JP2005169381A - Method for cleaning heavy metal-contaminated soil - Google Patents

Method for cleaning heavy metal-contaminated soil Download PDF

Info

Publication number
JP2005169381A
JP2005169381A JP2004262189A JP2004262189A JP2005169381A JP 2005169381 A JP2005169381 A JP 2005169381A JP 2004262189 A JP2004262189 A JP 2004262189A JP 2004262189 A JP2004262189 A JP 2004262189A JP 2005169381 A JP2005169381 A JP 2005169381A
Authority
JP
Japan
Prior art keywords
soil
cadmium
purification method
treatment
metal salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004262189A
Other languages
Japanese (ja)
Other versions
JP4116988B2 (en
Inventor
Tomoyuki Makino
知之 牧野
Kazuo Sugawara
和夫 菅原
Hiroyuki Takano
博幸 高野
Takashi Kamiya
隆 神谷
Kota Sasaki
宏太 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
National Institute for Agro Environmental Sciences
Original Assignee
Taiheiyo Cement Corp
National Institute for Agro Environmental Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, National Institute for Agro Environmental Sciences filed Critical Taiheiyo Cement Corp
Priority to JP2004262189A priority Critical patent/JP4116988B2/en
Publication of JP2005169381A publication Critical patent/JP2005169381A/en
Application granted granted Critical
Publication of JP4116988B2 publication Critical patent/JP4116988B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently cleaning heavy metal-contaminated soil. <P>SOLUTION: The method for cleaning the heavy metal-contaminated soil is characterized by applying a metal salt compound which forms a metal hydroxide as a result of coordination with hydroxy ions upon being hydrolyzed at a pH (H<SB>2</SB>O) equal to or lower than that of soil to the heavy metal-contaminated soil, and extracting and cleaning the heavy metals from the soil. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、重金属汚染土壌を効率良く浄化する方法に関する。   The present invention relates to a method for efficiently purifying heavy metal contaminated soil.

重金属汚染土壌の浄化には、覆土法や排土客土法が一般的に用いられている。しかし、覆土法は重金属含有土の表土の拡散を防止するだけ、排土客土法は該土壌を移動させるだけの方法であり、根本的な解決策ではなかった。   In order to purify heavy metal-contaminated soil, the soil covering method and the soil removal method are generally used. However, the soil covering method only prevents the spread of the top soil of the heavy metal-containing soil, and the soil removal customer soil method only moves the soil, and is not a fundamental solution.

また、重金属含有土壌中の重金属を、塩化カルシウム水溶液を用いて不溶化する方法(特許文献1)が提案されている。しかし、重金属を単に不溶化しただけでは根本的な浄化とは言い難く、その土壌の2次利用も困難である。   Moreover, the method (patent document 1) which insolubilizes the heavy metal in heavy metal containing soil using calcium chloride aqueous solution is proposed. However, simply insolubilizing heavy metals cannot be said to be fundamental purification, and secondary use of the soil is also difficult.

さらに、種々の薬剤を用いて、重金属含有土壌から重金属を溶出させて除去することにより、汚染土壌を浄化する方法が検討されており、洗浄剤として、サポニン(特許文献2)、ペクチン酸の単量体又はオリゴ体(特許文献3)、EDTA(特許文献4)、L−アスパラギン酸−N,N−二酢酸、グルタミン酸二酢酸、ヒドロキシエチルイミノ二酢酸、カルボキシメチルオキシコハク酸、3−ヒドロキシ−2,2’−イミノジコハク酸、ポリアスパラギン酸(特許文献5)等が用いられている。これらの化合物は、キレート効果によって重金属の浸出を促進するものであるが、これらの化合物を用いても、土壌中の重金属を効率良く除去することは困難であった。また、これらの化合物は、高価なものであり、実使用に適するものではなかった。   Furthermore, a method for purifying contaminated soil by eluting and removing heavy metals from heavy metal-containing soil using various chemicals has been studied. As a cleaning agent, saponin (Patent Document 2) and pectinic acid are simply used. Mer or oligo form (Patent Document 3), EDTA (Patent Document 4), L-aspartic acid-N, N-diacetic acid, glutamic acid diacetic acid, hydroxyethyliminodiacetic acid, carboxymethyloxysuccinic acid, 3-hydroxy- 2,2′-iminodisuccinic acid, polyaspartic acid (Patent Document 5) and the like are used. These compounds promote the leaching of heavy metals by the chelate effect, but even if these compounds are used, it has been difficult to efficiently remove heavy metals in the soil. In addition, these compounds are expensive and are not suitable for actual use.

また、土壌中のカドミウムを除去するために、塩化カルシウムを用いるのが有効であることも知られている(非特許文献1)。しかしながら、非特許文献1には、カドミウム含有土壌をカラムに詰め、これに塩化カルシウム水溶液を流し続けたときのカドミウム除去率が記載されているのみであり、実際のカドミウム含有土壌において、どのように洗浄すれば効率良く浄化できるかについては、示されていない。   It is also known that calcium chloride is effective for removing cadmium in the soil (Non-patent Document 1). However, Non-Patent Document 1 only describes the cadmium removal rate when the cadmium-containing soil is packed in a column and the calcium chloride aqueous solution is continued to flow in this column. In an actual cadmium-containing soil, There is no indication as to whether it can be cleaned efficiently.

カドミウム含有土壌のうち、特に水田土壌においては、土壌中のカドミウム濃度が低濃度(例えば2ppm程度)でも、玄米中のカドミウム濃度が1ppm以上(食品衛生法で流通禁止)になる危険性がある。これらカドミウム含有量が1ppm以上の玄米を産する水田については、農林水産省の予算補助を受け、公害防除特別土地改良事業等により、客土又は排土客土による対策がなされている。また、0.4ppm以上1.0ppm未満の米(玄米)は農家から買い上げ、非食用(工業用ノリ等)の原料として処理している。   Among the cadmium-containing soils, especially in paddy field soil, there is a risk that the cadmium concentration in brown rice will be 1 ppm or more (distribution prohibited by the Food Sanitation Law) even if the cadmium concentration in the soil is low (eg, about 2 ppm). These paddy fields that produce brown rice with a cadmium content of 1 ppm or more have been subsidized by special land improvement projects such as special land improvement projects under the assistance of the Ministry of Agriculture, Forestry and Fisheries. Moreover, 0.4 ppm or more and less than 1.0 ppm of rice (brown rice) is purchased from farmers and processed as non-edible (industrial use paste) raw materials.

一方、CODEX(WHOとFAO合同の食品規格委員会)では、食品のカドミウム基準値案を検討中で、コメについては0.4mg/kgあるいは0.2mg/kgが提案されており、例えば0.2mg/kgが採択された場合、これまでに指定された地域の10倍程度のカドミウム汚染農用地が顕在化すると想定されている。この膨大な面積の浄化対策を、これまでの排土、客土で行なうと、大量の排土の処理と水田土壌に適した土壌を準備する必要があり、しかも客土した土壌がもとの生産性を回復するのに10年近い年月を要することや、対策をしても20〜30年経過するとまた汚染が再発するということもあり、物理的、またコスト的に現実的な対策法ではなく、より効率の良い土壌の浄化方法が求められている。   On the other hand, CODEX (Food Standard Committee of WHO and FAO) is considering a cadmium standard value for food, and 0.4 mg / kg or 0.2 mg / kg is proposed for rice. When 2 mg / kg is adopted, it is assumed that about 10 times as much cadmium-contaminated agricultural land will become apparent. If this huge amount of area cleanup measures are carried out with conventional soil removal and soil removal, it will be necessary to prepare a large amount of soil removal and soil suitable for paddy soil. It may take nearly 10 years to recover productivity, and even if measures are taken, pollution will recur after 20 to 30 years. Rather, there is a need for more efficient methods for soil purification.

