JP2014149003A - Fluid pressure shock absorber - Google Patents

Fluid pressure shock absorber Download PDF

Info

Publication number
JP2014149003A
JP2014149003A JP2013016857A JP2013016857A JP2014149003A JP 2014149003 A JP2014149003 A JP 2014149003A JP 2013016857 A JP2013016857 A JP 2013016857A JP 2013016857 A JP2013016857 A JP 2013016857A JP 2014149003 A JP2014149003 A JP 2014149003A
Authority
JP
Japan
Prior art keywords
fluid pressure
shock absorber
annular groove
inner cylinder
pressure shock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013016857A
Other languages
Japanese (ja)
Other versions
JP6116267B2 (en
Inventor
Kazuaki Shibahara
和晶 柴原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2013016857A priority Critical patent/JP6116267B2/en
Publication of JP2014149003A publication Critical patent/JP2014149003A/en
Application granted granted Critical
Publication of JP6116267B2 publication Critical patent/JP6116267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a fluid pressure shock absorber for restraining increase of costs while maintaining a performance.SOLUTION: In the fluid pressure shock absorber 1a, an annular groove part 36 communicated with an orifice 35 provided to an inner cylinder 3 is formed on an inner periphery of a sub-cylindrical part 16 of a front cylindrical member 14, and a buffering annular groove part 37 is formed nearer an opening end of the sub-cylindrical part 16 of the front cylindrical member 14 than the annular groove part 36. Also, a passage cross sectional area of the annular groove part 36 is set larger than that of the buffering annular groove part 37. Thereby, increase of costs can be restrained while maintaining a performance.

Description

本発明は、例えば、鉄道車両等に使用される流体圧緩衝器に関するものである。   The present invention relates to a fluid pressure shock absorber used for, for example, a railway vehicle.

従来から、鉄道車両には、台車が車両本体に対して水平方向に蛇行(ヨーイング)することを抑制する流体圧緩衝器(鉄道車両用ヨーダンパ)が備えられている。そこで、横向き状態で使用される流体圧緩衝器には、シリンダ内の気泡を排出するための様々な工夫が施されている。   Conventionally, a railway vehicle has been provided with a fluid pressure damper (a railway vehicle yaw damper) that suppresses the carriage from meandering (yawing) in the horizontal direction with respect to the vehicle body. Therefore, various devices for discharging bubbles in the cylinder are applied to the fluid pressure shock absorber used in the sideways state.

例えば、特許文献1に記載されたものでは、横向きで使用されるオイルダンパの場合、気泡が設置状態において上側となる内筒側壁の軸方向端部に滞留するため、内筒側壁の軸方向端部近傍の上部にエア抜き孔(減衰力発生用オリフィス兼用)を設け、さらに、内筒の端部が嵌合された前蓋の凹部の内周面に、前記エア抜き孔に連通する環状の通路を設けている。そして、内筒内に滞留した気泡をエア抜き孔から環状の通路を介して、リザーバ下部の作動液中に排出するようにしている。また、このオイルダンパにおいては、環状の通路の軸方向両側に、前蓋の凹部の内周面と内筒の外周面との間をシールするシール部材がそれぞれ配設されている。さらに、この環状の通路は、リザーバ下部の作動液中に配置される噴出パイプと連通している。   For example, in the case of the oil damper used in the lateral direction, in the case of the oil damper used in the lateral direction, since air bubbles stay at the axial end of the inner cylindrical side wall which is the upper side in the installed state, the axial end of the inner cylindrical side wall An air vent hole (also used as an orifice for generating damping force) is provided in the upper part of the vicinity of the portion, and an annular surface communicating with the air vent hole is formed on the inner peripheral surface of the concave portion of the front lid to which the end portion of the inner cylinder is fitted. There is a passage. Then, the air bubbles staying in the inner cylinder are discharged from the air vent hole into the working fluid in the lower part of the reservoir through the annular passage. Further, in this oil damper, seal members for sealing between the inner peripheral surface of the concave portion of the front lid and the outer peripheral surface of the inner cylinder are respectively disposed on both sides in the axial direction of the annular passage. Further, the annular passage communicates with an ejection pipe disposed in the working fluid below the reservoir.

特開平11−344068号公報JP 11-344068 A

しかしながら、特許文献1に記載のオイルダンパでは、ピストン速度が上昇して環状の通路の圧力が上昇する際、作動液が環状の通路から前蓋の凹部の内周面と内筒の外周面との間から内筒内へ噴出してエアレーションを発生させる問題があるが、その作動液の噴出を各シール部材により抑制するようにしている。しかしながら、この構造では、部品点数が増加するうえに組立工数も増加するためコストアップが避けられない。また、ピストン速度が上昇して内筒内からリザーバ室へ流動する流量が多くなると、その作動液の流量は噴出パイプにより絞られるため、弁機構へ背圧が付与され、要求性能を得られない虞がある。   However, in the oil damper described in Patent Document 1, when the piston speed increases and the pressure in the annular passage rises, the working fluid passes from the annular passage to the inner peripheral surface of the recess of the front lid and the outer peripheral surface of the inner cylinder. There is a problem that the aeration is caused by being ejected into the inner cylinder from between the gaps, but the ejection of the working fluid is suppressed by each seal member. However, in this structure, the number of parts increases and the number of assembly steps also increases, so an increase in cost is inevitable. Further, when the piston speed increases and the flow rate flowing from the inner cylinder to the reservoir chamber increases, the flow rate of the hydraulic fluid is throttled by the ejection pipe, so that the back pressure is applied to the valve mechanism and the required performance cannot be obtained. There is a fear.

そして、本発明は、性能を維持しつつコストアップを抑制する流体圧緩衝器を提供することを目的とする。   And this invention aims at providing the fluid pressure buffer which suppresses cost increase, maintaining performance.

上記課題を解決するための手段として、本発明は、同心状にそれぞれ配設した外筒及び内筒の両端を蓋体によりそれぞれ閉鎖して、両者の間を作動液と気体とを封入した環状のリザーバ室として構成し、前記内筒の少なくとも一端部と前記蓋体に設けた筒状部との嵌合部に、径方向に延びる環状通路及び減衰力発生用オリフィスを備えた流体圧緩衝器であって、前記環状通路は、前記減衰力発生用オリフィスを介して、前記内筒内の液室に連通しており、前記環状通路よりも前記筒状部の開口端側に該環状通路の通路断面積より小さい環状空間を形成することを特徴とするものである。   As means for solving the above-mentioned problems, the present invention provides an annular structure in which both ends of an outer cylinder and an inner cylinder arranged concentrically are closed with lids, and a working fluid and a gas are sealed between the two. A fluid pressure shock absorber comprising a radially extending annular passage and a damping force generating orifice at a fitting portion between at least one end portion of the inner cylinder and a cylindrical portion provided in the lid body The annular passage communicates with the liquid chamber in the inner cylinder via the damping force generating orifice, and the annular passage is closer to the opening end side of the tubular portion than the annular passage. An annular space smaller than the passage cross-sectional area is formed.

