JP2014146607A - Carbon material for lithium ion secondary battery - Google Patents

Carbon material for lithium ion secondary battery Download PDF

Info

Publication number
JP2014146607A
JP2014146607A JP2014077632A JP2014077632A JP2014146607A JP 2014146607 A JP2014146607 A JP 2014146607A JP 2014077632 A JP2014077632 A JP 2014077632A JP 2014077632 A JP2014077632 A JP 2014077632A JP 2014146607 A JP2014146607 A JP 2014146607A
Authority
JP
Japan
Prior art keywords
carbon material
electrode
lithium ion
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014077632A
Other languages
Japanese (ja)
Inventor
Shunsuke Yamada
俊介 山田
Hideji Sato
秀治 佐藤
Keita Yamaguchi
慶太 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2014077632A priority Critical patent/JP2014146607A/en
Publication of JP2014146607A publication Critical patent/JP2014146607A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】初期サイクル時にみられる充放電不可逆容量及び充放電初期サイクルに伴う電極の膨れがともに十分小さく、充放電負荷特性及びサイクル特性に優れたリチウムイオン二次電池を得ることが可能な負極材料を提供する。
【解決手段】リチウムイオンを吸蔵・放出することが可能な炭素材料が次の要件(1)〜(3)、更には(4)を満たすリチウムイオン二次電池用炭素材料である。
(1)該炭素材料にバインダーを加え、金属製集電体に塗布、乾燥後、電極密度が1.7g/cmになるように作製された電極(a)において、広角X線回折測定より得られる格子面(110)と(004)に対応するピークの強度比R1.7=I(110)/I(004)が0.05〜0.2、
(2)該炭素材料にバインダーを加え、金属製集電体に塗布、乾燥して作製された電極(b)において、Rが0.14〜0.3、及び
(3)該電極(a)のピークの強度比(R1.7)と該電極(b)のピークの強度比(R)の比(R1.7/R)が0.35〜0.7であり、更に
(4)該炭素材料の広角X線回折測定により得られる格子面(110)と(004)に対応するピークの強度比R(=I(110)/I(004))が0.14〜0.3である。
【選択図】なし
A negative electrode material capable of obtaining a lithium ion secondary battery excellent in charge / discharge load characteristics and cycle characteristics, in which both the irreversible capacity of charge / discharge seen during the initial cycle and the swelling of the electrode accompanying the initial charge / discharge cycle are sufficiently small. I will provide a.
A carbon material capable of inserting and extracting lithium ions is a carbon material for a lithium ion secondary battery that satisfies the following requirements (1) to (3) and further (4).
(1) From the wide-angle X-ray diffraction measurement of the electrode (a) prepared so that the electrode density is 1.7 g / cm 3 after adding a binder to the carbon material, applying to a metal current collector and drying. The peak intensity ratio R 1.7 = I (110) / I (004) corresponding to the obtained lattice planes (110) and (004) is 0.05 to 0.2,
(2) In an electrode (b) prepared by adding a binder to the carbon material, applying the material to a metal current collector, and drying, R 0 is 0.14 to 0.3, and (3) the electrode (a ) Peak intensity ratio (R 1.7 ) and the peak intensity ratio (R 0 ) of the electrode (b) (R 1.7 / R 0 ) is 0.35 to 0.7, (4) The peak intensity ratio R c (= I (110) / I (004)) corresponding to the lattice planes (110) and (004) obtained by wide-angle X-ray diffraction measurement of the carbon material is 0.14 to 0.3.
[Selection figure] None

Description

本発明は、リチウムイオン二次電池に用いる炭素材料、この炭素材料を用いて形成された負極、この負極を有するリチウムイオン二次電池に関する。   The present invention relates to a carbon material used for a lithium ion secondary battery, a negative electrode formed using the carbon material, and a lithium ion secondary battery having the negative electrode.

近年、電子機器の小型化に伴い、高容量の二次電池に対する需要が高まってきている。特に、ニッケル・カドミウム電池や、ニッケル・水素電池に比べ、エネルギー密度がより高く、大電流充放電特性に優れたリチウムイオン二次電池が注目されている。リチウムイオン二次電池の高容量化は従来から広く検討されてきたが、近年のリチウムイオン二次電池に対する高性能化の要求はますます高まっており、更なる高容量化を達成することが求められている。   In recent years, demand for high-capacity secondary batteries has increased with the downsizing of electronic devices. In particular, lithium ion secondary batteries having higher energy density and excellent large current charge / discharge characteristics are attracting attention as compared to nickel / cadmium batteries and nickel / hydrogen batteries. High capacity lithium-ion secondary batteries have been widely studied, but the demand for higher performance of lithium-ion secondary batteries in recent years is increasing, and there is a need to achieve higher capacities. It has been.

リチウムイオン二次電池の負極材料としては、多くの場合、コストと耐久性の面で黒鉛材料や非晶質炭素に代表される炭素材料が用いられている。リチウムイオン二次電池を高容量化する方法として、電極密度を高くして限られた電池容積の中に出来るだけ多くの充放電活物質を詰め込む設計がなされている。   In many cases, a carbon material typified by a graphite material or amorphous carbon is used as a negative electrode material for a lithium ion secondary battery in terms of cost and durability. As a method for increasing the capacity of a lithium ion secondary battery, a design has been made in which as many charge / discharge active materials as possible are packed into a limited battery volume by increasing the electrode density.

負極材料に用いられる炭素材料は、充放電に伴うリチウムイオンの挿入・脱離により、体積膨張・収縮が起こる。この体積膨張は理論的にはC軸方向に約10%の膨張率を有すると算出される。   The carbon material used for the negative electrode material undergoes volume expansion / contraction due to insertion / extraction of lithium ions accompanying charge / discharge. This volume expansion is theoretically calculated to have an expansion rate of about 10% in the C-axis direction.

一般的に、黒鉛粒子は面内方向の結晶子(La)やC軸方向の結晶子(Lc)が数十nm以上である結晶子の多結晶体として構成されているが、このような黒鉛粒子中では各結晶子のC軸はほぼ同一方向に配向する傾向がある。また、このような黒鉛粒子にバインダーを加えて金属製集電体に塗布、乾燥、プレスすることにより作製した電極においては、各黒鉛粒子の各結晶子のC軸が金属製集電体の面方向に配向する傾向がある。   In general, graphite particles are formed as a polycrystal of crystallites having in-plane crystallites (La) and C-axis crystallites (Lc) of several tens of nanometers or more. In the grains, the C-axis of each crystallite tends to be oriented in almost the same direction. In addition, in an electrode prepared by adding a binder to such a graphite particle and applying, drying, and pressing the metal current collector, the C axis of each crystallite of each graphite particle is the surface of the metal current collector. There is a tendency to orient in the direction.

このような黒鉛粒子が金属製集電体の面方向に配向した電極では、リチウムイオンの挿入・脱離に伴う黒鉛粒子のC軸方向の体積膨張が金属製集電体の垂直方向の膨張に直接反映されるため、結果として負極の膨れ量が増大するという問題がある。   In an electrode in which such graphite particles are oriented in the plane direction of the metal current collector, the volume expansion in the C-axis direction of the graphite particles due to the insertion / extraction of lithium ions is related to the vertical expansion of the metal current collector. Since it is directly reflected, there is a problem that the amount of swelling of the negative electrode increases as a result.

特に角型タイプの電池の場合には、充放電に伴う負極膨れにより、電池ケースが厚さ方向に膨張する。そこで、電池膨れを見越してあらかじめ膨れを吸収する空隙容積を確保した電池設計を行うため、限られた電池容積を、活物質を詰め込むための容積として有効に利用することが不十分となり、結果として電池セル容量の低下が生じる。   In particular, in the case of a square type battery, the battery case expands in the thickness direction due to swelling of the negative electrode accompanying charge / discharge. Therefore, in anticipation of the battery bulge, in order to perform a battery design that secures a void volume that absorbs the bulge in advance, it becomes insufficient to effectively use the limited battery volume as a volume for stuffing the active material. The battery cell capacity is reduced.

また、黒鉛粒子が金属製集電体の面方向に配向することにより、前述のような電池のセル容量低下が生じるばかりでなく、電極表面において黒鉛結晶のベーサル面の存在比が大きくなると同時に、リチウムイオンのインターカレーションが起こる黒鉛結晶のエッジ面の存在比が小さくなる。このため、充放電反応時に、電解液と電極との界面におけるリチウムイオンの移動がスムーズに行われず、高速充放電特性の低下が生じたり、黒鉛結晶へのリチウムの吸蔵・放出の繰り返しによって発生するC軸方向の膨張・収縮による電極の劣化に起因するサイクル特性の低下が生じるなどの問題がある。   In addition, since the graphite particles are oriented in the plane direction of the metal current collector, not only the cell capacity of the battery is reduced as described above, but also the abundance ratio of the basal surface of the graphite crystal on the electrode surface is increased. The abundance ratio of the edge surface of the graphite crystal where lithium ion intercalation occurs is reduced. For this reason, during the charge / discharge reaction, lithium ions do not move smoothly at the interface between the electrolyte and the electrode, resulting in deterioration of the high-speed charge / discharge characteristics, or due to repeated insertion / extraction of lithium into the graphite crystal. There are problems such as deterioration of cycle characteristics due to electrode deterioration due to expansion / contraction in the C-axis direction.

この充放電に伴う負極膨れを抑制するために、負極活物質自体の結晶配向性を抑えることや電極上における活物質の配向を抑えることが提案されている。   In order to suppress the negative electrode swelling caused by charging / discharging, it has been proposed to suppress the crystal orientation of the negative electrode active material itself and to suppress the orientation of the active material on the electrode.

例えば、特許文献1には、鱗片状天然黒鉛粒子を改質処理することにより、円形度が高く、破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の特異な外観を有する黒鉛材料を作製し、黒鉛材料の結晶配向性をランダム化させる方法が開示されている。しかし、それらによっても上記課題は完全には改善されず、特に電極上における黒鉛粒子の配向の改善については何ら検討がされていない。   For example, Patent Document 1 discloses a graphite material having a unique appearance in a cabbage shape in which a roundness is high and a graphite section is directed in various directions by microscopic observation of a fractured surface by modifying scaly natural graphite particles. And a method for randomizing the crystal orientation of the graphite material is disclosed. However, the above-mentioned problems are not completely improved by these methods, and in particular, no investigation is made on improvement of the orientation of graphite particles on the electrode.

特許文献2には、電極上における黒鉛粒子の配向を抑制させた負極を用いる方法が開示されている。しかし、電極密度を変えることによる黒鉛粒子の配向性の変化については記載がなく、特に高密度の領域において黒鉛粒子が配向することに対する改善については検討がなされておらず、高密度電極へ適用するための対応は不十分といわざるを得ない。   Patent Document 2 discloses a method using a negative electrode in which the orientation of graphite particles on an electrode is suppressed. However, there is no description about the change in the orientation of the graphite particles by changing the electrode density, and there has been no study on the improvement of the orientation of the graphite particles particularly in the high-density region. Therefore, it must be said that the response is insufficient.

特許文献3には、黒鉛粒子と有機系結着材を含んで成る活物質層を有し、電極上における黒鉛粒子の配向を抑制させた負極を用いる方法が開示されている。ここでは、活物質層密度が1.5〜1.95g/cmという、比較的高密度の負極を作製した場合にも、電極上における黒鉛粒子の配向を抑制させることに成功している。しかし、電極を作製する際に水系結着材よりも極板強度に劣る有機系結着材を用いるため、極板の生産性に劣るという課題が未解決である。更に、極板強度を向上させるために、水系結着材を用いる場合よりも多量の有機系結着材を添加する必要があり、このため負極に含まれる活物質量が減少し、電池容量の低下を招くおそれがある。 Patent Document 3 discloses a method using a negative electrode having an active material layer containing graphite particles and an organic binder and suppressing the orientation of the graphite particles on the electrode. Here, even when a relatively high density negative electrode having an active material layer density of 1.5 to 1.95 g / cm 3 is produced, the orientation of graphite particles on the electrode is successfully suppressed. However, since an organic binder that is inferior in electrode plate strength to that of an aqueous binder is used when producing an electrode, the problem of inferior electrode plate productivity remains unresolved. Furthermore, in order to improve the electrode plate strength, it is necessary to add a larger amount of an organic binder than in the case of using an aqueous binder, which reduces the amount of active material contained in the negative electrode, and increases the battery capacity. There is a risk of lowering.

特開平11−263612号公報JP-A-11-263612 特開平11−154513号公報JP 11-154513 A 国際特許公開WO2005/069410International Patent Publication WO2005 / 066941

本発明は、かかる背景技術に鑑みてなされたものであり、その課題は初期サイクル時にみられる充放電不可逆容量及び充放電初期サイクルに伴う電極の膨れがともに十分小さく、高速充放電特性及びサイクル特性に優れたリチウムイオン二次電池を作製するための負極材料を提供し、その結果として、高容量で、高速充放電特性及びサイクル特性に優れたリチウムイオン二次電池を提供することにある。   The present invention has been made in view of the background art, and the problem is that both the charge / discharge irreversible capacity observed during the initial cycle and the swelling of the electrode accompanying the initial charge / discharge cycle are sufficiently small, and the high-speed charge / discharge characteristics and cycle characteristics The object is to provide a negative electrode material for producing a lithium ion secondary battery excellent in performance, and as a result, to provide a lithium ion secondary battery having a high capacity and excellent in high-speed charge / discharge characteristics and cycle characteristics.

本発明者らは、前記課題を解決すべく鋭意検討を行った結果、電極密度及び負極の配向性の指標(I(110)/I(004))が所定の関係を満たす炭素材料を負極活物質として用いることにより、高容量、且つ高速充放電特性やサイクル特性に優れたリチウムイオン二次電池が得られることを見出し、本発明に至った。   As a result of intensive studies to solve the above-described problems, the present inventors have determined that a carbon material satisfying a predetermined relationship between the electrode density and the negative electrode orientation index (I (110) / I (004)) is a negative electrode active material. It has been found that by using it as a substance, a lithium ion secondary battery having high capacity and excellent high-speed charge / discharge characteristics and cycle characteristics can be obtained, and the present invention has been achieved.