また、薬剤を用いて洗浄する方法として、例えば、非特許文献2には、カドミウム含有水田土壌を塩化カルシウム、酢酸等によって処理すると、土壌中のカドミウム濃度が低下することが記載され、非特許文献3には、同様に、EDTAを用いた例が記載されている。
しかしながら、これらの文献では、土壌を栽培ポット等に入れて実験したときのカドミウム濃度が記載されているのみであり、実際のカドミウム含有水田土壌において、どのように洗浄すれば、効率良くカドミウムを除去して、浄化できるかについては示されていない。
In addition, as a method for washing with a chemical, for example, Non-Patent Document 2 describes that when cadmium-containing paddy soil is treated with calcium chloride, acetic acid, etc., the cadmium concentration in the soil is reduced. 3 also describes an example using EDTA.
However, these documents only describe the cadmium concentration when the soil is put in a cultivation pot or the like, and the cadmium concentration can be efficiently removed by washing in an actual cadmium-containing paddy soil. And it is not shown whether it can be purified.

さらに、洗浄廃液には、洗浄剤として用いた薬剤及び洗浄により土壌から抽出除去されたカドミウム等の重金属が含有されるが、この洗浄廃液処理についても具体的に示されておらず、土壌洗浄廃液を現位置で廃水基準値以下にまで浄化できる廃水処理法の開発が望まれていた。
特開平6−39055号公報 特開平10−130623号公報 特開2002−45839号公報 特開平4−263874号公報 特開2002−52375号公報 Wang W., Artiola J.F., Brusseau M.L., Miller R.M.,「土壌中のカドミウムの除去を促進するためのカルシウム及びフルボ酸の使用(Use of calcium and fulvic acid to facilitate transport of cadmium in soil)」,Am.Chem.Soc.Natl.Meet.Div.Environ.Chem.,1994年,第34巻,第1号,p208-210 尾川文朗,「秋田県における水稲のカドミウム汚染の実態とその被害軽減に関する研究」,秋田県農業試験場研究報告,1994年,第35号,p31-38 中島征志郎,小野末太,「対馬の重金属汚染に関する調査研究」,長崎県総合農林試験場研究報告,1979年,第7号,p359-364
Furthermore, the cleaning waste liquid contains chemicals used as a cleaning agent and heavy metals such as cadmium extracted and removed from the soil by cleaning, but this cleaning waste liquid treatment is not specifically shown, and the soil cleaning waste liquid Development of a wastewater treatment method that can purify the wastewater to below the wastewater standard value at the current location has been desired.
JP-A-6-39055 JP-A-10-130623 JP 2002-45839 A JP-A-4-263874 JP 2002-52375 A Wang W., Artiola JF, Brusseau ML, Miller RM, “Use of calcium and fulvic acid to facilitate transport of cadmium in soil”, Am. Chem. Soc. Natl. Meet. Div. Environ. Chem., 1994, 34, No. 1, p208-210 Fumio Ogawa, “Study on the Actual Condition of Cadmium Contamination of Rice in Akita Prefecture and Mitigation of the Damage”, Akita Prefectural Agricultural Experiment Station Research Report, 1994, No. 35, p31-38 Seijiro Nakajima, Sueta Ono, “Survey on Heavy Metal Contamination in Tsushima”, Nagasaki Prefectural Agricultural and Forestry Laboratory, 1979, No. 7, p359-364

従って、本発明の目的は、重金属汚染土壌を効率良く浄化する方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for efficiently purifying heavy metal contaminated soil.

本発明者らは、斯かる実情に鑑み、種々検討した結果、特定の金属塩化合物を用いて土壌中の重金属を抽出洗浄すれば、土壌を効率良く浄化できることを見出し、本発明を完成した。   As a result of various studies in view of such a situation, the present inventors have found that if heavy metals in the soil are extracted and washed using a specific metal salt compound, the soil can be efficiently purified, and the present invention has been completed.

すなわち、本発明は、土壌pH(H2O)以下において加水分解により水酸イオンを配位して金属水酸化物を生成する金属塩化合物を、重金属汚染土壌に施用し、土壌中の重金属を抽出洗浄することを特徴とする重金属汚染土壌の浄化方法を提供するものである。
また、本発明は、加水分解により水酸イオンを配位して生成する金属水酸化物の溶解度積が10-10未満となる金属塩化合物を、重金属汚染土壌に施用し、土壌中の重金属を抽出洗浄することを特徴とする重金属汚染土壌の浄化方法を提供するものである。
また、本発明は、カドミウム濃度が0.1〜5ppmの水田土壌に対し、pH9(H2O)以下において加水分解により水酸イオンを配位して金属水酸化物を生成する金属塩化合物の水溶液、又は加水分解により水酸イオンを配位して生成する金属水酸化物の溶解度積が10-10未満となる金属塩化合物の水溶液を、浄化対象土壌の1〜5重量倍用いて洗浄することを特徴とするカドミウム含有水田土壌の浄化方法を提供するものである。
That is, the present invention applies to a heavy metal contaminated soil a metal salt compound that generates a metal hydroxide by coordinating hydroxide ions by hydrolysis at a soil pH (H 2 O) or lower, and removes heavy metals in the soil. An object of the present invention is to provide a method for purifying heavy metal-contaminated soil characterized by extraction and washing.
Moreover, the present invention applies a metal salt compound in which the solubility product of a metal hydroxide produced by coordination of hydroxide ions by hydrolysis is less than 10 −10 to heavy metal-contaminated soil, and removes heavy metals in the soil. An object of the present invention is to provide a method for purifying heavy metal-contaminated soil characterized by extraction and washing.
The present invention also relates to a metal salt compound that forms a metal hydroxide by coordinating hydroxide ions by hydrolysis at a pH of 9 (H 2 O) or less with respect to paddy soil having a cadmium concentration of 0.1 to 5 ppm. An aqueous solution or an aqueous solution of a metal salt compound in which the solubility product of a metal hydroxide produced by coordination of hydroxide ions by hydrolysis is less than 10 −10 is washed using 1 to 5 times the weight of the soil to be purified. The present invention provides a method for purifying cadmium-containing paddy soil.

本発明によれば、重金属汚染土壌を効率良く浄化することができる。   According to the present invention, heavy metal-contaminated soil can be efficiently purified.

本発明で浄化対象となる重金属汚染土壌としては、市街地、山林、工場跡地、農用地、沼地、更には排土等で、鉛、カドミウム、ヒ素等の重金属元素の単体、化合物又はイオンを含有する土壌が挙げられる。例えば平成3年環境庁告示第46号に定める方法によって測定される重金属類の溶出量が土壌環境基準を超える土壌や、土壌1kg当たり鉛重量で400mg以上の鉛を含有する鉛含有土壌、土壌1kg当たりカドミウム重量で2mg以上のカドミウムを含有するカドミウム含有土壌、土壌1kg当たりヒ素重量で30mg以上のヒ素を含有するヒ素含有土壌等の土壌に好適に適用することができる。
特に、カドミウム含有水田土壌、更に、カドミウム濃度が0.1〜5ppmの水田土壌の浄化に好適である。
The heavy metal contaminated soil to be purified in the present invention includes urban areas, mountain forests, factory sites, agricultural land, swamps, and soils that contain heavy metal elements such as lead, cadmium, and arsenic, compounds, or ions. Is mentioned. For example, soil with heavy metal elution measured by the method stipulated in Notification No. 46 of the Environment Agency in 1991, soil containing lead that contains 400 mg or more of lead per kg of soil, 1 kg of soil The present invention can be suitably applied to soil such as cadmium-containing soil containing 2 mg or more of cadmium by weight per cadmium and arsenic-containing soil containing arsenic of 30 mg or more per kg of soil.
In particular, it is suitable for purification of cadmium-containing paddy soil and paddy soil having a cadmium concentration of 0.1 to 5 ppm.

