JP4529445B2 - Negative electrode material for lithium ion secondary battery and lithium ion secondary battery - Google Patents

Negative electrode material for lithium ion secondary battery and lithium ion secondary battery Download PDF

Info

Publication number
JP4529445B2
JP4529445B2 JP2004005512A JP2004005512A JP4529445B2 JP 4529445 B2 JP4529445 B2 JP 4529445B2 JP 2004005512 A JP2004005512 A JP 2004005512A JP 2004005512 A JP2004005512 A JP 2004005512A JP 4529445 B2 JP4529445 B2 JP 4529445B2
Authority
JP
Japan
Prior art keywords
battery
negative electrode
value
ion secondary
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004005512A
Other languages
Japanese (ja)
Other versions
JP2005203130A (en
Inventor
孝博 山木
寿一 新井
義人 石井
達也 西田
聡一郎 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004005512A priority Critical patent/JP4529445B2/en
Publication of JP2005203130A publication Critical patent/JP2005203130A/en
Application granted granted Critical
Publication of JP4529445B2 publication Critical patent/JP4529445B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は広いSOC範囲で高い入出力性能を発現する電池エネルギー密度の高いリチウムイオン二次電池用負極材料及びリチウムイオン二次電池に関する。   The present invention relates to a negative electrode material for a lithium ion secondary battery and a lithium ion secondary battery having high battery energy density that exhibits high input / output performance in a wide SOC range.

リチウムイオン二次電池は、他のニッケル水素二次電池や鉛蓄電池に比べ、軽量で高い出力特性を有することから、近年、電気自動車や、ハイブリッド型電気自動車といった高出力用電源として注目されている。ハイブリッド型電気自動車用の電源としては、入出力性能のバランスがとれ、かつ広いSOC範囲で高い入出力性能を発現し、かつその高い入出力性能を発現する電池エネルギー密度の高いリチウムイオン二次電池が求められている。   Lithium ion secondary batteries are lighter and have higher output characteristics than other nickel metal hydride secondary batteries and lead acid batteries, and have recently attracted attention as high-power supplies for electric vehicles and hybrid electric vehicles. . As a power source for a hybrid electric vehicle, a lithium ion secondary battery with a high energy density that balances input / output performance, expresses high input / output performance in a wide SOC range, and expresses the high input / output performance. Is required.

一般に、リチウムイオン二次電池の炭素系の負極活物質は、黒鉛系と非晶質系炭素に大別される。黒鉛は炭素原子の六角網面が規則正しく積層した構造を有するもので、積層した六角網面の端部よりリチウムイオンの挿入、脱離反応が進行し、六角網面の層間にリチウムイオンが挿入される。この六角網面の層間にリチウムイオンが挿入されることで、黒鉛は安定した電位を発現する。さらに黒鉛ではその不可逆容量を非晶質系炭素に比べ小さくすることができる。従って黒鉛系材料を負極活物質に用いたリチウムイオン二次電池では、電池電圧が安定し、SOCによる入出力特性の変動の小さい高エネルギー密度のリチウムイオン二次電池を得られやすい。その反面、リチウムイオンの挿入、脱離反応が六角網面の端部においてしか進行しないことから、入出力値そのものが著しく低い課題がある。   In general, carbon-based negative electrode active materials of lithium ion secondary batteries are roughly classified into graphite-based and amorphous carbon. Graphite has a structure in which hexagonal network surfaces of carbon atoms are regularly stacked. Lithium ion insertion and desorption reactions proceed from the end of the stacked hexagonal network surface, and lithium ions are inserted between the layers of the hexagonal network surface. The As lithium ions are inserted between the layers of the hexagonal mesh surface, graphite develops a stable potential. Further, the irreversible capacity of graphite can be made smaller than that of amorphous carbon. Therefore, in a lithium ion secondary battery using a graphite-based material as a negative electrode active material, it is easy to obtain a high energy density lithium ion secondary battery in which the battery voltage is stable and the fluctuation of input / output characteristics due to the SOC is small. On the other hand, since the insertion and desorption reactions of lithium ions proceed only at the end of the hexagonal network surface, there is a problem that the input / output values themselves are extremely low.