すなわち本発明の要旨は以下のとおりである。   That is, the gist of the present invention is as follows.

(発明1)リチウムイオンを吸蔵・放出することが可能な炭素材料が次の要件(1)〜(3)を満たすことを特徴とするリチウムイオン二次電池用炭素材料:
(1)該炭素材料にバインダーを加え、金属製集電体に塗布、乾燥後、電極密度が1.7g/cmになるように作製された電極(a)において、広角X線回折測定より得られる格子面(110)と(004)に対応するピークの強度比R1.7=I(110)/I(004)が0.05〜0.2、
(2)該炭素材料にバインダーを加え、金属製集電体に塗布、乾燥して作製された電極(b)において、広角X線回折測定より得られる格子面(110)と(004)に対応するピークの強度比R=I(110)/I(004)が0.14〜0.3、及び
(3)該電極(a)のピークの強度比(R1.7)と該電極(b)のピークの強度比(R)の比(R1.7/R)が0.35〜0.7。
(Invention 1) A carbon material for a lithium ion secondary battery, wherein the carbon material capable of inserting and extracting lithium ions satisfies the following requirements (1) to (3):
(1) From the wide-angle X-ray diffraction measurement of the electrode (a) prepared so that the electrode density is 1.7 g / cm 3 after adding a binder to the carbon material, applying to a metal current collector and drying. The peak intensity ratio R 1.7 = I (110) / I (004) corresponding to the obtained lattice planes (110) and (004) is 0.05 to 0.2,
(2) In the electrode (b) produced by adding a binder to the carbon material, applying to a metal current collector, and drying, corresponding to the lattice planes (110) and (004) obtained by wide-angle X-ray diffraction measurement The peak intensity ratio R 0 = I (110) / I (004) is 0.14 to 0.3, and (3) the peak intensity ratio (R 1.7 ) of the electrode (a) and the electrode ( The ratio (R 1.7 / R 0 ) of the peak intensity ratio (R 0 ) of b) is 0.35 to 0.7.

(発明2)該炭素材料が更に次の要件(4)を満たす、リチウムイオン二次電池用炭素材料:
(4)該炭素材料の広角X線回折測定により得られる格子面(110)と(004)に対応するピークの強度比R(=I(110)/I(004))が0.14〜0.3。
(Invention 2) A carbon material for a lithium ion secondary battery, wherein the carbon material further satisfies the following requirement (4):
(4) The peak intensity ratio R c (= I (110) / I (004)) corresponding to the lattice planes (110) and (004) obtained by wide-angle X-ray diffraction measurement of the carbon material is 0.14 to 0.3.

(発明3)該炭素材料に水系バインダーを加え、金属製集電体に塗布、乾燥して作製された電極が上記発明1の要件(1)〜(3)を満たす、リチウムイオン二次電池用炭素材料。 (Invention 3) An electrode prepared by adding a water-based binder to the carbon material and applying and drying it on a metal current collector satisfies the requirements (1) to (3) of the invention 1 above. Carbon material.

(発明4)該炭素材料が天然黒鉛を球形化処理したものであり、BET比表面積(SA)が4〜11m/g、タップ密度が0.95〜1.15g/cm、平均円形度が0.9以上、且つラマンR値が0.15〜0.4である、リチウムイオン二次電池用炭素材料。 (Invention 4) The carbon material is obtained by spheroidizing natural graphite, has a BET specific surface area (SA) of 4 to 11 m 2 / g, a tap density of 0.95 to 1.15 g / cm 3 , and an average circularity. Is 0.9 or more, and the Raman R value is 0.15-0.4, The carbon material for lithium ion secondary batteries.

(発明5)該炭素材料粒子の体積基準平均粒径(d50)が5〜40μmである、リチウムイオン二次電池用炭素材料。 (Invention 5) A carbon material for a lithium ion secondary battery, wherein the volume-based average particle diameter (d50) of the carbon material particles is 5 to 40 μm.

(発明6)該球形化黒鉛が、鱗片状の天然黒鉛が折りたたまれる、もしくは周囲エッジ部分が球形粉砕されることにより球状とされた母体粒子に微粉が付着してなるものであり、フロー式粒子像分析装置により該炭素材料粒子について測定した粒子径と粒子個数頻度が、次の要件(1)、(2)を満たす、リチウムイオン二次電池用炭素材料:
(1)28kHzの超音波を出力60Wで10分間照射した該炭素材料粒子において、粒径5μm以下の粒子個数頻度が40〜85%、及び
(2)28kHzの超音波を出力60Wで10分間照射した該炭素材料粒子において、粒径0.6〜0.7μmの粒子個数頻度と、粒径0.7〜5μmの粒子個数頻度の比(0.6〜0.7μmの粒子個数頻度/0.7〜5μmの粒子個数頻度)が0.4〜0.7。
(Invention 6) The spheroidized graphite is formed by adhering fine powder to base particles which are made spherical by pulverizing natural graphite in a scale shape or by pulverizing the peripheral edge part into spherical particles. A carbon material for a lithium ion secondary battery in which the particle diameter and particle number frequency measured for the carbon material particles with an image analyzer satisfy the following requirements (1) and (2):
(1) In the carbon material particles irradiated with 28 kHz ultrasonic waves at 60 W for 10 minutes, the number frequency of particles having a particle diameter of 5 μm or less is 40 to 85%, and (2) 28 kHz ultrasonic waves are irradiated at 60 W for 10 minutes. In the carbon material particles, the ratio of the particle number frequency of 0.6 to 0.7 μm and the particle number frequency of 0.7 to 5 μm (particle number frequency of 0.6 to 0.7 μm / 0.0. The particle frequency of 7-5 μm) is 0.4-0.7.

(発明7)集電体と、該集電体上に形成された活物質層とを備えると共に、該活物質層が、上記の炭素材料を含有する、リチウムイオン二次電池用負極。 (Invention 7) A negative electrode for a lithium ion secondary battery comprising a current collector and an active material layer formed on the current collector, wherein the active material layer contains the carbon material described above.

(発明8)リチウムイオンを吸蔵・放出可能な正極及び負極、並びに、電解質を備えると共に、該負極が、上記のリチウムイオン二次電池用負極である、リチウムイオン二次電池。 (Invention 8) A lithium ion secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and an electrolyte, wherein the negative electrode is the above-described negative electrode for a lithium ion secondary battery.

本発明の炭素材料をリチウムイオン二次電池用の活物質として用いることにより、高容量で、高速充放電特性及びサイクル特性に優れたリチウムイオン二次電池を提供することができるという優れた効果を奏する。   By using the carbon material of the present invention as an active material for a lithium ion secondary battery, an excellent effect of being able to provide a lithium ion secondary battery having high capacity and excellent high-speed charge / discharge characteristics and cycle characteristics can be provided. Play.

以下、本発明の内容を詳細に述べる。なお、以下に記載する本発明の構成要件についての説明は、本発明の実施態様の一例、代表例であり、本発明はその要旨から逸脱しない限り、これらの実施態様に限定されるものではない。   Hereinafter, the contents of the present invention will be described in detail. The description of the constituent features of the present invention described below is an example and a representative example of embodiments of the present invention, and the present invention is not limited to these embodiments unless departing from the gist thereof. .

本発明のリチウムイオン二次電池用炭素材料は、リチウムイオンを吸蔵・放出することが可能な炭素材料が次の要件(1)〜(3)、及び更に(4)を満たす。   In the carbon material for a lithium ion secondary battery of the present invention, the carbon material capable of occluding and releasing lithium ions satisfies the following requirements (1) to (3) and (4).

(1)該炭素材料にバインダーを加え、金属製集電体に塗布、乾燥後、電極密度が1.7g/cmになるように作製された電極(a)において、広角X線回折測定より得られる格子面(110)と(004)に対応するピークの強度比R1.7=I(110)/I(004)が0.05〜0.2である。
(2)該炭素材料にバインダーを加え、金属製集電体に塗布、乾燥して作製された電極(b)において、広角X線回折測定より得られる格子面(110)と(004)に対応するピークの強度比R=I(110)/I(004)が0.14〜0.3である。
(3)該電極(a)のピークの強度比(R1.7)と該電極(b)のピークの強度比(R)の比(R1.7/R)が0.35〜0.7である。
(4)該炭素材料の広角X線回折測定により得られる格子面(110)と(004)に対応するピークの強度比R(=I(110)/I(004))が0.14〜0.3である。
(1) From the wide-angle X-ray diffraction measurement of the electrode (a) prepared so that the electrode density is 1.7 g / cm 3 after adding a binder to the carbon material, applying to a metal current collector and drying. The peak intensity ratio R 1.7 = I (110) / I (004) corresponding to the obtained lattice planes (110) and (004) is 0.05 to 0.2.
(2) In the electrode (b) produced by adding a binder to the carbon material, applying to a metal current collector, and drying, corresponding to the lattice planes (110) and (004) obtained by wide-angle X-ray diffraction measurement The peak intensity ratio R 0 = I (110) / I (004) is 0.14 to 0.3.
(3) The ratio (R 1.7 / R 0 ) of the peak intensity ratio (R 1.7 ) of the electrode (a) to the peak intensity ratio (R 0 ) of the electrode (b) is 0.35 to 0.7.
(4) The peak intensity ratio R c (= I (110) / I (004)) corresponding to the lattice planes (110) and (004) obtained by wide-angle X-ray diffraction measurement of the carbon material is 0.14 to 0.3.

負極シートの作製方法
本発明の炭素材料を負極材料として用い、活物質層密度1.70±0.03g/cmの活物質層を有する極板を作製した。具体的には、負極材料20.00±0.02gに、1質量%カルボキシメチルセルロースナトリウム塩水溶液を20.00±0.02g(固形分換算で0.200g)、及び重量平均分子量27万のスチレン・ブタジエンゴム水性ディスパージョン0.50±0.05g(固形分換算で0.2g)を、キーエンス製ハイブリッドミキサーで5分間撹拌し、30秒脱泡してスラリーを得た。
Method for Producing Negative Electrode Sheet Using the carbon material of the present invention as a negative electrode material, an electrode plate having an active material layer with an active material layer density of 1.70 ± 0.03 g / cm 3 was produced. Specifically, 20.00 ± 0.02 g of a negative electrode material, 20.00 ± 0.02 g of a 1% by mass aqueous solution of carboxymethylcellulose sodium salt (0.200 g in terms of solid content), and styrene having a weight average molecular weight of 270,000 -Aqueous dispersion of butadiene rubber 0.50 ± 0.05 g (0.2 g in terms of solid content) was stirred for 5 minutes with a hybrid mixer manufactured by Keyence, and defoamed for 30 seconds to obtain a slurry.

このスラリーを、集電体である厚さ18μmの銅箔上に、負極材料が11.8±0.1mg/cm付着するように、ドクターブレードを用いて幅5cmに塗布し、室温で風乾を行った後、110℃で30分乾燥して未加工状態の極板を得た。次に、直径20cmのローラを用いて、活物質層の密度が1.70±0.03g/cmになるようロールプレスして、負極シートを得た。なお、上記数値の活物質層の密度を得るために、プレス加工に代えて圧延加工であっても良い。 This slurry was applied to a width of 5 cm using a doctor blade so that the negative electrode material was 11.8 ± 0.1 mg / cm 2 on a 18 μm-thick copper foil as a current collector, and air-dried at room temperature. Then, it was dried at 110 ° C. for 30 minutes to obtain an unprocessed electrode plate. Next, it roll-pressed using the roller of diameter 20cm so that the density of an active material layer might be 1.70 +/- 0.03g / cm < 3 >, and the negative electrode sheet was obtained. In order to obtain the above-mentioned numerical value of the active material layer density, a rolling process may be used instead of the pressing process.

負極シート作製には結着材として水系結着材を用いることが好ましい。例えば、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン−アクリル酸共重合体及びエチレン−メタクリル酸共重合体等の水系結着材が挙げられる。これは、有機系結着材を用いると極板強度が低下するおそれがあり、通常、極板強度を向上させるためには水系結着材を用いる場合よりも多量の有機系結着材を添加する必要がある。このため、負極に含まれる活物質量が減少し、電池容量の低下を招くことになりやすいからである。   For the production of the negative electrode sheet, an aqueous binder is preferably used as the binder. Examples thereof include water-based binders such as styrene / butadiene rubber, isoprene rubber, butadiene rubber, ethylene-acrylic acid copolymer, and ethylene-methacrylic acid copolymer. This is because there is a risk that the electrode plate strength may decrease when an organic binder is used. In order to improve the electrode plate strength, a larger amount of organic binder is usually added than when an aqueous binder is used. There is a need to. For this reason, the amount of the active material contained in the negative electrode is reduced, and the battery capacity is likely to be reduced.

黒鉛結晶配向比(I(110)/I(004))
(イ)測定方法
・極板上黒鉛結晶配向比
上記極板作製方法により作製した極板について、X線回折により極板上の黒X線回折により極板上の黒鉛の(110)面と(004)面とのチャートを測定し、測定したチャートについて、プロファイル関数として非対称ピアソンVIIを用いて、フィッティングすることによりピーク分離を行ない、(110)面と(004)面のピークの積分強度を算出した。得られた積分強度から、「(110)面積分強度/(004)面積分強度」、すなわちI(110)/I(004)で表わされる比率を算出し、この比率を極板上黒鉛結晶配向比と定義した。この配向比は、未加工状態の電極(b)及び活物質層の密度を1.70±0.03g/cmになるようロールプレスした後の電極(a)の両方で測定し、各々をR、R1.7とした。ここで、極板上黒鉛結晶配向比とは、電極の厚み方向に対する、黒鉛結晶の六角網面の配向の程度を表す指標である。配向比が大きいほど、粒子の黒鉛結晶六角網面の方向が揃っていない状態を表す。
Graphite crystal orientation ratio (I (110) / I (004))
(I) Measurement method: Graphite crystal orientation ratio on the electrode plate The electrode plate prepared by the electrode plate preparation method described above was subjected to black X-ray diffraction on the electrode plate by X-ray diffraction and (110) plane of graphite on the electrode plate ( The (004) plane is measured, and the measured chart is fitted using asymmetric Pearson VII as a profile function to perform peak separation, and the integrated intensity of the (110) plane and (004) plane peaks is calculated. did. From the obtained integrated intensity, a ratio represented by “(110) area intensity / (004) area intensity”, that is, a ratio represented by I (110) / I (004) is calculated, and this ratio is calculated based on the graphite crystal orientation on the electrode plate. Defined as ratio. This orientation ratio was measured on both the unprocessed electrode (b) and the electrode (a) after being roll-pressed so that the density of the active material layer was 1.70 ± 0.03 g / cm 3. R 0 and R 1.7 were set. Here, the graphite crystal orientation ratio on the electrode plate is an index representing the degree of orientation of the hexagonal network surface of the graphite crystal with respect to the thickness direction of the electrode. The larger the orientation ratio, the more inconsistent the direction of the graphite crystal hexagonal network plane of the particles.