本発明で用いる金属塩化合物は、浄化対象土壌のpH(H2O)以下において加水分解により水酸イオンを配位するものである。浄化対象土壌のpHは、概ねpH9以下であり、このpH以下において、水酸イオンが金属塩に配位して、金属水酸化物を生成するものである。
かかる金属塩化合物としては、例えば塩化第一鉄、塩化第二鉄、硫酸第一鉄、硫酸第二鉄、硝酸第一鉄、硝酸第二鉄、ポリ硫酸鉄等の鉄塩;硫酸アルミニウム、塩化アルミニウム、ポリ塩化アルミニウム等のアルミニウム塩;塩化マンガン、硝酸マンガン、硫酸マンガン等のマンガン塩;塩化コバルト、硝酸コバルト、硫酸コバルト等のコバルト塩;塩化銅、硝酸銅、硫酸銅等の銅塩などが挙げられる。
The metal salt compound used in the present invention coordinates hydroxide ions by hydrolysis below the pH (H 2 O) of the soil to be purified. The pH of the soil to be purified is approximately pH 9 or lower, and at this pH or lower, hydroxide ions are coordinated to the metal salt to generate metal hydroxide.
Examples of such metal salt compounds include ferrous chloride, ferric chloride, ferrous sulfate, ferric sulfate, ferrous nitrate, ferric nitrate, and polyiron sulfate; aluminum sulfate, chloride Aluminum salts such as aluminum and polyaluminum chloride; manganese salts such as manganese chloride, manganese nitrate and manganese sulfate; cobalt salts such as cobalt chloride, cobalt nitrate and cobalt sulfate; copper salts such as copper chloride, copper nitrate and copper sulfate Can be mentioned.

これらの金属塩化合物は、例えば下式のように、加水分解により水酸イオンを配位して金属水酸化物(M(OH)n)を生成する。本発明においては、生成する金属水酸化物の溶解度積が10-10未満、特に10-15未満である金属塩化合物を用いるのが、水酸イオンの配位するpHが低くなり、重金属の除去効果が向上するので好ましい。特に、塩化第二鉄は、生成する鉄の水酸化物Fe(OH)3の沈殿生成pHが2.3以上と低く、更に生成した沈殿の溶解度積が10-33と低いので好ましい。 These metal salt compounds generate metal hydroxides (M (OH) n ) by coordinating hydroxide ions by hydrolysis, for example, as shown in the following formula. In the present invention, the use of a metal salt compound having a solubility product of the produced metal hydroxide of less than 10 −10 , particularly less than 10 −15 , lowers the pH at which the hydroxide ions are coordinated, and removes heavy metals. Since an effect improves, it is preferable. In particular, ferric chloride is preferable because the precipitation pH of the iron hydroxide Fe (OH) 3 produced is as low as 2.3 or more, and the solubility product of the produced precipitate is as low as 10 −33 .

MXn + nH2O → M(OH)n + nX- + nH+
(式中、Mは金属イオンを示し、Xは1価の陰イオンを示し、nは金属イオンの価数を示す)
MX n + nH 2 O → M (OH) n + nX + nH +
(Wherein M represents a metal ion, X represents a monovalent anion, and n represents the valence of the metal ion)

これらの金属塩化合物を、重金属汚染土壌に施用する際には、水溶液として用いるのが好ましく、その濃度は、1〜200mM、特に3〜100mMであるのが、重金属の除去効果が大きいとともに、土壌への残留が少ないので好ましい。   When these metal salt compounds are applied to heavy metal contaminated soil, it is preferably used as an aqueous solution, and the concentration thereof is 1 to 200 mM, particularly 3 to 100 mM. Since there is little residue to this, it is preferable.

このような水溶液を用いて土壌中の重金属を抽出洗浄する方法としては、特に制限されず、現場にて洗浄する方法、土壌を掘削して洗浄した後、浄化土壌を埋め戻す方法等のいずれでも良い。特に、現場(原位置)での土壌洗浄が好ましい。   The method for extracting and washing heavy metals in the soil using such an aqueous solution is not particularly limited, and any of a method for washing on-site, a method for excavating and washing the soil, and then refilling the purified soil, etc. good. In particular, soil cleaning at the site (in situ) is preferable.

また、本発明において、抽出洗浄するとは、土壌と金属塩化合物水溶液を直接混合する以外に、土壌に金属塩化合物と水を別々に加えて混合して洗浄する方法、水を含む土壌に金属塩化合物を混合して洗浄する方法も含まれる。
水を含む土壌を洗浄する方法の一例としては、河川や湖沼の底土を水とともに浚渫し、ミキサーに投入して、金属塩化合物粉末を所定濃度になるよう添加して混合する方法が挙げられる。
Further, in the present invention, the extraction washing means a method of adding a metal salt compound and water separately to the soil, mixing and washing, in addition to directly mixing the soil and the metal salt compound aqueous solution, and metal salt in the soil containing water. Also included are methods of mixing and washing the compounds.
As an example of a method for washing soil containing water, there is a method in which bottom soil of rivers and lakes is dredged with water, put into a mixer, and a metal salt compound powder is added to a predetermined concentration and mixed.

抽出洗浄に用いる水溶液の量は、浄化対象土壌の1〜5重量倍、特に1〜2.5重量倍であるのが好ましい。
このように処理することにより、土壌中の重金属は水溶液中に抽出される。
洗浄は、土壌の重金属含有量のうち、洗浄水溶液に溶出しない重金属含有量が土壌汚染対策法(平14・5・29法律第53号)に定める含有量基準値以下になるまで繰り返すのが好ましく、さらに、洗浄処理後の土壌から溶出する重金属濃度が「土壌の汚染に係る環境基準について」(平3・8・23環告40号)に定める溶出基準値以下になるまで洗浄するのが好ましい。
The amount of the aqueous solution used for the extraction washing is preferably 1 to 5 times by weight, particularly 1 to 2.5 times by weight of the soil to be purified.
By treating in this way, heavy metals in the soil are extracted into an aqueous solution.
Washing is preferably repeated until the heavy metal content of the soil that does not elute in the washing aqueous solution falls below the content reference value stipulated in the Soil Contamination Countermeasures Law (Act No. 53, No. 53). Furthermore, it is preferable to wash until the concentration of heavy metals eluted from the soil after the washing treatment is equal to or less than the elution standard value stipulated in “Environmental standards for soil contamination” (Health 3, 8, 23 notification No. 40). .

なお、土壌中の重金属含有量は、「土壌含有量調査に係る測定方法を定める件」(平15・3・6環告19号)により、また、土壌から溶出する重金属濃度は、「土壌の汚染に係る環境基準について」(平3・8・23環告40号)に定める方法により、原子吸光法、ICP発光法、ICP質量分析法の分析機器により測定される。   In addition, the heavy metal content in the soil is determined according to the “Procedure for measuring methods related to soil content survey” (Heisei 15, 3, 6 notification 19), and the concentration of heavy metals eluted from the soil It is measured by an atomic absorption method, an ICP emission method, and an ICP mass spectrometry analyzer according to the method defined in “Environmental standards for pollution” (Heisei 3, 8, 23 Circular 40).

重金属を抽出した水溶液は、自然沈降又は積極的な脱水などにより固液分離し、土壌から分離除去し、後記の廃液処理により無毒化される。   The aqueous solution from which heavy metals have been extracted is solid-liquid separated by natural sedimentation or active dehydration, separated and removed from the soil, and detoxified by waste liquid treatment described later.

一方、処理された土壌には、用いた水溶液中の金属塩化合物の一部が残存する場合や、洗浄により抽出されたカドミウムの一部が残存する場合があるため、更に土壌を水で洗浄することにより、これらを除去するのが好ましい。
水による洗浄は、水溶液による洗浄と同様に行えば良く、土壌中の重金属の濃度、及び水溶液洗浄で用いた金属化合物の残留量が土壌環境基準以下になるまで繰り返し行うのが好ましく、少なくとも1回、特に1〜6回、水で洗浄するのが好ましい。
On the other hand, in the treated soil, a part of the metal salt compound in the used aqueous solution may remain or a part of the cadmium extracted by washing may remain, so the soil is further washed with water. It is preferable to remove them.
Washing with water may be performed in the same manner as washing with an aqueous solution, and is preferably repeated until the concentration of heavy metals in the soil and the residual amount of the metal compound used in the aqueous solution washing are below the soil environmental standard, at least once. In particular, it is preferable to wash with water 1 to 6 times.

本発明方法は、カドミウム含有水田土壌、特にカドミウム濃度が0.1〜5ppmの水田土壌の浄化に好適である。
この場合には、前記のような金属塩化合物の水溶液を浄化対象土壌の1〜5重量倍、特に1〜2.5重量倍用いて洗浄した後、更に水で洗浄するのが好ましい。
The method of the present invention is suitable for the purification of cadmium-containing paddy soil, particularly paddy soil having a cadmium concentration of 0.1 to 5 ppm.
In this case, it is preferable to wash with an aqueous solution of the metal salt compound as described above using 1 to 5 times by weight, particularly 1 to 2.5 times by weight of the soil to be purified, and then wash with water.