本発明の流体圧緩衝器は、性能を維持しつつ構造を簡素化することができ、コストを削減することができる。   The fluid pressure shock absorber of the present invention can simplify the structure while maintaining the performance, and can reduce the cost.

図1は、本発明の第1実施形態に係る流体圧緩衝器を示す断面図である。FIG. 1 is a cross-sectional view showing a fluid pressure shock absorber according to a first embodiment of the present invention. 図2は、本発明の第1実施形態に係る流体圧緩衝器の要部拡大図である。FIG. 2 is an enlarged view of a main part of the fluid pressure shock absorber according to the first embodiment of the present invention. 図3は、本発明の第2実施形態に係る流体圧緩衝器の要部拡大図である。FIG. 3 is an enlarged view of a main part of a fluid pressure shock absorber according to the second embodiment of the present invention. 図4は、本発明の第3実施形態に係る流体圧緩衝器の要部拡大図である。FIG. 4 is an enlarged view of a main part of a fluid pressure shock absorber according to a third embodiment of the present invention. 図5は、本発明の第4実施形態に係る流体圧緩衝器の要部拡大図である。FIG. 5 is an enlarged view of a main part of a fluid pressure shock absorber according to a fourth embodiment of the present invention. 図6は、本発明の第5実施形態に係る流体圧緩衝器の要部拡大図である。FIG. 6 is an enlarged view of a main part of a fluid pressure shock absorber according to a fifth embodiment of the present invention. 図7は、本発明の第6実施形態に係る流体圧緩衝器の要部拡大図である。FIG. 7 is an enlarged view of a main part of a fluid pressure shock absorber according to a sixth embodiment of the present invention.

以下、本発明を実施するための形態を図1〜図7に基づいて詳細に説明する。
第1〜第5の実施形態に係る流体圧緩衝器1a〜1eは、例えば、鉄道車両の台車と車体との間に横置き状態で取り付けられる水平動ダンパとして採用される。また、第6の実施形態に係る流体圧緩衝器1fは、例えば、自動車のサスペンション装置等に縦置き状態で取り付けられる上下動ダンパとして採用される。
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to FIGS.
The fluid pressure shock absorbers 1a to 1e according to the first to fifth embodiments are employed, for example, as horizontal motion dampers that are attached in a horizontally placed state between a bogie and a vehicle body of a railway vehicle. Moreover, the fluid pressure shock absorber 1f according to the sixth embodiment is employed, for example, as a vertical motion damper that is attached to a suspension device of an automobile in a vertically placed state.

まず、第1の実施形態に係る流体圧緩衝器1aを図1及び図2に基づいて説明する。
第1の実施形態に係る流体圧緩衝器1aは、図1に示すように、外筒2と、該外筒2と同心状に配置された内筒3とを備えている。これら外筒2及び内筒3の両端開口は前側蓋体4及び後側蓋体5によりそれぞれ閉鎖されている。外筒2の内周面と内筒3の外周面との間に環状のリザーバ室6が形成される。
なお、説明の便宜のため、以下では図中左側(符号を正立視した場合)、つまりブラケット10側を前側、図中右側、つまりブラケット11側を後側としてそれぞれ説明する。
First, the fluid pressure shock absorber 1a according to the first embodiment will be described with reference to FIGS.
As shown in FIG. 1, the fluid pressure shock absorber 1 a according to the first embodiment includes an outer cylinder 2 and an inner cylinder 3 arranged concentrically with the outer cylinder 2. Openings at both ends of the outer cylinder 2 and the inner cylinder 3 are closed by a front lid 4 and a rear lid 5, respectively. An annular reservoir chamber 6 is formed between the inner peripheral surface of the outer cylinder 2 and the outer peripheral surface of the inner cylinder 3.
For convenience of explanation, the following description will be made with the left side in the figure (when the sign is viewed upright), that is, the bracket 10 side as the front side, and the right side in the figure, that is, the bracket 11 side as the rear side.

前側蓋体4は、外筒2及び内筒3の前端開口を閉鎖すると共にピストンロッド28のガイド機能も備えている。前側蓋体4は、ピストンロッド28が挿通される挿通孔12を有し、外筒2の前端開口を閉鎖する前側板状部材13と、該前側板状部材13の後面全域から後方に向かって一体的に連結され、内筒3の前端開口を閉鎖する前側筒状部材14とからなる。前側筒状部材14は、主筒状部15と、該主筒状部15の後面の外周部から一体的に突設され、内筒3と外筒2との間に挿入される副筒状部16とからなる。なお、前側板状部材13の挿通孔12の内周面とピストンロッド28の外周面との間には第1シール部材20が配置される。前側筒状部材14の内周面とピストンロッド28の外周面との間には、第2及び第3シール部材21、22が軸方向に間隔を置いて配設されている。   The front lid 4 closes the front end openings of the outer cylinder 2 and the inner cylinder 3 and also has a guide function for the piston rod 28. The front lid body 4 has an insertion hole 12 through which the piston rod 28 is inserted, and the front plate member 13 that closes the front end opening of the outer cylinder 2 and the rear surface region of the front plate member 13 toward the rear. The front cylindrical member 14 is integrally connected and closes the front end opening of the inner cylinder 3. The front cylindrical member 14 is integrally protruded from the main cylindrical portion 15 and the outer peripheral portion of the rear surface of the main cylindrical portion 15 and is inserted between the inner cylinder 3 and the outer cylinder 2. Part 16. A first seal member 20 is disposed between the inner peripheral surface of the insertion hole 12 of the front plate member 13 and the outer peripheral surface of the piston rod 28. Between the inner peripheral surface of the front cylindrical member 14 and the outer peripheral surface of the piston rod 28, second and third seal members 21 and 22 are disposed with an interval in the axial direction.

一方、後側蓋体5は、外筒2の後端開口を閉鎖する後側板状部材25と、該後側板状部材25の前面の略中央部位から前方に向かって一体的に接続され、内筒3の後端開口を閉鎖する後側柱状部材26とからなる。なお、後側板状部材25に、車体側との連結用のブラケット11が固設されている。   On the other hand, the rear lid 5 is integrally connected to the rear plate-like member 25 that closes the rear end opening of the outer cylinder 2 from the substantially central portion of the front surface of the rear plate-like member 25 toward the front. The rear columnar member 26 closes the rear end opening of the cylinder 3. In addition, the bracket 11 for connection with the vehicle body side is fixed to the rear plate member 25.

内筒3内には、ピストン27が軸方向に摺動可能に配設されている。該ピストン27にはピストンロッド28の一端部が連結され、該ピストンロッド28の他端部は前側蓋体4を液密的に挿通して外筒2の外部へ延びている。なお、ピストンロッド28の他端部には、台車側と連結する連結用のブラケット10が固設されている。   A piston 27 is disposed in the inner cylinder 3 so as to be slidable in the axial direction. One end of a piston rod 28 is connected to the piston 27, and the other end of the piston rod 28 extends through the front lid 4 in a liquid-tight manner to the outside of the outer cylinder 2. Note that a connecting bracket 10 that is connected to the carriage side is fixed to the other end of the piston rod 28.