・炭素材料(粉体)配向比
黒鉛粉末試料0.5gを加圧セルに入れ、600Kgf/cmで5秒間加圧し、ペレット状に成型した試料について、上記極板上黒鉛結晶配向比の算出方法と同様にしてI(110)/I(004)を測定し、これをRとした。
Carbon material (powder) orientation ratio 0.5 g of graphite powder sample is put in a pressure cell, pressed at 600 Kgf / cm 2 for 5 seconds, and the above-mentioned graphite crystal orientation ratio on the electrode plate is calculated for a pellet shape. in the same manner as to measure the I (110) / I (004 ), which was used as a R c.

ここで、X線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :発散スリット=1度、受光スリット=0.1mm、散乱スリット=1度
・測定範囲及びステップ角度/計測時間:
(110)面:76.5度≦2θ≦78.5度 0.01度/3秒
(004)面:53.5度≦2θ≦56.0度 0.01度/3秒
・試料調製 :ガラス板に0.1mm厚さの両面テープで所定極板を固定
Here, the X-ray diffraction measurement conditions are as follows. “2θ” indicates a diffraction angle.
-Target: Cu (Kα ray) graphite monochromator-Slit: Divergence slit = 1 degree, Receiving slit = 0.1 mm, Scattering slit = 1 degree-Measurement range and step angle / measurement time:
(110) plane: 76.5 degrees ≦ 2θ ≦ 78.5 degrees 0.01 degrees / 3 seconds (004) plane: 53.5 degrees ≦ 2θ ≦ 56.0 degrees 0.01 degrees / 3 seconds Sample preparation: A predetermined plate is fixed to a glass plate with double-sided tape of 0.1 mm thickness.

(ロ)本発明の範囲
(1)上記の極板作製方法により、電極密度1.7g/cmに調整された電極(a)を作製したとき、該電極の広角X線回折測定より得られる格子面(110)と(004)に対応するピークの強度比(極板上黒鉛結晶配向比)R1.7=I(110)/I(004)は0.05〜0.20であり、好ましくは0.06以上であり、また、好ましくは0.15以下、より好ましくは0.10以下である。
(B) Scope of the present invention (1) When the electrode (a) adjusted to an electrode density of 1.7 g / cm 3 is produced by the above electrode plate production method, it is obtained from wide-angle X-ray diffraction measurement of the electrode. The intensity ratio (graphite crystal orientation ratio on the electrode plate) R 1.7 = I (110) / I (004) corresponding to the lattice planes (110) and (004) is 0.05 to 0.20, Preferably it is 0.06 or more, preferably 0.15 or less, more preferably 0.10 or less.

(2)上記極板作製方法により未加工の電極(b)を作製したとき、該電極の広角X線回折測定より得られる格子面(110)と(004)に対応するピークの強度比(極板上黒鉛結晶配向比)R=I(110)/I(004)は0.14〜0.3であり、好ましくは0.15以上、より好ましくは0.16以上であり、また、好ましくは0.25以下、より好ましくは0.20以下である。 (2) When an unprocessed electrode (b) is manufactured by the above electrode plate manufacturing method, the intensity ratio of the peaks corresponding to the lattice planes (110) and (004) obtained by wide-angle X-ray diffraction measurement of the electrode (electrode) On-plate graphite crystal orientation ratio) R 0 = I (110) / I (004) is 0.14 to 0.3, preferably 0.15 or more, more preferably 0.16 or more, and preferably Is 0.25 or less, more preferably 0.20 or less.

極板上黒鉛結晶配向比R1.7、が本発明の下限値0.05、0.14をそれぞれ下回ると、電池を作製したときの電池充電時の電極膨張が大きくなるので、電極の単位体積当たりの電池容量を大きくすることが難しい。このため、サイクル試験中の膨張収縮に起因する活物質の脱落等によりサイクル特性が低下しやすく、更にはリチウムイオンのインターカレーションが起こる黒鉛結晶のエッジ面の存在比が電極表面において小さくなるため、充放電反応時に電解液と電極との界面でリチウムイオンがスムーズに移動できずに高速充放電特性の低下が生じる。一方、極板上黒鉛結晶配向比R1.7、が本発明の上限値0.2、0.3をそれぞれ上回ると、黒鉛粒子の基底面が特定の方向に配向せずに等方的に存在した電極となるため、各黒鉛粒子間の接触による電子伝導が十分に得られず、高速充放電特性が低下しやすい。 When the graphite crystal orientation ratio R 1.7, R 0 on the electrode plate is lower than the lower limit values 0.05, 0.14 of the present invention, the electrode expansion during battery charging when the battery is produced increases. It is difficult to increase the battery capacity per unit volume. For this reason, the cycle characteristics are liable to deteriorate due to dropping of the active material due to expansion and contraction during the cycle test, and the abundance ratio of the edge surface of the graphite crystal where lithium ion intercalation occurs is reduced on the electrode surface. During the charge / discharge reaction, lithium ions cannot move smoothly at the interface between the electrolyte and the electrode, resulting in a decrease in high-speed charge / discharge characteristics. On the other hand, when the graphite crystal orientation ratios R 1.7 and R 0 on the electrode plate exceed the upper limit values 0.2 and 0.3 of the present invention, the basal plane of the graphite particles is isotropic without being oriented in a specific direction. Therefore, the electron conduction due to the contact between the graphite particles cannot be sufficiently obtained, and the high-speed charge / discharge characteristics are likely to be deteriorated.

(3)上記極板作製方法により作製した、電極密度1.7g/cmに調整した電極(a)と未加工の電極(b)の広角X線回折測定より得られる格子面(110)と(004)に対応するピークの強度比の比(R1.7/R)は0.35〜0.7であり、好ましくは0.36以上であり、また、好ましくは0.6以下、より好ましくは0.5以下である。R1.7/Rが本発明の下限値0.35を下回ると、電極をプレス(圧延)することにより電極上の黒鉛粒子の基底面が集電体の面方向に配向しやすくなる。このため、電池充電時の電極膨張が大きくなるので、電極の単位体積当たりの電池容量を大きくすることが難しい。また、サイクル試験中の膨張収縮に起因する活物質の脱落等によりサイクル特性が低下しやすく、更にはリチウムイオンのインターカレーションが起こる黒鉛結晶のエッジ面の存在比が電極表面において小さくなるため、充放電反応時に電解液と電極との界面でリチウムイオンがスムーズに移動できずに高速充放電特性の低下が生じる。一方、R1.7/Rが本発明の上限値0.7を上回ると、プレス(圧延)により電極の活物質充填密度を上げ難くなる場合がある。 (3) A lattice plane (110) obtained by wide-angle X-ray diffraction measurement of an electrode (a) adjusted to an electrode density of 1.7 g / cm 3 and an unprocessed electrode (b) prepared by the above electrode plate manufacturing method The ratio (R 1.7 / R 0 ) of the peak intensity ratio corresponding to (004) is 0.35 to 0.7, preferably 0.36 or more, and preferably 0.6 or less, More preferably, it is 0.5 or less. When R 1.7 / R 0 is less than the lower limit of 0.35 of the present invention, the basal plane of the graphite particles on the electrode is easily oriented in the surface direction of the current collector by pressing (rolling) the electrode. For this reason, since the electrode expansion at the time of battery charging becomes large, it is difficult to increase the battery capacity per unit volume of the electrode. In addition, the cycle characteristics are liable to deteriorate due to the dropping of the active material due to expansion and contraction during the cycle test, and further, the abundance ratio of the edge surface of the graphite crystal where lithium ion intercalation occurs becomes small on the electrode surface. During the charge / discharge reaction, lithium ions cannot move smoothly at the interface between the electrolyte and the electrode, resulting in a decrease in high-speed charge / discharge characteristics. On the other hand, if R 1.7 / R 0 exceeds the upper limit of 0.7 of the present invention, it may be difficult to increase the active material packing density of the electrode by pressing (rolling).

本発明は更に、該炭素材料自体が更に次の要件(4)を満たすリチウムイオン二次電池用炭素材料である。
(4)該炭素材料の広角X線回折測定により得られる格子面(110)と(004)に対応するピークの強度比(極板上黒鉛結晶配向比)R(=I(110)/I(004))は、0.14〜0.3 であることが好ましく、より好ましくは0.15以上、更に好ましくは0.16以上であり、また、より好ましくは0.25以下、更に好ましくは0.20以下である。炭素材料の配向比Rが本発明の下限値0.14を下回ると、電池を作製したときの電池充電時の電極膨張が大きくなるので、電極の単位体積当たりの電池容量を大きくするのが困難になる傾向がある。また、サイクル試験中の膨張収縮に起因する活物質の脱落等によりサイクル特性が低下しやすく、更にはリチウムイオンのインターカレーションが起こる黒鉛結晶のエッジ面の存在比が電極表面において小さくなるため、充放電反応時に電解液と電極との界面でリチウムイオンがスムーズに移動できずに高速充放電特性の低下が生じる傾向がある。一方、炭素材料の配向比Rが本発明の上限値0.3を上回ると、黒鉛粒子の基底面が特定の方向に配向せずに等方的に存在した電極となるため、各黒鉛粒子間の接触による電子伝導が十分に得られず、高速充放電特性が低下しやすく、更にプレスにより電極の活物質充填密度を上げ難くなる場合がある。
The present invention further relates to a carbon material for a lithium ion secondary battery, wherein the carbon material itself further satisfies the following requirement (4).
(4) The intensity ratio of the peaks corresponding to the lattice planes (110) and (004) obtained by wide-angle X-ray diffraction measurement of the carbon material (graphite crystal orientation ratio on the electrode plate) R c (= I (110) / I (004)) is preferably 0.14 to 0.3, more preferably 0.15 or more, further preferably 0.16 or more, more preferably 0.25 or less, still more preferably. It is 0.20 or less. When the orientation ratio R c of the carbon material is less than the lower limit 0.14 of the present invention, the electrode expansion increases during battery charging when a battery was prepared, and to increase the battery capacity per unit volume of the electrode Tend to be difficult. In addition, the cycle characteristics are liable to deteriorate due to the dropping of the active material due to expansion and contraction during the cycle test, and further, the abundance ratio of the edge surface of the graphite crystal where lithium ion intercalation occurs becomes small on the electrode surface. During the charge / discharge reaction, lithium ions cannot move smoothly at the interface between the electrolytic solution and the electrode, and the high-speed charge / discharge characteristics tend to deteriorate. On the other hand, when the orientation ratio R c of the carbon material exceeds the upper limit value 0.3 of the present invention, since the isotropically existed electrodes basal plane of the graphite particles without orientation in a specific direction, each graphite particle Electron conduction due to contact between the electrodes cannot be sufficiently obtained, the high-speed charge / discharge characteristics are likely to be deteriorated, and further, it may be difficult to increase the active material packing density of the electrode by pressing.

BET比表面積(SA)
(イ)測定方法
大倉理研社製比表面積測定装置「AMS8000」を用いて、窒素ガス吸着流通法によりBET1点法にて測定した。具体的には、試料(炭素材料)0.4gをセルに充填し、350℃に加熱して前処理を行った後、液体窒素温度まで冷却して、窒素30%、He70%のガスを飽和吸着させ、その後室温まで加熱して脱着したガス量を計測し、得られた結果から、通常のBET法により比表面積を算出した。
BET specific surface area (SA)
(I) Measuring method Using a specific surface area measuring device “AMS8000” manufactured by Okura Riken Co., Ltd., the BET one-point method was measured by a nitrogen gas adsorption flow method. Specifically, 0.4 g of a sample (carbon material) is filled in a cell, heated to 350 ° C., pretreated, cooled to liquid nitrogen temperature, and saturated with 30% nitrogen and 70% He gas. The amount of gas adsorbed and then heated to room temperature and desorbed was measured, and the specific surface area was calculated from the obtained results by a normal BET method.

(ロ)好ましい範囲
本発明の炭素材料のBET法で測定した比表面積については、4m/g以上11m/g以下を満たすことが好ましい。通常4m/g以上、好ましくは5m/g以上である。また、通常11m/g以下、好ましくは9m/g以下、より好ましくは8m/g以下である。比表面積が4m/gを下回ると、Liが出入りする部位が少なく、高速充放電特性出力特性に劣り、一方、比表面積が11m/gを上回ると、活物質の電解液に対する活性が過剰になり、初期不可逆容量が大きくなるため、高容量電池の製造が困難になる傾向がある。
(Ii) Preferred range for the measured specific surface area by the BET method of the carbon material of the present invention preferably satisfies the 4m 2 / g or more 11m 2 / g or less. Usually 4 m 2 / g or more, preferably 5 m 2 / g or more. Moreover, it is 11 m < 2 > / g or less normally, Preferably it is 9 m < 2 > / g or less, More preferably, it is 8 m < 2 > / g or less. When the specific surface area is below 4m 2 / g, less sites Li enters and exits, poor high-speed charge-discharge characteristics output characteristics, whereas, if the specific surface area exceeds 11m 2 / g, the activity is excessive for the electrolyte of the active material Therefore, since the initial irreversible capacity increases, it tends to be difficult to manufacture a high capacity battery.