原位置で、水溶液を用いて土壌洗浄する場合には、例えば、タンクを用いて金属塩化合物を水に溶解し、所定の濃度になるよう混合した後施用できるほか、所定濃度より高濃度の溶液を調製して施用した後、所定濃度になるように水を加えても良く、更に、予め湛水した水田に施用しても良い。また、導水時に連続的に金属塩化合物を投入できる装置により施用しても良い。   When soil is washed in-situ with an aqueous solution, for example, a metal salt compound can be dissolved in water using a tank and mixed to a predetermined concentration and then applied, or a solution with a concentration higher than the predetermined concentration After preparing and applying, water may be added so as to have a predetermined concentration, and further, it may be applied to a previously flooded paddy field. Moreover, you may apply with the apparatus which can throw in a metal salt compound continuously at the time of water conveyance.

また、金属塩化合物と水を別々に加えて土壌洗浄することもでき、この場合、例えば、金属塩化合物の施用には肥料撒布機などを用いることができ、耕耘機等を用いて土壌を耕耘するとともに、金属塩化合物と土壌を攪拌、混合することができる。水は、通常水田に導水する方法により、決定した固液比に相当する量を入れ、次に、ロータリーハローなどを用いて代掻きの要領で洗浄作業を行うことができる。   Further, the soil can be washed by separately adding the metal salt compound and water. In this case, for example, a fertilizer spreading machine can be used for applying the metal salt compound, and the soil is cultivated using a field cultivator or the like. In addition, the metal salt compound and the soil can be stirred and mixed. Water is usually introduced into a paddy field by an amount corresponding to the determined solid-liquid ratio, and then a cleaning operation can be performed in the manner of scraping using a rotary harrow or the like.

洗浄により、土壌中のカドミウムを水溶液中に抽出させた後、原位置にて土壌を沈降させて上澄廃液を集める。上澄廃液は、通常水田で落水する時開く排水口を開けて排水し、一時的にピットに貯留し、その後ポンプで廃水処理設備に入れても良いし、そのままポンプで水田から排水しても良い。   After washing, cadmium in the soil is extracted into the aqueous solution, and then the soil is settled in situ to collect the supernatant waste liquid. Supernatant wastewater can be drained by opening the drain opening that normally opens when falling in a paddy field, temporarily stored in a pit, and then put into a wastewater treatment facility with a pump, or drained directly from a paddy field with a pump. good.

水溶液による洗浄は、少なくとも1回、好ましくは1〜3回行われる。洗浄後の廃液中のカドミウム濃度が0.5ppm以下になるまで、洗浄を繰り返すのが好ましい。なお、カドミウム濃度は、JIS K 0102−93「工場排水試験方法」又は水質汚濁防止法施行規則第9条の4の規定に基づき、環境庁長官が定める測定方法(平8環告55)により、測定される。
さらに、土壌のカドミウム含有量のうち、洗浄水溶液に溶出してこないカドミウム含有量、すなわち洗浄処理後土壌中のカドミウム含有量が1mg/kg以下、特に0.35mg/kg以下になるまで繰り返し洗浄するのが好ましい。土壌中のカドミウム含有量が1mg/kg以下であれば、洗浄処理後土壌で栽培するコメ中のカドミウム含有量を0.4mg/kg以下に低減できることが期待でき、更に、土壌中のカドミウム含有量が0.35mg/kg以下であれば、洗浄処理後土壌で栽培するコメ中のカドミウム含有量を0.2mg/kg以下に低減できることが期待できる。
なお、水田土壌中のカドミウム含有量は、「農用地土壌汚染対策地域の指定用件に係るカドミウムの量の検定の方法を定める省令」(昭46・6・24農令47)に定める方法により、原子吸光法、ICP発光法、ICP質量分析法の分析機器により測定される。
Washing with an aqueous solution is performed at least once, preferably 1 to 3 times. Washing is preferably repeated until the cadmium concentration in the waste liquid after washing is 0.5 ppm or less. The cadmium concentration is determined by the measurement method (Heisei 8 declaration 55) defined by the Director-General of the Environment Agency based on the provisions of Article 9-4 of JIS K 0102-93 “Factory drainage test method” or the Water Pollution Control Law enforcement regulations Article 9-4. Measured.
Furthermore, among the cadmium content of the soil, the cadmium content that does not elute into the washing aqueous solution, that is, the cadmium content in the soil after the washing treatment is repeatedly reduced to 1 mg / kg or less, particularly 0.35 mg / kg or less. Is preferred. If the cadmium content in the soil is 1 mg / kg or less, it can be expected that the cadmium content in the rice cultivated in the soil after washing treatment can be reduced to 0.4 mg / kg or less, and the cadmium content in the soil. If it is 0.35 mg / kg or less, it can be expected that the cadmium content in the rice grown in the soil after the washing treatment can be reduced to 0.2 mg / kg or less.
In addition, the cadmium content in paddy soil is determined by the method specified in “Ministerial Ordinance for Deciding Method of Cadmium Examination Related to Specified Requirements for Agricultural Land Soil Contamination Countermeasure Areas” It is measured by an analytical instrument such as an atomic absorption method, an ICP emission method, and an ICP mass spectrometry.

水溶液で洗浄された土壌には、カドミウムが溶解した水溶液の一部が残存するため、次に土壌を水で洗浄して、これを除去する。
水による洗浄は、水溶液による洗浄と同様に行えば良く、使用する水の量は、浄化対象土壌に対して1〜5重量倍、特に1〜2.5重量倍であるのが好ましい。水による洗浄は、洗浄後の廃液中のカドミウム濃度が、0.5ppm以下、特に0.1ppm以下になるまで繰り返すのが好ましい。
Since a part of the aqueous solution in which cadmium is dissolved remains in the soil washed with the aqueous solution, the soil is then washed with water to remove it.
Washing with water may be performed in the same manner as washing with an aqueous solution, and the amount of water to be used is preferably 1 to 5 times by weight, particularly 1 to 2.5 times by weight with respect to the soil to be purified. Washing with water is preferably repeated until the cadmium concentration in the waste liquid after washing is 0.5 ppm or less, particularly 0.1 ppm or less.

さらに、洗浄後の水田土壌を農用地土壌として用いる場合は、土壌中の塩素濃度が500ppm以下、電気伝導度が2mS/cm以下、特に1mS/cm以下になるまで、水による洗浄を繰り返し行うのが好ましい。
現場でのカドミウム及び金属塩化合物の濃度、塩素濃度、ECはそれぞれ個々に分析し、水洗浄の効果を確認しても良いし、最も分析の容易なECを分析し、その希釈の程度から他の分析項目も比例して希釈したと仮定して算出しても良い。
Furthermore, when paddy soil after washing is used as agricultural soil, washing with water is repeated until the chlorine concentration in the soil is 500 ppm or less and the electrical conductivity is 2 mS / cm or less, particularly 1 mS / cm or less. preferable.
In-situ cadmium and metal salt compound concentrations, chlorine concentration, and EC may be analyzed individually to confirm the effect of water washing, or the most easily analyzed EC may be analyzed. These analysis items may also be calculated on the assumption that they are diluted in proportion.

このように、水田土壌を洗浄して排出された重金属含有廃液は、該廃液中の固形浮遊物を分離した後、溶存重金属を除去してもよいし、該廃液中の固形浮遊物と溶存重金属を同時に除去してもよい。
廃液中の固形浮遊物を分離する方法としては、スクリーン、マイクロストレーナー、モパック・オートストレーナー、沈砂装置、真空濾過、加圧濾過、回転金網、遠心分離等が挙げられる。コロイドを除去する場合には、無機系凝集剤(硫酸アルミニウム、ポリ塩化アルミニウム、硫酸第1鉄、塩化第2鉄)、有機系の高分子凝集剤による凝集後、前記の分離法や、沈殿分離法等により処理すれば良い。
In this way, the heavy metal-containing waste liquid discharged after washing the paddy soil may remove the dissolved heavy metal after separating the solid suspended matter in the waste liquid, or the solid suspended matter and the dissolved heavy metal in the waste liquid. May be removed simultaneously.
Examples of the method for separating the solid suspended matter in the waste liquid include a screen, a micro strainer, a mopac / auto strainer, a sand settling device, vacuum filtration, pressure filtration, a rotating wire mesh, and centrifugal separation. When removing the colloid, after the aggregation with an inorganic flocculant (aluminum sulfate, polyaluminum chloride, ferrous sulfate, ferric chloride) or an organic polymer flocculant, the above separation method or precipitation separation What is necessary is just to process by the law.