内筒3内は、ピストン27によってロッド側油室29と反ロッド側油室30とに区画されている。これらのロッド側油室29及び反ロッド側油室30に作動油(作動液)がそれぞれ封入されている。ピストン27には、反ロッド側油室30からロッド側油室29への作動油の流通のみを許容する逆止弁31が配設される。また、後側蓋体5の後側柱状部材26には、リザーバ室6から反ロッド側油室30への作動油の流通のみを許容する逆止弁32が配設されている。   The inner cylinder 3 is partitioned by a piston 27 into a rod side oil chamber 29 and an anti-rod side oil chamber 30. Hydraulic oil (hydraulic fluid) is sealed in the rod-side oil chamber 29 and the anti-rod-side oil chamber 30, respectively. The piston 27 is provided with a check valve 31 that allows only the flow of hydraulic oil from the non-rod side oil chamber 30 to the rod side oil chamber 29. In addition, a check valve 32 that allows only the flow of hydraulic oil from the reservoir chamber 6 to the anti-rod-side oil chamber 30 is disposed on the rear columnar member 26 of the rear lid body 5.

また、図2も参照して、内筒3の前端部の上部周壁、すなわち、内筒3の、前側蓋体4を構成する前側筒状部材14の副筒状部16との嵌合部における上部周壁に、オリフィス35が形成される。該オリフィス35は径方向に延びる。該オリフィス35は、減衰力発生用オリフィスとして、また、エア抜き用オリフィスとして機能する。前側筒状部材14の副筒状部16の内周面には、内筒3に設けたオリフィス35と連通する環状通路としての環状溝部36が形成される。この環状溝部36の断面は略矩形状に形成される。また、前側筒状部材14の副筒状部16の内周面で、環状溝部36より後側、すなわち環状溝部36より前側筒状部材14の副筒状部16の開口端側に、環状空間としての緩衝用環状溝部37が形成される。該緩衝用環状溝部37の断面も略矩形状に形成される。環状溝部36の通路断面積は緩衝用環状溝部37の通路断面積よりも大きく設定される。環状溝部36の下部には、後述する連通流路40の第3流路43の後端部が連通している。また、前側筒状部材14の副筒状部16の下端部には、噴出パイプ38の前端部が挿通されている。噴出パイプ38の、前側筒状部材14の副筒状部16に挿通している以外の部分は、下部のリザーバ室6の作動油内に配置されている。噴出パイプ38の前端開口は環状溝部36の下部に臨む。なお、前側筒状部材14の内周面の、環状溝部36より前側に設けた収容溝部には、前側筒状部材14の副筒状部16の内周面と内筒3の外周面との間をシールするシール部材39(Oリング)が収容されている。   Further, referring also to FIG. 2, the upper peripheral wall of the front end portion of the inner cylinder 3, that is, the fitting portion of the inner cylinder 3 with the sub-cylindrical portion 16 of the front cylindrical member 14 constituting the front lid 4. An orifice 35 is formed in the upper peripheral wall. The orifice 35 extends in the radial direction. The orifice 35 functions as a damping force generating orifice and as an air bleeding orifice. On the inner peripheral surface of the sub-cylindrical portion 16 of the front side cylindrical member 14, an annular groove portion 36 is formed as an annular passage communicating with the orifice 35 provided in the inner cylinder 3. The cross section of the annular groove 36 is formed in a substantially rectangular shape. Further, on the inner peripheral surface of the sub-cylindrical portion 16 of the front cylindrical member 14, an annular space is provided on the rear side of the annular groove portion 36, that is, on the opening end side of the sub-cylindrical portion 16 of the front cylindrical member 14 with respect to the annular groove portion 36. The buffering annular groove 37 is formed. The cross section of the buffering annular groove 37 is also formed in a substantially rectangular shape. The passage sectional area of the annular groove 36 is set larger than the passage sectional area of the buffering annular groove 37. A rear end portion of a third flow path 43 of a communication flow path 40 to be described later communicates with a lower portion of the annular groove portion 36. Further, the front end portion of the ejection pipe 38 is inserted into the lower end portion of the sub tubular portion 16 of the front side tubular member 14. The portion of the ejection pipe 38 other than that inserted through the sub cylindrical portion 16 of the front cylindrical member 14 is disposed in the hydraulic oil in the lower reservoir chamber 6. The front end opening of the ejection pipe 38 faces the lower part of the annular groove 36. The housing groove provided on the inner peripheral surface of the front cylindrical member 14 on the front side of the annular groove 36 is formed between the inner peripheral surface of the sub-cylindrical portion 16 of the front cylindrical member 14 and the outer peripheral surface of the inner cylinder 3. A seal member 39 (O-ring) that seals the gap is accommodated.

前側蓋体4の前側筒状部材14の下部には、内筒3のロッド側油室29と前側筒状部材14の副筒状部16に設けた環状溝部36とを連通する連通流路40が設けられている。該連通流路40は、ロッド側油室29と連通して軸方向に延びる第1流路41と、該第1流路41に連通して径方向に延びる第2流路42と、該第2流路42に連通すると共に環状溝部36の下部に連通して軸方向に延びる第3流路43とからなる。第1流路41は、前側筒状部材14の主筒状部15の下部内周面を凹状に形成して軸方向に延びている。第2流路42は、前側筒状部材14の主筒状部15の下部に設けられ径方向に延びている。第2流路42は、第1流路41の前部と連通する小径流路42aと、該小径流路42aと連通すると共に該小径流路42aの下部に設けられ、第3流路43の前端部と連通する大径流路42bとからなる。第3流路43は、前側筒状部材14の主筒状部15の下部から副筒状部16の下部に至るように軸方向に延び、環状溝部36の下部に連通している。そして、連通流路40の第2流路42に、ピストン27の移動に伴って開閉する調圧弁45が備えられる。   In the lower part of the front cylindrical member 14 of the front lid body 4, a communication flow path 40 that communicates the rod side oil chamber 29 of the inner cylinder 3 and the annular groove portion 36 provided in the sub cylindrical portion 16 of the front cylindrical member 14. Is provided. The communication channel 40 includes a first channel 41 communicating with the rod-side oil chamber 29 and extending in the axial direction, a second channel 42 communicating with the first channel 41 and extending in the radial direction, and the first channel 41. The third flow path 43 includes a third flow path 43 that communicates with the two flow paths 42 and communicates with the lower portion of the annular groove 36 and extends in the axial direction. The first flow path 41 extends in the axial direction by forming a concave inner peripheral surface of the main cylindrical portion 15 of the front cylindrical member 14 in a concave shape. The second flow path 42 is provided below the main tubular portion 15 of the front tubular member 14 and extends in the radial direction. The second flow path 42 is provided with a small diameter flow path 42 a that communicates with the front portion of the first flow path 41, communicates with the small diameter flow path 42 a, and is provided below the small diameter flow path 42 a. The large-diameter channel 42b communicates with the front end portion. The third flow path 43 extends in the axial direction from the lower portion of the main tubular portion 15 of the front tubular member 14 to the lower portion of the sub tubular portion 16, and communicates with the lower portion of the annular groove portion 36. The second flow path 42 of the communication flow path 40 is provided with a pressure regulating valve 45 that opens and closes as the piston 27 moves.