平均円形度
(イ)平均円形度の定義
平均円形度は、測定対象(複合黒鉛粒子)0.2gを界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2体積%水溶液50mLに混合し、フロー式粒子像分析装置「シスメックスインダストリアル社製FPIA−2000」を用い、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6〜400μmに指定し、粒径10〜40μmの範囲の粒子について測定した下記式で与えられる円形度の値の平均値として定義される。
円形度=粒子投影面積と同じ面積の円の周長/粒子投影像の周長
Average circularity (a) Definition of average circularity The average circularity is 0.2 g of a 0.2 vol% aqueous solution of polyoxyethylene (20) sorbitan monolaurate, which is a surfactant, to be measured (composite graphite particles) 0.2 g. And using a flow particle image analyzer “FPIA-2000 manufactured by Sysmex Industrial Co., Ltd.”, after irradiating a 28 kHz ultrasonic wave at an output of 60 W for 1 minute, the detection range is specified as 0.6 to 400 μm, It is defined as the average value of circularity values given by the following formula measured for particles in the range of 10 to 40 μm.
Circularity = circumference of a circle with the same area as the projected particle area / circumference of the projected particle image

(ロ)好ましい範囲
本発明における電極(a)において、平均円形度は0.85以上が好ましく、より好ましくは0.90以上である。平均円形度が0.85を下回ると、黒鉛粒子の基底面が電極上の特定の方向に配向することにより電池充電時の電極膨張が大きくなる。このため、電極の単位体積当たりの電池容量を大きくすることが難しくなる傾向がある。また、サイクル試験中の膨張収縮に起因する活物質の脱落等によりサイクル特性が低下しやすく、更にはリチウムイオンのインターカレーションが起こる黒鉛結晶のエッジ面の存在比が電極表面において小さくなるため、充放電反応時に電解液と電極界面でリチウムイオンがスムーズに移動できずに高速充放電特性の低下が生じる傾向がある。
(B) Preferred range In the electrode (a) in the present invention, the average circularity is preferably 0.85 or more, more preferably 0.90 or more. When the average circularity is less than 0.85, the basal plane of the graphite particles is oriented in a specific direction on the electrode, thereby increasing the electrode expansion during battery charging. For this reason, it tends to be difficult to increase the battery capacity per unit volume of the electrode. In addition, the cycle characteristics are liable to deteriorate due to the dropping of the active material due to expansion and contraction during the cycle test, and further, the abundance ratio of the edge surface of the graphite crystal where lithium ion intercalation occurs becomes small on the electrode surface. During the charge / discharge reaction, lithium ions cannot move smoothly at the interface between the electrolyte and the electrode, and the high-speed charge / discharge characteristics tend to deteriorate.

タップ密度
(イ)タップ密度の定義
本発明において、タップ密度は、粉体密度測定器である(株)セイシン企業社製「タップデンサーKYT−4000」を用い、直径1.6cm、体積容量20cmの円筒状タップセルに、目開き300μmの篩を通して、炭素材料を落下させて、セルに満杯に充填した後、ストローク長10mmのタップを1000回行なって、その時の体積と試料の重量から求めた密度をタップ密度として定義する。
Definitions The present invention tap density (i) tap density, tap density, a powder density measuring instrument (Inc.) Seishin using Enterprise Co., Ltd. "Tap Denser KYT-4000", diameter 1.6 cm, volume capacity 20 cm 3 The carbon material is dropped into a cylindrical tap cell of 300 μm through a sieve having an opening of 300 μm, and the cell is fully filled, and then a stroke with a stroke length of 10 mm is performed 1000 times, and the density obtained from the volume and the weight of the sample at that time Is defined as the tap density.

(ロ)好ましい範囲
本発明の炭素材料のタップ密度は、0.95g/cm以上が好ましく、1.0g/cm以上がより好ましい。また、1.15g/cm以下が好ましく、1.12g/cm以下がより好ましい。タップ密度が低すぎると、高速充放電特性に劣る傾向があり、タップ密度が高すぎると、粒子内炭素密度が上昇し、圧延性に欠け、高密度の負極シートを形成することが難しくなる場合がある。
(B) Preferred range The tap density of the carbon material of the present invention is preferably 0.95 g / cm 3 or more, and more preferably 1.0 g / cm 3 or more. And is preferably 1.15 g / cm 3 or less, 1.12 g / cm 3 or less is more preferable. If the tap density is too low, the high-speed charge / discharge characteristics tend to be inferior. If the tap density is too high, the intra-particle carbon density increases, the rollability is insufficient, and it becomes difficult to form a high-density negative electrode sheet. There is.

ラマンスペクトル
(イ)ラマンスペクトル測定方法
ラマン分光器:「日本分光社製ラマン分光器」で測定する。
測定対象粒子を測定セル内へ自然落下させて試料を充填し、測定セル内にアルゴンイオンレーザー光を照射しつつ、測定セルをこのレーザー光と垂直な面内で回転させながら以下の条件で測定を行なう。
・アルゴンイオンレーザー光の波長 :514.5nm
・試料上のレーザーパワー :25mW
・分解能 :4cm−1
・測定範囲 :1100cm−1〜1730cm−1
・ピーク強度測定、ピーク半値幅測定:バックグラウンド処理、スムージング処理(単純平均によるコンボリューション5ポイント)
Raman spectrum (a) Raman spectrum measurement method Raman spectrometer: Measured with "Raman spectrometer manufactured by JASCO Corporation".
Particles to be measured are naturally dropped into the measurement cell, filled with the sample, and measured with the following conditions while rotating the measurement cell in a plane perpendicular to the laser beam while irradiating the measurement cell with argon ion laser light. To do.
-Wavelength of argon ion laser light: 514.5nm
・ Laser power on the sample: 25 mW
・ Resolution: 4cm -1
Measurement range: 1100 cm −1 to 1730 cm −1
-Peak intensity measurement, peak half-width measurement: background processing, smoothing processing (convolution 5 points by simple average)

(ロ)好ましい範囲
得られたラマンスペクトルについて、1580cm−1付近のピークPの強度Iと、1360cm−1付近のピークPの強度Iとを測定し、その強度比R(R=I/I)を算出して、これを炭素材料のラマンR値と定義する。本発明の炭素材料のラマンR値は、0.15以上であることが好ましい。また、0.4以下であることが好ましく、0.3以下がより好ましい。ラマンR値が0.15を下回ると、粒子表面の結晶性が高くなり過ぎて、高密度化した場合に電極板と平行方向に結晶が配向し易くなり、負荷特性の低下を招く傾向がある。一方、0.4を上回ると、粒子表面の結晶が乱れ、電解液との反応性が増し、効率の低下やガス発生の増加を招く傾向がある。
(Ii) for the preferred range resulting Raman spectrum, the intensity I A of the peak P A in the vicinity of 1580 cm -1, and an intensity I B of a peak P B in the vicinity of 1360 cm -1 were measured, and the intensity ratio R (R = I B / I A ) is calculated and defined as the Raman R value of the carbon material. The Raman R value of the carbon material of the present invention is preferably 0.15 or more. Moreover, it is preferable that it is 0.4 or less, and 0.3 or less is more preferable. When the Raman R value is less than 0.15, the crystallinity of the particle surface becomes too high, and when the density is increased, the crystal tends to be oriented in a direction parallel to the electrode plate, and the load characteristics tend to be lowered. . On the other hand, if it exceeds 0.4, the crystal on the particle surface is disturbed, the reactivity with the electrolytic solution increases, and the efficiency tends to decrease and the generation of gas tends to increase.

粒径
(イ)測定方法
界面活性剤であるポリオキシエチレンソルビタンモノラウレート(例として、ツィーン20(登録商標))の0.2質量%水溶液10mLに、炭素材料0.01gを懸濁させ、市販のレーザー回折/散乱式粒度分布測定装置「HORIBA製LA−920」に導入し、28kHzの超音波を出力60Wで1分間照射した後、測定装置における体積基準のメジアン径として測定したものを、本発明における炭素材料粒子の体積基準平均粒径d50と定義する。
Particle Size (I) Measuring Method 0.01 g of carbon material is suspended in 10 mL of 0.2% by mass aqueous solution of polyoxyethylene sorbitan monolaurate (for example, Tween 20 (registered trademark)) which is a surfactant. What was measured as a volume-based median diameter in a measuring apparatus after being introduced into a commercially available laser diffraction / scattering type particle size distribution measuring apparatus “LA-920 made by HORIBA” and irradiated with an ultrasonic wave at 28 kHz for 1 minute, The volume-based average particle diameter d50 of the carbon material particles in the present invention is defined.

(ロ)好ましい範囲
d50は、通常40μm以下、好ましくは30μm以下、更に好ましくは25μm以下、通常5μm以上、好ましくは10μm以上、更に好ましくは15μm以上である。粒径が40μmを超えると極板化した際に、筋引きなどの工程上の不都合が出る場合があり、また、粒径が5μmを下回ると、表面積が大きくなりすぎ電解液との活性を抑制することが難しくなる傾向がある。
(B) Preferred range d50 is usually 40 μm or less, preferably 30 μm or less, more preferably 25 μm or less, usually 5 μm or more, preferably 10 μm or more, more preferably 15 μm or more. If the particle size exceeds 40 μm, inconveniences such as striping may occur when the electrode plate is formed. If the particle size is less than 5 μm, the surface area becomes too large and the activity with the electrolyte is suppressed. Tend to be difficult to do.

粒子個数頻度
(イ)測定方法
界面活性剤であるポリオキシエチレンソルビタンモノラウレート(例として、ツィーン20(登録商標))の0.2体積%水溶液50mLに炭素材料0.2gを混合し、フロー式粒子像分析装置「シスメックスインダストリアル社製FPIA−2000」を用い、28kHzの超音波を出力60Wで所定時間照射した後、検出範囲を0.6〜400μmに指定して、粒子個数を測定した。
Particle Number Frequency (I) Measuring Method A carbon material 0.2 g is mixed with 50 mL of a 0.2 vol% aqueous solution of polyoxyethylene sorbitan monolaurate (for example, Tween 20 (registered trademark)) which is a surfactant, and flow Using a chemical particle image analyzer “FPIA-2000 manufactured by Sysmex Industrial Co., Ltd.”, 28 kHz ultrasonic waves were irradiated at an output of 60 W for a predetermined time, and then the detection range was specified as 0.6 to 400 μm, and the number of particles was measured.

(ロ)好ましい範囲
(1)28kHzの超音波を出力60Wで10分間照射した該炭素材料粒子の粒径5μm以下の粒子個数頻度は、通常40%以上、好ましくは50%以上、更に好ましくは55%以上、通常85%以下、好ましくは75%以下、更に好ましくは70%以下である。粒子個数頻度が40%を下回ると、Liが出入りする部位が少なく、高速充放電特性に劣る傾向がある。一方、粒子個数頻度が85%を上回るような粒子表面に付着した微粉が剥離しやすい炭素材料においては、電極を圧延した際に微粉が部分的に剥離して一方向に配列しやすくなるため、充電による電極の膨張量が増大する傾向がある。また、剥離した微粉量が多すぎると、活物質の電解液に対する活性が過剰になり、初期不可逆容量が大きくなるため、高容量電池を製造できなくなる可能性がある。さらに、充放電を繰り返す際に黒鉛表面の微粉が剥離することにより材料劣化が大きくなる傾向がある。
(B) Preferred range (1) The frequency of the number of particles having a particle diameter of 5 μm or less of the carbon material particles irradiated with 28 kHz ultrasonic waves at 60 W for 10 minutes is usually 40% or more, preferably 50% or more, and more preferably 55 % Or more, usually 85% or less, preferably 75% or less, more preferably 70% or less. When the particle number frequency is less than 40%, there are few sites where Li enters and exits, and the high-speed charge / discharge characteristics tend to be inferior. On the other hand, in the carbon material in which the fine powder adhered to the particle surface such that the particle number frequency exceeds 85% easily peels off, when the electrode is rolled, the fine powder is partially peeled and easily arranged in one direction. There is a tendency that the amount of expansion of the electrode due to charging increases. Moreover, when there is too much amount of fine powder which peeled, since the activity with respect to the electrolyte solution of an active material will become excess and an initial irreversible capacity | capacitance will become large, it may become impossible to manufacture a high capacity battery. Furthermore, when charging / discharging is repeated, the fine powder on the surface of the graphite peels off, so that material deterioration tends to increase.

(2)28kHzの超音波を出力60Wで10分間照射した該炭素材料粒子において、粒径0.6〜0.7μmの粒子個数頻度と、粒径0.7〜5μmの粒子個数頻度の比は0.4〜0.7である。上記粒子個数頻度の比がこの範囲に含まれる場合、黒鉛粒子表面に適度に細かい微粉が付着していることにより、黒鉛粒子の基底面が特定の方向に配向していない、より等方性を持った粒子となるため、電池充電時における電極の膨張を抑制することができる。このため、電極の単位体積当たりの電池容量を大きくすることが可能となり、サイクル試験中の膨張収縮に起因する活物質の脱落等によりサイクル特性が低下を抑制することが可能になる。また、上記粒子個数頻度の比が0.4を下回ると、粒子表面に付着した微粉サイズが大きくなり、Liが出入りする部位が少なく、高速充放電特性に劣る傾向がある。一方、上記粒子個数頻度の比が0.7を上回ると活物質の電解液に対する活性が過剰になり、初期不可逆容量が大きくなるため、高容量電池の製造が困難になる傾向がある。 (2) In the carbon material particles irradiated with 28 kHz ultrasonic waves at an output of 60 W for 10 minutes, the ratio of the particle number frequency with a particle size of 0.6 to 0.7 μm and the particle number frequency with a particle size of 0.7 to 5 μm is 0.4 to 0.7. When the ratio of the particle number frequency is included in this range, a moderately fine powder is attached to the surface of the graphite particles, so that the basal plane of the graphite particles is not oriented in a specific direction. Since the particles are held, the expansion of the electrode during battery charging can be suppressed. For this reason, it is possible to increase the battery capacity per unit volume of the electrode, and it is possible to suppress deterioration of the cycle characteristics due to, for example, dropping of the active material due to expansion and contraction during the cycle test. When the ratio of the number of particles is less than 0.4, the size of the fine powder attached to the particle surface increases, the number of sites where Li enters and exits is small, and the high-speed charge / discharge characteristics tend to be inferior. On the other hand, when the ratio of the particle number frequency exceeds 0.7, the activity of the active material with respect to the electrolytic solution becomes excessive, and the initial irreversible capacity increases, which tends to make it difficult to manufacture a high capacity battery.