また、溶存重金属を除去するには、イオン交換樹脂法、キレート樹脂法、電気透析法、逆浸透圧法、イオン浮選・泡沫分離法、蒸発濃縮法、活性炭吸着法等により廃液を処理することができる。   In order to remove dissolved heavy metals, waste liquid can be treated by ion exchange resin method, chelate resin method, electrodialysis method, reverse osmotic pressure method, ion flotation / foam separation method, evaporation concentration method, activated carbon adsorption method, etc. it can.

更に、廃液中の固形浮遊物と溶存重金属を同時に除去するには、前記の方法を適宜組み合わせて行なえば良い。   Furthermore, in order to simultaneously remove solid suspended solids and dissolved heavy metals in the waste liquid, the above methods may be combined as appropriate.

水田土壌を洗浄して排出された重金属を含むカドミウム含有廃液は、凝集沈殿法により処理するのが好ましい。具体的には、カドミウム含有廃液を、曝気処理、中和処理、キレート液処理、高分子凝集剤添加処理、凝集沈殿処理及び脱水処理による廃液処理工程で処理する。廃液中に稲藁などの粗大な夾雑物が混入する場合には、スクリーン又はサイクロン等で除去するのが好ましい。   The cadmium-containing waste liquid containing heavy metals discharged by washing the paddy soil is preferably treated by a coagulation precipitation method. Specifically, the cadmium-containing waste liquid is treated in a waste liquid treatment step by aeration treatment, neutralization treatment, chelate solution treatment, polymer flocculant addition treatment, aggregation precipitation treatment, and dehydration treatment. When coarse impurities such as rice straw are mixed in the waste liquid, it is preferably removed with a screen or a cyclone.

水田土壌は、滞水により還元雰囲気になっていることが多く、土壌洗浄処理により二価の鉄が大量に溶出する。これを、曝気処理により酸化状態とし、溶解度積の低い三価の鉄にする。曝気は、例えばブロアー等により洗浄廃液に空気を吹き込むことにより行うことができ、吐出口にディフューザーを設置するなど、酸素吸収効率を促進させるのが好ましい。さらに、曝気による酸化処理は、オゾン、塩素、次亜塩素酸を添加して行うこともできる。   Paddy soil often has a reducing atmosphere due to stagnant water, and a large amount of divalent iron is eluted by soil washing treatment. This is converted into an oxidized state by aeration treatment to obtain trivalent iron having a low solubility product. Aeration can be performed, for example, by blowing air into the cleaning waste liquid using a blower or the like, and it is preferable to promote oxygen absorption efficiency by installing a diffuser at the discharge port. Furthermore, the oxidation treatment by aeration can be performed by adding ozone, chlorine, or hypochlorous acid.

中和処理は、アルカリ資材を添加し、攪拌機で撹拌することにより行うことができ、pHを6以上12未満、好ましくは8以上10未満に調整する。これにより、三価の鉄は水酸化鉄のフロックを形成し、カドミウムを含む重金属も大部分がフロックを形成する。アルカリ資材としては、水酸化ナトリウム、水酸化カリウム、消石灰等を用いることができる。   The neutralization treatment can be performed by adding an alkaline material and stirring with a stirrer, and the pH is adjusted to 6 or more and less than 12, preferably 8 or more and less than 10. Thereby, trivalent iron forms a floc of iron hydroxide, and most heavy metals containing cadmium also form a floc. As the alkaline material, sodium hydroxide, potassium hydroxide, slaked lime, or the like can be used.

曝気のみを初めに行うと、廃液を酸化状態にするのに長時間要するが、中和処理と平行して行なうと、短時間で曝気処理が完了し、同一槽内で曝気と中和処理が行え、処理槽が省略でき好ましい。
また、非水田土壌等で洗浄廃液中に鉄が溶出してこない場合や、酸化状態の水田土壌、水洗浄工程で洗浄廃液中に鉄が溶出してこない場合は、生成する重金属フロックが軽くなり、後に行う凝集沈殿処理において、沈降性が悪くなる。このため、塩化第二鉄を鉄濃度で20〜50mg/kg程度となる量を洗浄廃液に添加すると、フロックが重くなり、また、カドミウムを含む重金属水酸化物の沈殿が生成するpHが低くなるので好ましい。
If only aeration is performed first, it takes a long time to bring the waste liquid into an oxidized state. However, if it is performed in parallel with the neutralization treatment, the aeration treatment is completed in a short time, and the aeration and neutralization treatment is performed in the same tank. This is preferable because the treatment tank can be omitted.
In addition, if iron does not elute into the washing waste liquid in non-paddy soil, etc., or iron does not elute into the washing waste liquid in the oxidized paddy soil or water washing process, the generated heavy metal flocs become lighter. In the subsequent aggregation and precipitation treatment, the sedimentation property is deteriorated. For this reason, when ferric chloride is added in an amount of about 20 to 50 mg / kg in iron concentration, the floc becomes heavy and the pH at which heavy metal hydroxide precipitates containing cadmium are generated is lowered. Therefore, it is preferable.

キレート液処理は、ピロリジン系、イミン系、カルバミン酸系等の液体重金属捕集剤を添加し、強く撹拌して行うことができ、曝気処理、中和処理により水酸化物として沈殿されなかったカドミウムを含む重金属イオンをフロックとし、不溶性の沈殿とする。   Chelate solution treatment can be performed by adding liquid heavy metal scavengers such as pyrrolidine, imine, carbamic acid, etc. and stirring vigorously. Cadmium that was not precipitated as hydroxide by aeration treatment and neutralization treatment The heavy metal ion containing is used as a floc to form an insoluble precipitate.

高分子凝集剤添加処理は、アルギン酸ナトリウム、CMCナトリウム、ポリアクリル酸ナトリウム、ポリアクリルアミドの部分加水分解塩、マレイン酸共重合物、水溶性アニリン樹脂、ポリチオ尿素、ポリエチレンイミン、第4級アンモニウム塩、ポリビニルピリジン類、ポリアクリルアミド、ポリオキシエチレン、カセイ化デンプン等を添加して行うことができ、緩やかに撹拌してフロックを成長、粗大化させ、沈降性を向上させる。   Polymer aggregating agent addition treatment includes sodium alginate, sodium CMC, sodium polyacrylate, polyacrylamide partial hydrolysis salt, maleic acid copolymer, water-soluble aniline resin, polythiourea, polyethyleneimine, quaternary ammonium salt, Polyvinylpyridines, polyacrylamide, polyoxyethylene, causticized starch and the like can be added and gently stirred to grow and coarsen flocs and improve sedimentation.

凝集沈殿処理では、処理槽で凝集したフロックを沈殿させ、上澄の清浄化された処理水をオーバーフローにより排水する。   In the coagulation sedimentation treatment, flocs aggregated in the treatment tank are precipitated, and the treated water in which the supernatant is cleaned is drained by overflow.

脱水処理では、凝集沈殿槽で下層に溜まった汚泥様フロックを脱水し、カドミウムを含む重金属を回収する。脱水は、凝集沈殿槽から汚泥様フロックを引き抜き、真空脱水、遠心脱水、フィルタープレス、ベルトプレス、スクリュープレス等で脱水し、脱水ケーキを回収する。絞り水は再び廃水処理を行う。   In the dehydration process, the sludge-like floc accumulated in the lower layer in the coagulation sedimentation tank is dehydrated and heavy metals containing cadmium are recovered. For dehydration, the sludge-like floc is extracted from the coagulation sedimentation tank, dehydrated by vacuum dehydration, centrifugal dehydration, filter press, belt press, screw press, etc., and the dehydrated cake is recovered. The squeezed water is again subjected to wastewater treatment.