これに対し、非晶質炭素は、六角網面の積層が不規則であるか、もしくは網面構造を有さないもので、リチウムイオンの挿入、脱離反応は粒子の全表面で進行することから、リチウムイオンの挿入、脱離反応の抵抗が低く、高入出力のリチウムイオン二次電池を得やすい反面、構造が不規則であるため不可逆容量が大きく、またリチウムイオンの挿入量に対する電位変動が大きいことから、電池のSOCによる入出力特性の変動が大きい課題がある。   On the other hand, amorphous carbon has irregular hexagonal network surface or no network structure, and lithium ion insertion and desorption reactions proceed on the entire surface of the particle. Therefore, the resistance of lithium ion insertion and desorption reactions is low, and it is easy to obtain a high-input / output lithium ion secondary battery, but the structure is irregular, so the irreversible capacity is large, and the potential fluctuation with respect to the amount of lithium ion insertion Therefore, there is a problem that input / output characteristics vary greatly due to the SOC of the battery.

従って、上述の入出力性能のバランスがとれ、かつ広いSOC範囲で高い入出力性能を発現し、かつその高い入出力性能を発現する電池エネルギー密度の高いリチウムイオン二次電池を実現することは、極めて困難な技術課題であった。   Therefore, to realize a lithium ion secondary battery with a high battery energy density that balances the above-mentioned input / output performance, expresses high input / output performance in a wide SOC range, and expresses the high input / output performance. It was an extremely difficult technical issue.

このような、広いSOC範囲で高い入出力性能を志向したリチウムイオン二次電池として、例えば下記特許文献1には、正極にニッケルの一部を他元素で置換したニッケル酸リチウムを有し、負極に60≦Lc≦100nmである黒鉛を用いたリチウムイオン二次電池の開示がある。しかしその入出力性能とエネルギー密度の点から、その性能として必ずしも十分なものではなかった。   As such a lithium ion secondary battery oriented to high input / output performance in a wide SOC range, for example, Patent Document 1 listed below has lithium nickelate in which a part of nickel is replaced with another element in the positive electrode, and the negative electrode Discloses a lithium ion secondary battery using graphite satisfying 60 ≦ Lc ≦ 100 nm. However, in terms of input / output performance and energy density, the performance is not always sufficient.

また、下記特許文献2においては、組成一般式LiMPO(M=2価元素)であるオリビン構造を有する正極を用いた、SOC25%から80%における入力と出力変動が20%以下であるリチウムイオン二次電池の開示がある。しかし、このリチウムイオン二次電池はその入力性能に比べ出力性能が著しく低く、入出力性能のバランスが必要なハイブリッド型電気自動車用の電源としては必ずしも望ましいものではなかった。又、特許文献2では、負極材料についての規定はない。 Further, in Patent Document 2 below, lithium ions having an input and output fluctuation of 20% or less from SOC 25% to 80% using a positive electrode having an olivine structure of the general formula LiMPO 4 (M = 2 divalent element) are used. There is a disclosure of a secondary battery. However, this lithium ion secondary battery has a significantly lower output performance than its input performance, and is not necessarily desirable as a power source for a hybrid electric vehicle that requires a balance between input and output performance. Moreover, in patent document 2, there is no prescription | regulation about negative electrode material.

特開2000−260480号公報JP 2000-260480 A 特開2003−36889号公報JP 2003-36889 A

本発明は入出力性能のバランスがとれ、かつ広いSOC範囲で高い入出力性能を発現し、かつその高い入出力性能を発現する電池エネルギー密度の高いリチウムイオン二次電池を提供することにある。   An object of the present invention is to provide a lithium ion secondary battery having a high battery energy density that balances input / output performance, expresses high input / output performance in a wide SOC range, and expresses the high input / output performance.

