JP2014147248A - Diaphragm electromagnetic reciprocation fluid device - Google Patents

Diaphragm electromagnetic reciprocation fluid device Download PDF

Info

Publication number
JP2014147248A
JP2014147248A JP2013015234A JP2013015234A JP2014147248A JP 2014147248 A JP2014147248 A JP 2014147248A JP 2013015234 A JP2013015234 A JP 2013015234A JP 2013015234 A JP2013015234 A JP 2013015234A JP 2014147248 A JP2014147248 A JP 2014147248A
Authority
JP
Japan
Prior art keywords
magnetic pole
pole
permanent magnet
face
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013015234A
Other languages
Japanese (ja)
Inventor
Takayuki Miura
孝之 三浦
Katsuhiko Shibukawa
勝彦 渋川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Kohki Co Ltd
Original Assignee
Nitto Kohki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Kohki Co Ltd filed Critical Nitto Kohki Co Ltd
Priority to JP2013015234A priority Critical patent/JP2014147248A/en
Publication of JP2014147248A publication Critical patent/JP2014147248A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To prevent contact between a reciprocation member and a stator core by reducing force of attracting the reciprocation member to a stator side.SOLUTION: A diaphragm electromagnetic reciprocation fluid device 100 includes a reciprocation member 120 connected to a diaphragm 110 and a drive part reciprocally driving the reciprocation member 120, and makes the diaphragm 110 fluctuate with the reciprocation of the reciprocation member 120 to suck and discharge fluid. The drive part includes first and second E-type cores 132a, 132b which have central magnetic pole parts 134 and first and second side part magnetic pole parts 136 and 138. The reciprocation member 120 includes first and second permanent magnets 140a, 140b. The width between an N pole surface and an S pole surface at the position where each of the permanent magnets 140a, 140b comes close to the side part magnetic pole parts 136, 138 is smaller than the width between the N pole surface and the S pole surface at the position where each of the permanent magnets 140a, 140b comes close to the central magnetic pole parts 134.

Description

本発明は、ステータコアに間歇的又は交番的に磁界を発生させることで往復動部材を往復動させてダイアフラムを変動させ、流体を吸引・排気するようにしたポンプやコンプレッサなどのダイアフラム式電磁往復動流体装置に関する。   The present invention relates to a diaphragm type electromagnetic reciprocating motion such as a pump or a compressor in which a diaphragm is changed by reciprocating a reciprocating member by generating a magnetic field intermittently or alternately in a stator core to suck and exhaust a fluid. The present invention relates to a fluid device.

ダイアフラム式電磁往復動流体装置は、鉄などの強磁性体やフェライト磁石などの永久磁石等からなる磁性体部材を有しその両端部がダイアフラムに連結された往復動部材と、該往復動部材の磁性体部材に対して磁気的に作用する磁極面を備えるステータコアとを備える。ステータコアにはソレノイドコイルが巻回されており、該ソレノイドコイルに間歇的に又は交番的に電流を流すことで磁極面間に間歇的又は交番的な磁束を発生させる。磁性体部材は該磁束により吸引・反発されて、磁極面間に引込まれたり磁極面間から離されたりするように動かされる。それによって、磁性体部材を備える往復動部材が直線状経路に沿って往復動して該往復動部材に連結されたダイアフラムが周期的に変動することにより、流体の吸引・排気が繰り返されて流体が搬送されるようになっている(特許文献1)。   A diaphragm-type electromagnetic reciprocating fluid device includes a reciprocating member having a magnetic member made of a ferromagnetic material such as iron or a permanent magnet such as a ferrite magnet, and both ends of which are connected to the diaphragm, and the reciprocating member of the reciprocating member. And a stator core having a magnetic pole surface that acts magnetically on the magnetic member. A solenoid coil is wound around the stator core, and intermittent or alternating magnetic flux is generated between the magnetic pole faces by causing current to flow intermittently or alternately in the solenoid coil. The magnetic member is attracted and repelled by the magnetic flux and is moved so as to be drawn between the magnetic pole faces or separated from the magnetic pole faces. As a result, the reciprocating member including the magnetic member is reciprocated along the linear path, and the diaphragm connected to the reciprocating member is periodically changed, whereby the fluid is repeatedly sucked and exhausted. Is conveyed (Patent Document 1).

一般に磁性体部材が受ける磁力の大きさは磁極面からの距離の2乗に反比例するから、磁性体部材がステータコアで発生される磁束から受ける力を大きくして効率よく電磁往復動流体装置を駆動するためには、ステータコアの磁極面と磁性体部材との距離をできるだけ小さくすれば良い。しかしながら、磁性体部材が磁束から受ける力は往復動部材の直線状経路の方向だけでなくステータコア側に引き寄せられる方向の成分も含んでいるため、ステータコアの磁極面と磁性体部材との距離を近づけすぎると往復動部材がステータコア側に引き寄せられて接触してしまう虞がある。特にダイアフラム式の電磁往復動装置の場合には、往復動部材は柔軟性を有するダイアフラムによって支持されているので、磁性体部材が受けるステータコア側に引き寄せられる力によって往復動部材が引き寄せられて、往復動部材とステータコアとが接触しやすい。また、このような接触を防止するためにダイアフラムの剛性を高くすると直線状経路の方向への動きも制限され、電磁往復動流体装置の効率を逆に低下させてしまうことになってしまう。   In general, the magnitude of the magnetic force received by the magnetic member is inversely proportional to the square of the distance from the magnetic pole surface. Therefore, the force received by the magnetic member from the magnetic flux generated by the stator core is increased to efficiently drive the electromagnetic reciprocating fluid device. In order to achieve this, the distance between the magnetic pole surface of the stator core and the magnetic member should be as small as possible. However, since the force that the magnetic member receives from the magnetic flux includes not only the direction of the linear path of the reciprocating member but also the component that is attracted to the stator core side, the distance between the magnetic pole surface of the stator core and the magnetic member is reduced. If it is too large, the reciprocating member may be attracted to the stator core and come into contact. Particularly in the case of a diaphragm type electromagnetic reciprocating device, since the reciprocating member is supported by a flexible diaphragm, the reciprocating member is attracted by the force attracted to the stator core side received by the magnetic member, so that the reciprocating member is reciprocated. The moving member and the stator core are easy to contact. Further, if the rigidity of the diaphragm is increased in order to prevent such contact, the movement in the direction of the linear path is also restricted, and the efficiency of the electromagnetic reciprocating fluid device is conversely reduced.