調圧弁45は、図2に示すように、連通流路40の第2流路42内に配置され、前側筒状部材14の径方向に沿って移動自在に支持されるバルブ本体46と、大径流路42b内に支持されるベース47と、バルブ本体46とベース47との間に配置され、バルブ本体46を小径流路42aが常時閉状態となるように小径流路42a側に付勢するスプリング48とから構成される。バルブ本体46は、小径流路42aに嵌合する軸部50と、該軸部50の下端部から一体的に接続され、大径流路42bの内径に略一致する板状部51と、該板状部51の外周縁から下方に垂設される筒状部52とから構成される。軸部50の基端部の外径は小径流路42aの内径に略一致する。軸部50の長さは小径流路42aの高さに略一致する。軸部50は上方に向かって先細りとなる。板状部51の上面の外周部は下方傾斜している。ベース47は、大径流路42bの下部内周面に支持される基礎板部53と、該基礎板部53の上面の中央部から上方に向かって突設される基礎軸部54とから構成される。スプリング48は、バルブ本体46の板状部51の下面と、ベース47の基礎軸部53周りの基礎板部54の上面との間に配置される。また、バルブ本体46の筒状部52の下端と、ベース47の基礎板部54の上面との間が第3流路43の前端開口に臨むようになる。   As shown in FIG. 2, the pressure regulating valve 45 is disposed in the second flow path 42 of the communication flow path 40 and is supported by a valve main body 46 that is movably supported along the radial direction of the front cylindrical member 14. Arranged between the base 47 supported in the radial flow path 42b and the valve main body 46 and the base 47, the valve main body 46 is urged toward the small diameter flow path 42a so that the small diameter flow path 42a is normally closed. And a spring 48. The valve body 46 includes a shaft portion 50 that fits into the small-diameter channel 42a, a plate-like portion 51 that is integrally connected from the lower end of the shaft portion 50 and substantially matches the inner diameter of the large-diameter channel 42b, and the plate It is comprised from the cylindrical part 52 hang | suspended below from the outer periphery of the shape part 51. As shown in FIG. The outer diameter of the base end portion of the shaft portion 50 substantially matches the inner diameter of the small-diameter channel 42a. The length of the shaft portion 50 substantially matches the height of the small diameter channel 42a. The shaft portion 50 tapers upward. The outer peripheral portion of the upper surface of the plate-like portion 51 is inclined downward. The base 47 includes a base plate portion 53 that is supported on the lower inner peripheral surface of the large-diameter channel 42b, and a base shaft portion 54 that protrudes upward from the center of the upper surface of the base plate portion 53. The The spring 48 is disposed between the lower surface of the plate-like portion 51 of the valve body 46 and the upper surface of the base plate portion 54 around the base shaft portion 53 of the base 47. Further, the space between the lower end of the cylindrical portion 52 of the valve body 46 and the upper surface of the base plate portion 54 of the base 47 faces the front end opening of the third flow path 43.

次に、本発明の第1の実施形態に係る流体圧緩衝器1aの作用を説明する。
第1実施形態に係る流体圧緩衝器1aは、台車と車体との間に横置き状態で取り付けられており、台車にピストンロッド28側のブラケット10が連結され、車体に外筒2側のブラケット11が連結される。
Next, the operation of the fluid pressure shock absorber 1a according to the first embodiment of the present invention will be described.
The fluid pressure shock absorber 1a according to the first embodiment is mounted horizontally between the carriage and the vehicle body, and the bracket 10 on the piston rod 28 side is connected to the carriage, and the bracket on the outer cylinder 2 side is connected to the vehicle body. 11 are connected.

そして、台車と車体とが水平方向へ相対移動するとピストンロッド28が伸縮動作する。その結果、ピストンロッド28の伸び行程時には、ロッド側油室29の作動油は、ピストン27に設けた逆止弁31により反ロッド側油室30には流れないために、ピストン速度が比較的遅い場合、内筒3に設けたオリフィス35から環状溝部36及び噴出パイプ38を経由してリザーバ室6に流れて、伸び側の減衰力が発生する。続いて、ピストン速度が速くなり内筒3のロッド側油室29の流体圧がスプリング48の付勢力よりも大きくなると、ロッド側油室29の作動油は、連通流路40の第2流路42内に備えた調圧弁45を開弁させてリザーバ室6に流れ、これに応じて伸び側の減衰力が発生する。なお、この伸び行程時には、ピストンロッド28の退出分の作動油がリザーバ室6から後側蓋体5の後側柱状部材26に設けた逆止弁32を経て反ロッド側油室30へ補給される。   When the carriage and the vehicle body move relative to each other in the horizontal direction, the piston rod 28 expands and contracts. As a result, during the extension stroke of the piston rod 28, the hydraulic oil in the rod-side oil chamber 29 does not flow into the anti-rod-side oil chamber 30 by the check valve 31 provided in the piston 27, so the piston speed is relatively slow. In this case, the fluid flows from the orifice 35 provided in the inner cylinder 3 to the reservoir chamber 6 via the annular groove 36 and the ejection pipe 38, and an expansion-side damping force is generated. Subsequently, when the piston speed increases and the fluid pressure in the rod side oil chamber 29 of the inner cylinder 3 becomes larger than the urging force of the spring 48, the hydraulic oil in the rod side oil chamber 29 flows into the second flow path of the communication flow path 40. The pressure regulating valve 45 provided in the valve 42 is opened and flows into the reservoir chamber 6, and an expansion-side damping force is generated accordingly. During the extension stroke, the hydraulic oil corresponding to the retraction of the piston rod 28 is supplied from the reservoir chamber 6 to the anti-rod side oil chamber 30 via the check valve 32 provided in the rear columnar member 26 of the rear cover 5. The

一方、ピストンロッド28の縮み行程時には、反ロッド側油室30の作動油がピストン27に設けた逆止弁31を経由してロッド側油室29に流れ、反ロッド側油室30とロッド側油室29とがほぼ同じ流体圧となり、ピストン速度が比較的遅い場合には、ピストンロッド28の進入分の作動油が、内筒3に設けたオリフィス35から環状溝部36及び噴出パイプ38を経由してリザーバ室6に流れて、縮み側の減衰力が発生する。続いて、ピストン速度が速くなり内筒3の流体圧がスプリング48の付勢力よりも大きくなると、ピストンロッド28の進入分の作動油が、連通流路40の第2流路42内に備えた調圧弁45を開弁させてリザーバ室6に流れ、これに応じて縮み側の減衰力が発生する。   On the other hand, during the contraction stroke of the piston rod 28, the hydraulic oil in the anti-rod side oil chamber 30 flows into the rod side oil chamber 29 via the check valve 31 provided in the piston 27, and the anti-rod side oil chamber 30 and the rod side When the fluid pressure in the oil chamber 29 is substantially the same and the piston speed is relatively slow, the hydraulic oil that has entered the piston rod 28 passes through the annular groove 36 and the ejection pipe 38 from the orifice 35 provided in the inner cylinder 3. Then, it flows into the reservoir chamber 6 and a contraction-side damping force is generated. Subsequently, when the piston speed increases and the fluid pressure in the inner cylinder 3 becomes larger than the biasing force of the spring 48, the hydraulic oil that has entered the piston rod 28 is provided in the second flow path 42 of the communication flow path 40. The pressure regulating valve 45 is opened to flow into the reservoir chamber 6, and a contraction-side damping force is generated accordingly.