本発明のリチウムイオン二次電池は、入出力時の出力を規定するものであり、具体的には、電極群重量当りの入力密度及び出力密度がともに2000W/kg以上を発現する電極群重量当りの容量密度が20Ah/kg以上であるリチウムイオン二次電池である。   The lithium ion secondary battery of the present invention regulates the output at the time of input and output. Specifically, the input density per electrode group weight and the output density per electrode group weight that expresses 2000 W / kg or more. Is a lithium ion secondary battery having a capacity density of 20 Ah / kg or more.

また、本発明のリチウムイオン二次電池用負極活物質は、下記(1)〜(4)の条件を同時に満たす黒鉛質材料である。(1)平均粒径が3μm以上15μm以下であり、(2)ラマン分光スペクトルで測定される1300〜1400cm−1の範囲にあるピーク強度(I)と1580〜1620cm−1の範囲にあるピーク強度(I)の強度比であるR値(I/ I)が0.2以上0.4以下であり、(3)1300〜1400cm−1の範囲にあるピークの半値幅Δ値が40cm−1以上100cm−1以下であり、(4)X線回折における(110)面のピーク強度(I(110))と(004)面のピーク強度(I(004))との強度比X値(I(110)/ I(004))が0.1以上0.45以下である。なお、これらの測定値は、負極板としてではなく、粉体状態で測定したもので規定されるものである。 Moreover, the negative electrode active material for lithium ion secondary batteries of the present invention is a graphite material that simultaneously satisfies the following conditions (1) to (4). (1) Average particle size of at 3μm or 15μm or less, a peak in the range of the peak intensity (I D) and 1580~1620Cm -1 in the range of 1300~1400Cm -1 measured in (2) Raman spectrum The R value (I D / I G ), which is the intensity ratio of the intensity (I G ), is 0.2 or more and 0.4 or less, and (3) the half width Δ value of the peak in the range of 1300 to 1400 cm −1 is 40 cm -1 or more 100 cm -1 or less, (4) the intensity ratio of the peak intensity of the (110) plane in X-ray diffraction (I (110)) and (004) plane peak intensity (I (004)) X The value (I (110) / I (004) ) is 0.1 or more and 0.45 or less. In addition, these measured values are prescribed | regulated by what was measured not in the negative electrode plate but in the powder state.

本発明により入出力性能のバランスがとれ、かつ広いSOC範囲で高い入出力性能を発現し、かつその高い入出力性能を発現する電池エネルギー密度の高いリチウムイオン二次電池が実現できる。すなわち電池の充電状態(SOC)による出力性能及び入力性能の変動が小さく、かつその出力性能及び入力性能のバランスがとれかつその発現する入出力値が高いリチウムイオン二次電池が実現できる。これにより例えばハイブリッド型電気自動車用の電源として用いた際、自動車の使用によるSOCが変動してもその高い入出力性能が変動せず、制御が容易で高性能のハイブリッド型電気自動車が実現できる。   According to the present invention, it is possible to realize a lithium ion secondary battery having a high battery energy density that balances the input / output performance, exhibits high input / output performance in a wide SOC range, and exhibits the high input / output performance. That is, it is possible to realize a lithium ion secondary battery in which fluctuations in output performance and input performance due to the state of charge (SOC) of the battery are small, the output performance and input performance are balanced, and the input / output values are high. Thus, for example, when used as a power source for a hybrid electric vehicle, even if the SOC due to the use of the vehicle fluctuates, the high input / output performance does not fluctuate, and a hybrid electric vehicle that is easy to control and has a high performance can be realized.

本発明のリチウムイオン二次電池は、負極活物質として平均粒径が3μm以上15μm以下である黒鉛質材料を用いる。平均粒径が15μmを超えると、負極活物質の表面から内部へのLiの拡散距離が長くなるため、入出力特性は低下する。一方平均粒径が3μm未満になると、サブミクロンオーダーの微細な粒子の割合が必然的に増大するため、粒子同士の電子的な接触のない、すなわち活物質として機能しない粒子が増大する結果、入出力特性は低下する。   In the lithium ion secondary battery of the present invention, a graphite material having an average particle size of 3 μm or more and 15 μm or less is used as the negative electrode active material. When the average particle diameter exceeds 15 μm, the diffusion distance of Li from the surface of the negative electrode active material to the inside becomes long, and the input / output characteristics are deteriorated. On the other hand, if the average particle size is less than 3 μm, the proportion of fine particles on the order of submicrons inevitably increases, and as a result, there is an increase in particles that do not have electronic contact with each other, that is, do not function as an active material. The output characteristics are degraded.