電極用炭素材料
本発明の炭素材料は、炭素材料に衝撃圧縮、摩擦、せん断力等の機械的作用を与えることにより、炭素材料の表面を粉砕し改質する表面処理を行う。本発明においては、あらかじめ表面処理による球形化処理を施した球状黒鉛を原料として用いると、効率良く目的の炭素材料を得ることが可能となり好ましい。また、該球状黒鉛は、複数の鱗片状又は鱗状黒鉛、及び磨砕された黒鉛微粉からなるものであることが特に好ましい。球形化処理に用いる装置としては、例えば、衝撃力を主体に粒子の相互作用も含めた圧縮、摩擦、せん断力等の機械的作用を繰り返し粒子に与える装置を用いることができる。具体的には、ケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された炭素材料に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、表面処理を行なう装置が好ましい。また、炭素材料を循環させることによって機械的作用を繰り返して与える機構を有するものであるのが好ましい。好ましい装置として、例えば、ハイブリダイゼーションシステム(奈良機械製作所社製)、クリプトロン(アーステクニカ社製)、CFミル(宇部興産社製)、メカノフュージョンシステム(ホソカワミクロン社製)、シータコンポーザ(徳寿工作所社製)等が挙げられる。これらの中で、奈良機械製作所社製のハイブリダイゼーションシステムが好ましい。この装置を用いて処理する場合は、回転するローターの周速度を30〜100m/秒にするのが好ましい。周速度は、より好ましくは、40m/秒以上であり、更に好ましくは500m/秒以上である。また、処理は、単に炭素質物を通過させるだけでも可能であるが、30秒以上装置内を循環又は滞留させて処理するのが好ましく、1分以上装置内を循環又は滞留させて処理するのがより好ましい。
Carbon Material for Electrode The carbon material of the present invention performs a surface treatment that pulverizes and modifies the surface of the carbon material by imparting mechanical action such as impact compression, friction, and shear force to the carbon material. In the present invention, it is preferable to use spherical graphite which has been subjected to spheroidization treatment by surface treatment in advance as a raw material because it is possible to efficiently obtain a target carbon material. The spherical graphite is particularly preferably composed of a plurality of scaly or scaly graphites and ground graphite fine powder. As an apparatus used for the spheroidization treatment, for example, an apparatus that repeatedly gives mechanical action such as compression, friction, shearing force, etc. including the interaction of particles mainly with impact force to the particles can be used. Specifically, it has a rotor with a large number of blades installed inside the casing, and when the rotor rotates at high speed, mechanical action such as impact compression, friction, shearing force, etc. is applied to the carbon material introduced inside. An apparatus that provides a surface treatment is preferable. Moreover, it is preferable to have a mechanism that repeatedly gives mechanical action by circulating the carbon material. Preferred devices include, for example, a hybridization system (manufactured by Nara Machinery Co., Ltd.), a kryptron (manufactured by Earth Technica), a CF mill (manufactured by Ube Industries), a mechano-fusion system (manufactured by Hosokawa Micron), and a theta composer (Tokuju Kosakusho). Etc.). Among these, a hybridization system manufactured by Nara Machinery Co., Ltd. is preferable. When processing using this apparatus, it is preferable to set the peripheral speed of the rotating rotor to 30 to 100 m / sec. The peripheral speed is more preferably 40 m / second or more, and further preferably 500 m / second or more. The treatment can be performed by simply passing a carbonaceous material, but it is preferable to circulate or stay in the apparatus for 30 seconds or longer, and it is preferable to circulate or stay in the apparatus for 1 minute or longer. More preferred.

本発明の炭素材料は、上記の表面処理による球形化工程を施すことにより、鱗片状の天然黒鉛が折りたたまれる、もしくは周囲エッジ部分が球形粉砕されることにより球状とされた母体粒子に、粉砕により生じた主に5μm以下の微粉が付着してなる。本発明の炭素材料を製造するためには、表面処理後の黒鉛粒子の、フロー式粒子像分析装置により測定した付着微粉の大きさが、0.6〜0.7μmの粒子個数頻度と0.7〜5μmの粒子個数頻度の比(0.6〜0.7μmの粒子個数頻度/0.7〜5μmの粒子個数頻度)が0.4〜0.7となるまで、上記表面処理による球形化工程を続ける。また、本発明の炭素材料は、母体粒子へ微粉が強固に付着した状態が好ましい。例えば、超音波処理により剥離する微粉量を、母体粒子への微粉付着強度の指標とすることができる。本評価法の実施態様の一例としては、28kHzの超音波を出力60Wで10分間照射した該炭素材料粒子の粒径5μm以下の粒子個数頻度をフロー式粒子像分析装置により測定する方法が挙げられる。本発明の炭素材料を製造するためには、上記処理済み炭素材料の粒径5μm以下の個数頻度が85%以下となるまで、上記表面処理による球形化工程を続けることが好ましい。   By subjecting the carbon material of the present invention to the spheronization step by the above surface treatment, the scale-like natural graphite is folded, or the peripheral edge portion is spherically pulverized to spheroidize the base particles by pulverization. The resulting fine powder of 5 μm or less adheres. In order to produce the carbon material of the present invention, the size of the adhering fine powder of the surface-treated graphite particles measured by a flow type particle image analyzer is 0.6 to 0.7 μm in number of particles and 0. Sphericalization by the above surface treatment until the ratio of particle number frequency of 7 to 5 μm (particle number frequency of 0.6 to 0.7 μm / particle number frequency of 0.7 to 5 μm) becomes 0.4 to 0.7. Continue the process. Moreover, the carbon material of the present invention is preferably in a state where fine powder is firmly attached to the base particles. For example, the amount of fine powder that is peeled off by ultrasonic treatment can be used as an index of the fine powder adhesion strength to the base particles. As an example of the embodiment of this evaluation method, there is a method of measuring the frequency of the number of particles having a particle size of 5 μm or less irradiated with 28 kHz ultrasonic waves at an output of 60 W for 10 minutes using a flow particle image analyzer. . In order to produce the carbon material of the present invention, it is preferable to continue the spheronization step by the surface treatment until the number frequency of the treated carbon material having a particle size of 5 μm or less becomes 85% or less.

リチウムイオン二次電池の構成
本発明の炭素材料及びそれを含む負極シートを用いて製造された本発明のリチウムイオン二次電池は、正極、電解液、セパレータ、円筒形、角型、ラミネート、自動車用途や定置型電池用などの大型缶体、または筐体、PTC素子、絶縁板等の電池構成上必要な部材とともに構成される。構成部材の選択については発明の主旨を越えない限り特に制限されない。本発明のリチウムイオン二次電池は、通常少なくとも、下記の本発明の負極、正極及び電解質を有する。
Configuration of Lithium Ion Secondary Battery The lithium ion secondary battery of the present invention manufactured using the carbon material of the present invention and the negative electrode sheet containing the same is a positive electrode, an electrolyte, a separator, a cylindrical shape, a rectangular shape, a laminate, an automobile It is configured with a large can body for use, a stationary battery, or the like, or a member necessary for battery configuration such as a housing, a PTC element, and an insulating plate. The selection of the constituent members is not particularly limited as long as the gist of the invention is not exceeded. The lithium ion secondary battery of the present invention usually has at least the following negative electrode, positive electrode and electrolyte of the present invention.

非水系二次電池用負極及び負極シート
本発明の炭素材料は、非水系二次電池、特にリチウムイオン二次電池の負極活物質材料として好適に用いることができる。また、本発明の炭素材料(A)に、天然黒鉛、人造黒鉛、気相成長性炭素繊維、導電性カーボンブラック、非晶質被覆黒鉛、樹脂被覆黒鉛及び非晶質炭素よりなる群から選ばれる1種以上から構成され、本発明の炭素材料(A)とは形状又は物性の異なる炭素質粒子(以下、「炭素活質粒子(B)」と略記する)を更に含有させたものも、負極活物質材料として好適に用いることができる。
Negative electrode for non-aqueous secondary battery and negative electrode sheet The carbon material of the present invention can be suitably used as a negative electrode active material for non-aqueous secondary batteries, particularly lithium ion secondary batteries. The carbon material (A) of the present invention is selected from the group consisting of natural graphite, artificial graphite, vapor-grown carbon fiber, conductive carbon black, amorphous-coated graphite, resin-coated graphite, and amorphous carbon. The negative electrode is also composed of one or more types and further containing carbonaceous particles (hereinafter abbreviated as “carbon active particles (B)”) having different shapes or physical properties from the carbon material (A) of the present invention. It can be suitably used as an active material material.

炭素質粒子(B)を適宜選択して混合することによって、粒子変形による極板表面でのLi拡散パス阻害の防止、不可逆容量の低減が可能となる。炭素質粒子(B)を混合する場合の量の下限は、負極材料全体に対して、通常5質量%以上、好ましくは10質量%以上、より好ましくは20質量%以上であり、上限は、通常95質量%以下、好ましくは90質量%以下、より好ましくは80質量%以下である。5質量%を下回ると、初期不可逆容量の増大を招く場合があり、95質量%を上回ると、導電性の低下を招く場合がある。   By appropriately selecting and mixing the carbonaceous particles (B), it becomes possible to prevent Li diffusion path inhibition on the electrode plate surface due to particle deformation and to reduce the irreversible capacity. The lower limit of the amount in the case of mixing the carbonaceous particles (B) is usually 5% by mass or more, preferably 10% by mass or more, more preferably 20% by mass or more with respect to the whole negative electrode material. 95% by mass or less, preferably 90% by mass or less, more preferably 80% by mass or less. If it is less than 5% by mass, the initial irreversible capacity may be increased, and if it exceeds 95% by mass, the conductivity may be decreased.

本発明の炭素材料(A)と炭素質活物質粒子(B)との混合に用いる装置としては特に制限はないが、例えば、回転型混合機としては、円筒型混合機、双子円筒型混合機、二重円錐型混合機、正立方型混合機、鍬型混合機等が挙げられ、固定型混合機としては、らせん型混合機、リボン型混合機、Muller型混合機、Helical Flight型混合機、Pugmill型混合機、流動化型混合機、シータコンポーザー、ハイブリダイザー、メカノフュージョン、等が挙げられる。   Although there is no restriction | limiting in particular as an apparatus used for mixing with the carbon material (A) and carbonaceous active material particle (B) of this invention, For example, as a rotary mixer, a cylindrical mixer, a twin cylinder mixer , Double cone type mixers, regular cubic type mixers, vertical type mixers, etc., as fixed type mixers, spiral type mixers, ribbon type mixers, Muller type mixers, Helical Flight type mixers , Pugmill type mixer, fluidized type mixer, theta composer, hybridizer, mechano-fusion, and the like.

また、負極シートを構成する活物質の一部に、Liと合金化可能な合金、珪化物、半導体電極を含んでいても良い。具体的には、Si、Al、Sn、SnSb、SnAs、SiO、SnO、SnO、SiC、ダイヤモンドにB、N、Pなどの不純物を含ませ半導体としたもの、これらのものからなる複合合金や不定比酸化物が考えられる。 Further, a part of the active material constituting the negative electrode sheet may contain an alloy that can be alloyed with Li, a silicide, and a semiconductor electrode. Specifically, Si, Al, Sn, SnSb, SnAs, SiO, SnO, SnO 2 , SiC, diamond containing impurities such as B, N, P and the like as a semiconductor, composite alloys composed of these, Non-stoichiometric oxides are possible.

負極シートの構成は、本発明の炭素材料、上記の炭素質粒子のほか、極板成形用結着剤、増粘剤、並びに導電材を含有する活物質層を塗布した集電体からなる。活物質層は通常、これら集電体以外の部材から調整されるスラリーを集電体上に塗布、乾燥、所望の密度まで圧延(プレス)することにより得られる。
極板成形用結着剤としては、電極製造時に使用する溶媒や電解液に対して安定な材料を使用することができる。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン−アクリル酸共重合体及びエチレン−メタクリル酸共重合体等が挙げられるが、特にスチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン−アクリル酸共重合体及びエチレン−メタクリル酸共重合体等の水系結着材が好ましい。なお、有機系結着材用いると極板強度が低下するおそれがあり、更に、極板強度を向上させるために、水系結着材を用いる場合よりも多量の有機系結着材を添加する必要が生じるため、負極に含まれる活物質が減少し、電池容量の低下を招くおそれがある。極板成形用結着剤は、負極材料/極板成形用結着剤の重量比で、通常90/10以上、好ましくは95/5以上、通常99.9/0.1以下、好ましくは99.5/0.5以下の範囲で用いられる。
増粘剤としては、カルボキシルメチルセルロース、またはこれのNa塩、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、及びカゼイン等が挙げられる。これら増粘材としては、制限が無く使用できるが、塩基性側で構造変化が無いものが好ましい。
導電材としては、銅又はニッケル等の金属微粉材料、グラファイト又はカーボンブラック等の小粒径炭素材料等が挙げられる。
集電体の材質としては、銅、ニッケル又はステンレス等が挙げられる。これらのうち、薄膜に加工しやすいという点及びコストの点から銅箔が好ましい。
The configuration of the negative electrode sheet is composed of the current collector coated with the active material layer containing the carbon material of the present invention, the carbonaceous particles described above, an electrode plate forming binder, a thickener, and a conductive material. The active material layer is usually obtained by applying slurry dried from members other than the current collector onto the current collector, drying, and rolling (pressing) to a desired density.
As the electrode plate-forming binder, a material that is stable with respect to the solvent and the electrolyte used during electrode production can be used. Examples include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, styrene / butadiene rubber, isoprene rubber, butadiene rubber, ethylene-acrylic acid copolymer, and ethylene-methacrylic acid copolymer. Aqueous binders such as butadiene rubber, isoprene rubber, butadiene rubber, ethylene-acrylic acid copolymer, and ethylene-methacrylic acid copolymer are preferred. In addition, there is a possibility that the electrode plate strength may be reduced when using an organic binder, and in order to improve the electrode plate strength, it is necessary to add a larger amount of organic binder than when using an aqueous binder. As a result, the active material contained in the negative electrode decreases, which may lead to a decrease in battery capacity. The electrode plate-forming binder is usually 90/10 or more, preferably 95/5 or more, and usually 99.9 / 0.1 or less, preferably 99, in a weight ratio of negative electrode material / electrode plate-forming binder. It is used in the range of 0.5 / 0.5 or less.
Examples of the thickener include carboxymethyl cellulose, or its Na salt, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein. These thickeners can be used without limitation, but those having no structural change on the basic side are preferable.
Examples of the conductive material include fine metal powder materials such as copper and nickel, and small particle size carbon materials such as graphite and carbon black.
Examples of the material of the current collector include copper, nickel, and stainless steel. Among these, a copper foil is preferable from the viewpoint of easy processing into a thin film and cost.