特開2001−132647JP 2001-132647 A

そこで本発明は、往復動部材がステータコア側に引き寄せられる力が小さくなるようにして、往復動部材とステータコアとの接触を防止するようにしたダイアフラム式電磁往復動流体装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a diaphragm type electromagnetic reciprocating fluid device in which the force with which the reciprocating member is attracted toward the stator core is reduced to prevent contact between the reciprocating member and the stator core. To do.

すなわち本発明は、
ダイアフラムに連結された往復動部材と、該往復動部材を直線状経路に沿って往復駆動させる駆動部とを有し、該往復動部材の往復動により前記ダイアフラムを変動させて流体を吸引・排気するようにしたダイアフラム式電磁往復動流体装置であって、
前記駆動部は、中央磁極部、及び該中央磁極部の両側に前記直線状経路の方向で間隔を開けて配置された第1及び第2の側部磁極部をそれぞれ有する第1及び第2のE型コアであって、前記直線状経路の両側で前記中央磁極部同士、前記第1の側部磁極部同士、及び前記第2の側部磁極部同士が相互に対向するように設定された第1及び第2のE型コアと、該第1及び第2のE型コアのうちの少なくとも一方に巻回されたソレノイドコイルと、を有し、
前記往復動部材は、前記第1及び第2のE型コアが前記ソレノイドコイルによって励磁されていない状態において、前記直線状経路の方向で前記第1及び第2のE型コアの前記中央磁極部と前記第1の側部磁極部との間に位置する第1の永久磁石と、前記中央磁極部と前記第2の側部磁極部との間に位置する第2の永久磁石とを有し、
前記第1の永久磁石はN極面が前記第1のE型コアに面しS極面が前記第2のE型コアに面するように配置され、前記第2の永久磁石はS極面が前記第1のE型コアに面しN極面が前記第2のE型コアに面するように配置されており、
前記第1の永久磁石は、前記中央磁極部に近接する位置での前記N極面とS極面との間の幅よりも前記第1の側部磁極部に近接する位置での前記N極面とS極面との間の幅の方が小さくされ、
前記第2の永久磁石は、前記中央磁極部に近接する位置での前記N極面とS極面との間の幅よりも前記第2の側部磁極部に近接する位置での前記N極面とS極面との間の幅の方が小さくされている、ダイアフラム式電磁往復動流体装置を提供する。
That is, the present invention
A reciprocating member connected to the diaphragm; and a drive unit that drives the reciprocating member to reciprocate along a linear path. The diaphragm is changed by the reciprocating motion of the reciprocating member to suck and exhaust the fluid. A diaphragm-type electromagnetic reciprocating fluid device adapted to
The driving unit includes a first magnetic pole part and a first magnetic pole part having a central magnetic pole part and first and second side magnetic pole parts arranged on both sides of the central magnetic pole part with a gap in the direction of the linear path. The E-type core is set so that the central magnetic pole portions, the first side magnetic pole portions, and the second side magnetic pole portions face each other on both sides of the linear path. First and second E-type cores, and a solenoid coil wound around at least one of the first and second E-type cores;
The reciprocating member includes the central magnetic pole portion of the first and second E type cores in the direction of the linear path in a state where the first and second E type cores are not excited by the solenoid coil. And a first permanent magnet located between the first side magnetic pole part and a second permanent magnet located between the central magnetic pole part and the second side magnetic pole part. ,
The first permanent magnet is arranged such that the N pole face faces the first E-type core and the S pole face faces the second E-type core, and the second permanent magnet is the S pole face. Is arranged so that it faces the first E-type core and the N pole face faces the second E-type core,
The first permanent magnet has the N pole at a position closer to the first side magnetic pole part than a width between the N pole face and the S pole face at a position close to the central magnetic pole part. The width between the face and the S pole face is reduced,
The second permanent magnet has the N pole at a position closer to the second side magnetic pole part than the width between the N pole face and the S pole face at a position close to the central magnetic pole part. Provided is a diaphragm electromagnetic reciprocating fluid device in which the width between the surface and the S pole surface is smaller.

本願発明者は研究開発の過程において、往復動部材がE型コアに引き寄せられる方向の力は、永久磁石が中央磁極部から受ける力よりも側部磁極部から受ける力からより大きな影響を受けることを発見した。本発明はこの発見に基づきなされたものであり、このダイアフラム式電磁往復動流体装置においては、第1及び第2のE型コアに面する永久磁石のN極面とS極面との間の幅が中央磁極部側よりも側部磁極部側において小さくされていて永久磁石と第1又は第2の側部磁極部との間の距離が大きくなるようにされているので、第1及び第2の側部磁極部から受ける力が相対的に小さくなり、往復動部材がE型コア側に引き寄せられる方向の力を小さくすることができる。これによって、往復動部材を支持するダイアフラムの剛性を低下させて往復動部材が往復動する際の力の損失を小さくすることもできるし、または中央磁極部と永久磁石との距離を小さくしてより大きな推力を得るようにすることもできるようになるので、当該装置をより高効率で駆動することが可能となる。   In the course of research and development, the inventor of the present application has a greater influence on the force in the direction in which the reciprocating member is attracted to the E-type core than the force that the permanent magnet receives from the side magnetic pole part than the force that the permanent magnet receives from the central magnetic pole part. I found The present invention has been made based on this discovery, and in this diaphragm type electromagnetic reciprocating fluid device, between the N pole surface and the S pole surface of the permanent magnet facing the first and second E type cores. Since the width is made smaller on the side magnetic pole part side than on the central magnetic pole part side and the distance between the permanent magnet and the first or second side magnetic pole part is made larger, the first and second The force received from the second side magnetic pole portion becomes relatively small, and the force in the direction in which the reciprocating member is drawn toward the E-type core can be reduced. As a result, the rigidity of the diaphragm supporting the reciprocating member can be reduced to reduce the loss of force when the reciprocating member reciprocates, or the distance between the central magnetic pole portion and the permanent magnet can be reduced. Since a larger thrust can be obtained, the device can be driven with higher efficiency.