かつ本発明のリチウムイオン二次電池は、負極活物質としてラマン分光スペクトルのR値(I / I)が0.2以上0.4以下の黒鉛質材料を用いる。ラマン分光スペクトルで測定される1580〜1620cm−1の範囲にあるピークは黒鉛の六角網面の規則正しい積層を示すものとされており、1300〜1400cm−1の範囲にあるピークは六角網面の積層の乱れやπ電子をもたない非晶質の結合を示すものとされている。従って、1300〜1400cm−1の範囲にあるピーク強度(I)と1580〜1620cm−1の範囲にあるピーク強度(I)の強度比であるR値(I/ I)は、黒鉛質材料の結晶性の尺度といえる。R値が0.2未満ではその黒鉛結晶性が高くなり入出力特性が低下し、0.4を超えると結晶性が低くなるため,電池のSOCに対する電圧変化が大きくなるため、高い入出力性能を発現する電池エネルギー密度が低下する。 In addition, the lithium ion secondary battery of the present invention uses a graphite material having an R value ( ID / IG ) of a Raman spectrum of 0.2 or more and 0.4 or less as a negative electrode active material. Peak in the range of 1580~1620Cm -1 as measured by Raman spectroscopy spectra is intended to indicate a regular stacking of the hexagonal plane of graphite, the peak in the range of 1300~1400Cm -1 lamination of hexagonal network It shows an amorphous bond having no disorder or π electrons. Thus, R value is the intensity ratio of the peak intensity (I G) with a peak intensity in the range of 1300~1400Cm -1 and (I D) in the range of 1580~1620cm -1 (I D / I G ) is graphite This is a measure of the crystallinity of the material. When the R value is less than 0.2, the graphite crystallinity is high and the input / output characteristics are deteriorated. When the R value is more than 0.4, the crystallinity is low, and the voltage change with respect to the SOC of the battery is large. The battery energy density that expresses is reduced.

かつ本発明のリチウムイオン二次電池は、負極活物質としてラマン分光スペクトルで測定される1300〜1400cm−1の範囲にあるピークの半値幅Δ値が40cm−1以上100cm−1以下である黒鉛質材料を用いる。 And a lithium ion secondary battery of the present invention, graphite half width Δ value of the peak in the range of 1300~1400Cm -1 as measured by Raman spectroscopy spectra is 40 cm -1 or more 100 cm -1 or less as an anode active material Use materials.

1300〜1400cm−1の範囲にあるピークは六角網面の積層の乱れや非晶質の結合を示すものとされており、積層の乱れの度合いが大きいほど上記Δ値は高い値を示すと考えられる。ここでΔ値が40cm−1未満であると、リチウムイオンの挿入・脱離反応をより低抵抗で進行するために必要な積層の乱れが小さく、入出力特性が低下する。Δ値が100cm−1を超えると構造の乱れが大きく、不可逆容量が増大すると同時にSOCに対する電圧変化が大きくなるため、高い入出力性能を発現する電池エネルギー密度が低下する。 A peak in the range of 1300 to 1400 cm −1 is considered to indicate disorder in the hexagonal network stacking and amorphous bonding, and the above Δ value is considered to increase as the degree of disorder in the stacking increases. It is done. Here, when the Δ value is less than 40 cm −1 , the disorder of the stack necessary for proceeding the insertion / extraction reaction of lithium ions with lower resistance is small, and the input / output characteristics are deteriorated. When the Δ value exceeds 100 cm −1 , the structural disturbance is large, the irreversible capacity increases, and at the same time, the voltage change with respect to the SOC increases, so that the battery energy density that expresses high input / output performance decreases.