活物質層の密度は、用途により異なるが、容量を重視する用途では、通常1.55g/cm以上である。充分な単位体積あたりの電池容量を得るためには、1.60g/cm以上が好ましい。一方、密度が高すぎると高速充放電特性が低下する傾向があるので、一般的に炭素材料のみで構成される負極シートの場合、1.90g/cm以下が好ましい。なお、ここで活物質層とは集電体上の活物質、極板成形用バインダー、増粘剤、導電材等よりなる合剤層をいい、その密度とは電池に組立てる時点での活物質層の嵩密度をいう。 The density of the active material layer varies depending on the application, but is usually 1.55 g / cm 3 or more in an application in which capacity is important. In order to obtain a sufficient battery capacity per unit volume, 1.60 g / cm 3 or more is preferable. On the other hand, if the density is too high, the high-speed charge / discharge characteristics tend to be lowered. Therefore, in the case of a negative electrode sheet generally composed of only a carbon material, 1.90 g / cm 3 or less is preferable. Here, the active material layer means a mixture layer made of an active material on a current collector, an electrode plate forming binder, a thickener, a conductive material, etc., and its density means the active material at the time of assembling the battery. It refers to the bulk density of the layer.

非水系二次電池
本発明の炭素材料を用いて製造された本発明の非水系二次電池用負極は、特にリチウムイオン二次電池等の非水系二次電池の負極として極めて有用である。このような非水系二次電池を構成する正極、電解液等の電池構成上必要な部材の選択については特に制限されない。
Nonaqueous secondary battery The negative electrode for nonaqueous secondary batteries of the present invention produced using the carbon material of the present invention is extremely useful as a negative electrode for nonaqueous secondary batteries such as lithium ion secondary batteries. There is no particular limitation on the selection of members necessary for the battery configuration such as the positive electrode and the electrolytic solution constituting such a non-aqueous secondary battery.

以下に、非水系二次電池を構成する部材の材料等を例示するが、使用し得る材料はこれらの具体例に限定されるものではない。本発明の非水系二次電池は、通常少なくとも、本発明の負極、正極及び電解質を有する。   Although the material of the member which comprises a non-aqueous secondary battery is illustrated below, the material which can be used is not limited to these specific examples. The nonaqueous secondary battery of the present invention usually has at least the negative electrode, the positive electrode and the electrolyte of the present invention.

正極は、正極集電体上に正極活物質、導電剤及び極板成形用バインダーを含有する活物質層を形成してなる。活物質層は通常正極活物質、導電材及び極板成形用バインダーを含有するスラリーを調製し、これを集電体上に塗布、乾燥することにより得られる。
正極活物質としては、例えば、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物等のリチウム遷移金属複合酸化物材料、二酸化マンガン等の遷移金属酸化物材料、フッ化黒鉛等の炭素質材料等のリチウムを吸蔵/放出可能な材料を使用することができる。具体的には、例えば、LiFePO、LiFeO、LiCoO、LiNiO、LiMn及びこれらの非定比化合物、MnO、TiS、FeS、Nb、Mo、CoS、V、P、CrO、V、TeO、GeO2、LiNi0.33Mn0.33Co0.33等を用いることができる。
正極導電材としては、カーボンブラック、小粒径黒鉛などが挙げられる。
正極集電体としては、電解液中での陽極酸化によって表面に不動態皮膜を形成する金属又はその合金を用いるのが好ましく、IIIa、IVa、Va族(3B、4B、5B族)に属する金属及びこれらの合金を例示することができる。具体的には、例えば、Al、Ti、Zr、Hf、Nb、Ta及びこれらの金属を含む合金等を例示することができ、Al、Ti、Ta及びこれらの金属を含む合金を好ましく使用することができる。特にAl及びその合金は軽量であるためエネルギー密度が高くて望ましい。
The positive electrode is formed by forming an active material layer containing a positive electrode active material, a conductive agent, and an electrode plate forming binder on a positive electrode current collector. The active material layer is usually obtained by preparing a slurry containing a positive electrode active material, a conductive material and an electrode plate forming binder, and applying and drying the slurry on a current collector.
Examples of the positive electrode active material include lithium transition metal composite oxide materials such as lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide, transition metal oxide materials such as manganese dioxide, and carbonaceous materials such as graphite fluoride. A material capable of occluding / releasing lithium can be used. Specifically, for example, LiFePO 4 , LiFeO 2 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and non-stoichiometric compounds thereof, MnO 2 , TiS 2 , FeS 2 , Nb 3 S 4 , Mo 3 S 4 , can be used CoS 2, V 2 O 5, P 2 O 5, CrO 3, V 3 O 3, TeO 2, GeO 2, LiNi 0.33 Mn 0.33 Co 0.33 O 2 and the like.
Examples of the positive electrode conductive material include carbon black and small particle size graphite.
As the positive electrode current collector, it is preferable to use a metal or an alloy thereof that forms a passive film on the surface by anodic oxidation in an electrolytic solution, and belongs to IIIa, IVa, and Va groups (3B, 4B, and 5B groups). And alloys thereof. Specifically, for example, Al, Ti, Zr, Hf, Nb, Ta and alloys containing these metals can be exemplified, and Al, Ti, Ta and alloys containing these metals are preferably used. Can do. In particular, Al and its alloys are desirable because of their light weight and high energy density.

電解質としては、電解液、固体電解質、ゲル状電解質等が挙げられるが、中でも電解液、特に非水系電解液が好ましい。非水系電解液は、非水系溶媒に溶質を溶解したものを用いることができる。
溶質としては、アルカリ金属塩や4級アンモニウム塩等を用いることができる。具体的には、例えば、LiClO、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiC(CFSOからなる群から選択される一種以上の化合物を用いるのが好ましい。
非水系溶媒としては、例えば、エチレンカーボネート、ブチレンカーボネート、プロピレンカーボネート等の環状カーボネート、γ−ブチロラクトン等の環状エステル化合物;1,2−ジメトキシエタン等の鎖状エーテル;クラウンエーテル、2−メチルテトラヒドロフラン、1,2−ジメチルテトラヒドロフラン、1,3−ジオキソラン、テトラヒドロフラン等の環状エーテル、ジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネート等の鎖状カーボネート等を用いることができる。溶質及び溶媒はそれぞれ1種類を選択して使用してもよいし、2種以上を混合して使用してもよい。これらの中でも非水系溶媒が、環状カーボネートと鎖状カーボネートを含有するものが好ましい。またビニレンカーボネート、ビニルエチレンカーボネート、無水コハク酸、無水マレイン酸、プロパンスルトン、ジエチルスルホン等の化合物やジフルオロリン酸リチウムのようなジフルオロリン酸塩等が添加されていても良い。更に、ジフェニルエーテル、シクロヘキシルベンゼン等の過充電防止剤が添加されていても良い。
電解液中のこれらの溶質の含有量は、0.2mol/L以上が好ましく、特に0.5mol/L以上が好ましく、2mol/L以下が好ましく、特に1.5mol/L以下であることが好ましい。
Examples of the electrolyte include an electrolytic solution, a solid electrolyte, and a gel electrolyte. Among them, an electrolytic solution, particularly a nonaqueous electrolytic solution is preferable. As the non-aqueous electrolyte solution, a solution obtained by dissolving a solute in a non-aqueous solvent can be used.
As the solute, an alkali metal salt, a quaternary ammonium salt, or the like can be used. Specifically, for example, LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C It is preferable to use one or more compounds selected from the group consisting of 4 F 9 SO 2 ) and LiC (CF 3 SO 2 ) 3 .
Examples of the non-aqueous solvent include cyclic carbonates such as ethylene carbonate, butylene carbonate, and propylene carbonate; cyclic ester compounds such as γ-butyrolactone; chain ethers such as 1,2-dimethoxyethane; crown ether, 2-methyltetrahydrofuran, Cyclic ethers such as 1,2-dimethyltetrahydrofuran, 1,3-dioxolane and tetrahydrofuran, and chain carbonates such as diethyl carbonate, ethyl methyl carbonate and dimethyl carbonate can be used. One kind of solute and solvent may be selected and used, or two or more kinds may be mixed and used. Among these, the non-aqueous solvent preferably contains a cyclic carbonate and a chain carbonate. Further, compounds such as vinylene carbonate, vinyl ethylene carbonate, succinic anhydride, maleic anhydride, propane sultone, diethyl sulfone, difluorophosphate such as lithium difluorophosphate, and the like may be added. Furthermore, an overcharge inhibitor such as diphenyl ether or cyclohexylbenzene may be added.
The content of these solutes in the electrolytic solution is preferably 0.2 mol / L or more, particularly preferably 0.5 mol / L or more, preferably 2 mol / L or less, and particularly preferably 1.5 mol / L or less. .

これらのなかでも本発明の負極と、金属カルコゲナイド系正極と、カーボネート系溶媒を主体とする非水電解液とを組み合わせて作成したリチウムイオン二次電池は、容量が大きく、初期サイクルに認められる不可逆容量が小さく、高速充放電特性に優れる。
正極と負極の間には、通常正極と負極が物理的に接触しないようにするためにセパレータが設けられる。セパレータはイオン透過性が高く、電気抵抗が低いものであるのが好ましい。セパレータの材質及び形状は、特に限定されないが、電解液に対して安定で、保液性が優れたものが好ましい。具体的には、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布が挙げられる。
Among these, the lithium ion secondary battery prepared by combining the negative electrode of the present invention, the metal chalcogenide-based positive electrode, and the non-aqueous electrolyte mainly composed of a carbonate-based solvent has a large capacity and is irreversible that is recognized in the initial cycle. Small capacity and excellent high-speed charge / discharge characteristics.
A separator is usually provided between the positive electrode and the negative electrode so that the positive electrode and the negative electrode are not in physical contact. The separator preferably has high ion permeability and low electrical resistance. The material and shape of the separator are not particularly limited, but those that are stable with respect to the electrolyte and excellent in liquid retention are preferable. Specifically, a porous sheet or a non-woven fabric made of a polyolefin such as polyethylene or polypropylene is used.

本発明のリチウムイオン二次電池の形状は特に制限されず、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ等が挙げられる。   The shape of the lithium ion secondary battery of the present invention is not particularly limited, and a cylinder type in which a sheet electrode and a separator are spiral, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, a coin in which a pellet electrode and a separator are stacked Type.

次に実施例により本発明の具体的態様を更に詳細に説明するが、本発明はこれらの例によって限定されるものではない。   EXAMPLES Next, specific embodiments of the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

(i)電極シートの作製方法
本発明の炭素材料を負極材料として用い、活物質層密度1.70±0.03g/cmの活物質層を有する極板を作製した。具体的には、負極材料20.00±0.02gに、1質量%カルボキシメチルセルロースナトリウム塩水溶液を20.00±0.02g(固形分換算で0.200g)、及び重量平均分子量27万のスチレン・ブタジエンゴム水性ディスパージョン0.50±0.05g(固形分換算で0.2g)を、キーエンス製ハイブリッドミキサーで5分間撹拌し、30秒脱泡してスラリーを得た。このスラリーを、集電体である厚さ18μmの銅箔上に、負極材料が14.5±0.3mg/cm付着するように、ドクターブレードを用いて幅5cmに塗布し、室温で風乾を行った。更に110℃で30分乾燥後、直径20cmのローラを用いてロールプレスして、活物質層の密度が1.70±0.03g/cmになるよう調整し電極シートを得た。
(I) Method for Producing Electrode Sheet Using the carbon material of the present invention as a negative electrode material, an electrode plate having an active material layer with an active material layer density of 1.70 ± 0.03 g / cm 3 was produced. Specifically, 20.00 ± 0.02 g of a negative electrode material, 20.00 ± 0.02 g of a 1% by mass aqueous solution of carboxymethylcellulose sodium salt (0.200 g in terms of solid content), and styrene having a weight average molecular weight of 270,000 -Aqueous dispersion of butadiene rubber 0.50 ± 0.05 g (0.2 g in terms of solid content) was stirred for 5 minutes with a hybrid mixer manufactured by Keyence, and defoamed for 30 seconds to obtain a slurry. This slurry was applied to a width of 5 cm using a doctor blade so that the negative electrode material was 14.5 ± 0.3 mg / cm 2 on a 18 μm-thick copper foil as a current collector, and air-dried at room temperature. Went. Further, after drying at 110 ° C. for 30 minutes, roll pressing was performed using a roller having a diameter of 20 cm to adjust the density of the active material layer to 1.70 ± 0.03 g / cm 3 to obtain an electrode sheet.