また、ピストンロッド28の伸び行程及び縮み行程時、ロッド側油室29の前側上端に溜まったエアは作動油と共に、内筒3に設けたオリフィス35から環状溝部36及び噴出パイプ38を経てリザーバ室6に排出される。
さらに、ピストンロッド28の伸び行程及び縮み行程時、緩衝用環状溝部37内の圧力P2とリザーバ室6内の圧力P3との圧力差が小さくなるので、内筒3の外周面と前側筒状部材14の副筒状部16の内周面との間からの作動油の噴出が抑制されるようになる。
Further, during the expansion stroke and contraction stroke of the piston rod 28, the air accumulated at the front upper end of the rod side oil chamber 29 together with the working oil passes from the orifice 35 provided in the inner cylinder 3 through the annular groove 36 and the ejection pipe 38 to the reservoir chamber. 6 is discharged.
Further, during the expansion stroke and contraction stroke of the piston rod 28, the pressure difference between the pressure P2 in the buffering annular groove 37 and the pressure P3 in the reservoir chamber 6 becomes small, so that the outer peripheral surface of the inner cylinder 3 and the front cylindrical member The hydraulic oil is prevented from being ejected from the space between the inner peripheral surface of the 14 sub-cylindrical portions 16.

以上説明したように、本発明の第1の実施形態に係る流体圧緩衝器1aでは、特に、前側筒状部材14の副筒状部16の内周面に、内筒3に設けたオリフィス35と連通する環状通路としての環状溝部36が形成され、該環状溝部36より前側筒状部材14の副筒状部16の開口端側に緩衝用環状溝部37が形成される。また、環状溝部36の通路断面積が緩衝用環状溝部37の通路断面積よりも大きく設定される。
これにより、従来のオイルダンパ(特許文献1に係るオイルダンパ)では、環状の通路内の圧力P1がリザーバ室6内の圧力P3よりも相当大きくその圧力差によって、内筒3の外周面と前側筒状部材14の副筒状部16の内周面との間から作動油が噴出してエアレーションが発生する虞があったが、本実施の形態では、緩衝用環状溝部37内の圧力P2とリザーバ室6内の圧力P3との圧力差を、従来の環状の通路内の圧力P1とリザーバ室6内の圧力P3との圧力差よりも小さくすることができ、内筒3の外周面と前側筒状部材14の副筒状部16の内周面との間からの作動油の噴出を抑制することが可能になった。
As described above, in the fluid pressure shock absorber 1a according to the first embodiment of the present invention, the orifice 35 provided in the inner cylinder 3 on the inner peripheral surface of the sub-cylindrical portion 16 of the front cylindrical member 14 in particular. An annular groove portion 36 is formed as an annular passage communicating with the annular groove portion, and a buffering annular groove portion 37 is formed on the opening end side of the sub-cylindrical portion 16 of the front tubular member 14 from the annular groove portion 36. The passage sectional area of the annular groove 36 is set larger than the passage sectional area of the buffering annular groove 37.
As a result, in the conventional oil damper (oil damper according to Patent Document 1), the pressure P1 in the annular passage is considerably larger than the pressure P3 in the reservoir chamber 6 and the pressure difference causes the outer peripheral surface and the front side of the inner cylinder 3 to move forward. Although there was a concern that hydraulic oil may be ejected from between the inner peripheral surface of the sub-cylindrical portion 16 of the cylindrical member 14 and aeration may occur, in this embodiment, the pressure P2 in the buffering annular groove portion 37 and The pressure difference with the pressure P3 in the reservoir chamber 6 can be made smaller than the pressure difference between the pressure P1 in the conventional annular passage and the pressure P3 in the reservoir chamber 6, and the outer peripheral surface of the inner cylinder 3 and the front side It became possible to suppress the ejection of hydraulic oil from between the inner peripheral surface of the sub-cylindrical portion 16 of the cylindrical member 14.

また、第1の実施形態に係る流体圧緩衝器1aでは、環状溝部36の圧力P1が緩衝用環状溝部37の圧力P2と略同等に高まるまでに時間的な遅れを発生させることができるために、内筒3の外周面と前側筒状部材14の副筒状部16の内周面との間からの作動油の噴出を抑制することができる。要するに、本流体圧緩衝器1aに付与される振動波形は、正弦波またはこれに類似した波形であることが多いため、この時間的な遅れが作動油の噴出の抑制に繋がるようになる。   Further, in the fluid pressure shock absorber 1a according to the first embodiment, a time delay can be generated until the pressure P1 of the annular groove portion 36 increases substantially equal to the pressure P2 of the buffer annular groove portion 37. The ejection of hydraulic oil from between the outer peripheral surface of the inner cylinder 3 and the inner peripheral surface of the sub-cylindrical portion 16 of the front cylindrical member 14 can be suppressed. In short, since the vibration waveform applied to the fluid pressure shock absorber 1a is often a sine wave or a waveform similar thereto, this time delay leads to suppression of the ejection of hydraulic oil.