かつ本発明のリチウムイオン二次電池は、負極活物質としてX線回折における (110)面のピーク強度(I(110))と(004)面のピーク強度(I(004))との強度比X値(I(110)/ I(004))が0.1以上0.45以下である黒鉛質材料を用いる。 In addition, the lithium ion secondary battery of the present invention is a negative electrode active material having an intensity ratio between the peak intensity (I (110) ) of the (110 ) plane and the peak intensity (I (004) ) of the (004) plane in X-ray diffraction. A graphite material having an X value (I (110) / I (004) ) of 0.1 or more and 0.45 or less is used.

X線回折における(110)面のピーク強度と(004)面のピーク強度の比は、その黒鉛質材料の結晶配向性を示すもので、X値が小さいと六角網面の網面方向の広がりが大きく、逆に大きいと積層した六角網面の端部の占める割合が大きくなる。X値が0.1未満であると、黒鉛質粒子に占めるリチウムイオンの挿入・脱離反応が進行する六角網面端部の割合が低下するため入出力特性が低下し、X値が0.45を超えると六角網面端部の割合が増大して不可逆容量が増大し、高い入出力性能を発現する電池エネルギー密度が低下する。   The ratio of the peak intensity of the (110) plane to the peak intensity of the (004) plane in X-ray diffraction indicates the crystal orientation of the graphite material. If the X value is small, the hexagonal network plane spreads in the network plane direction. On the other hand, if it is large, the proportion of the end portions of the laminated hexagonal mesh surfaces increases. If the X value is less than 0.1, the ratio of the hexagonal network end where the insertion / extraction reaction of lithium ions in the graphite particles proceeds is reduced, so that the input / output characteristics are reduced, and if the X value exceeds 0.45 The ratio of hexagonal mesh surface ends increases, the irreversible capacity increases, and the battery energy density that expresses high input / output performance decreases.

本発明において平均粒径を求めるには、光回折法を用いる。黒鉛質材料を少量の界面活性剤を溶解した蒸留水に分散させ、これに波長633nmのレーザ光を照射し、粒子の回折光を解析し粒度分布を求める。この粒度分布から体積50%における平均粒径(D50)を求める。   In the present invention, the light diffraction method is used to determine the average particle diameter. A graphite material is dispersed in distilled water in which a small amount of a surfactant is dissolved, and this is irradiated with a laser beam having a wavelength of 633 nm, and the diffracted light of the particle is analyzed to obtain a particle size distribution. From this particle size distribution, the average particle size (D50) at a volume of 50% is determined.

また、本発明における黒鉛質材料のR値及びΔ値を求めるには、黒鉛材料粉末に、波長514.5nm、出力50Wのアルゴンレーザを照射し、ラマン散乱光を分光器で測定することでラマン分光スペクトルを得る。次いで得られたスペクトルのベースラインから1580〜1620cm−1の範囲にあるピークと、1300〜1400cm−1の範囲にあるピークの各々のピーク強度の高さを測定することで、R値を求める。さらに、ベースラインから1300〜1400cm−1の範囲にあるピークまでの高さを求め、その1/2の高さにおけるピークの幅を求め、Δ値を得る。 Further, in order to obtain the R value and Δ value of the graphite material in the present invention, the graphite material powder is irradiated with an argon laser having a wavelength of 514.5 nm and an output of 50 W, and the Raman scattered light is measured with a spectroscope. Obtain a spectrum. Then a peak in the obtained spectrum of the baseline in the range of 1580~1620cm -1, to measure the height of each peak intensity of the peak in the range of 1300~1400cm -1, obtaining the R value. Further, the height from the baseline to the peak in the range of 1300 to 1400 cm −1 is obtained, the width of the peak at the half height is obtained, and the Δ value is obtained.