(ii)非水系二次電池の作製方法
上記方法で作製した電極シートを直径12.5mmの円盤状に打ち抜き、リチウム金属箔を直径14mmの円板状に打ち抜き対極とした。両極の間には、エチレンカーボネートとエチルメチルカーボネートの混合溶媒(容量比=3:7)に、LiPFを1mol/Lになるように溶解させた電解液を含浸させたセパレータ(多孔性ポリエチレンフィルム製)を置き、2016コイン型電池を作製した。
(Ii) Method for Producing Nonaqueous Secondary Battery The electrode sheet produced by the above method was punched into a disk shape having a diameter of 12.5 mm, and a lithium metal foil was punched into a disk shape having a diameter of 14 mm as a counter electrode. Between the two electrodes, a separator (porous polyethylene film) impregnated with an electrolytic solution in which LiPF 6 was dissolved at 1 mol / L in a mixed solvent of ethylene carbonate and ethyl methyl carbonate (volume ratio = 3: 7). And a 2016 coin-type battery was manufactured.

(iii)電池充電時の電極膨張率の測定方法
上記非水系二次電池を用いて、下記の測定方法で電池充電時の電極膨張率を測定した。
0.16mA/cmの電流密度でリチウム対極に対して5mVまで充電し、更に、5mVの一定電圧で電流値が0.02mAになるまで充電し、負極中にリチウムをドープした後、0.33mA/cmの電流密度でリチウム対極に対して1.5Vまで放電を行なう充放電サイクルを3サイクル繰り返した。上記放電状態のコイン電池をアルゴン雰囲気下で解体して電極を取り出し、このときの電極厚みを測定し、下記式(I)に従って放電時の電極膨張率ddc(%)を算出した。また、上記3サイクル充放電後のコイン電池を更に0.16mA/cmの電流密度で300mAh/g充電し、同様に電極厚みを測定し、下記式(II)に従がってd(%)を算出した。更に、下記式(III)に従い、Liイオンのインターカレーションによる正味の電極膨張率d(%)を算出した。
(Iii) Method for measuring electrode expansion coefficient during battery charging The electrode expansion coefficient during battery charging was measured by the following measurement method using the non-aqueous secondary battery.
After charging to 5 mV with respect to the lithium counter electrode at a current density of 0.16 mA / cm 2 , charging to a current value of 0.02 mA at a constant voltage of 5 mV, and doping the lithium into the negative electrode, 0. A charge / discharge cycle of discharging to 1.5 V with respect to the lithium counter electrode at a current density of 33 mA / cm 2 was repeated three times. The coin battery in the discharged state was disassembled in an argon atmosphere, the electrode was taken out, the electrode thickness at this time was measured, and the electrode expansion coefficient d dc (%) at the time of discharge was calculated according to the following formula (I). Further, the coin battery after the above three cycles of charge / discharge was further charged with 300 mAh / g at a current density of 0.16 mA / cm 2 , the electrode thickness was measured in the same manner, and d c ( %) Was calculated. Furthermore, according to the following formula (III), the net electrode expansion coefficient d (%) by Li ion intercalation was calculated.

(I)ddc=(放電時の電極厚み−銅箔厚み)/(乾燥時の電極厚み−銅箔厚み)×100
(II)d =(300mAh/g充電時の電極厚み−銅箔厚み)−(乾燥時の電極厚み−銅箔厚み)/(乾燥時の電極厚み−銅箔厚み)×100
(III)d =d − ddc
(I) d dc = (electrode thickness during discharge−copper foil thickness) / (electrode thickness during drying−copper foil thickness) × 100
(II) d c = (electrode thickness during charging of 300 mAh / g−copper foil thickness) − (electrode thickness during drying−copper foil thickness) / (electrode thickness during drying−copper foil thickness) × 100
(III) d = d c −d dc

実施例1
前記測定法で測定した、粒径d50、タップ密度、比表面積がそれぞれ19.8μm、1.07g/cm、6.7m/gである球状天然黒鉛を、奈良機械製作所製ハイブリダイゼーションシステムNHS−3型にて、ローター周速度60m/秒で4分間の機械的作用による球形化処理を更に行うことにより、28kHzの超音波を出力60Wで10分間照射した該炭素材料粒子において、フロー式粒子像分析装置により測定した粒径0.6〜0.7μmの粒子個数頻度と、粒径0.7〜5μmの粒子個数頻度の比(0.6〜0.7μmの粒子個数頻度/0.7〜5μmの粒子個数頻度)が0.45であるサンプルを得た。これについて、前記測定法で粒径d50、タップ密度、比表面積、XRD、RamanR値、FPIA、を測定した。結果を表1、表2に示す。また、前記測定法に従い、電極膨張率dを測定した。この結果を表3に示す。
Example 1
Spherical natural graphite having a particle size d50, a tap density, and a specific surface area of 19.8 μm, 1.07 g / cm 3 , and 6.7 m 2 / g, respectively, measured by the above-described measurement method was used as a hybridization system NHS manufactured by Nara Machinery Co., Ltd. In the carbon material particles irradiated with ultrasonic waves of 28 kHz for 10 minutes by further performing a spheroidization process by mechanical action for 4 minutes at a rotor peripheral speed of 60 m / second in type-3, flow type particles The ratio of the particle number frequency of 0.6 to 0.7 μm and the particle number frequency of 0.7 to 5 μm measured by an image analyzer (particle number frequency of 0.6 to 0.7 μm / 0.7 A sample having a particle number frequency (˜5 μm) of 0.45 was obtained. About this, the particle size d50, tap density, specific surface area, XRD, RamanR value, and FPIA were measured by the said measuring method. The results are shown in Tables 1 and 2. Moreover, according to the said measuring method, the electrode expansion coefficient d was measured. The results are shown in Table 3.

実施例2
前記測定法で測定した、粒径d50、タップ密度、比表面積がそれぞれ16.9μm、1.02g/cm、6.8m/gである球状天然黒鉛を、奈良機械製作所製ハイブリダイゼーションシステムNHS−3型にて、ローター周速度60m/秒で4分間の球形化処理を更に行うことにより、実施例1と同様の方法にて測定した粒径0.6〜0.7μmの粒子個数頻度と、粒径0.7〜5μmの粒子個数頻度の比(0.6〜0.7μmの粒子個数頻度/0.7〜5μmの粒子個数頻度)が0.49であるサンプルを得た。これについて、実施例1同様の測定を行った。これらの結果を表1から表3に示す。
Example 2
Spherical natural graphite having a particle size d50, a tap density, and a specific surface area of 16.9 μm, 1.02 g / cm 3 , and 6.8 m 2 / g, respectively, measured by the above-described measurement method was used as a hybridization system NHS manufactured by Nara Machinery Co., Ltd. The number frequency of particles having a particle diameter of 0.6 to 0.7 μm measured by the same method as in Example 1 by further performing spheroidization treatment for 4 minutes at a rotor peripheral speed of 60 m / sec. A sample having a ratio of the number of particles having a particle size of 0.7 to 5 μm (particle number frequency of 0.6 to 0.7 μm / particle number frequency of 0.7 to 5 μm) of 0.49 was obtained. About this, the same measurement as Example 1 was performed. These results are shown in Tables 1 to 3.

比較例1
実施例1記載の原料球形化黒鉛(粒径d50、タップ密度、比表面積がそれぞれ19.8μm、1.07g/cm、6.7m/g)を用いて、実施例1と同様の測定を行った。この原料黒鉛粒子について、これらの結果を表1から表3に示す。実施例1と同様の方法にて、上記黒鉛の粒径0.6〜0.7μmの粒子個数頻度と、粒径0.7〜5μmの粒子個数頻度の比(0.6〜0.7μmの粒子個数頻度/0.7〜5μmの粒子個数頻度)を測定すると、0.39であった。
Comparative Example 1
Using the raw material spheroidized graphite described in Example 1 (particle size d50, tap density, specific surface area 19.8 μm, 1.07 g / cm 3 and 6.7 m 2 / g, respectively), the same measurement as in Example 1 Went. These results are shown in Tables 1 to 3 for the raw graphite particles. In the same manner as in Example 1, the ratio of the number frequency of particles having a particle size of 0.6 to 0.7 μm and the number frequency of particles having a particle size of 0.7 to 5 μm (0.6 to 0.7 μm). Particle number frequency / particle number frequency of 0.7 to 5 μm) was 0.39.

比較例2
実施例1記載の原料球形化黒鉛を作製する際に用いたものと同様の原料を用い、且つ球形化度が実施例1記載の原料球形化黒鉛よりも低い天然黒鉛(粒径d50、タップ密度、比表面積がそれぞれ18.9μm、0.90g/cm、5.4m/g)を用いて、実施例1同様の測定を行った。この原料黒鉛粒子について、実施例1と同様の方法にて、上記黒鉛の粒径0.6〜0.7μmの粒子個数頻度と、粒径0.7〜5μmの粒子個数頻度の比(0.6〜0.7μmの粒子個数頻度/0.7〜5μmの粒子個数頻度)を測定すると、0.27であった。これらの結果を表1から表3に示す。
Comparative Example 2
Natural graphite (particle size d50, tap density) using the same raw material as that used in producing the raw material spheroidized graphite described in Example 1 and having a spheroidization degree lower than that of the raw material spheroidized graphite described in Example 1 The specific surface area was 18.9 μm, 0.90 g / cm 3 , and 5.4 m 2 / g, respectively. For the raw graphite particles, the ratio of the number frequency of particles having a particle size of 0.6 to 0.7 μm and the number frequency of particles having a particle size of 0.7 to 5 μm (in the same manner as in Example 1) (0. The particle number frequency of 6 to 0.7 μm / the particle number frequency of 0.7 to 5 μm) was 0.27. These results are shown in Tables 1 to 3.

Figure 2014146607
Figure 2014146607

Figure 2014146607
Figure 2014146607

Figure 2014146607
Figure 2014146607

比較例1、及び比較例2の炭素材料では、機械的作用による表面処理、その結果の球形化工程が十分でないため、電極作成の際、特に電極のプレスにより、各黒鉛粒子の結晶子のC軸が金属製集電体の面方向へ配向する。このため、電極密度1.7g/cmになるように作製された電極の配向比(110)/(004)が0.04、0.02と本発明の範囲を大きく下回り、その結果としてLiイオン挿入による正味の電極膨張率(d)が増大している。 In the carbon materials of Comparative Example 1 and Comparative Example 2, the surface treatment by mechanical action and the resulting spheronization process are not sufficient. Therefore, when forming the electrode, especially by pressing the electrode, the crystallite C of each graphite particle The axis is oriented in the plane direction of the metal current collector. For this reason, the orientation ratio (110) / (004) of the electrode manufactured to have an electrode density of 1.7 g / cm 3 is 0.04, 0.02, which is far below the range of the present invention. As a result, Li The net electrode expansion coefficient (d) due to ion insertion is increased.

一方で、実施例1、及び実施例2の炭素材料では、球形化処理済の天然黒鉛に更に球形化処理を施すことにより、高い球形化度が得られたため、各黒鉛粒子の結晶子のC軸が金属製集電体の面方向へ配向しにくくなり、電極密度1.7g/cmになるように作製された電極の配向比が0.06、0.08と規定範囲内に含まれている。その結果としてLiイオン挿入による正味の電極膨張率(d)が低減している。 On the other hand, in the carbon materials of Example 1 and Example 2, a high degree of spheronization was obtained by further spheronizing natural spheroidized graphite, so that the crystallite C of each graphite particle was obtained. The orientation ratio of the electrodes prepared so that the axis is less likely to be oriented in the plane direction of the metal current collector and the electrode density is 1.7 g / cm 3 is included in the specified range of 0.06 and 0.08. ing. As a result, the net electrode expansion coefficient (d) due to Li ion insertion is reduced.

本発明の炭素材料は、それをリチウムイオン電池用の活物質として用いることにより、高容量、且つ高速充放電特性に優れたリチウムイオン二次電池を提供することができる。また、当該材料の製造方法によれば、その工程数が少ない故、安定して効率的且つ安価に製造することができる。   By using the carbon material of the present invention as an active material for a lithium ion battery, it is possible to provide a lithium ion secondary battery having high capacity and excellent high-speed charge / discharge characteristics. Moreover, according to the manufacturing method of the said material, since there are few processes, it can manufacture stably and efficiently and cheaply.

Claims (8)