洗浄後の土壌は酸性になっており、また、カドミウムを含む重金属が水溶液として残留するので、植物の栽培に適した土壌とし、土壌に溶存するカドミウムを含む重金属を不溶化させるため、土壌にアルカリ資材を施用して中和処理を行うのが好ましい。アルカリ資材としては、水酸化ナトリウム、水酸化カリウム、消石灰、生石灰、炭酸カルシウム等を用いることができ、特に炭酸カルシウムが好ましい。中和処理は、土壌のpHを5〜8、特にpH5.5〜6.5程度に調整するのが好ましく、植物の生育が健全となり、ほとんどの重金属が不溶化する。中和のためのアルカリ資材の施用量は、単位土壌あたりに対して施用する量のアルカリ資材を振り、緩衝曲線を求め、目的のpHになる量を施用すればよい。   The soil after washing is acidic, and heavy metals containing cadmium remain as an aqueous solution, making the soil suitable for plant cultivation and insolubilizing heavy metals containing cadmium dissolved in the soil. It is preferable to apply a neutralization treatment. As the alkaline material, sodium hydroxide, potassium hydroxide, slaked lime, quicklime, calcium carbonate, and the like can be used, and calcium carbonate is particularly preferable. In the neutralization treatment, it is preferable to adjust the pH of the soil to 5 to 8, particularly about pH 5.5 to 6.5, so that the growth of the plant becomes healthy and most heavy metals are insolubilized. The application amount of the alkaline material for neutralization may be applied by shaking an alkaline material in an amount to be applied per unit soil, obtaining a buffer curve, and applying an amount to achieve the target pH.

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに何ら制限されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not restrict | limited to these at all.

実施例1
A、B、C、D及びEの5箇所のカドミウム含有水田土壌を、50mL遠沈管に5g秤量し、土壌重量に対して1.5重量倍の各濃度の塩化第2鉄水溶液を添加し、1分間振盪後、10分間静置、更に1分間振盪後、10分間静置し、上澄み液を0.45μmメンブランフィルターで濾過し、溶液中のカドミウム濃度をIPC−MS装置により定量した。結果を表1に示す。なお、用いた水田土壌のpHは、A:4.8、B:4.7、C:6.3、D:4.3、E:5.5である。
Example 1
5 g of cadmium-containing paddy field soil of A, B, C, D and E is weighed in a 50 mL centrifuge tube, and ferric chloride aqueous solution of each concentration 1.5 times the soil weight is added, The mixture was shaken for 1 minute, allowed to stand for 10 minutes, further shaken for 1 minute, and then allowed to stand for 10 minutes. The supernatant was filtered through a 0.45 μm membrane filter, and the cadmium concentration in the solution was quantified with an IPC-MS apparatus. The results are shown in Table 1. In addition, pH of the used paddy field soil is A: 4.8, B: 4.7, C: 6.3, D: 4.3, E: 5.5.

比較例1
塩化第2鉄水溶液の代わりに蒸留水を用いる以外は、実施例1と同様に行なった。結果を表1に示す。
Comparative Example 1
The same procedure as in Example 1 was performed except that distilled water was used instead of the ferric chloride aqueous solution. The results are shown in Table 1.

比較例2
塩化第2鉄水溶液の代わりに100mM塩化カルシウム水溶液を用いる以外は、実施例1と同様に行なった。結果を表1に示す。
Comparative Example 2
The same procedure as in Example 1 was performed except that a 100 mM calcium chloride aqueous solution was used instead of the ferric chloride aqueous solution. The results are shown in Table 1.

Figure 2005169381
Figure 2005169381

表1の結果より、塩化第2鉄の濃度を高めると、カドミウムの抽出濃度が高まることが、用いた全ての土壌で認められた。特に、塩化第2鉄の添加濃度を3mM以上にすると、効率良くカドミウムの抽出を行なうことができた。   From the results in Table 1, it was found that the extraction concentration of cadmium increased with increasing ferric chloride concentration in all the soils used. In particular, when the concentration of ferric chloride added was 3 mM or more, cadmium could be extracted efficiently.

実施例2(土壌洗浄処理)
0.1N塩酸抽出カドミウムが0.63mg/kgである水田(pH6.0)で、面積108.36m2、作土層厚17.2cm、土壌容量18.64m3、乾燥土壌重量18.64tを浄化対象土壌とし、以下の方法により、現位置で土壌洗浄処理を行った。
Example 2 (soil cleaning treatment)
In paddy field (pH 6.0) with 0.1N hydrochloric acid extracted cadmium 0.63 mg / kg, area 108.36 m 2 , soil layer thickness 17.2 cm, soil capacity 18.64 m 3 , dry soil weight 18.64 t. The soil to be purified was subjected to soil washing treatment at the current position by the following method.

(1)塩化第2鉄の15mM水溶液量が、対象土壌の乾燥土壌重量に対して1.5倍である28m3となるよう、耕盤からの水深32.2cmまで導水及び40ボーメ38%工業用塩化第2鉄を施用した。
(2)土壌と洗浄水溶液がスラリー状になるよう、耕耘機にて1時間攪拌混合した後、30分静置し、さらに30分耕耘機にて攪拌混合した。
(3)静置し、土壌を自然沈降させて固液分離し、上澄み10cm、10.836m3を廃水処理した。
(4)廃水処理した10.836m3分の水量となる耕盤からの水深32.2cmまでさらに導水し、耕耘機にて1時間攪拌、静置し、土壌を自然沈降させ固液分離し、上澄み10cm、10.836m3を廃水処理した。
(5)上記(4)を3回繰り返した。
(6)洗浄処理後の土壌pHは3.93であった。予め求めたpH中和曲線から、土壌1kgに対して2.5gの炭酸カルシウムを施用すれば土壌pHが5.6になることがわかっており、46.6kgの炭酸カルシウムを施用し、耕耘機で混合撹拌した。
(1) 15 mM aqueous solution of ferric chloride, so as to be 28 m 3 1.5 times the dry soil weight of target soil, water conveying and 40 Baumé 38% industrial to a depth of 32.2cm from tillage Release Ferric chloride was applied.
(2) After stirring and mixing with a cultivator for 1 hour so that the soil and the cleaning aqueous solution became a slurry, the mixture was allowed to stand for 30 minutes and further stirred and mixed with a cultivator for 30 minutes.
(3) The mixture was allowed to stand, and the soil was naturally settled to separate into solid and liquid, and the supernatant was treated with 10 cm and 10.36 m 3 of waste water.
(4) further water conveyance to a depth of 32.2cm from plowing machine as the waste water treated 10.836M 3 minutes of water, stirred for 1 hour at tillers, and allowed to stand, the soil was separated solid was allowed to settle naturally, 10 cm of supernatant and 10.36 m 3 were treated with waste water.
(5) The above (4) was repeated three times.
(6) The soil pH after the washing treatment was 3.93. From the pH neutralization curve obtained in advance, it is known that applying 2.5 g of calcium carbonate to 1 kg of soil results in a soil pH of 5.6, applying 46.6 kg of calcium carbonate, And stirred.

以上の土壌洗浄処理後、土壌中の0.1N塩酸抽出カドミウム含有量は0.35mg/kgとなり、土壌中のカドミウムの44%を除去した。また、土壌洗浄処理後の土壌中の塩素濃度は494mg/L、pH5.6であり、水稲に薬害を及ぼさないレベルであった。   After the above soil washing treatment, the 0.1N hydrochloric acid-extracted cadmium content in the soil was 0.35 mg / kg, and 44% of the cadmium in the soil was removed. Moreover, the chlorine concentration in the soil after the soil washing treatment was 494 mg / L, pH 5.6, which was a level that did not cause phytotoxicity to paddy rice.

実施例3(廃水処理)
実施例2の土壌洗浄処理で発生したカドミウム含有廃液を、凝集沈殿法により、以下の方法で廃水処理した。用いた廃液処理システム処理フローを図1に示す。
なお、水田から排水された土壌洗浄廃水には洗浄薬剤として施用した3価鉄及び還元した土壌から溶出する2価鉄、洗浄により溶脱されたカドミウム、他の重金属も含まれる。
Example 3 (waste water treatment)
The cadmium-containing waste liquid generated in the soil washing treatment of Example 2 was treated with waste water by the following method using a coagulation sedimentation method. The waste liquid treatment system process flow used is shown in FIG.
The soil washing wastewater drained from the paddy field includes trivalent iron applied as a cleaning agent, divalent iron eluted from the reduced soil, cadmium leached by washing, and other heavy metals.