具体的には、前記第1の永久磁石は、前記中央磁極部の側に位置する幅広部分と、前記第1側部磁極部の側に位置し前記幅広部分よりも狭い幅とされた幅狭部分とを有し、
前記第2の永久磁石は、前記中央磁極部の側に位置する幅広部分と、前記第2側部磁極部の側に位置し前記幅広部分よりも狭い幅とされた幅狭部分とを有するようにすることができる。
Specifically, the first permanent magnet includes a wide portion located on the side of the central magnetic pole portion and a narrow width located on the side of the first side magnetic pole portion and narrower than the wide portion. And having a part
The second permanent magnet has a wide portion located on the side of the central magnetic pole portion and a narrow portion located on the side of the second side magnetic pole portion and having a width narrower than the wide portion. Can be.

または、前記第1の永久磁石の前記N極面及びS極面が前記直線状経路の方向に対して傾斜して、前記N極面と前記S極面との間の幅が、前記中央磁極部に近接する位置から前記第1の側部磁極部に近接する位置にまで連続的に小さくなるようにされ、
前記第2の永久磁石の前記N極面及びS極面が前記直線状経路の方向に対して傾斜して、前記N極面と前記S極面との間の幅が、前記中央磁極部に近接する位置から前記第2の側部磁極部に近接する位置にまで連続的に小さくなるようにすることもできる。
Alternatively, the N pole face and the S pole face of the first permanent magnet are inclined with respect to the direction of the linear path, and the width between the N pole face and the S pole face is equal to the central magnetic pole. Continuously from the position close to the part to the position close to the first side magnetic pole part,
The N pole face and the S pole face of the second permanent magnet are inclined with respect to the direction of the linear path, and the width between the N pole face and the S pole face is at the central magnetic pole portion. It is also possible to continuously reduce the position from the close position to the position close to the second side magnetic pole portion.

本発明の第1の実施形態に係るダイアフラム式電磁往復動流体装置の断面図である。It is sectional drawing of the diaphragm type electromagnetic reciprocating fluid apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係るダイアフラム式電磁往復動流体装置の断面図である。It is sectional drawing of the diaphragm type electromagnetic reciprocating fluid apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係るダイアフラム式電磁往復動流体装置の断面図である。It is sectional drawing of the diaphragm type electromagnetic reciprocating fluid apparatus which concerns on the 3rd Embodiment of this invention.

本発明の第1の実施形態にかかるダイアフラム式電磁往復動流体装置100は、図1に示すように、第1及び第2のダイアフラム110a、110bが両端に固定されて直線状経路に沿って往復動する往復動部材120と、この往復動部材120の直線状経路の両側に相互に対抗するように配置された第1及び第2のE型コア132a,132bからなるステータコア130と、このステータコア130に磁束を発生させるための第1及び第2のソレノイドコイル133a、133bとを備えている。第1及び第2のE型コア132a,132bは、それぞれ、中央磁極部134a、134bとそれを挟んで両側に直線状経路の方向で間隔を開けて配置された第1及び第2の側部磁極部136a、136b、138a、138bとを備えており、各E型コア132a、132bの中央磁極部134a、134bの先端の中央磁極面135a、135b、第1の側部磁極部136a、136bの先端の第1の側部磁極面137a、137b、及び第2の側部磁極部138a、138bの先端の第2の側部磁極面139a、139bが往復動部材120を間にして互いに対向するように配置されている。各中央磁極部134a、134bに設置された第1及び第2のソレノイドコイル133a、133bは、該ソレノイドコイル133a、133bに電流が印加されると第1及び第2のE型コア132a、132bの互いに対向する各磁極面が相互に異なる極性となるように巻回されている。第1及び第2のダイアフラム110a、110bは、それぞれ、ヘッドカバー102との間に第1及び第2のポンプ室104a,104bを形成している。第1及び第2のダイアフラム110a,110bは、円盤状のダイアフラム固定部材112a,112bにより往復動部材120に固定されている。往復動部材120には、第1及び第2の永久磁石140a、140bが、往復動部材120の中央部122を挟んで所定間隔離間した状態で、極性が互いに逆向きになるように配置されている。すなわち、第1の永久磁石140aは、N極面142aが第1のE型コア132aに面し、S極面144aが第2のE型コア132bに面するように配置され、第2の永久磁石140bはS極面144bが第1のE型コア132aに面し、N極面142bが第2のE型コア132bに面するように配置されている。また、第1及び第2のE型コア132a、132bが励磁されていない状態において、往復動部材120の直線状経路の方向で、第1の永久磁石140aは中央磁極部134a、134bと第1の側部磁極部136a、136bとの間に位置し、第2の永久磁石140bは中央磁極部134a、134bと第2の側部磁極部138a、138bとの間に位置するように配置されている。   As shown in FIG. 1, the diaphragm type electromagnetic reciprocating fluid device 100 according to the first embodiment of the present invention is reciprocated along a linear path with first and second diaphragms 110a and 110b fixed at both ends. A reciprocating member 120 that moves, a stator core 130 that includes first and second E-shaped cores 132a and 132b that are disposed on both sides of a linear path of the reciprocating member 120, and the stator core 130. Are provided with first and second solenoid coils 133a and 133b for generating magnetic flux. The first and second E-shaped cores 132a and 132b are respectively provided with central magnetic pole portions 134a and 134b and first and second side portions arranged on both sides of the central magnetic pole portions 134a and 134b with an interval in the direction of a linear path. Magnetic pole portions 136a, 136b, 138a, 138b, and central magnetic pole surfaces 135a, 135b at the tips of the central magnetic pole portions 134a, 134b of the E-type cores 132a, 132b, and first side magnetic pole portions 136a, 136b. The first side magnetic pole surfaces 137a and 137b at the front end and the second side magnetic pole surfaces 139a and 139b at the front end of the second side magnetic pole portions 138a and 138b are opposed to each other with the reciprocating member 120 therebetween. Is arranged. The first and second solenoid coils 133a and 133b installed in the respective central magnetic pole portions 134a and 134b are connected to the first and second E-type cores 132a and 132b when a current is applied to the solenoid coils 133a and 133b. The magnetic pole surfaces facing each other are wound so as to have different polarities. The first and second diaphragms 110a and 110b form first and second pump chambers 104a and 104b, respectively, between the head cover 102 and the first and second diaphragms 110a and 110b. The first and second diaphragms 110a and 110b are fixed to the reciprocating member 120 by disk-shaped diaphragm fixing members 112a and 112b. In the reciprocating member 120, the first and second permanent magnets 140a and 140b are arranged so that the polarities are opposite to each other with the central portion 122 of the reciprocating member 120 sandwiched by a predetermined interval. Yes. That is, the first permanent magnet 140a is arranged so that the N pole surface 142a faces the first E-type core 132a and the S pole surface 144a faces the second E-type core 132b, and the second permanent magnet 140a The magnet 140b is disposed such that the S pole surface 144b faces the first E-type core 132a and the N pole surface 142b faces the second E-type core 132b. Further, in the state where the first and second E-type cores 132a and 132b are not excited, the first permanent magnet 140a and the first magnetic pole portions 134a and 134b and the first magnetic pole portions 134a and 134b are arranged in the direction of the linear path of the reciprocating member 120. The second permanent magnet 140b is disposed between the central magnetic pole portions 134a and 134b and the second side magnetic pole portions 138a and 138b. Yes.

