled plasma mass spectrometer (manufactured by Agilent, Agilent 7500 ICP-MS) was used. Note that cadmium nuclides used were z / m = 110, 111, 112, and 114.

(実施例3)
50mの前記試験田圃を降起し、カドミウム吸収抑制剤としての前記実施例1の鉄殿物を1kg/m散布した後、代掻きを実施し、水位管理を行わないで稲を栽培した。前記試験田圃の落水は夏に実施した。稲刈りは42日後に実施した。収穫した稲を乾燥させ、実施例2と同様にして、玄米の収穫量を測定したところ0.55kg/mであった。また、実施例2と同様にして、玄米中のカドミウム含有量を測定した。結果を表3及び図3に示した。
(Example 3)
After raising 50 m 2 of the test paddy field and spraying 1 kg / m 2 of the iron porcelain of Example 1 as a cadmium absorption inhibitor, paddy cutting was performed, and rice was grown without water level control. The test paddy was dropped in summer. Rice harvesting was carried out 42 days later. The harvested rice was dried and the yield of brown rice was measured in the same manner as in Example 2. The yield was 0.55 kg / m 2 . Further, the cadmium content in the brown rice was measured in the same manner as in Example 2. The results are shown in Table 3 and FIG.

(比較例1)
従来と同様にして50mの前記試験田圃を降起し、代掻きを実施した後、水位管理を行って稲を栽培した。前記試験田圃の落水は水位管理を実施するため秋に実施した。稲刈りは30日後に実施した。収穫した稲を乾燥させ、実施例2と同様にして、玄米の収穫量を測定したところ0.55kg/mであった。また、実施例2と同様にして、玄米中のカドミウム含有量を測定した。結果を表3及び図3に示した。
(Comparative Example 1)
In the same manner as before, the test rice field of 50 m 2 was raised, and after pricking, the water level was controlled and rice was cultivated. The falling water of the test paddy field was carried out in the fall in order to carry out water level management. Rice harvesting was carried out 30 days later. The harvested rice was dried and the yield of brown rice was measured in the same manner as in Example 2. The yield was 0.55 kg / m 2 . Further, the cadmium content in the brown rice was measured in the same manner as in Example 2. The results are shown in Table 3 and FIG.

表3及び図3の結果から、実施例2及び3は、水位管理を行わなかったにも関わらず、玄米中のカドミウム含有量は、比較例1に比べて34%〜68%低下した。
また、実施例2及び3の玄米の収穫量は、比較例1の収穫量と同等であり、カドミウム吸収抑制剤としての鉄殿物の散布による稲の栽培に対する阻害効果は確認されなかった。
From the results of Table 3 and FIG. 3, in Examples 2 and 3, the cadmium content in the brown rice decreased by 34% to 68% compared to Comparative Example 1 although the water level was not managed.
Moreover, the yield of the brown rice of Examples 2 and 3 was equivalent to the yield of Comparative Example 1, and the inhibitory effect on the cultivation of rice by the spraying of iron koji as a cadmium absorption inhibitor was not confirmed.

<カドミウムの吸収挙動の測定>
前記実施例3と前記比較例1について、採取日数を変えて稲の根圏、穂などに含まれるカドミウム含有量を測定した。結果を表4に示す。なお、採取日数とは、最初の採取月日からの経過日数を意味する。
<Measurement of absorption behavior of cadmium>
About the said Example 3 and the said comparative example 1, cadmium content contained in the rhizosphere of a rice, a panicle, etc. was measured by changing collection days. The results are shown in Table 4. Note that the number of days of collection means the number of days that have elapsed since the first date of collection.

表4の結果から、比較例1及び実施例3ともに、田圃の落水以降カドミウム含有量が上昇する傾向が認められた。稲の根圏に含まれるカドミウムはその後、稲の穂に吸収され蓄積される。実施例3の結果から、土壌中にカドミウム吸収抑制剤としての鉄殿物を添加した場合、稲の根圏へのカドミウムの吸収が25%〜45%に抑制されていることが認められた。このことから、稲の根圏でのカドミウムの取り込み抑制効果が収穫する玄米へのカドミウム吸収抑制に効果的であることがわかった。 From the results in Table 4, in both Comparative Example 1 and Example 3, there was a tendency for the cadmium content to increase after the rice field fell. Cadmium contained in the rice rhizosphere is then absorbed and accumulated in the rice ear. From the results of Example 3, it was confirmed that the absorption of cadmium into the rhizosphere of rice was suppressed to 25% to 45% when the iron deposit as a cadmium absorption inhibitor was added to the soil. This indicates that the cadmium uptake suppression effect in the rhizosphere of rice is effective in suppressing cadmium absorption into the harvested brown rice.