さらに、第1の実施形態に係る流体圧緩衝器1aでは、従来のオイルダンパ(特許文献1に係るオイルダンパ)よりもOリング等の部品点数を減らすことができ、さらに組立工数を減らすことができるのでコストアップを抑制することができる。
しかも、従来のオイルダンパ(特許文献1に係るオイルダンパ)では、環状の通路の軸方向両側に、前蓋の凹部の内周面と内筒の外周面との間をシールするシール部材をそれぞれ配設して、環状の通路を囲む範囲を完全にシールしているため、ピストン速度が上昇して内筒3内からリザーバへ流動する流量が多くなると、その作動油の流量は噴出パイプ38により絞られ、弁機構へ背圧が付与される問題が生じていたが、第1の実施形態に係る流体圧緩衝器1aでは、環状溝部36よりも後側(前側筒状部材14の副筒状部16の開口端側)に緩衝用環状溝部37を形成しているだけで、環状溝部36を囲む範囲を完全にシールしていないので、ピストン速度が上昇して内筒3内からリザーバ室6へ流動する作動油の流量が多くなっても、調圧弁45へ背圧が付与されるのを抑制することができる。
なお、第1の実施形態では、オリフィス35により内筒3内の作動油を環状溝部36に導く構成を示したが、オリフィス35に変えて第1流路41と、該第1流路41に連通して径方向に延びる第2流路42と、該第2流路42に連通すると共に環状溝部36の下部に連通して軸方向に延びる第3流路43及び調圧弁45をもう一セット設け、調圧弁を調圧弁45よりも開弁圧力の低いものとするように構成してもよい。その場合、まず調圧弁が開弁し、その後調圧弁45が開弁する。このように構成した場合であっても、内筒3の外周面と前側筒状部材14の副筒状部16の内周面との間からの作動油の噴出を抑制することができる。
Furthermore, in the fluid pressure shock absorber 1a according to the first embodiment, the number of parts such as an O-ring can be reduced as compared with the conventional oil damper (oil damper according to Patent Document 1), and the assembly man-hour can be further reduced. As a result, cost increases can be suppressed.
Moreover, in the conventional oil damper (oil damper according to Patent Document 1), seal members that seal between the inner peripheral surface of the concave portion of the front lid and the outer peripheral surface of the inner cylinder are respectively provided on both axial sides of the annular passage. Since the area surrounding the annular passage is completely sealed, when the piston speed increases and the flow rate flowing from the inner cylinder 3 to the reservoir increases, the flow rate of the hydraulic oil is However, in the fluid pressure shock absorber 1a according to the first embodiment, the rear side of the annular groove 36 (the sub-cylinder shape of the front side cylindrical member 14) has occurred. Since only the buffering annular groove 37 is formed on the opening end side of the portion 16 and the area surrounding the annular groove 36 is not completely sealed, the piston speed is increased and the reservoir chamber 6 from the inner cylinder 3 is increased. Even if the flow rate of hydraulic fluid flowing to It is possible to prevent the back pressure is applied to the valve 45.
In the first embodiment, the configuration in which the hydraulic oil in the inner cylinder 3 is guided to the annular groove 36 by the orifice 35 is shown. However, instead of the orifice 35, the first flow path 41 and the first flow path 41 are provided. Another set of the second flow path 42 that communicates and extends in the radial direction, and the third flow path 43 that communicates with the second flow path 42 and communicates with the lower portion of the annular groove 36 and extends in the axial direction, and the pressure regulating valve 45. The pressure regulating valve may be configured to have a valve opening pressure lower than that of the pressure regulating valve 45. In that case, the pressure regulating valve is first opened, and then the pressure regulating valve 45 is opened. Even in this case, it is possible to suppress the ejection of hydraulic oil from between the outer peripheral surface of the inner cylinder 3 and the inner peripheral surface of the sub-cylindrical portion 16 of the front cylindrical member 14.

次に、第2の実施形態に係る流体圧緩衝器1bを図3に基づいて説明するが、その説明は、第1の実施形態に係る流体圧緩衝器1aとの相違点のみとする。
第2の実施形態に係る流体圧緩衝器1bでは、前側筒状部材14の副筒状部16の内周面に、緩衝用環状溝部37を軸方向に沿って複数設けている。例えば、本実施の形態では、緩衝用環状溝部37を2個形成している。
Next, the fluid pressure shock absorber 1b according to the second embodiment will be described with reference to FIG. 3, but the description is limited to only the differences from the fluid pressure shock absorber 1a according to the first embodiment.
In the fluid pressure shock absorber 1b according to the second embodiment, a plurality of buffering annular groove portions 37 are provided along the axial direction on the inner peripheral surface of the sub tubular portion 16 of the front tubular member 14. For example, in the present embodiment, two buffering groove portions 37 are formed.

次に、第3の実施形態に係る流体圧緩衝器1cを図4に基づいて説明するが、その説明は、第1の実施形態に係る流体圧緩衝器1aとの相違点のみとする。
第3の実施形態に係る流体圧緩衝器1cでは、前側筒状部材14の副筒状部16の下部に、緩衝用環状溝部37の下部と、リザーバ室6の下部とを連通する連通路としてのオリフィス60を設けている。オリフィス60は軸方向に延びている。オリフィス60の通路断面積は、緩衝用環状溝部37の通路断面積よりも小さく設定される。
Next, the fluid pressure shock absorber 1c according to the third embodiment will be described with reference to FIG. 4, but the description is limited to the difference from the fluid pressure shock absorber 1a according to the first embodiment.
In the fluid pressure shock absorber 1c according to the third embodiment, a communication path that communicates the lower portion of the buffer annular groove portion 37 and the lower portion of the reservoir chamber 6 to the lower portion of the sub-cylindrical portion 16 of the front cylindrical member 14. The orifice 60 is provided. The orifice 60 extends in the axial direction. The passage sectional area of the orifice 60 is set smaller than the passage sectional area of the buffering annular groove portion 37.

次に、第4の実施形態に係る流体圧緩衝器1dを図5に基づいて説明するが、その説明は、第1の実施形態に係る流体圧緩衝器1aとの相違点のみとする。
第4の実施形態に係る流体圧緩衝器1dでは、前側筒状部材14の副筒状部16の下部及び噴出パイプ38の上部周壁に、緩衝用環状溝部37の下端部と噴出パイプ38内とを連通する連通路としてのオリフィス61を連続して設けている。オリフィス61は径方向に延びる。オリフィス61の通路断面積は、緩衝用環状溝部37の通路断面積より小さく設定される。
そして、第2〜第4実施形態に係る流体圧緩衝器1b〜1dは、第1の実施形態に係る流体圧緩衝器1aと同等の作用効果を奏するものである。
Next, the fluid pressure shock absorber 1d according to the fourth embodiment will be described with reference to FIG. 5, but the description will be made only on the differences from the fluid pressure shock absorber 1a according to the first embodiment.
In the fluid pressure shock absorber 1d according to the fourth embodiment, the lower end portion of the buffer annular groove portion 37, the inside of the ejection pipe 38, the lower portion of the sub-cylindrical portion 16 of the front side tubular member 14 and the upper peripheral wall of the ejection pipe 38 are provided. The orifice 61 is continuously provided as a communication path that communicates with each other. The orifice 61 extends in the radial direction. The passage sectional area of the orifice 61 is set smaller than the passage sectional area of the buffering annular groove portion 37.
And the fluid pressure buffer 1b-1d which concerns on 2nd-4th embodiment has an effect equivalent to the fluid pressure buffer 1a which concerns on 1st Embodiment.

次に、第5の実施形態に係る流体圧緩衝器1eを図6に基づいて説明するが、その説明は、第1の実施形態に係る流体圧緩衝器1aとの相違点のみとする。
第5の実施形態に係る流体圧緩衝器1eでは、前側筒状部材14の副筒状部16の外周面と外筒2の内周面との間に環状隙間63を設け、環状溝部36の下端部と環状隙間63の下端部とを連通させるオリフィス65を設けている。オリフィス65は径方向に延びている。なお、第5の実施形態に係る流体圧緩衝器1eでは、第1の実施形態に係る流体圧緩衝器1aに備えた緩衝用環状溝部37は備えられていない。
そして、第5の実施形態に係る流体圧緩衝器1eでは、ピストン速度が速くなり環状溝部36の圧力P1が高くなると、作動油は主に環状溝部36から噴出パイプ38を経て下側のリザーバ室6の作動油中に流出するが、オリフィス65からも前側筒状部材14の副筒状部16の外周面と外筒2の内周面との間の環状隙間63を経て下側のリザーバ室6の作動油中に流出する。この結果、内筒3の外周面と前側筒状部材14の副筒状部16の内周面との間からの作動油の噴出を抑制することが可能になる。
Next, the fluid pressure shock absorber 1e according to the fifth embodiment will be described with reference to FIG. 6. However, the description is limited to only the differences from the fluid pressure shock absorber 1a according to the first embodiment.
In the fluid pressure shock absorber 1e according to the fifth embodiment, an annular gap 63 is provided between the outer peripheral surface of the sub-cylindrical portion 16 of the front cylindrical member 14 and the inner peripheral surface of the outer cylinder 2, and the annular groove portion 36 is provided. An orifice 65 that communicates the lower end portion with the lower end portion of the annular gap 63 is provided. The orifice 65 extends in the radial direction. Note that the fluid pressure shock absorber 1e according to the fifth embodiment does not include the buffering annular groove portion 37 provided in the fluid pressure shock absorber 1a according to the first embodiment.
In the fluid pressure shock absorber 1e according to the fifth embodiment, when the piston speed increases and the pressure P1 of the annular groove 36 increases, the hydraulic oil mainly passes from the annular groove 36 through the ejection pipe 38 and reaches the lower reservoir chamber. 6 flows out into the hydraulic oil 6, but the lower reservoir chamber passes through the annular gap 63 between the outer peripheral surface of the sub-cylindrical portion 16 of the front cylindrical member 14 and the inner peripheral surface of the outer cylinder 2 from the orifice 65. 6 flows out into the hydraulic fluid. As a result, it is possible to suppress the ejection of hydraulic oil from between the outer peripheral surface of the inner cylinder 3 and the inner peripheral surface of the sub-cylindrical portion 16 of the front cylindrical member 14.

次に、第6の実施形態に係る流体圧緩衝器1fを図7に基づいて説明するが、その説明は、第1の実施形態に係る流体圧緩衝器1aとの相違点のみとする。なお、第6の実施形態に係る流体圧緩衝器1fは、ピストンロッド28の先端に一体的に接続されたブラケット10が上方に向くように縦置きで使用される際に有効である。
すなわち、第6の実施形態に係る流体圧緩衝器1fでは、環状溝部36の底部の、平面視で調圧弁45が備えられている位置に連通するオリフィス67が形成される。該オリフィス67は径方向に延びる。また、オリフィス67は、前側筒状部材14の副筒状部16の外周面に設けた外周環状溝部68に連通する。外周環状溝部68の断面は矩形状に形成される。また、該外周環状溝部68は、前側筒状部材14の副筒状部16の外周面と外筒2の内周面との間の環状隙間63に連通する。外周環状溝部68の通路断面積は環状溝部36の通路断面積よりも小さく設定される。なお、第6の実施形態に係る流体圧緩衝器1fにおいても、第1の実施形態に係る流体圧緩衝器1aに備えた緩衝用環状溝部37は備えられていない。
そして、第6の実施形態に係る流体圧緩衝器1fでは、環状溝部36の圧力P1が高くなると、作動油は環状溝部36から主に噴出パイプ38を経由してリザーバ室6の作動油中に流出する。これと同時に作動油は、オリフィス67から外周環状溝部68及び環状隙間63を経て外筒2の内周面に衝突して、外周環状溝部68によってその噴出の勢いが緩和され、環状隙間63に沿ってリザーバ室6内に滴り落ちる。この結果、エアレーションを抑制することができる。
Next, although the fluid pressure shock absorber 1f according to the sixth embodiment will be described with reference to FIG. 7, the description is limited to only the differences from the fluid pressure shock absorber 1a according to the first embodiment. In addition, the fluid pressure shock absorber 1f according to the sixth embodiment is effective when used vertically so that the bracket 10 integrally connected to the tip of the piston rod 28 faces upward.
That is, in the fluid pressure shock absorber 1f according to the sixth embodiment, an orifice 67 is formed which communicates with a position of the bottom of the annular groove 36 where the pressure regulating valve 45 is provided in plan view. The orifice 67 extends in the radial direction. Further, the orifice 67 communicates with an outer peripheral annular groove portion 68 provided on the outer peripheral surface of the sub cylindrical portion 16 of the front side cylindrical member 14. The outer circumferential annular groove 68 has a rectangular cross section. The outer peripheral annular groove portion 68 communicates with an annular gap 63 between the outer peripheral surface of the sub-cylindrical portion 16 of the front cylindrical member 14 and the inner peripheral surface of the outer cylinder 2. The passage sectional area of the outer peripheral groove portion 68 is set smaller than the passage sectional area of the annular groove portion 36. Note that the fluid pressure shock absorber 1f according to the sixth embodiment does not include the buffering annular groove portion 37 provided in the fluid pressure shock absorber 1a according to the first embodiment.
In the fluid pressure shock absorber 1f according to the sixth embodiment, when the pressure P1 of the annular groove 36 is increased, the hydraulic oil enters the hydraulic oil in the reservoir chamber 6 mainly from the annular groove 36 via the ejection pipe 38. leak. At the same time, the hydraulic oil collides with the inner peripheral surface of the outer cylinder 2 from the orifice 67 via the outer peripheral annular groove portion 68 and the annular clearance 63, and the ejection force is relieved by the outer peripheral annular groove portion 68. And dripping into the reservoir chamber 6. As a result, aeration can be suppressed.

なお、本実施形態は、ユニフロー型のダンパに採用されているが、バイフロー型のダンパに採用してもよい。また、本実施形態は、内筒3と前側筒状部材14の副筒状部16との嵌合部からの作動油の噴出によるエアレーションを抑制すべく提案されたものであるが、本実施形態は、バイフロー型のダンパにおける作動油の吸込み時、前記嵌合部へのエアの巻き込みを抑制する効果も奏することができる。   In addition, although this embodiment is employ | adopted as the uniflow type damper, you may employ | adopt as a biflow type damper. In addition, the present embodiment is proposed to suppress aeration due to the ejection of hydraulic oil from the fitting portion between the inner cylinder 3 and the sub-cylindrical portion 16 of the front cylindrical member 14. This also has the effect of suppressing air entrainment in the fitting portion when the hydraulic oil is sucked in the biflow damper.

1a〜1f 流体圧緩衝器,2 外筒,3 内筒,4 前側蓋体,5 後側蓋体,6 リザーバ室,14 前側筒状部材,16 副筒状部(筒状部),29 ロッド側液室(液室),30 反ロッド側液室,35 オリフィス(減衰力発生用オリフィス),36 環状溝部(環状通路),37 緩衝用環状溝部(環状空間),38 噴出パイプ(パイプ),60 オリフィス(連通路),61 オリフィス(連通路)   1a to 1f Fluid pressure buffer, 2 outer cylinder, 3 inner cylinder, 4 front lid body, 5 rear lid body, 6 reservoir chamber, 14 front cylindrical member, 16 sub cylindrical section (cylindrical section), 29 rod Side liquid chamber (liquid chamber), 30 Anti-rod side liquid chamber, 35 Orifice (damping force generating orifice), 36 Annular groove (annular passage), 37 Buffer annular groove (annular space), 38 Ejection pipe (pipe), 60 Orifice (communication path), 61 Orifice (communication path)

Claims (3)

同心状にそれぞれ配設した外筒及び内筒の両端を蓋体によりそれぞれ閉鎖して、両者の間を作動液と気体とを封入した環状のリザーバ室として構成し、前記内筒の少なくとも一端部と前記蓋体に設けた筒状部との嵌合部に、径方向に延びる環状通路及び減衰力発生用オリフィスを備えた流体圧緩衝器であって、
前記環状通路は、前記減衰力発生用オリフィスを介して、前記内筒内の液室に連通しており、前記環状通路よりも前記筒状部の開口端側に該環状通路の通路断面積より小さい環状空間を形成することを特徴とする流体圧緩衝器。
The outer cylinder and the inner cylinder respectively arranged concentrically are closed at both ends with a lid, and are configured as an annular reservoir chamber in which hydraulic fluid and gas are sealed between the two, and at least one end of the inner cylinder And a fluid pressure shock absorber provided with an annular passage extending in the radial direction and an orifice for generating a damping force in a fitting portion between the cylindrical portion provided in the lid body,
The annular passage communicates with the liquid chamber in the inner cylinder via the damping force generating orifice, and is closer to the opening end side of the tubular portion than the annular passage. A fluid pressure buffer characterized by forming a small annular space.
前記流体圧緩衝器は横置きに配置され、一側が前記環状通路と連通し、他側が前記リザーバ室の作動液中に延びるパイプが備えられることを特徴とする請求項1に記載の流体圧緩衝器。   2. The fluid pressure buffer according to claim 1, wherein the fluid pressure buffer is disposed horizontally, and includes a pipe having one side communicating with the annular passage and the other side extending into the working fluid of the reservoir chamber. vessel. 前記環状空間は連通路により前記リザーバ室と連通し、該連通路は前記環状空間の断面積よりも小さい断面積を有することを特徴とする請求項1または2に記載の流体圧緩衝器。   3. The fluid pressure shock absorber according to claim 1, wherein the annular space communicates with the reservoir chamber through a communication passage, and the communication passage has a cross-sectional area smaller than a cross-sectional area of the annular space.
JP2013016857A 2013-01-31 2013-01-31 Fluid pressure buffer Active JP6116267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013016857A JP6116267B2 (en) 2013-01-31 2013-01-31 Fluid pressure buffer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013016857A JP6116267B2 (en) 2013-01-31 2013-01-31 Fluid pressure buffer

Publications (2)

Publication Number Publication Date
JP2014149003A true JP2014149003A (en) 2014-08-21
JP6116267B2 JP6116267B2 (en) 2017-04-19

Family

ID=51572149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013016857A Active JP6116267B2 (en) 2013-01-31 2013-01-31 Fluid pressure buffer

Country Status (1)

Country Link
JP (1) JP6116267B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191435A (en) * 2015-03-31 2016-11-10 日立オートモティブシステムズ株式会社 Fluid pressure shock absorber
CN114992268A (en) * 2021-03-02 2022-09-02 本田技研工业株式会社 Suspension device
JP7393303B2 (en) 2020-06-09 2023-12-06 カヤバ株式会社 cylinder device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344068A (en) * 1998-05-29 1999-12-14 Kayaba Ind Co Ltd Oil damper
JP2009121497A (en) * 2007-11-12 2009-06-04 Kayaba Ind Co Ltd Double-cylinder type buffer
JP2011007287A (en) * 2009-06-26 2011-01-13 Hitachi Automotive Systems Ltd Transverse cylinder device
JP2012021647A (en) * 2011-08-25 2012-02-02 Kyb Co Ltd Buffer
JP2013015157A (en) * 2011-06-30 2013-01-24 Hitachi Automotive Systems Ltd Fluid pressure shock absorber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344068A (en) * 1998-05-29 1999-12-14 Kayaba Ind Co Ltd Oil damper
JP2009121497A (en) * 2007-11-12 2009-06-04 Kayaba Ind Co Ltd Double-cylinder type buffer
JP2011007287A (en) * 2009-06-26 2011-01-13 Hitachi Automotive Systems Ltd Transverse cylinder device
JP2013015157A (en) * 2011-06-30 2013-01-24 Hitachi Automotive Systems Ltd Fluid pressure shock absorber
JP2012021647A (en) * 2011-08-25 2012-02-02 Kyb Co Ltd Buffer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191435A (en) * 2015-03-31 2016-11-10 日立オートモティブシステムズ株式会社 Fluid pressure shock absorber
JP7393303B2 (en) 2020-06-09 2023-12-06 カヤバ株式会社 cylinder device
CN114992268A (en) * 2021-03-02 2022-09-02 本田技研工业株式会社 Suspension device
US11926186B2 (en) 2021-03-02 2024-03-12 Honda Motor Co., Ltd. Suspension device

Also Published As

Publication number Publication date
JP6116267B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
US9291229B2 (en) Shock absorber
US8794406B2 (en) Stiff damper
JP5424166B2 (en) Horizontal cylinder device
JPWO2014155809A1 (en) Pressure shock absorber
JP5827871B2 (en) Hydraulic shock absorber
JP5126509B2 (en) Hydraulic buffer
JP6116267B2 (en) Fluid pressure buffer
JP4902497B2 (en) Hydraulic shock absorber
US9371880B2 (en) Dual-tube shock absorber
JP2015187469A (en) Hydraulic draft gear
JP6305102B2 (en) Fluid pressure buffer
JP5212812B2 (en) Hydraulic buffer
JP5453654B2 (en) Cylinder device
JP2013015157A (en) Fluid pressure shock absorber
JP6462457B2 (en) Fluid pressure buffer
EP3492359B1 (en) Front fork
JP6489977B2 (en) Shock absorber
JP2008240745A (en) Hydraulic shock absorber
JP2009078721A (en) Hydraulic damper
JP6555968B2 (en) Shock absorber and method of manufacturing the shock absorber
JP2018054057A (en) Buffer
CN103104650A (en) Shock absorber
JP2011214585A (en) Front fork
RU2575910C2 (en) Control valve of clutch for hydraulic oscillation damper
JP5406759B2 (en) Front fork

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170321

R150 Certificate of patent or registration of utility model

Ref document number: 6116267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250