また、本発明における黒鉛質材料のX値を求めるには、反射回折式の粉末X線回折法を用いる。Cuをターゲットとし、管電圧50kV、管電流150mAでCuKα線を黒鉛質材料粉末に照射し、回折線をゴニオメータで測定し、粉末X線回折スペクトルを得る。2θが52〜57°の範囲にある(004)面の回折ピークと、2θが75〜80°の範囲にある(110)面の回折ピークの各々の高さを求め、X値を算出する。   In order to obtain the X value of the graphite material in the present invention, a reflection diffraction type powder X-ray diffraction method is used. Using Cu as a target, a graphite material powder is irradiated with CuKα rays at a tube voltage of 50 kV and a tube current of 150 mA, and diffraction lines are measured with a goniometer to obtain a powder X-ray diffraction spectrum. The height of each of the (004) plane diffraction peak with 2θ in the range of 52 to 57 ° and the (110) plane diffraction peak with 2θ in the range of 75 to 80 ° is obtained, and the X value is calculated.

さらに本発明のリチウムイオン二次電池のより望ましい形態として、負極合剤の厚さが20μm以上40μm以下である。負極合剤の厚さが20μm未満であると、入出力時に少ない活物質から多量のリチウムが挿入もしくは放出されるため、その入出力性能が低下する。負極合剤の厚さが40μmを超えると、電極表面から電極内部の活物質までの電解液中のリチウム拡散距離が長くなり、入出力性能が低下する。   Furthermore, as a more desirable form of the lithium ion secondary battery of the present invention, the thickness of the negative electrode mixture is 20 μm or more and 40 μm or less. When the thickness of the negative electrode mixture is less than 20 μm, a large amount of lithium is inserted or released from a small active material at the time of input / output, so that the input / output performance is deteriorated. When the thickness of the negative electrode mixture exceeds 40 μm, the lithium diffusion distance in the electrolytic solution from the electrode surface to the active material inside the electrode becomes long, and the input / output performance decreases.

本発明のリチウムイオン二次電池は、正極合剤を塗布してなる正極と、上述の平均粒径、R値、Δ値、X値である黒鉛質材料からなる負極活物質を含む、望ましくは上述の厚さとなるよう塗布してなる負極と、セパレータとからなる電極群及び電解液を電池ケースに収納することで構成される。   The lithium ion secondary battery of the present invention preferably includes a positive electrode formed by applying a positive electrode mixture, and a negative electrode active material made of a graphite material having the above average particle diameter, R value, Δ value, and X value. An electrode group consisting of a negative electrode coated to have the above thickness and a separator, and an electrolytic solution are housed in a battery case.

正極の作成には、正極活物質に黒鉛、炭素、カーボンブラック、炭素繊維等の導電剤を適量加え、さらに適当な溶媒に溶解もしくは分散させた結着剤を加えてよく混練して、正極合剤スラリーを作成する。正極活物質としては層状系の結晶構造を有するコバルト酸リチウムやニッケル酸リチウム、マンガン酸リチウムで代表されるスピネル系複合酸化物、及びこれらの元素置換酸化物を用いることができる。結着剤としてポリフッ化ビニリデン(PVDF)等のフッ素系樹脂を用いることができ、これを溶解する溶媒として、例えばN-メチル-ピロリドン(NMP)を用いる。この正極合剤スラリーをアルミニウム等の金属箔上に塗布後乾燥し、さらに同様の工程で金属箔の両面に塗布乾燥後、必要に応じ圧縮成型後、所望の大きさに切断して、正極を作成する。   For the preparation of the positive electrode, an appropriate amount of a conductive agent such as graphite, carbon, carbon black, or carbon fiber is added to the positive electrode active material, and a binder dissolved or dispersed in an appropriate solvent is added and kneaded well. An agent slurry is prepared. As the positive electrode active material, spinel complex oxides typified by lithium cobaltate, lithium nickelate, and lithium manganate having a layered crystal structure, and elemental substitution oxides thereof can be used. A fluorine-based resin such as polyvinylidene fluoride (PVDF) can be used as the binder, and N-methyl-pyrrolidone (NMP) is used as a solvent for dissolving the resin. This positive electrode mixture slurry is applied and dried on a metal foil such as aluminum, and further applied and dried on both sides of the metal foil in the same process, and after compression molding if necessary, cut to a desired size, create.