第1及び第2のソレノイドコイル133a、133bに交流電流が印加されると、第1及び第2のE型コア132a、132bの各磁極面135a、135b、137a、137b、139a、139bの極性は交流電流の周波数に合わせて交番的に入れ替わる。互いに対向する各磁極面は相互に異なる極性となるので、各磁極面の極性が交番的に入れ替わることで各磁極面間に発生する磁束の方向も交番的に入れ替わる。例えば、第1のE型コア132aの中央磁極面135aがN極で第1及び第2の側部磁極面137a、139aがS極となっているとき、第2のE型コア132bの中央磁極面135bはS極で第1及び第2の側部磁極面137b、139bはN極となる。このとき、第1の永久磁石140aは第1の側部磁極面137a、137bから吸引力を受けると同時に中央磁極面135a、135bから反発力を受ける。また、第2の永久磁石140bは中央磁極面135a、135bから吸引力を受けると同時に第2の側部磁極面139a、139bから反発力を受ける。そうすると、往復動部材120は、第1及び第2の永久磁石140a、140bが第1及び第2のE型コア132a、132bから受ける力によって、図で見て左側へと駆動される。その後、電流の方向が入れ替わると、第1のE型コア132aの中央磁極面135aがS極で第1及び第2の側部磁極面137a、139aがN極となり、第2のE型コア132bの中央磁極部135bがN極で第1及び第2の側部磁極面137b、139bはS極となり、先程とは逆向きの力が第1及び第2の永久磁石140a、140bに働いて、往復動部材120は右側へと駆動される。このように各磁極面135a、135b、137a、137b、139a、139b間に交番的な磁界を発生させることで、往復動部材120を交流電流の周波数で左右に往復動させるようになっている。   When an alternating current is applied to the first and second solenoid coils 133a, 133b, the polarities of the magnetic pole surfaces 135a, 135b, 137a, 137b, 139a, 139b of the first and second E-type cores 132a, 132b are It alternates according to the frequency of the alternating current. Since the magnetic pole faces facing each other have different polarities, the direction of the magnetic flux generated between the magnetic pole faces is also changed alternately when the polarities of the magnetic pole faces are changed alternately. For example, when the central magnetic pole surface 135a of the first E-type core 132a is N-pole and the first and second side magnetic pole surfaces 137a and 139a are S-pole, the central magnetic pole of the second E-type core 132b The surface 135b is an S pole, and the first and second side magnetic pole surfaces 137b and 139b are N poles. At this time, the first permanent magnet 140a receives an attractive force from the first side magnetic pole surfaces 137a and 137b and simultaneously receives a repulsive force from the central magnetic pole surfaces 135a and 135b. Further, the second permanent magnet 140b receives an attractive force from the central magnetic pole surfaces 135a and 135b and simultaneously receives a repulsive force from the second side magnetic pole surfaces 139a and 139b. Then, the reciprocating member 120 is driven to the left as viewed in the figure by the force that the first and second permanent magnets 140a, 140b receive from the first and second E-shaped cores 132a, 132b. Thereafter, when the direction of the current is switched, the central magnetic pole surface 135a of the first E-type core 132a becomes the S pole and the first and second side magnetic pole surfaces 137a and 139a become the N pole, and the second E-type core 132b. The central magnetic pole part 135b of the first and second side magnetic pole surfaces 137b and 139b is the S pole, and a force opposite to the previous direction acts on the first and second permanent magnets 140a and 140b, The reciprocating member 120 is driven to the right. Thus, by generating an alternating magnetic field between the magnetic pole surfaces 135a, 135b, 137a, 137b, 139a, 139b, the reciprocating member 120 is reciprocated left and right at the frequency of the alternating current.