リチウムイオンを吸蔵・放出することが可能な炭素材料が次の要件(1)〜(3)を満たすことを特徴とするリチウムイオン二次電池用炭素材料:
(1)該炭素材料にバインダーを加え、金属製集電体に塗布、乾燥後、電極密度が1.7g/cmになるように作製された電極(a)において、広角X線回折測定より得られる格子面(110)と(004)に対応するピークの強度比R1.7=I(110)/I(004)が0.05〜0.2、
(2)該炭素材料にバインダーを加え、金属製集電体に塗布、乾燥して作製された電極(b)において、広角X線回折測定より得られる格子面(110)と(004)に対応するピークの強度比R=I(110)/I(004)が0.14〜0.3、及び
(3)該電極(a)のピークの強度比(R1.7)と該電極(b)のピークの強度比(R)の比(R1.7/R)が0.35〜0.7。
A carbon material for a lithium ion secondary battery, wherein the carbon material capable of inserting and extracting lithium ions satisfies the following requirements (1) to (3):
(1) From the wide-angle X-ray diffraction measurement of the electrode (a) prepared so that the electrode density is 1.7 g / cm 3 after adding a binder to the carbon material, applying to a metal current collector and drying. The peak intensity ratio R 1.7 = I (110) / I (004) corresponding to the obtained lattice planes (110) and (004) is 0.05 to 0.2,
(2) In the electrode (b) produced by adding a binder to the carbon material, applying to a metal current collector, and drying, corresponding to the lattice planes (110) and (004) obtained by wide-angle X-ray diffraction measurement The peak intensity ratio R 0 = I (110) / I (004) is 0.14 to 0.3, and (3) the peak intensity ratio (R 1.7 ) of the electrode (a) and the electrode ( The ratio (R 1.7 / R 0 ) of the peak intensity ratio (R 0 ) of b) is 0.35 to 0.7.
該炭素材料が更に次の要件(4)を満たす、請求項1記載のリチウムイオン二次電池用炭素材料:
(4)該炭素材料の広角X線回折測定により得られる格子面(110)と(004)に対応するピークの強度比R(=I(110)/I(004))が0.14〜0.3。
The carbon material for a lithium ion secondary battery according to claim 1, wherein the carbon material further satisfies the following requirement (4):
(4) The peak intensity ratio R c (= I (110) / I (004)) corresponding to the lattice planes (110) and (004) obtained by wide-angle X-ray diffraction measurement of the carbon material is 0.14 to 0.3.
該炭素材料に水系バインダーを加え、金属製集電体に塗布、乾燥して作製された電極が請求項1の要件(1)〜(3)を満たす、リチウムイオン二次電池用炭素材料。   A carbon material for a lithium ion secondary battery, wherein an electrode produced by adding a water-based binder to the carbon material and applying and drying to a metal current collector satisfies the requirements (1) to (3) of claim 1. 該炭素材料が天然黒鉛を球形化処理したものであり、BET比表面積(SA)が4〜11m/g、タップ密度が0.95〜1.15g/cm、平均円形度が0.9以上、且つラマンR値が0.15〜0.4である、請求項1〜3のいずれか1項記載のリチウムイオン二次電池用炭素材料。 The carbon material is obtained by spheroidizing natural graphite, has a BET specific surface area (SA) of 4 to 11 m 2 / g, a tap density of 0.95 to 1.15 g / cm 3 , and an average circularity of 0.9. The carbon material for a lithium ion secondary battery according to any one of claims 1 to 3, wherein the Raman R value is 0.15 to 0.4. 該炭素材料の粒子の体積基準平均粒径(d50)が8〜40μmである、請求項1〜4のいずれか1項記載のリチウムイオン二次電池用炭素材料。   The carbon material for a lithium ion secondary battery according to any one of claims 1 to 4, wherein the volume-based average particle diameter (d50) of the particles of the carbon material is 8 to 40 µm. 該炭素材料が球形化黒鉛であり、該球形化黒鉛が、鱗片状の天然黒鉛が折りたたまれる、もしくは周囲エッジ部分が球形粉砕されることにより球状とされた母体粒子に微粉が付着してなるものであり、フロー式粒子像分析装置により該炭素材料粒子について測定した粒子径と粒子個数頻度が、次の要件(1)、(2)を満たす、請求項1〜5のいずれか1項記載のリチウムイオン二次電池用炭素材料:
(1)28kHzの超音波を出力60Wで10分間照射した該炭素材料粒子において、粒径5μm以下の粒子個数頻度が40〜85%、及び
(2)28kHzの超音波を出力60Wで10分間照射した該炭素材料粒子において、粒径0.6〜0.7μmの粒子個数頻度と、粒径0.7〜5μmの粒子個数頻度の比(0.6〜0.7μmの粒子個数頻度/0.7〜5μmの粒子個数頻度)が0.4〜0.7。
The carbon material is spheroidized graphite, and the spheroidized graphite is formed by attaching fine powder to base particles that have been made spherical by folding scale-like natural graphite or by spherically pulverizing the peripheral edge portion. The particle diameter and particle number frequency measured for the carbon material particles by a flow type particle image analyzer satisfy the following requirements (1) and (2): Carbon materials for lithium ion secondary batteries:
(1) In the carbon material particles irradiated with 28 kHz ultrasonic waves at 60 W for 10 minutes, the number frequency of particles having a particle size of 5 μm or less is 40 to 85%, and (2) 28 kHz ultrasonic waves are irradiated at 60 W for 10 minutes. In the carbon material particles, the ratio of the particle number frequency of 0.6 to 0.7 μm and the particle number frequency of 0.7 to 5 μm (particle number frequency of 0.6 to 0.7 μm / 0.0. The particle frequency of 7-5 μm) is 0.4-0.7.
集電体と、該集電体上に形成された活物質層とを備えると共に、該活物質層が、請求項1〜6のいずれか1項記載の炭素材料を含有する、リチウムイオン二次電池用負極。   A lithium ion secondary comprising a current collector and an active material layer formed on the current collector, wherein the active material layer contains the carbon material according to any one of claims 1 to 6. Battery negative electrode. リチウムイオンを吸蔵・放出可能な正極及び負極、並びに、電解質を備えると共に、該負極が請求項7記載のリチウムイオン二次電池用負極である、リチウムイオン二次電池。   A lithium ion secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and an electrolyte, wherein the negative electrode is a negative electrode for a lithium ion secondary battery according to claim 7.
JP2014077632A 2009-09-15 2014-04-04 Carbon material for lithium ion secondary battery Pending JP2014146607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014077632A JP2014146607A (en) 2009-09-15 2014-04-04 Carbon material for lithium ion secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009212911 2009-09-15
JP2009212911 2009-09-15
JP2014077632A JP2014146607A (en) 2009-09-15 2014-04-04 Carbon material for lithium ion secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010205360A Division JP5754098B2 (en) 2009-09-15 2010-09-14 Carbon material for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2014146607A true JP2014146607A (en) 2014-08-14

Family

ID=44079393

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010205360A Active JP5754098B2 (en) 2009-09-15 2010-09-14 Carbon material for lithium ion secondary battery
JP2014077632A Pending JP2014146607A (en) 2009-09-15 2014-04-04 Carbon material for lithium ion secondary battery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010205360A Active JP5754098B2 (en) 2009-09-15 2010-09-14 Carbon material for lithium ion secondary battery

Country Status (1)

Country Link
JP (2) JP5754098B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018128179A1 (en) * 2017-01-06 2018-07-12 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2021066581A1 (en) * 2019-10-04 2021-04-08 주식회사 엘지화학 Globular carbon-based anode active material, method for manufacturing same, and anode and lithium secondary battery comprising same
JPWO2020105196A1 (en) * 2018-11-22 2021-10-07 昭和電工マテリアルズ株式会社 Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2023021958A1 (en) 2021-08-17 2023-02-23 Jfeケミカル株式会社 Coated spheroidized graphite, negative electrode for lithium ion secondary batteries and lithium ion secondary battery

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5754098B2 (en) * 2009-09-15 2015-07-22 三菱化学株式会社 Carbon material for lithium ion secondary battery
WO2013002322A1 (en) 2011-06-29 2013-01-03 日本ゼオン株式会社 Binder composition for secondary cell negative electrode, slurry composition for secondary cell negative electrode, negative electrode for secondary cell, and secondary cell
KR101325555B1 (en) * 2011-12-09 2013-11-05 주식회사 엘지화학 Lithium Secondary Battery Comprising Spherical Graphite as Anode Active Material
WO2014030720A1 (en) * 2012-08-23 2014-02-27 三菱化学株式会社 Carbon material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and manufacturing method for carbon material for non-aqueous electrolyte secondary battery
JP2015164127A (en) * 2014-01-31 2015-09-10 三菱化学株式会社 Carbon material for nonaqueous secondary battery negative electrode, negative electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP6233649B2 (en) * 2014-05-19 2017-11-22 トヨタ自動車株式会社 Non-aqueous secondary battery
CN115504464A (en) 2014-07-07 2022-12-23 三菱化学株式会社 Carbon material, method for producing carbon material, and nonaqueous secondary battery using carbon material
JP6609961B2 (en) * 2015-03-27 2019-11-27 三菱ケミカル株式会社 Carbon material and non-aqueous secondary battery
JP6609960B2 (en) * 2015-03-27 2019-11-27 三菱ケミカル株式会社 Carbon material and non-aqueous secondary battery
EP3246974B1 (en) 2015-01-16 2020-11-04 Mitsubishi Chemical Corporation Carbon material and nonaqueous secondary battery using carbon material
JP6859593B2 (en) * 2016-01-12 2021-04-14 三菱ケミカル株式会社 Carbon material for non-aqueous secondary batteries and lithium-ion secondary batteries
JP6989430B2 (en) * 2018-03-28 2022-01-05 三星エスディアイ株式会社Samsung SDI Co., Ltd. Lithium ion secondary battery
CN110265625B (en) 2018-11-12 2020-12-04 宁德时代新能源科技股份有限公司 Negative pole piece and lithium ion secondary battery
KR102413434B1 (en) * 2020-03-13 2022-06-24 (주)포스코케미칼 Graphite particles for negative electrode active material, method for manufacturing the same, negative electrode active material including the same for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery
CN116314612B (en) * 2023-05-11 2023-08-18 中创新航科技集团股份有限公司 Negative electrode plate and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11154513A (en) * 1997-09-19 1999-06-08 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and negative electrode thereof
JP2006049288A (en) * 2004-06-30 2006-02-16 Mitsubishi Chemicals Corp Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for the lithium secondary battery using it and the lithium secondary battery
JP2007042611A (en) * 2005-06-27 2007-02-15 Mitsubishi Chemicals Corp Graphite composite particle for non-aqueous secondary battery, negative electrode active material containing it, negative electrode, and non-aqueous secondary battery
JP2007141677A (en) * 2005-11-18 2007-06-07 Showa Denko Kk Compound graphite and lithium secondary cell using same
JP2011086617A (en) * 2009-09-15 2011-04-28 Mitsubishi Chemicals Corp Carbon material for lithium-ion secondary battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3193342B2 (en) * 1997-05-30 2001-07-30 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
JP3787030B2 (en) * 1998-03-18 2006-06-21 関西熱化学株式会社 Scale-like natural graphite modified particles, process for producing the same, and secondary battery
JP2000090930A (en) * 1998-09-14 2000-03-31 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and manufacture of negative electrode thereof
JP4470467B2 (en) * 2003-11-28 2010-06-02 三菱化学株式会社 Particulate artificial graphite negative electrode material, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery using the same
JP4529445B2 (en) * 2004-01-13 2010-08-25 日立化成工業株式会社 Negative electrode material for lithium ion secondary battery and lithium ion secondary battery
KR20130024968A (en) * 2004-01-16 2013-03-08 히타치가세이가부시끼가이샤 Negative electrode for lithium secondary battery and lithium secondary battery
KR101395403B1 (en) * 2006-08-17 2014-05-14 미쓰비시 가가꾸 가부시키가이샤 Negative electrode active material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
JP5268018B2 (en) * 2006-12-26 2013-08-21 三菱化学株式会社 Non-aqueous secondary battery composite graphite particles, negative electrode material containing the same, negative electrode and non-aqueous secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11154513A (en) * 1997-09-19 1999-06-08 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and negative electrode thereof
JP2006049288A (en) * 2004-06-30 2006-02-16 Mitsubishi Chemicals Corp Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for the lithium secondary battery using it and the lithium secondary battery
JP2007042611A (en) * 2005-06-27 2007-02-15 Mitsubishi Chemicals Corp Graphite composite particle for non-aqueous secondary battery, negative electrode active material containing it, negative electrode, and non-aqueous secondary battery
JP2007141677A (en) * 2005-11-18 2007-06-07 Showa Denko Kk Compound graphite and lithium secondary cell using same
JP2011086617A (en) * 2009-09-15 2011-04-28 Mitsubishi Chemicals Corp Carbon material for lithium-ion secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018128179A1 (en) * 2017-01-06 2018-07-12 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JPWO2018128179A1 (en) * 2017-01-06 2019-01-10 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN110168787A (en) * 2017-01-06 2019-08-23 日立化成株式会社 Lithium ion secondary battery cathode material, lithium ion secondary battery cathode and lithium ion secondary battery
JP2019175852A (en) * 2017-01-06 2019-10-10 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
TWI751260B (en) * 2017-01-06 2022-01-01 日商昭和電工材料股份有限公司 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN110168787B (en) * 2017-01-06 2022-05-03 昭和电工材料株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JPWO2020105196A1 (en) * 2018-11-22 2021-10-07 昭和電工マテリアルズ株式会社 Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2021066581A1 (en) * 2019-10-04 2021-04-08 주식회사 엘지화학 Globular carbon-based anode active material, method for manufacturing same, and anode and lithium secondary battery comprising same
WO2023021958A1 (en) 2021-08-17 2023-02-23 Jfeケミカル株式会社 Coated spheroidized graphite, negative electrode for lithium ion secondary batteries and lithium ion secondary battery
KR20230051609A (en) 2021-08-17 2023-04-18 제이에프이 케미칼 가부시키가이샤 Coated spheroidized graphite, negative electrode for lithium ion secondary battery and lithium ion secondary battery
US11840452B2 (en) 2021-08-17 2023-12-12 Jfe Chemical Corporation Spherically-shaped coated graphite, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP5754098B2 (en) 2015-07-22
JP2011086617A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP5754098B2 (en) Carbon material for lithium ion secondary battery
JP5268018B2 (en) Non-aqueous secondary battery composite graphite particles, negative electrode material containing the same, negative electrode and non-aqueous secondary battery
JP6154380B2 (en) Anode material for lithium ion secondary battery
JP5668308B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP5440099B2 (en) Anode material for non-aqueous secondary batteries
EP2894703B1 (en) Nonaqueous electrolyte secondary battery
JP5974573B2 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US20060275663A1 (en) Negative electrode active material and nonaqueous electrolyte secondary battery
JP2006286614A (en) Nonaqueous electrolyte secondary battery
JP6060506B2 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP2016001593A (en) Nonaqueous electrolyte electrical storage element
TWI586024B (en) A negative electrode active material for lithium secondary battery, and a lithium secondary battery
JP5245201B2 (en) Negative electrode, secondary battery
JP2017520892A (en) Positive electrode for lithium battery
JP2004362789A (en) Negative electrode material and secondary battery using it
US20170005361A1 (en) Nonaqueous electrolyte secondary battery
WO1998054780A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing negative electrode of the same
Li et al. Fabrication of one-dimensional architecture Bi5Nb3O15 nanowires by electrospinning for lithium-ion batteries with enhanced electrochemical performance
JP4021652B2 (en) Positive electrode plate for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode plate
JP2000149927A (en) Electric energy storage device
JP2012033376A (en) Negative electrode active material for nonaqueous secondary battery
JP3048808B2 (en) Non-aqueous electrolyte secondary battery
JP2023512011A (en) Negative electrode active material, manufacturing method thereof, secondary battery, battery module including secondary battery, battery pack, and device
JPWO2014157630A1 (en) Negative electrode carbon material for lithium secondary battery and method for producing the same, negative electrode for lithium secondary battery, and lithium secondary battery
JP2001143760A (en) Lithium ion secondary cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150804