Claims (4)

鉄水酸化物からなる鉄殿物のカドミウム吸収抑制剤を田圃に散布し、稲を栽培することを特徴とする稲の生長方法。   A method for growing rice, characterized by cultivating rice plants by spraying a cadmium absorption inhibitor of iron-containing products made of iron hydroxide on rice fields. 前記カドミウム吸収抑制剤における水酸化鉄(Fe(OH))の含有量が25質量%以上であり、前記カドミウム吸収抑制剤を25kg/50m以上となるように田圃に散布する請求項1に記載の稲の生長方法。 The content of iron hydroxide (Fe (OH) 3 ) in the cadmium absorption inhibitor is 25% by mass or more, and the cadmium absorption inhibitor is sprayed on rice fields so as to be 25 kg / 50 m 2 or more. The rice growth method described. 前記カドミウム吸収抑制剤が、
第一鉄及び該第一鉄以外の重金属を含有する液に、第二鉄塩を添加した後、アルカリを加えてpH3.2以上とし、該pH3.2以上の状態を保持しながら水酸化第二鉄の沈殿を形成させ、固液分離により該水酸化物沈殿を除去することにより前記第一鉄以外の重金属を除去する除去工程と、
酸化剤を用いて前記第一鉄以外の重金属を除去後の処理液に含まれる2価鉄を3価鉄に酸化する酸化工程と、
前記酸化工程後の液を第一の中和剤でpH4.0〜4.5に中和する第一の中和工程と、
前記第一の中和工程後の液を、第二の中和剤でpH7.3〜8.3に中和する第二の中和工程と、
を含むカドミウム吸収抑制剤の製造方法により製造される請求項1から2のいずれかに記載の稲の生長方法。
The cadmium absorption inhibitor is
After adding a ferric salt to a liquid containing ferrous metal and heavy metals other than the ferrous iron, an alkali is added to adjust the pH to 3.2 or higher, while maintaining the pH 3.2 or higher. Removing the heavy metal other than the ferrous iron by forming a ferric precipitate and removing the hydroxide precipitate by solid-liquid separation;
An oxidation step of oxidizing divalent iron contained in the treatment liquid after removing heavy metals other than ferrous iron using an oxidizing agent into trivalent iron;
A first neutralization step of neutralizing the liquid after the oxidation step with a first neutralizer to a pH of 4.0 to 4.5;
A second neutralization step of neutralizing the liquid after the first neutralization step to a pH of 7.3 to 8.3 with a second neutralizing agent;
The method for growing rice according to claim 1, which is produced by a method for producing a cadmium absorption inhibitor comprising
前記第二の中和工程後の液を固液分離して、鉄殿物を得る固液分離工程を含む請求項3に記載の稲の生長方法。   The method for growing rice according to claim 3, further comprising a solid-liquid separation step of solid-liquid separation of the liquid after the second neutralization step to obtain an iron cake.
JP2013021951A 2013-02-07 2013-02-07 How to grow rice Active JP6148485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013021951A JP6148485B2 (en) 2013-02-07 2013-02-07 How to grow rice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013021951A JP6148485B2 (en) 2013-02-07 2013-02-07 How to grow rice

Publications (2)

Publication Number Publication Date
JP2014150754A true JP2014150754A (en) 2014-08-25
JP6148485B2 JP6148485B2 (en) 2017-06-14

Family

ID=51573277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013021951A Active JP6148485B2 (en) 2013-02-07 2013-02-07 How to grow rice

Country Status (1)