往復動部材120が左側に駆動されたときには、第1のポンプ室104aの容積が縮小されると共に第1の排気バルブ150aが開放されて第1のポンプ室104a内の流体が第1の排気ポート154aから排気される。その一方で第2のポンプ室104bの容積が拡張されると共に第2の吸気バルブ152bが開放されて第2の吸気ポート156bから流体が第2のポンプ室104b内に吸引される。次に往復動部材120が右側に駆動されると、先程とは逆に、第1のポンプ室104aの容積が拡張されると共に第1の吸気バルブ152aが開放されて第1の吸気ポート156aから流体が第1のポンプ室104a内に吸引され、一方で第2のポンプ室104bの容積が縮小されると共に第2の排気バルブ150bが開放されて第2のポンプ室104b内の流体が第2の排気ポート154bから排気される。当該ダイアフラム式電磁往復動流体装置100は、このような動作を繰り返すことで第1及び第2の吸気ポート156a、156b側の流体を第1及び第2の排気ポート154a、154b側へと随時搬送するようになっている。   When the reciprocating member 120 is driven to the left side, the volume of the first pump chamber 104a is reduced and the first exhaust valve 150a is opened, so that the fluid in the first pump chamber 104a is transferred to the first exhaust port. The air is exhausted from 154a. On the other hand, the volume of the second pump chamber 104b is expanded, the second intake valve 152b is opened, and fluid is sucked into the second pump chamber 104b from the second intake port 156b. Next, when the reciprocating member 120 is driven to the right side, the volume of the first pump chamber 104a is expanded and the first intake valve 152a is opened to reverse the first intake port 156a. The fluid is sucked into the first pump chamber 104a, while the volume of the second pump chamber 104b is reduced and the second exhaust valve 150b is opened so that the fluid in the second pump chamber 104b is second. The exhaust port 154b is exhausted. The diaphragm type electromagnetic reciprocating fluid device 100 repeats such an operation to convey the fluid on the first and second intake ports 156a, 156b side to the first and second exhaust ports 154a, 154b side as needed. It is supposed to be.

第1の永久磁石140aは、往復動部材120の中央部122側に位置して第1及び第2のE型コア132a、132bの中央磁極部134a、134bに近接する側の幅広部分146aと、その反対側に位置し第1の側部磁極部136a、136bに近接する側の幅狭部分148aとを有している。同様に、第2の永久磁石140bは、往復動部材120の中央部122側に位置して第1及び第2のE型コア132a、132bの中央磁極部134a、134bに近接する側の幅広部分146bと、その反対側に位置し第2の側部磁極部138a、138bに近接する側の幅狭部分148bとを有している。このような形状とすることによって、各永久磁石140a、140bと各側部磁極部136a、136b、138a、138bとの間の距離が中央磁極部134a、134bとの間の距離よりも大きくなり、各永久磁石140a、140bが各側部磁極部136a、136b、138a、138bから受ける力が中央磁極部134a、134bから受ける力よりも相対的に小さくなる。第1及び第2の永久磁石140a、140bは、実際には各磁極部から直線状経路の方向に対して斜め方向の吸引力又は反発力を受けるが、往復動部材120が第1及び第2のE型コア132a、132b側に引き寄せられる方向の力は、第1及び第2の永久磁石140a、140bが中央磁極部134a、134bから受ける力よりも各側部磁極部136a、136b、138a、138bから受ける力からより大きな影響を受けるので、上述のような形状とすることで往復動部材120が第1及び第2のE型コア132a、132b側に引き寄せられる力を小さくすることが可能となる。一方で、往復動部材120が各E型コア132a、132b側に引き寄せられる力が小さくなり往復動部材120の各E型コア132a、132b側への変位量が小さくなったことにより、第1及び第2の永久磁石140a、140bと中央磁極部134a、134bとの間の距離は従来に比べてより小さく設定することができるようになるので、そのようにすることで直線状経路の方向への推力を大きくすることが可能となる。また、往復動部材120が各E型コア132a、132bに接触しないようにするために必要な第1及び第2のダイアフラム110a、110bの剛性も小さくなるので、剛性の小さい各ダイアフラム110a、110bを使用することも可能となり、それによって往復動部材120の直線状経路の方向への往復動に対する抵抗力が小さくなって推力の損失が小さくなるので、より大きなストロークで往復動部材120を効率的に駆動させることが可能となる。   The first permanent magnet 140a is located on the central portion 122 side of the reciprocating member 120 and has a wide portion 146a on the side close to the central magnetic pole portions 134a and 134b of the first and second E-shaped cores 132a and 132b, It has a narrow portion 148a located on the opposite side and close to the first side magnetic pole portions 136a, 136b. Similarly, the second permanent magnet 140b is located on the central portion 122 side of the reciprocating member 120 and has a wide portion on the side close to the central magnetic pole portions 134a and 134b of the first and second E-shaped cores 132a and 132b. 146b and a narrow portion 148b located on the opposite side and close to the second side magnetic pole portions 138a and 138b. By adopting such a shape, the distance between each permanent magnet 140a, 140b and each side magnetic pole part 136a, 136b, 138a, 138b becomes larger than the distance between the central magnetic pole part 134a, 134b, The force that each permanent magnet 140a, 140b receives from each side magnetic pole part 136a, 136b, 138a, 138b is relatively smaller than the force that it receives from the central magnetic pole part 134a, 134b. The first and second permanent magnets 140a and 140b actually receive an attractive force or a repulsive force in an oblique direction with respect to the direction of the linear path from each magnetic pole portion, but the reciprocating member 120 has the first and second reciprocating members 120. The force in the direction attracted to the E-shaped cores 132a and 132b is greater than the force received by the first and second permanent magnets 140a and 140b from the central magnetic pole portions 134a and 134b. The side magnetic pole portions 136a, 136b, 138a, Since it is more greatly affected by the force received from 138b, it is possible to reduce the force with which the reciprocating member 120 is attracted to the first and second E-shaped cores 132a and 132b by using the shape as described above. Become. On the other hand, the force with which the reciprocating member 120 is attracted toward the E-type cores 132a and 132b is reduced, and the displacement amount of the reciprocating member 120 toward the E-type cores 132a and 132b is reduced. Since the distance between the second permanent magnets 140a and 140b and the central magnetic pole portions 134a and 134b can be set smaller than the conventional one, by doing so, the distance in the direction of the linear path can be set. Thrust can be increased. In addition, since the rigidity of the first and second diaphragms 110a and 110b necessary for preventing the reciprocating member 120 from contacting the E-shaped cores 132a and 132b is also reduced, the diaphragms 110a and 110b having low rigidity are attached. It is also possible to use it, thereby reducing the resistance to reciprocation of the reciprocating member 120 in the direction of the linear path and reducing the loss of thrust, so that the reciprocating member 120 can be efficiently used with a larger stroke. It can be driven.