(1)土壌洗浄廃液は、グランドレベルより20cm深く設置した原水ピットに上澄水のみを取水できるよう工夫した可動式の取水口よりオーバーフローにより取水した。
(2)原水ピットに取水した土壌洗浄廃水は水中ポンプにより反応槽1へ送水した。
(3)反応槽1で苛性ソーダを添加し、pHを中性から弱アルカリ性にすると同時に空気を送り込み、鉄を水酸化第2鉄に、さらにカドミウムの一部及び重金属の一部も水酸化物としてフロックを形成させ、反応槽2へ送水した。
(4)反応槽2でジチオカルバミン酸基及びチオール基を有するポリマーのアルカリ金属塩、硫化水素ナトリウムを主成分とする液体キレートを添加、攪拌し、溶存するカドミウム及び重金属類を完全にフロックとし、凝集槽へ送水した。
(5)凝集槽ではアクリルアミド・アクリル酸共重合体を主成分とするアニオン系高分子凝集剤を添加し、生成したフロックを成長、粗大化させて沈降性を高め、沈殿槽へ送水した。
(6)沈殿槽でフロックを沈殿させ、清浄化された上澄水を農業用水路へ放水した。
(7)沈殿した汚泥様フロックは引抜ポンプによりフィルタープレスに送り、脱水ケーキとして回収した。なお、絞り水は原水ピットへ戻した。
以上の処理を行なった廃液について、処理前と処理後の重金属濃度を表2に示す。
(1) Soil washing wastewater was taken by overflow from a movable water intake that was devised so that only the supernatant water could be taken into a raw water pit installed 20 cm deeper than the ground level.
(2) The soil washing wastewater taken into the raw water pit was sent to the reaction tank 1 by a submersible pump.
(3) Caustic soda is added in the reaction tank 1 to make the pH neutral to weakly alkaline, and at the same time, air is fed, iron is converted into ferric hydroxide, and some cadmium and some heavy metals are also converted into hydroxides. A floc was formed, and water was sent to the reaction vessel 2.
(4) Addition of alkali metal salt of polymer having dithiocarbamic acid group and thiol group and liquid chelate mainly composed of sodium hydrogen sulfide in reaction tank 2, agitation, complete dissolution of cadmium and heavy metals to floc Water was sent to the tank.
(5) In the flocculation tank, an anionic polymer flocculant mainly composed of an acrylamide / acrylic acid copolymer was added, and the generated floc was grown and coarsened to improve the sedimentation property, and water was fed to the precipitation tank.
(6) The floc was precipitated in the settling tank, and the purified supernatant water was discharged into the agricultural waterway.
(7) The precipitated sludge-like floc was sent to a filter press by a drawing pump and recovered as a dehydrated cake. The squeezed water was returned to the raw water pit.
Table 2 shows the concentrations of heavy metals before and after the treatment of the waste liquid subjected to the above treatment.

Figure 2005169381
Figure 2005169381

実施例3において用いた廃液処理システム処理フローを示す図である。It is a figure which shows the waste liquid processing system process flow used in Example 3. FIG.

Claims (15)

土壌pH(H2O)以下において加水分解により水酸イオンを配位して金属水酸化物を生成する金属塩化合物を、重金属汚染土壌に施用し、土壌中の重金属を抽出洗浄することを特徴とする重金属汚染土壌の浄化方法。 It is characterized by applying metal salt compounds that coordinate hydroxide ions by hydrolysis to form metal hydroxides below soil pH (H 2 O) to heavy metal contaminated soil and extract and wash heavy metals in the soil. Purification method for heavy metal contaminated soil. 金属塩化合物が、pH9(H2O)以下において加水分解により水酸イオンを配位して金属水酸化物を生成するものである請求項1記載の浄化方法。 The purification method according to claim 1, wherein the metal salt compound is a compound that forms a metal hydroxide by coordinating a hydroxide ion by hydrolysis at a pH of 9 (H 2 O) or lower. 加水分解により水酸イオンを配位して生成する金属水酸化物の溶解度積が10-10未満となる金属塩化合物を、重金属汚染土壌に施用し、土壌中の重金属を抽出洗浄することを特徴とする重金属汚染土壌の浄化方法。 A metal salt compound in which the solubility product of a metal hydroxide produced by coordination of hydroxide ions by hydrolysis is less than 10 −10 is applied to heavy metal contaminated soil, and heavy metals in the soil are extracted and washed. Purification method for heavy metal contaminated soil. 金属塩化合物の1〜200mM水溶液を用いて土壌を洗浄する請求項1〜3のいずれか1項記載の浄化方法。   The purification | cleaning method of any one of Claims 1-3 which wash | cleans soil using 1-200 mM aqueous solution of a metal salt compound. 浄化対象土壌の1〜5重量倍の金属塩化合物水溶液で、土壌中の重金属を抽出洗浄する請求項1〜4のいずれか1項記載の浄化方法。   The purification method according to any one of claims 1 to 4, wherein heavy metal in the soil is extracted and washed with a metal salt compound aqueous solution 1 to 5 times the weight of the soil to be purified. 浄化対象土壌が水田土壌である請求項1〜5のいずれか1項記載の浄化方法。   The purification method according to any one of claims 1 to 5, wherein the soil to be purified is paddy soil. カドミウム濃度が0.1〜5ppmの水田土壌に対し、pH9(H2O)以下において加水分解により水酸イオンを配位して金属水酸化物を生成する金属塩化合物の水溶液、又は加水分解により水酸イオンを配位して生成する金属水酸化物の溶解度積が10-10未満となる金属塩化合物の水溶液を、浄化対象土壌の1〜5重量倍用いて洗浄することを特徴とするカドミウム含有水田土壌の浄化方法。 For paddy soil with a cadmium concentration of 0.1 to 5 ppm, an aqueous solution of a metal salt compound that coordinates a hydroxide ion by hydrolysis at pH 9 (H 2 O) or lower, or generates a metal hydroxide, or by hydrolysis. Cadmium is characterized in that an aqueous solution of a metal salt compound in which the solubility product of a metal hydroxide produced by coordination of hydroxide ions is less than 10 −10 is washed using 1 to 5 times by weight of the soil to be purified. Purification method of contained paddy soil. 金属塩化合物の水溶液で洗浄した後、更に水で洗浄する請求項7記載の浄化方法。   The purification method according to claim 7, further comprising washing with water after washing with an aqueous solution of a metal salt compound. 土壌洗浄後、アルカリ資材を施用して土壌を中和処理する請求項7又は8記載の浄化方法。   The purification method according to claim 7 or 8, wherein the soil is neutralized by applying an alkaline material after washing the soil. 土壌洗浄後、アルカリ資材を施用して土壌に溶存する重金属を不溶化させる請求項7又は8記載の浄化方法。   The purification method according to claim 7 or 8, wherein after washing the soil, an alkaline material is applied to insolubilize heavy metals dissolved in the soil. 土壌pHを5〜8に調整する請求項9又は10記載の浄化方法。   The purification method according to claim 9 or 10, wherein the soil pH is adjusted to 5-8. 水田土壌中のカドミウムを金属塩化合物の水溶液中に抽出させた後、原位置にて土壌を沈降させて上澄廃液を集め、該廃液中の固形浮遊物を分離した後、溶存カドミウムを除去する請求項7又は8記載の浄化方法。   After extracting cadmium in paddy soil into an aqueous solution of metal salt compound, the soil is settled in situ, the supernatant waste liquid is collected, the solid suspended matter in the waste liquid is separated, and the dissolved cadmium is removed. The purification method according to claim 7 or 8. 水田土壌中のカドミウムを金属塩化合物の水溶液中に抽出させた後、原位置にて土壌を沈降させて上澄廃液を集め、該廃液中の固形浮遊物と溶存カドミウムを同時に除去する請求項7又は8記載の浄化方法。   The cadmium in the paddy soil is extracted into an aqueous solution of a metal salt compound, and then the soil is settled in situ to collect the supernatant waste liquid, and the solid suspended matter and the dissolved cadmium in the waste liquid are simultaneously removed. Or the purification method of 8. 水田土壌を洗浄して排出されたカドミウム含有廃液を、曝気処理、中和処理、キレート液処理、高分子凝集剤添加処理、凝集沈殿処理及び脱水処理による廃液処理工程で処理する請求項7〜13のいずれか1項記載の浄化方法。   The cadmium-containing waste liquid discharged after washing the paddy soil is treated in a waste liquid treatment step by aeration treatment, neutralization treatment, chelate solution treatment, polymer flocculant addition treatment, coagulation precipitation treatment and dehydration treatment. The purification method according to any one of the above. 曝気処理及び中和処理を平行して行なう請求項14記載の浄化方法。   The purification method according to claim 14, wherein the aeration treatment and the neutralization treatment are performed in parallel.
JP2004262189A 2003-11-19 2004-09-09 Purification method for heavy metal contaminated soil Expired - Fee Related JP4116988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004262189A JP4116988B2 (en) 2003-11-19 2004-09-09 Purification method for heavy metal contaminated soil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003388720 2003-11-19
JP2004262189A JP4116988B2 (en) 2003-11-19 2004-09-09 Purification method for heavy metal contaminated soil