負極の作成には、負極活物質として上述の平均粒径、R値、Δ値、X値である黒鉛質材料を用いる。負極活物質に、カーボンブラック、アセチレンブラック、炭素繊維等の導電剤を適量加え、これに結着剤として例えばNMPに溶解したPVDFを加えてよく混練して、負極合剤スラリーを作成する。この負極合剤スラリーを銅等の金属箔上に、塗布後乾燥し、さらに同様の工程で金属箔の両面に塗布乾燥後、圧縮成型後所望の大きさに切断して、負極を作成する。作製した負極の合剤厚さは20μm以上40μm以下とするのが望ましく、所望の厚さとなるよう、合剤の塗付量と、圧縮成型時の圧力を調整するものである。   For the preparation of the negative electrode, the graphite material having the above average particle diameter, R value, Δ value, and X value is used as the negative electrode active material. An appropriate amount of a conductive agent such as carbon black, acetylene black, or carbon fiber is added to the negative electrode active material, and, for example, PVDF dissolved in NMP is added as a binder to the negative electrode active material and kneaded well to prepare a negative electrode mixture slurry. This negative electrode mixture slurry is applied and dried on a metal foil such as copper, and further applied and dried on both sides of the metal foil in the same process, and after compression molding, cut into a desired size to produce a negative electrode. The thickness of the prepared negative electrode mixture is desirably 20 μm or more and 40 μm or less, and the coating amount of the mixture and the pressure at the time of compression molding are adjusted so as to obtain a desired thickness.

円筒型電池を作製する場合には、以下のとおりするものである。得られた正極と負極を正極と負極を電気的に絶縁する機構として、正極と負極の間に厚さ15〜50μmの多孔質絶縁物フィルムからなるセパレータを挟み、これを円筒状に捲回して電極群を作製しSUSやアルミでできた電池容器に挿入する。セパレータとして用いることが出来るものは、ポリエチレン(PE)やポリプロピレン(PP)等の樹脂製多孔質絶縁物フィルムを用いることができる。   When producing a cylindrical battery, it is as follows. As a mechanism for electrically insulating the obtained positive electrode and negative electrode from each other, a separator made of a porous insulating film having a thickness of 15 to 50 μm is sandwiched between the positive electrode and the negative electrode, and this is wound into a cylindrical shape. An electrode group is prepared and inserted into a battery container made of SUS or aluminum. As a separator that can be used, a resin porous insulating film such as polyethylene (PE) or polypropylene (PP) can be used.

この電池容器に、乾燥空気中又は不活性ガス雰囲気の作業容器内で、正極と負極を電気化学的に結合させるリチウム塩を非水溶媒に溶解した非水電解液を注入し、容器を封止して電池とする。   A nonaqueous electrolyte solution in which a lithium salt for electrochemically bonding the positive electrode and the negative electrode is dissolved in a nonaqueous solvent in a working container in dry air or an inert gas atmosphere is injected into the battery container, and the container is sealed. Battery.

リチウム塩は、電池の充放電により電解液中を移動するリチウムイオンを供給するもので、LiClO、LiCFSO、LiPF、LiBF、LiAsFなどを単独もしくは2種類以上を用いることができる。有機溶媒としては、直鎖状もしくは環状カーボネート類を主成分とすることが望ましく、これにエステル類、エーテル類等を混合することもできる。カーボネート類として例えばエチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート、ジエチルカーボネート、などがあげられる。これらを単独あるいは混合した非水溶媒を用いる。 Lithium salt supplies lithium ions that move in the electrolyte by charging and discharging the battery, and LiClO 4 , LiCF 3 SO 3 , LiPF 6 , LiBF 4 , LiAsF 6, etc. may be used alone or in combination. it can. As an organic solvent, it is desirable to have a linear or cyclic carbonate as a main component, and esters, ethers and the like can be mixed therewith. Examples of carbonates include ethylene carbonate (EC), propylene carbonate, butylene carbonate, dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate, diethyl carbonate, and the like. A nonaqueous solvent in which these are used alone or in combination is used.