本発明の第2の実施形態にかかるダイアフラム式電磁往復動流体装置200は、図2に示すように、第1及び第2の永久磁石240a、240bの形状を除いて、図1の第1の実施形態にかかるダイアフラム式電磁往復動流体装置100と同様の構造を有する。第2の実施形態における第1の永久磁石240aは、N極面242a及びS極面244aが往復動部材220の直線状経路の方向に対して傾斜しており、中央磁極部234a、234bに近接する側から第1の側部磁極部236a、236bに近接する側に向かってN極面242aとS極面244aとの間の幅が連続的に小さくなるような形状とされている。同様に、第2の永久磁石240bは、N極面242b及びS極面244bが往復動部材220の直線状経路の方向に対して傾斜しており、中央磁極部234a、234bに近接する側から第2の側部磁極部238a、238bに近接する側に向かってN極面242bとS極面244bとの間の幅が連続的に小さくなるような形状とされている。このような形状とすることによって、各永久磁石240a、240bと各側部磁極部236a、236b、238a、238bとの間の距離が中央磁極部234a、234bとの間の距離よりも大きくなり、各永久磁石240a、240bが各側部磁極部236a、236b、238a、238bから受ける力が中央磁極部234a、234bから受ける力よりも相対的に小さくなるので、上述の第1の実施形態と同様に往復動部材220が第1及び第2のE型コア232a、232b側に引き寄せられる力を小さくすることが可能となる。   As shown in FIG. 2, the diaphragm type electromagnetic reciprocating fluid device 200 according to the second embodiment of the present invention has the first and second permanent magnets 240a and 240b except for the shapes of the first and second permanent magnets 240a and 240b. The diaphragm type electromagnetic reciprocating fluid device 100 according to the embodiment has the same structure. In the first permanent magnet 240a in the second embodiment, the N pole surface 242a and the S pole surface 244a are inclined with respect to the direction of the linear path of the reciprocating member 220, and are close to the central magnetic pole portions 234a and 234b. The width between the N pole face 242a and the S pole face 244a is continuously reduced from the side to the side closer to the first side magnetic pole parts 236a, 236b. Similarly, in the second permanent magnet 240b, the N pole surface 242b and the S pole surface 244b are inclined with respect to the direction of the linear path of the reciprocating member 220, and from the side close to the central magnetic pole portions 234a and 234b. The width between the N-pole surface 242b and the S-pole surface 244b is continuously reduced toward the side close to the second side magnetic pole portions 238a, 238b. By adopting such a shape, the distance between each permanent magnet 240a, 240b and each side magnetic pole part 236a, 236b, 238a, 238b becomes larger than the distance between the central magnetic pole part 234a, 234b, Since the force received from each side magnetic pole part 236a, 236b, 238a, 238b by each permanent magnet 240a, 240b is relatively smaller than the force received from the central magnetic pole part 234a, 234b, the same as in the first embodiment described above. In addition, it is possible to reduce the force with which the reciprocating member 220 is attracted to the first and second E-type cores 232a and 232b.

第3の実施形態に係るダイアフラム式電磁往復動流体装置300は、図3に示すように、第2のE型コア332bにソレノイドコイルが巻回されていない点を除いて、図1の第1の実施形態に係るダイアフラム式電磁往復動流体装置100と同様の構成を有する。第1及び第2のE型コア332a、332bの励磁は第1のE型コア332aに巻回されたソレノイドコイル333aにより行われ、第2のE型コア332bはバックコアとして機能する。本実施形態においては、第2のE型コア332bは、第1のE型コア332aと同形状とされているが、ソレノイドコイルが巻回されていない分だけ中央磁極部334b並びに第1及び第2の側部磁極部336b、338bを短くしてもよい。また、第1及び第2の永久磁石340a、340bの形状を第2の実施形態における第1及び第2の永久磁石240a、240bのような形状としてもよい。   As shown in FIG. 3, the diaphragm type electromagnetic reciprocating fluid device 300 according to the third embodiment is the first in FIG. 1 except that the solenoid coil is not wound around the second E-type core 332b. The diaphragm type electromagnetic reciprocating fluid device 100 according to the embodiment has the same configuration. Excitation of the first and second E-type cores 332a and 332b is performed by a solenoid coil 333a wound around the first E-type core 332a, and the second E-type core 332b functions as a back core. In the present embodiment, the second E-type core 332b has the same shape as the first E-type core 332a. However, the central magnetic pole portion 334b and the first and first magnetic pole portions 334b are not wound around the solenoid coil. The two side magnetic pole portions 336b and 338b may be shortened. Further, the shapes of the first and second permanent magnets 340a and 340b may be the same as the shapes of the first and second permanent magnets 240a and 240b in the second embodiment.

100 ダイアフラム式電磁往復動流体装置
102 ヘッドカバー 104a 第1のポンプ室
104b 第2のポンプ室 110a 第1のダイアフラム
110b 第2のダイアフラム 112a ダイアフラム固定部材
112b ダイアフラム固定部材 120 往復動部材
122 中央部 130 ステータコア
132a 第1のE型コア 132b 第2のE型コア
133a 第1のソレノイドコイル 133b 第2のソレノイドコイル
134a、134b 中央磁極部 135a、135b 中央磁極面
136a、136b 第1の側部磁極部 137a、137b 第1の側部磁極面
138a、138b 第2の側部磁極部 139a、139b 第2の側部磁極面
140a 第1の永久磁石 140b 第2の永久磁石
142a、142b N極面 144a、144b S極面
146a、146b 幅広部分 148a、148b 幅狭部分
150a 第1の排気バルブ 150b 第2の排気バルブ
152a 第1の吸気バルブ 152b 第2の吸気バルブ
154a 第1の排気ポート 154b 第2の排気ポート
156a 第1の吸気ポート 156b 第2の吸気ポート
200 ダイアフラム式電磁往復動流体装置
220 往復動部材 232a 第1のE型コア
232b 第2のE型コア 234a、234b 中央磁極部
236a、236b 第1の側部磁極部 238a、238b 第2の側部磁極部
240a 第1の永久磁石 240b 第2の永久磁石
242a、242b N極面 244a、244b S極面
300 ダイアフラム式電磁往復動流体装置
332a 第1のE型コア 332b 第2のE型コア
333a ソレノイドコイル 334b 中央磁極部
336b 第1の側部磁極部 338b 第2の側部磁極部
340a 第1の永久磁石 340b 第2の永久磁石
DESCRIPTION OF SYMBOLS 100 Diaphragm type electromagnetic reciprocating fluid apparatus 102 Head cover 104a 1st pump chamber 104b 2nd pump chamber 110a 1st diaphragm 110b 2nd diaphragm 112a Diaphragm fixing member 112b Diaphragm fixing member 120 Reciprocating member 122 Central part 130 Stator core 132a First E-type core 132b Second E-type core 133a First solenoid coil 133b Second solenoid coils 134a, 134b Central magnetic pole part 135a, 135b Central magnetic pole surface 136a, 136b First side magnetic pole part 137a, 137b First side magnetic pole surface 138a, 138b Second side magnetic pole portion 139a, 139b Second side magnetic pole surface 140a First permanent magnet 140b Second permanent magnet 142a, 142b N-pole surface 144a, 144b S-pole surface 146a, 146b Wide portion 148a, 148b Narrow portion 150a First exhaust valve 150b Second exhaust valve 152a First intake valve 152b Second intake valve 154a First exhaust port 154b Second exhaust port 156a First Intake port 156b Second intake port 200 Diaphragm electromagnetic reciprocating fluid device 220 Reciprocating member 232a First E-type core 232b Second E-type core 234a, 234b Central magnetic pole part 236a, 236b First side magnetic pole Part 238a, 238b Second side magnetic pole part 240a First permanent magnet 240b Second permanent magnet 242a, 242b N pole face 244a, 244b S pole face 300 Diaphragm electromagnetic reciprocating fluid device 332a First E type core 332b Second E-type core 333a Solenoid coil 334 b Central magnetic pole portion 336b First side magnetic pole portion 338b Second side magnetic pole portion 340a First permanent magnet 340b Second permanent magnet

Claims (3)

ダイアフラムに連結された往復動部材と、該往復動部材を直線状経路に沿って往復駆動させる駆動部とを有し、該往復動部材の往復動により前記ダイアフラムを変動させて流体を吸引・排気するようにしたダイアフラム式電磁往復動流体装置であって、
前記駆動部は、中央磁極部、及び該中央磁極部の両側に前記直線状経路の方向で間隔を開けて配置された第1及び第2の側部磁極部をそれぞれ有する第1及び第2のE型コアであって、前記直線状経路の両側で前記中央磁極部同士、前記第1の側部磁極部同士、及び前記第2の側部磁極部同士が相互に対向するように設定された第1及び第2のE型コアと、該第1及び第2のE型コアのうちの少なくとも一方に巻回されたソレノイドコイルと、を有し、
前記往復動部材は、前記第1及び第2のE型コアが前記ソレノイドコイルによって励磁されていない状態において、前記直線状経路の方向で前記第1及び第2のE型コアの前記中央磁極部と前記第1の側部磁極部との間に位置する第1の永久磁石と、前記中央磁極部と前記第2の側部磁極部との間に位置する第2の永久磁石とを有し、
前記第1の永久磁石はN極面が前記第1のE型コアに面しS極面が前記第2のE型コアに面するように配置され、前記第2の永久磁石はS極面が前記第1のE型コアに面しN極面が前記第2のE型コアに面するように配置されており、
前記第1の永久磁石は、前記中央磁極部に近接する位置での前記N極面とS極面との間の幅よりも前記第1の側部磁極部に近接する位置での前記N極面とS極面との間の幅の方が小さくされ、
前記第2の永久磁石は、前記中央磁極部に近接する位置での前記N極面とS極面との間の幅よりも前記第2の側部磁極部に近接する位置での前記N極面とS極面との間の幅の方が小さくされている、ダイアフラム式電磁往復動流体装置。
A reciprocating member connected to the diaphragm; and a drive unit that drives the reciprocating member to reciprocate along a linear path. The diaphragm is changed by the reciprocating motion of the reciprocating member to suck and exhaust the fluid. A diaphragm-type electromagnetic reciprocating fluid device adapted to
The driving unit includes a first magnetic pole part and a first magnetic pole part having a central magnetic pole part and first and second side magnetic pole parts arranged on both sides of the central magnetic pole part with a gap in the direction of the linear path. The E-type core is set so that the central magnetic pole portions, the first side magnetic pole portions, and the second side magnetic pole portions face each other on both sides of the linear path. First and second E-type cores, and a solenoid coil wound around at least one of the first and second E-type cores;
The reciprocating member includes the central magnetic pole portion of the first and second E type cores in the direction of the linear path in a state where the first and second E type cores are not excited by the solenoid coil. And a first permanent magnet located between the first side magnetic pole part and a second permanent magnet located between the central magnetic pole part and the second side magnetic pole part. ,
The first permanent magnet is arranged such that the N pole face faces the first E-type core and the S pole face faces the second E-type core, and the second permanent magnet is the S pole face. Is arranged so that it faces the first E-type core and the N pole face faces the second E-type core,
The first permanent magnet has the N pole at a position closer to the first side magnetic pole part than a width between the N pole face and the S pole face at a position close to the central magnetic pole part. The width between the face and the S pole face is reduced,
The second permanent magnet has the N pole at a position closer to the second side magnetic pole part than the width between the N pole face and the S pole face at a position close to the central magnetic pole part. A diaphragm electromagnetic reciprocating fluid device in which the width between the surface and the S pole surface is reduced.
前記第1の永久磁石は、前記中央磁極部の側に位置する幅広部分と、前記第1側部磁極部の側に位置し前記幅広部分よりも狭い幅とされた幅狭部分とを有し、
前記第2の永久磁石は、前記中央磁極部の側に位置する幅広部分と、前記第2側部磁極部の側に位置し前記幅広部分よりも狭い幅とされた幅狭部分とを有する、請求項1に記載のダイアフラム式電磁往復動流体装置。
The first permanent magnet has a wide portion positioned on the central magnetic pole portion side and a narrow portion positioned on the first side magnetic pole portion side and having a width narrower than the wide portion. ,
The second permanent magnet has a wide portion located on the side of the central magnetic pole portion, and a narrow portion located on the side of the second side magnetic pole portion and made narrower than the wide portion. The diaphragm electromagnetic reciprocating fluid device according to claim 1.
前記第1の永久磁石の前記N極面及びS極面が前記直線状経路の方向に対して傾斜して、前記N極面と前記S極面との間の幅が前記中央磁極部に近接する位置から前記第1の側部磁極部に近接する位置にまで連続的に小さくなるようにされ、
前記第2の永久磁石の前記N極面及びS極面が前記直線状経路の方向に対して傾斜して、前記N極面と前記S極面との間の幅が前記中央磁極部に近接する位置から前記第2の側部磁極部に近接する位置にまで連続的に小さくなるようにされた、請求項1に記載のダイアフラム式電磁往復動流体装置。
The N pole face and S pole face of the first permanent magnet are inclined with respect to the direction of the linear path, and the width between the N pole face and the S pole face is close to the central magnetic pole portion. From a position to be continuously reduced to a position close to the first side magnetic pole part,
The N pole face and S pole face of the second permanent magnet are inclined with respect to the direction of the linear path, and the width between the N pole face and the S pole face is close to the central magnetic pole portion. The diaphragm type electromagnetic reciprocating fluid device according to claim 1, wherein the diaphragm type electromagnetic reciprocating fluid device is continuously reduced from a position to a position close to the second side magnetic pole portion.
JP2013015234A 2013-01-30 2013-01-30 Diaphragm electromagnetic reciprocation fluid device Pending JP2014147248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013015234A JP2014147248A (en) 2013-01-30 2013-01-30 Diaphragm electromagnetic reciprocation fluid device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013015234A JP2014147248A (en) 2013-01-30 2013-01-30 Diaphragm electromagnetic reciprocation fluid device

Publications (1)

Publication Number Publication Date
JP2014147248A true JP2014147248A (en) 2014-08-14

Family

ID=51427074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013015234A Pending JP2014147248A (en) 2013-01-30 2013-01-30 Diaphragm electromagnetic reciprocation fluid device

Country Status (1)

Country Link
JP (1) JP2014147248A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3074620A1 (en) * 2017-12-05 2019-06-07 Ams R&D Sas ELECTRIC MOTOR

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3074620A1 (en) * 2017-12-05 2019-06-07 Ams R&D Sas ELECTRIC MOTOR
WO2019110694A1 (en) * 2017-12-05 2019-06-13 Ams R&D Sas Electric motor
CN111771319A (en) * 2017-12-05 2020-10-13 Ams R&D联合股份有限公司 Electric motor
US11791702B2 (en) 2017-12-05 2023-10-17 Ams R&D Sas Electric motor with stator and mobile armature with suspending leaf springs which prevent movement in transverse direction and is in airgap plane that is perpendicular to first loop plane

Similar Documents

Publication Publication Date Title
JP5502017B2 (en) Electromagnetic vibration type diaphragm pump
JP4603433B2 (en) Electromagnetic reciprocating fluid device
JP2003199311A (en) Linear vibrating actuator
US7819642B2 (en) Reciprocatory fluid pump
KR20010022929A (en) Magnetic actuator
JP2012070596A (en) Vibration type linear actuator
RU2006130012A (en) LINEAR DRIVE WITH AN ANCHOR WITH A MAGNETIC CARRIER
JP5800629B2 (en) Electromagnetic reciprocating fluid device
JP2009240044A (en) Electromagnetic actuator and electric shaver
JP2003339145A (en) Linear actuator
JP4188207B2 (en) pump
JP2009240046A (en) Electromagnetic actuator
JP2014147248A (en) Diaphragm electromagnetic reciprocation fluid device
JP5209672B2 (en) Electromagnetic reciprocating fluid device
US4886429A (en) Electromagnetic pump
JP2005245047A (en) Linear actuator
JPH0421075B2 (en)
JP2005133555A (en) Elastic vibrating plate fan
JP3975442B2 (en) Linear motor
JPH0642464A (en) Cylindrical type electromagnetic vibrating pump
JP2002112519A (en) Electromagnetially reciprocating driver
JP6555874B2 (en) Electromagnetic pump
JP2005261173A (en) Reciprocating linear driver
JPS62113873A (en) Magnetic circuit for electro-magnetic pump
JPH07310668A (en) Electromagnetic type air pump