Publications (2)

Publication Number Publication Date
JP2005169381A true JP2005169381A (en) 2005-06-30
JP4116988B2 JP4116988B2 (en) 2008-07-09

Family

ID=34741909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004262189A Expired - Fee Related JP4116988B2 (en) 2003-11-19 2004-09-09 Purification method for heavy metal contaminated soil

Country Status (1)

Country Link
JP (1) JP4116988B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132561A1 (en) * 2006-05-12 2007-11-22 Taiheiyo Cement Corporation Method of treating paddy-field soil containing heavy metal
JP2007301491A (en) * 2006-05-12 2007-11-22 Taiheiyo Cement Corp Method for cleaning heavy metal-containing paddy soil
JP2007319747A (en) * 2006-05-31 2007-12-13 National Institute For Agro-Environmental Science Soil agitation device
JP2008264626A (en) * 2007-04-17 2008-11-06 Taiheiyo Cement Corp Method for treating soil-washed waste water
JP2010179198A (en) * 2009-02-03 2010-08-19 Taiheiyo Cement Corp Method of cleaning paddy soil involving cadmium
JP2010221105A (en) * 2009-03-23 2010-10-07 Taiheiyo Cement Corp Method for purifying soil containing heavy metal
JP2011167592A (en) * 2010-02-16 2011-09-01 Terunaito:Kk Treatment method and recycle system of fine soil particle-containing washing liquid and contaminated soil purification system
JP2012135738A (en) * 2010-12-27 2012-07-19 Kureatera:Kk Method for suppressing generation of hydrogen sulfide gas, and generation inhibitor for hydrogen sulfide gas
CN102985191A (en) * 2010-08-10 2013-03-20 太平洋水泥株式会社 Method for purifying cadmium-containing paddy soil
JP2014150754A (en) * 2013-02-07 2014-08-25 Dowa Technology Kk Rice growing method
JP2016097380A (en) * 2014-11-25 2016-05-30 清水建設株式会社 Insolubilization method of arsenic
KR101845993B1 (en) * 2017-09-06 2018-04-06 주식회사 아이케이 Removal method of heavy metals from contaminated soil
CN115156272A (en) * 2022-06-01 2022-10-11 华南理工大学 Farmland soil heavy metal removing and repairing equipment and method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132561A1 (en) * 2006-05-12 2007-11-22 Taiheiyo Cement Corporation Method of treating paddy-field soil containing heavy metal
JP2007301491A (en) * 2006-05-12 2007-11-22 Taiheiyo Cement Corp Method for cleaning heavy metal-containing paddy soil
JP2007319747A (en) * 2006-05-31 2007-12-13 National Institute For Agro-Environmental Science Soil agitation device
JP2008264626A (en) * 2007-04-17 2008-11-06 Taiheiyo Cement Corp Method for treating soil-washed waste water
JP2010179198A (en) * 2009-02-03 2010-08-19 Taiheiyo Cement Corp Method of cleaning paddy soil involving cadmium
JP2010221105A (en) * 2009-03-23 2010-10-07 Taiheiyo Cement Corp Method for purifying soil containing heavy metal
JP2011167592A (en) * 2010-02-16 2011-09-01 Terunaito:Kk Treatment method and recycle system of fine soil particle-containing washing liquid and contaminated soil purification system
CN102985191A (en) * 2010-08-10 2013-03-20 太平洋水泥株式会社 Method for purifying cadmium-containing paddy soil
CN102985191B (en) * 2010-08-10 2015-01-07 太平洋水泥株式会社 Method for purifying cadmium-containing paddy soil
JP2012135738A (en) * 2010-12-27 2012-07-19 Kureatera:Kk Method for suppressing generation of hydrogen sulfide gas, and generation inhibitor for hydrogen sulfide gas
JP2014150754A (en) * 2013-02-07 2014-08-25 Dowa Technology Kk Rice growing method
JP2016097380A (en) * 2014-11-25 2016-05-30 清水建設株式会社 Insolubilization method of arsenic
KR101845993B1 (en) * 2017-09-06 2018-04-06 주식회사 아이케이 Removal method of heavy metals from contaminated soil
CN109454099A (en) * 2017-09-06 2019-03-12 Ik株式会社 The heavy metals removal method of contaminated soil
CN109454099B (en) * 2017-09-06 2021-03-30 Ik株式会社 Method for removing heavy metal from contaminated soil
CN115156272A (en) * 2022-06-01 2022-10-11 华南理工大学 Farmland soil heavy metal removing and repairing equipment and method
CN115156272B (en) * 2022-06-01 2023-11-14 华南理工大学 Farmland soil heavy metal removal and restoration equipment and method

Also Published As

Publication number Publication date
JP4116988B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
JP4116988B2 (en) Purification method for heavy metal contaminated soil
Djedidi et al. Metals removal from soil, fly ash and sewage sludge leachates by precipitation and dewatering properties of the generated sludge
Mushtaq et al. Heavy metals contamination of soils in response to wastewater irrigation in Rawalpindi region
CN102985191B (en) Method for purifying cadmium-containing paddy soil
JP2007301491A (en) Method for cleaning heavy metal-containing paddy soil
CN103861867A (en) Elution-method soil remediation process
Jahan et al. Characteristics of municipal landfill leachate and its impact on surrounding agricultural land
Alaboudi et al. Soil Washing Technology for Removing Heavy Metals from a Contaminated Soil: A Case Study.
Ha et al. Ammonium-nitrogen recovery as struvite from swine wastewater using various magnesium sources
Liu et al. Phosphate recovery from anaerobic digester effluents using CaMg (OH) 4
JP2007209886A (en) Fluorine removing agent, and method and apparatus for treating drain containing fluorine using the agent
JP3245138B2 (en) Heavy metal removal method
JP2014117688A (en) Cleansing liquid composition for heavy metal-contaminated soil and method for cleansing heavy metal-contaminated soil
JP2010201385A (en) Method of cleaning heavy metal-containing field soil
JP5164074B2 (en) Purification method of paddy soil containing cadmium
WO2007132561A1 (en) Method of treating paddy-field soil containing heavy metal
JP4116975B2 (en) Purification method for contaminated soil
JP2004089954A (en) Method for removing arsenic and the like from mud or soil contaminated therewith
JP2001240843A (en) Heavy metal scavenger and scavenging method
JP3277832B2 (en) Method for treating phosphorus recovered from sewage treatment water
Bashir et al. Heavy metals uptake by vegetables growing in sewage irrigated soil: relationship with heavy metal fractionation in soil
Kowalik et al. Analysis of the mobility of heavy metals In sludge for the sewage treatment plant In Daleszyce
JP2010207675A (en) Method of cleaning heavy metal-contaminated soil
JP2010227910A (en) Decontamination method of heavy metal-contaminated soil
JP2007130545A (en) Method and apparatus for treating drainage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4116988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees