JP2014149171A - Light-wave range finder - Google Patents

Light-wave range finder Download PDF

Info

Publication number
JP2014149171A
JP2014149171A JP2013016787A JP2013016787A JP2014149171A JP 2014149171 A JP2014149171 A JP 2014149171A JP 2013016787 A JP2013016787 A JP 2013016787A JP 2013016787 A JP2013016787 A JP 2013016787A JP 2014149171 A JP2014149171 A JP 2014149171A
Authority
JP
Japan
Prior art keywords
light
objective lens
optical system
reflecting
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013016787A
Other languages
Japanese (ja)
Other versions
JP6198400B2 (en
Inventor
Masaaki Yabe
雅明 矢部
Yuichi Ohashi
祐一 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2013016787A priority Critical patent/JP6198400B2/en
Publication of JP2014149171A publication Critical patent/JP2014149171A/en
Application granted granted Critical
Publication of JP6198400B2 publication Critical patent/JP6198400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce measurement noise caused by stray light due to light emission from measurement light itself, and to eliminate the necessity of use of an expensive prism that is difficult to be manufactured.SOLUTION: A light-wave range finder comprises: an objective lens system 110 for receiving light from a measured object; an emission optical system 120 for emitting light from a light source 130, generating light having a predetermined wavelength region, as measurement light that is parallel light; an emission reflection optical system 140 in which the measurement light is reflected and emitted to the measured object; and a light receiving reflection optical system 150 for reflecting the measurement light received in the objective lens system 110 toward an optical fiber 160. The emission reflection optical system 140 includes a mirror member 141 and a light transmitting reflection prism 142. The light receiving reflection optical system 150 includes a dichroic mirror 151 and a light receiving reflection prism 152 disposed on the emission side of the objective lens system 110.

Description

本発明は、測定物で反射された測定光を受光する受光光学系と測定物に測定光を照射する射出光学系とを備え、目標までの距離を測定する光波距離計に関する。   The present invention relates to a light wave distance meter that includes a light receiving optical system that receives measurement light reflected by a measurement object and an emission optical system that irradiates the measurement object with measurement light, and measures a distance to a target.

上述の光波距離計は、変調した所定波長領域の測定光を被測定物に照射し、被測定物からの反射光を受光して、照射した測定光と、反射された測定光の位相差から測定物までの距離を測定する。   The above-described optical distance meter irradiates the object to be measured with modulated measurement light in a predetermined wavelength region, receives the reflected light from the object to be measured, and calculates the phase difference between the irradiated measurement light and the reflected measurement light. Measure the distance to the measurement object.

このような光波距離計として次のようなものがある。図3は従来の光波距離計の光学系を示す断面図である。この光波距離計300は、対物レンズ310と、2つの反射面を備えるプリズム320と、光源330と、射出光学系340と、反射鏡350と、ダイクロイックミラー360と、視準光学系370と、受光素子380とを備える。   Examples of such light wave distance meters include the following. FIG. 3 is a sectional view showing an optical system of a conventional optical distance meter. The light wave distance meter 300 includes an objective lens 310, a prism 320 having two reflecting surfaces, a light source 330, an emission optical system 340, a reflecting mirror 350, a dichroic mirror 360, a collimating optical system 370, and a light receiving device. An element 380.

対物レンズ310は、光軸Oaに配置した3枚のレンズで構成される。プリズム320は、対物レンズ310の後方の光軸Oa上に配置され、光軸Oaに対して45度の角度をなす平行2つの反射面、すなわち測定光を射出する方向に反射する射出用反射面321と、入射した測定光を受光素子380に向け反射する受光用反射面322とを備える。   The objective lens 310 is composed of three lenses arranged on the optical axis Oa. The prism 320 is disposed on the optical axis Oa behind the objective lens 310 and has two parallel reflecting surfaces that form an angle of 45 degrees with respect to the optical axis Oa, that is, an emitting reflecting surface that reflects in the direction in which the measuring light is emitted. 321 and a light receiving reflection surface 322 that reflects incident measurement light toward the light receiving element 380.

光源330は所定波長領域の光を発生する。射出光学系340は、光軸Oaと平行な光軸Obに配置され、光源330からの光を平行光にするコリメータ341と、測定光を断続的に遮断する光チョッパ342とを備える。反射鏡350は、光軸Obに45度の角度で配置され射出光学系340からの測定光の方向を90度変更して、プリズム320の射出用反射面321に向け、光軸Ocに沿って測定光を反射する。この射出用反射面321で反射された測定光は、対物レンズ310を経て測定物に射出される。   The light source 330 generates light in a predetermined wavelength region. The emission optical system 340 includes a collimator 341 that is arranged on an optical axis Ob parallel to the optical axis Oa and that converts light from the light source 330 into parallel light, and an optical chopper 342 that intermittently blocks measurement light. The reflecting mirror 350 is disposed at an angle of 45 degrees with respect to the optical axis Ob, changes the direction of the measuring light from the emission optical system 340 by 90 degrees, and is directed toward the reflecting surface 321 for emission of the prism 320 along the optical axis Oc. Reflects the measurement light. The measurement light reflected by the emission reflecting surface 321 is emitted to the measurement object through the objective lens 310.

測定物からの反射光は、対物レンズ310を経てダイクロイックミラー360に至る。ダイクロイックミラー360は、入射した光から、所定波長帯域の測定光を反射し、他の光を透過させ視準光学系370に射出する。ダイクロイックミラー360で反射された測定光は、プリズム320の受光用反射面322で反射され、受光素子380に入射する。   The reflected light from the measurement object reaches the dichroic mirror 360 through the objective lens 310. The dichroic mirror 360 reflects measurement light in a predetermined wavelength band from incident light, transmits other light, and emits it to the collimating optical system 370. The measurement light reflected by the dichroic mirror 360 is reflected by the light receiving reflection surface 322 of the prism 320 and enters the light receiving element 380.

このような、光波距離計300では、射出光学系340からの測定光を測定物に向け射出し、測定物で反射した測定光を受光素子380に入射するため、2つの反射面を必要とする。従来、この光波距離計では部品点数の削減のため、2つの反射面を備えるプリズムを配置し、これを対物レンズ310の裏側に配置するものとしている。同様の構成を備えた光波距離計は、特許文献1および特許文献2に記載されている。   Such an optical distance meter 300 requires two reflecting surfaces in order to emit measurement light from the emission optical system 340 toward the measurement object, and to enter the light receiving element 380 with measurement light reflected by the measurement object. . Conventionally, in this lightwave distance meter, a prism having two reflecting surfaces is arranged to reduce the number of parts, and this is arranged on the back side of the objective lens 310. Optical wave distance meters having the same configuration are described in Patent Document 1 and Patent Document 2.

特開平4−319687公報参照See JP-A-4-319687 特表2002−525582公報参照See Special Table 2002-525582

しかしながら、従来の光波距離計300のように、射出用反射面321および受光用反射面322を備えるプリズム320を対物レンズユニットの裏面に配置すると、測定光を射出するときには、対物レンズ310の裏面の曲率等によっては、受光側(ダイクロイックミラー360側)に測定光の一部が反射されて、受光素子380に検出され、ノイズとなることがある。これは、光波距離計の測定精度を著しく阻害し、測定範囲さえも狭める結果を招く。   However, when the prism 320 having the emission reflecting surface 321 and the light receiving reflection surface 322 is disposed on the back surface of the objective lens unit as in the conventional lightwave distance meter 300, when the measurement light is emitted, Depending on the curvature or the like, part of the measurement light may be reflected on the light receiving side (dichroic mirror 360 side) and detected by the light receiving element 380, resulting in noise. This significantly hinders the measurement accuracy of the lightwave distance meter and results in narrowing the measurement range.

さらに1つのプリズム320に2つの反射面を形成すると、光軸調整時にプリズム320を調整すると、送光側、受光側の両側で光軸が移動することになるため、プリズム320の公差を極めて小さくしなければならず、プリズム320の製造が難しく、また価格も上昇することとなる。   Further, if two reflecting surfaces are formed on one prism 320, adjusting the prism 320 at the time of adjusting the optical axis causes the optical axis to move on both the light transmitting side and the light receiving side, so the tolerance of the prism 320 is extremely small. This makes it difficult to manufacture the prism 320 and increases the price.

本発明は上述した課題にかんがみてなされたものであり、測定光自身の発光による迷光に起因する測定ノイズを減少させると共に、製造が難しく高価なプリズムを使用する必要のない光波距離計を提供することを目的とする。   The present invention has been made in view of the above-described problems, and provides a lightwave distance meter that reduces measurement noise caused by stray light due to emission of measurement light itself and does not require the use of an expensive prism that is difficult to manufacture. For the purpose.

前記課題を解決する請求項1に記載の発明は、被測定物に向かう第1光軸を備え、被測定物からの光を受ける対物レンズ系と、前記第1光軸と平行な第2光軸を備え、所定の波長領域の光を発生する光源からの光を平行光である測定光として射出する射出光学系と、前記射出光学系からの測定光を反射して前記第1光軸に沿って前記被測定物に向け射出する射出反射光学系と、前記被測定物で反射され、前記対物レンズ系で受光された前記測定光を、前記第1光軸から離れた位置に配置された受光手段に向け反射する受光反射光学系と、を備える光波距離計において、前記対物反射光学系は、前記測定光を前記第1光軸の対物レンズ系の入射側位置まで導く第1反射手段、および前記対物レンズ系の入射側に配置され、前記測定光を前記第1光軸に沿って前記被測定物に向け反射する第2反射手段を備え、前記受光反射光学系は、前記対物レンズ系の射出側に配置され、前記対物レンズ系で集光した前記測定対象物からの前記測定光の反射光を前記第1光軸から前記受光手段に向け反射する対物反射手段を備えることを特徴とする光波距離計である。   The invention according to claim 1, which solves the above-described problem, includes a first optical axis that faces the object to be measured, an objective lens system that receives light from the object to be measured, and second light that is parallel to the first optical axis. An emission optical system that emits light from a light source that generates light in a predetermined wavelength region as measurement light that is parallel light, and reflects the measurement light from the emission optical system to the first optical axis. And an exit reflection optical system that emits toward the object to be measured, and the measurement light reflected by the object to be measured and received by the objective lens system is disposed at a position away from the first optical axis. A light receiving and reflecting optical system that reflects toward the light receiving means, wherein the objective reflecting optical system guides the measurement light to an incident side position of the objective lens system on the first optical axis, And the measurement light is arranged on the incident side of the objective lens system. A second reflecting means for reflecting toward the object to be measured along an axis, wherein the light-receiving / reflecting optical system is disposed on an exit side of the objective lens system, and is collected from the measurement object condensed by the objective lens system. An optical distance meter comprising an object reflecting means for reflecting the reflected light of the measuring light from the first optical axis toward the light receiving means.

同じく請求項2に記載の発明は、請求項1に記載の光波距離計において、前記対物反射光学系および前記受光反射光学系とは、個別に調整できることを特徴とする。   Similarly, the invention according to claim 2 is characterized in that, in the lightwave distance meter according to claim 1, the objective reflection optical system and the light receiving reflection optical system can be individually adjusted.

同じく請求項3に記載の発明は、請求項1または請求項2に記載の光波距離計において、前記対物レンズ系の入射側に平行平板の透明体を配置し、前記第2反射手段は、前記透明体の前記対物レンズ系側面に接合されていることを特徴とする。   Similarly, the invention according to claim 3 is the lightwave distance meter according to claim 1 or 2, wherein a parallel plate transparent body is disposed on the incident side of the objective lens system, and the second reflecting means includes It is bonded to the side surface of the objective lens system of a transparent body.

同じく請求項4に記載の発明は、請求項1から請求項3のいずれか一項に記載の光波距離計において、前記受光手段は、前記第1光軸に向け、受光面を配置した光ケーブルであることを特徴とする。   Similarly, the invention according to claim 4 is the optical wave distance meter according to any one of claims 1 to 3, wherein the light receiving means is an optical cable in which a light receiving surface is disposed toward the first optical axis. It is characterized by being.

同じく請求項5に記載の発明は、請求項1から請求項4のいずれか一項に記載の光波距離計において、前記受光反射光学系は、前記所定の波長領域だけを、前記受光反射手段に反射するダイクロイックミラーを備えることを特徴とする。   Similarly, according to a fifth aspect of the present invention, in the light wave distance meter according to any one of the first to fourth aspects, the light receiving / reflecting optical system is configured to apply only the predetermined wavelength region to the light receiving / reflecting means. A dichroic mirror for reflection is provided.

同じく請求項6に記載の発明は、請求項1から請求項5のいずれか一項に記載の光波距離計において、前記対物レンズ系からの像を拡大して目視可能に表示する視準光学系を備えることを特徴とする。   Similarly, the invention according to claim 6 is the collimating optical system for enlarging and displaying the image from the objective lens system in the lightwave distance meter according to any one of claims 1 to 5. It is characterized by providing.

同じく請求項7に記載の発明は、請求項1から請求項6のいずれか一項に記載の光波距離計において、前記測定光を変調する変調手段を備えることを特徴とする。   Similarly, the invention according to claim 7 is the lightwave distance meter according to any one of claims 1 to 6, further comprising modulation means for modulating the measurement light.

本発明に係る光波距離計によれば、射出光学系の第2反射手段を対物レンズの入射側(外側)に配置したので、対物レンズによる反射が装置内部に入り込むことがなく、ノイズとして検出されることがなくなる。また、測定光を被測定物に向け反射する射出反射光学系の第2反射手段を対物レンズの入射側に配置し、対物反射手段を、前記第2反射手段と別個に対物レンズの射出側に配置したので、光軸の調整を独立して行えるので、各部材の製造にそれほど高い精度を必要とせず、安価に製造できる。さらに、各部の光軸調整が行いやすくなり、調整作業に要する時間の短縮の他、調整上の不具合が発生しにくくなる。そして、メンテナンスにおいて、必要な部分だけの交換で済み、作業時間の短縮を図り、修理費用を低減することができる。   According to the lightwave distance meter of the present invention, since the second reflecting means of the emission optical system is arranged on the incident side (outside) of the objective lens, the reflection by the objective lens does not enter the inside of the apparatus and is detected as noise. It will not be. Further, the second reflecting means of the exit reflecting optical system that reflects the measurement light toward the object to be measured is disposed on the incident side of the objective lens, and the objective reflecting means is disposed on the exit side of the objective lens separately from the second reflecting means. Since it is arranged, the optical axis can be adjusted independently, so that the manufacturing of each member does not require so high accuracy and can be manufactured at low cost. Furthermore, it becomes easy to adjust the optical axis of each part, and it is difficult to cause troubles in adjustment in addition to shortening the time required for the adjustment work. In the maintenance, only necessary portions can be replaced, so that the working time can be shortened and the repair cost can be reduced.

本発明の実施形態に係る光波距離計の全体構造を示す断面斜視図である。It is a section perspective view showing the whole lightwave distance meter structure concerning an embodiment of the present invention. 同じく光波距離計を示す断面図である。It is sectional drawing which similarly shows a light wave rangefinder. 従来の光波距離計の光学系を示す断面図である。It is sectional drawing which shows the optical system of the conventional lightwave distance meter.

本発明を実施するための形態に係る光波距離計について説明する。図1は本発明の実施形態に係る光波距離計の全体構造を示す断面斜視図、図2は本発明の実施形態に係る光波距離計を示す断面図である。   An optical distance meter according to an embodiment for carrying out the present invention will be described. FIG. 1 is a cross-sectional perspective view showing the overall structure of a lightwave distance meter according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing a lightwave distance meter according to the embodiment of the present invention.

図1に示すように、光波距離計100は、筐体101内に、鏡筒103と、ベース部102が形成されている。また、図2に示すように、光波距離計100は、受光光学系である対物レンズ系110と、測定光を射出する射出光学系120と、対物レンズ系110からの測定光を光ファイバ160に導く射出反射光学系140とを備える。また光波距離計100は、受光反射光学系150と、視準光学系170とを備える。光ファイバ160は、図示していない光センサーに測定光を導く。視準光学系170は対物レンズ系110からの被測定物像を目視できるようにして、光波距離計100の方向を決定したり補正したりするために使用される。   As shown in FIG. 1, the optical distance meter 100 includes a housing 103 and a lens barrel 103 and a base portion 102 formed therein. As shown in FIG. 2, the optical distance meter 100 includes an objective lens system 110 that is a light receiving optical system, an emission optical system 120 that emits measurement light, and measurement light from the objective lens system 110 to an optical fiber 160. And an exit reflection optical system 140 for guiding the light. The lightwave distance meter 100 includes a light receiving / reflecting optical system 150 and a collimating optical system 170. The optical fiber 160 guides measurement light to an optical sensor (not shown). The collimating optical system 170 is used to determine or correct the direction of the lightwave distance meter 100 so that the object image from the objective lens system 110 can be viewed.

対物レンズ系110は、鏡筒103に配置され、被測定物に向かう第1光軸O1を備え、被測定物からの光を集光する。対物レンズ系110は、3枚のレンズを備えており、各種収差が補正され全体で正のパワーを備える。射出光学系120は、ベース部102に配置され、第1光軸O1と平行な第2光軸O2を備え、光源130およびこの光源130からの光を平行光である測定光を射出する。光源130は、例えば赤外線を発生するレーザーダイオードである。射出光学系120は、コリメータレンズ121と、射出光を変調する変調手段である光チョッパ122と、濃度フィルター123と絞り124とを備える。濃度フィルター123は、光源130から、図示していない台形プリズムで取り出した参照光を、減衰するものであり、円周上に濃度勾配を備えた円板状の部材である。また、光チョッパ122は、測定光透過用の切欠部を備え、回転駆動される円板状の不透明な部材である。   The objective lens system 110 is disposed in the lens barrel 103 and includes a first optical axis O1 that faces the object to be measured, and condenses light from the object to be measured. The objective lens system 110 includes three lenses, and various aberrations are corrected to provide a positive power as a whole. The emission optical system 120 is disposed on the base unit 102, includes a second optical axis O2 parallel to the first optical axis O1, and emits light from the light source 130 and measurement light that is parallel light from the light source 130. The light source 130 is, for example, a laser diode that generates infrared rays. The emission optical system 120 includes a collimator lens 121, a light chopper 122 that is a modulation means for modulating the emission light, a density filter 123, and a diaphragm 124. The density filter 123 attenuates reference light extracted from the light source 130 by a trapezoidal prism (not shown), and is a disk-shaped member having a density gradient on the circumference. The optical chopper 122 is a disk-shaped opaque member that includes a cutout portion for transmitting measurement light and is driven to rotate.

射出反射光学系140は、第2光軸O2上に斜めに反射面を形成した第1反射手段であるミラー部材141と、対物レンズ系110の入射側(外側)に配置される第2反射手段である送光反射プリズム142とを備える。送光反射プリズム142は第1光軸O1上に傾斜した反射面142aを備える。この例では対物レンズ系110の外側には、平行平面ガラスであるカバーガラス181が配置され、送光反射プリズム142は、このカバーガラス181の内側に接着されて配置されている。   The exit reflection optical system 140 includes a mirror member 141 that is a first reflection unit having a reflection surface formed obliquely on the second optical axis O2, and a second reflection unit that is disposed on the incident side (outside) of the objective lens system 110. And a light transmission / reflection prism 142. The light transmitting / reflecting prism 142 includes a reflecting surface 142a inclined on the first optical axis O1. In this example, a cover glass 181, which is a plane parallel glass, is disposed outside the objective lens system 110, and the light transmitting / reflecting prism 142 is disposed by being adhered to the inside of the cover glass 181.

受光反射光学系150は、ダイクロイックミラー151と、このダイクロイックミラー151からの光を直角方向に反射する受光反射部剤である受光反射プリズム152とから構成される。ダイクロイックミラー151は、鏡筒103に配置され、対物レンズ系110から第1光軸O1に沿って入射する光のうち、所定波長帯域の光である測定光を反射する。他の帯域の光は透過して、鏡筒103に配置された視準光学系170に入射する。光波距離計100のオペレーターは、視準光学系170を用いて、視準を行うことができる。受光反射プリズム152は、第1光軸O1に45度の角度で形成された反射面152aを有し、ダイクロイックミラー151からの光を光ファイバ160に向け反射する。   The light receiving / reflecting optical system 150 includes a dichroic mirror 151 and a light receiving / reflecting prism 152 that is a light receiving / reflecting agent that reflects light from the dichroic mirror 151 in a right angle direction. The dichroic mirror 151 is disposed in the lens barrel 103 and reflects measurement light, which is light in a predetermined wavelength band, out of light incident along the first optical axis O1 from the objective lens system 110. Light in other bands is transmitted and enters the collimating optical system 170 disposed in the lens barrel 103. An operator of the optical distance meter 100 can collimate using the collimation optical system 170. The light receiving / reflecting prism 152 has a reflecting surface 152a formed at an angle of 45 degrees with respect to the first optical axis O1, and reflects light from the dichroic mirror 151 toward the optical fiber 160.

この光波距離計100では、測定光の光軸は、まず概略について送光反射プリズム142を取付けたカバーガラス181で調整し、その後、ミラー部材141で詳細に調整する。このとき、カバーガラス181は、平行平面ガラスであり、表裏面に曲率を持っていない。このため、測定光が、装置の内部に混入しにくく、迷光(光ノイズ)となることがない。従って、高精度の信号測定が可能となり、機械本体の測定精度向上に寄与する。   In the optical distance meter 100, the optical axis of the measurement light is first adjusted by a cover glass 181 to which a light transmission / reflection prism 142 is attached, and then adjusted in detail by a mirror member 141. At this time, the cover glass 181 is parallel plane glass, and has no curvature on the front and back surfaces. For this reason, the measurement light is not easily mixed into the apparatus and does not become stray light (optical noise). Therefore, high-accuracy signal measurement is possible, which contributes to improving the measurement accuracy of the machine body.

また、受光反射光学系150の光軸の調整は、ダイクロイックミラー151および受光反射プリズム152で行う。このように、射出反射光学系140と受光反射光学系150とは、独立して調整することができる。このため、測定中に測定光の光軸が何らかの原因で動いてしまったときにも、射出反射光学系140だけを独立して再調整できる。そのときには受光反射光学系150側の受光反射プリズム152の再調整は基本的に不要である。   The optical axis of the light receiving / reflecting optical system 150 is adjusted by the dichroic mirror 151 and the light receiving / reflecting prism 152. Thus, the exit reflection optical system 140 and the light reception reflection optical system 150 can be adjusted independently. For this reason, even when the optical axis of the measurement light moves for some reason during the measurement, only the exit reflection optical system 140 can be readjusted independently. At that time, readjustment of the light receiving / reflecting prism 152 on the light receiving / reflecting optical system 150 side is basically unnecessary.

本実施形態に係る光波距離計100によれば、射出反射光学系140と、受光反射光学系150とが独立し対物レンズ系110を挟んで配置されているので、部品製作を容易とすることができる他、それぞれの光軸の調整が行いやすくなる。さらに、組み立て性やメンテナンス性、軸ズレが少ない等品質向上にも寄与することができる。   According to the lightwave distance meter 100 according to the present embodiment, since the exit reflection optical system 140 and the light reception reflection optical system 150 are independent and arranged with the objective lens system 110 interposed therebetween, it is easy to manufacture parts. In addition, each optical axis can be easily adjusted. Furthermore, it is possible to contribute to quality improvement such as ease of assembly, maintenance, and small axis misalignment.

100:光波距離計
101:筐体
102:ベース部
103:鏡筒
110:対物レンズ系
120:射出光学系
121:コリメータレンズ
122:光チョッパ
123:濃度フィルター
124:絞り
130:光源
140:射出反射光学系
141:ミラー部材
142:送光反射プリズム
142a:反射面
150:受光反射光学系
151:ダイクロイックミラー
152:受光反射プリズム
152a:反射面
160:光ファイバ
170:視準光学系
181:カバーガラス
DESCRIPTION OF SYMBOLS 100: Light wave distance meter 101: Housing | casing 102: Base part 103: Lens barrel 110: Objective lens system 120: Ejection optical system 121: Collimator lens 122: Optical chopper 123: Density filter 124: Diaphragm 130: Light source 140: Ejection reflection optics System 141: Mirror member 142: Light transmitting / reflecting prism 142a: Reflecting surface 150: Light receiving / reflecting optical system 151: Dichroic mirror 152: Light receiving / reflecting prism 152a: Reflecting surface 160: Optical fiber 170: Collimating optical system 181: Cover glass

Claims (7)

被測定物に向かう第1光軸を備え、被測定物からの光を受ける対物レンズ系と、
前記第1光軸と平行な第2光軸を備え、所定の波長領域の光を発生する光源からの光を平行光である測定光として射出する射出光学系と、
前記射出光学系からの測定光を反射して前記第1光軸に沿って前記被測定物に向け射出する射出反射光学系と、
前記被測定物で反射され、前記対物レンズ系で受光された前記測定光を、前記第1光軸から離れた位置に配置された受光手段に向け反射する受光反射光学系と、
を備える光波距離計において、
前記射出反射光学系は、前記測定光を前記第1光軸の前記対物レンズ系の入射側位置まで導く第1反射手段、および前記対物レンズ系の入射側に配置され、前記測定光を前記第1光軸に沿って前記被測定物に向け反射する第2反射手段を備え、
前記受光反射光学系は、前記対物レンズ系の射出側に配置され、前記対物レンズ系で集光した前記被測定物からの前記測定光の反射光を前記第1光軸から前記受光手段に向け反射する受光反射手段を備えることを特徴とする光波距離計。
An objective lens system having a first optical axis directed to the object to be measured and receiving light from the object to be measured;
An emission optical system having a second optical axis parallel to the first optical axis and emitting light from a light source that generates light in a predetermined wavelength region as measurement light that is parallel light;
An exit reflection optical system that reflects measurement light from the exit optical system and emits the measurement light toward the object to be measured along the first optical axis;
A light-receiving / reflecting optical system that reflects the measurement light reflected by the object to be measured and received by the objective lens system toward light-receiving means disposed at a position away from the first optical axis;
In a lightwave distance meter comprising:
The exit reflection optical system is arranged on the incident side of the objective lens system, the first reflecting means for guiding the measurement light to the incident side position of the objective lens system on the first optical axis, and the measurement light is A second reflecting means for reflecting the object to be measured along one optical axis;
The light receiving / reflecting optical system is disposed on the exit side of the objective lens system, and reflects reflected light of the measurement light from the object to be measured collected by the objective lens system from the first optical axis to the light receiving means. A light wave distance meter comprising light receiving and reflecting means for reflecting.
前記射出反射光学系および前記受光反射光学系とは、個別に調整できることを特徴とする請求項1に記載の光波距離計。   The light wave distance meter according to claim 1, wherein the exit reflection optical system and the light receiving reflection optical system can be individually adjusted. 前記対物レンズ系の入射側に平行平板の透明体を配置し、
前記第2反射手段は、前記透明体の両面のうち前記対物レンズ系に隣接する面に接合されていることを特徴とする請求項1または請求項2に記載の光波距離計。
A parallel plate transparent body is disposed on the incident side of the objective lens system,
3. The light wave distance meter according to claim 1, wherein the second reflecting means is bonded to a surface adjacent to the objective lens system among both surfaces of the transparent body.
前記受光手段は、前記第1光軸に向け、受光面を配置した光ケーブルであることを特徴とする請求項1から請求項3のいずれか一項に記載の光波距離計。   4. The light wave distance meter according to claim 1, wherein the light receiving unit is an optical cable having a light receiving surface disposed toward the first optical axis. 5. 前記受光反射光学系は、前記所定の波長領域だけを、前記受光反射手段に反射するダイクロイックミラーを備えることを特徴とする請求項1から請求項4のいずれか一項に記載の光波距離計。   The light wave distance meter according to any one of claims 1 to 4, wherein the light receiving / reflecting optical system includes a dichroic mirror that reflects only the predetermined wavelength region to the light receiving / reflecting means. 前記対物レンズ系からの像を拡大して目視可能に表示する視準光学系を備えることを特徴とする請求項1から請求項5のいずれか一項に記載の光波距離計。   The optical wave distance meter according to any one of claims 1 to 5, further comprising a collimating optical system that magnifies and displays an image from the objective lens system. 前記測定光を変調する変調手段を備えることを特徴とする請求項1から請求項6のいずれか一項に記載の光波距離計。   The light wave distance meter according to any one of claims 1 to 6, further comprising modulation means for modulating the measurement light.
JP2013016787A 2013-01-31 2013-01-31 Light wave distance meter Active JP6198400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013016787A JP6198400B2 (en) 2013-01-31 2013-01-31 Light wave distance meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013016787A JP6198400B2 (en) 2013-01-31 2013-01-31 Light wave distance meter

Publications (2)

Publication Number Publication Date
JP2014149171A true JP2014149171A (en) 2014-08-21
JP6198400B2 JP6198400B2 (en) 2017-09-20

Family

ID=51572273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013016787A Active JP6198400B2 (en) 2013-01-31 2013-01-31 Light wave distance meter

Country Status (1)

Country Link
JP (1) JP6198400B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090128A (en) * 2015-11-05 2017-05-25 船井電機株式会社 Measuring apparatus
EP4053589A1 (en) * 2021-03-05 2022-09-07 Topcon Corporation Electro-optical distance meter and method for calculating optical noise signal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895258A (en) * 1972-03-16 1973-12-06
JPS60211382A (en) * 1984-04-05 1985-10-23 Optic:Kk Light wave range finder equipped with calibration optical path
JP2001337164A (en) * 2000-05-25 2001-12-07 Asahi Optical Co Ltd Electronic distance meter and electro-optical distance meter having af function
JP2007298372A (en) * 2006-04-28 2007-11-15 Sokkia Co Ltd Light-wave distance meter
JP2008522204A (en) * 2004-11-27 2008-06-26 ライカ ジオシステムズ アクチェンゲゼルシャフト Telescope and panfocal telescope including plano-convex lens or plano-concave lens and deflecting means joined thereto

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895258A (en) * 1972-03-16 1973-12-06
JPS60211382A (en) * 1984-04-05 1985-10-23 Optic:Kk Light wave range finder equipped with calibration optical path
JP2001337164A (en) * 2000-05-25 2001-12-07 Asahi Optical Co Ltd Electronic distance meter and electro-optical distance meter having af function
JP2008522204A (en) * 2004-11-27 2008-06-26 ライカ ジオシステムズ アクチェンゲゼルシャフト Telescope and panfocal telescope including plano-convex lens or plano-concave lens and deflecting means joined thereto
JP2007298372A (en) * 2006-04-28 2007-11-15 Sokkia Co Ltd Light-wave distance meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090128A (en) * 2015-11-05 2017-05-25 船井電機株式会社 Measuring apparatus
EP4053589A1 (en) * 2021-03-05 2022-09-07 Topcon Corporation Electro-optical distance meter and method for calculating optical noise signal

Also Published As

Publication number Publication date
JP6198400B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
JP7270807B2 (en) Confocal displacement meter
KR101534912B1 (en) Confocal measurement apparatus
US10119815B2 (en) Binocular with integrated laser rangefinder
CN107894208B (en) Spectrum confocal distance sensor
US20100265490A1 (en) Range binoculars
US8917382B2 (en) Electric distance meter
US8599482B2 (en) Telescopic sight
KR100763974B1 (en) Method and apparatus for aligning optical axis for wavefront sensor for mid-infrared band
US20190162825A1 (en) Optical distance meter having switchable receiving aperture
CN106094234A (en) A kind of autocollimatic light path system with polarization beam splitting element
JP6198400B2 (en) Light wave distance meter
JP4907564B2 (en) Ranging binoculars
JP5154028B2 (en) Light wave distance meter
JP6325619B2 (en) Light wave distance meter
CN205898079U (en) Polarization closes restraints auto -collimation optic system based on two refracting element
US20160238525A1 (en) V-block refractometer
JP6315722B2 (en) Light wave distance meter
US11333833B2 (en) Alignment method
KR102072623B1 (en) Optical beam forming unit, distance measuring device and laser illuminator
JP6937568B2 (en) Laser rangefinder
JP2007127475A (en) Light-wave distance meter
Kuvshinov et al. Alignment of the receiving channel of a pulsed laser rangefinder
JPH027035B2 (en)
JP2017067673A (en) Light wave range finder
JP2018091764A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151001

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160920

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160920

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170412

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170822

R150 Certificate of patent or registration of utility model

Ref document number: 6198400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250