Country Link
JP (1) JP6148485B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022510530A (en) * 2019-11-18 2022-01-27 中国水▲稲▼研究所 New organic fertilizer that suppresses heavy metal cadmium contamination or accumulation of paddy rice, its manufacturing method and application method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154192A (en) * 1983-02-22 1984-09-03 Nec Corp Treating device for ferrous ion-containing mine water
US5202033A (en) * 1991-09-30 1993-04-13 Rmt, Inc. In situ method for decreasing heavy metal leaching from soil or waste
JPH08277183A (en) * 1995-04-04 1996-10-22 Japan Metals & Chem Co Ltd Iron-containing composition for fertilizer
JP2005169381A (en) * 2003-11-19 2005-06-30 National Institute For Agro-Environmental Science Method for cleaning heavy metal-contaminated soil
JP2006205152A (en) * 2004-12-28 2006-08-10 Ishihara Sangyo Kaisha Ltd Heavy metal treating agent and method for treating heavy metal using the same
JP2011190428A (en) * 2010-02-17 2011-09-29 Univ Of Tsukuba Remover composition for heavy metal in soil, and method for removing heavy metal using the same
JP2012176864A (en) * 2011-02-25 2012-09-13 Unekura Kogyo Kk Method for producing polyferric sulfate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154192A (en) * 1983-02-22 1984-09-03 Nec Corp Treating device for ferrous ion-containing mine water
US5202033A (en) * 1991-09-30 1993-04-13 Rmt, Inc. In situ method for decreasing heavy metal leaching from soil or waste
JPH08277183A (en) * 1995-04-04 1996-10-22 Japan Metals & Chem Co Ltd Iron-containing composition for fertilizer
JP2005169381A (en) * 2003-11-19 2005-06-30 National Institute For Agro-Environmental Science Method for cleaning heavy metal-contaminated soil
JP2006205152A (en) * 2004-12-28 2006-08-10 Ishihara Sangyo Kaisha Ltd Heavy metal treating agent and method for treating heavy metal using the same
JP2011190428A (en) * 2010-02-17 2011-09-29 Univ Of Tsukuba Remover composition for heavy metal in soil, and method for removing heavy metal using the same
JP2012176864A (en) * 2011-02-25 2012-09-13 Unekura Kogyo Kk Method for producing polyferric sulfate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022510530A (en) * 2019-11-18 2022-01-27 中国水▲稲▼研究所 New organic fertilizer that suppresses heavy metal cadmium contamination or accumulation of paddy rice, its manufacturing method and application method

Also Published As

Publication number Publication date
JP6148485B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
Su et al. Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in soil amended with fly ash-stabilized sewage sludge
KR101093557B1 (en) Method for treating phosphorus and nitrogen comprised in sewage or wastewater using iron ore wastewater
CN104118921A (en) Heavy metal sewage treatment agent
CN101428933B (en) Biological agent cooperated hydrolyzation-blowing off treatment process for nickel-ammonia wastewater
Guo et al. Increasing phosphate sorption on barium slag by adding phosphogypsum for non-hazardous treatment
CN103773375A (en) Arsenic-contaminated soil repairing and retaining agent based on microbe catalytic synthesis, and preparation and application thereof
CN103232954A (en) Aerobic denitrification bacteria and applications thereof
CN102910760A (en) Treatment process of contaminated acid containing heavy metals
JP6148485B2 (en) How to grow rice
CN101745526B (en) Application of Na-type nano-montmorillonite in removing copper in pollutant
CN107324534A (en) A kind of method that utilization ferriferous oxide handles the waste acid containing arsenic
Zhang et al. Iron plaque crystallinity, heavy metal toxicity, and metal translocation in Kandelia obovata seedlings as altered by an iron-reducing bacterium under different flooding regimes
Humaria Impact of iron and steel slag on crop cultivation: a review
JP6716407B2 (en) Method for immobilizing heavy metal and method for suppressing heavy metal transfer to plant
CN102107981A (en) High-efficiency method for treating arsenic-containing wastewater
JP6434108B2 (en) Radioactive cesium plant migration inhibitor, method for producing the same, and plant growth method
JP2021142461A (en) Waste liquid treatment method
Hairani et al. Changes of soil chemical properties during rice straw decomposition in different types of acid sulphate soils
JP6284773B2 (en) Radioactive cesium plant migration inhibitor, method for producing the same, and plant growth method
CN104707571B (en) Method for preparing magnesium-aluminum salt material with slow-release phosphorus removal function by biological template method and application
TWI501941B (en) Method for manufacturing liquid fertilizer containing sub-trace elements by blast furnace slag washing process in consistent operating steel plant
JP5739366B2 (en) Method for reducing selenate compound, method for separating and recovering selenium
JP2020195348A (en) Method for raising gramineous plant
CN108117146B (en) Method for removing alachlor in water body by using modified steel slag
Jenčárová et al. The effect of preparation of biogenic sorbent on zinc sorption

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170519

R150 Certificate of patent or registration of utility model

Ref document number: 6148485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250