また、角形電池とするためには以下のようにするものである。正極及び負極の塗布は前記円筒型電池を作製する場合と同様である。角形電池を作製するためには、角形のセンターピンを中心として、電極群を作製する。円筒型電池と同様に、電池容器にこれを収納し電解液を注入後、電池缶を密封する。また、電極群の代わりに、セパレータ、正極、セパレータ、負極、セパレータの順に積層していく積層体を用いることもできる。   Further, in order to obtain a square battery, it is as follows. The application of the positive electrode and the negative electrode is the same as that for producing the cylindrical battery. In order to produce a prismatic battery, an electrode group is produced around a square center pin. As in the case of the cylindrical battery, the battery can is sealed after storing it in a battery container and injecting an electrolyte. Moreover, the laminated body laminated | stacked in order of a separator, a positive electrode, a separator, a negative electrode, and a separator can also be used instead of an electrode group.

以下、実施例と比較例を用いて本発明を説明する。   Hereinafter, the present invention will be described using examples and comparative examples.

[実施例1]
本発明の実施例1の18650円筒型リチウムイオン二次電池(電池1)、(電池2)、(電池3)、(電池4)を以下のとおり作製した。まず正極を作製した。正極活物質として粒径7μmのコバルト酸リチウム85.5重量%に、導電剤として8重量%の鱗片状黒鉛と1.5重量%のアセチレンブラックと、あらかじめ結着剤として5重量%のPVDFをNMPに溶解した溶液とを加えてさらに混合し正極合剤スラリーを作製した。このスラリーを厚さ20μmのアルミニウム箔(正極集電体)に実質的に均一かつ均等に塗布した後80℃の温度で乾燥し、同じ手順でアルミニウム箔の両面に塗布乾燥を行った。その後ロールプレス機により圧縮成形し、所定の大きさに切断し、電流をとりだすためのアルミニウム箔製のリード片を溶接し正極を作製した。
[Example 1]
The 18650 cylindrical lithium ion secondary battery (battery 1), (battery 2), (battery 3), and (battery 4) of Example 1 of the present invention were produced as follows. First, a positive electrode was produced. As a positive electrode active material, lithium cobaltate having a particle diameter of 7 μm was dissolved in NMP in 8% by weight of lithium cobaltate, 8% by weight of flaky graphite and 1.5% by weight of acetylene black as a conductive agent, and 5% by weight of PVDF as a binder in advance. The solution was added and further mixed to prepare a positive electrode mixture slurry. This slurry was applied to a 20 μm thick aluminum foil (positive electrode current collector) substantially uniformly and evenly, and then dried at a temperature of 80 ° C., followed by coating and drying on both sides of the aluminum foil in the same procedure. Thereafter, it was compression molded by a roll press machine, cut into a predetermined size, and a lead piece made of aluminum foil for taking out electric current was welded to produce a positive electrode.

次に負極を作製した。負極活物質として、(電池1)においては平均粒径3.2μmの黒鉛A、(電池2)においては平均粒径15μmの黒鉛B、(電池3)においては平均粒径11μmの黒鉛C、(電池4)おいては平均粒径9.3μmの黒鉛D用いた。ラマン分光による1300〜1400cm−1の範囲にあるピークと1580〜1620cm−1の範囲にあるピークの強度比R値、及び1300〜1400cm−1の範囲にあるピークの半値幅Δ値は、黒鉛質材料AではR値が0.25でΔ値が42cm−1、黒鉛質材料BではR値が0.20でΔ値が51cm−1、黒鉛質材料CではR値が0.40でΔ値が98cm−1、黒鉛質材料DではR値が0.34でΔ値が63cm−1であった。また、(110)面のピーク強度(I(110))と(004)面のピーク強度(I(004))との強度比X値(I(110)/ I(004))は、黒鉛質材料Aでは0.42、黒鉛質材料Bでは0.18、黒鉛質材料Cでは0.25、黒鉛質材料Dでは0.11であった。活物質92重量%に導電剤として4重量%のアセチレンブラックと、あらかじめ4重量%のPVDFをNMPに溶解した溶液を加えて混合し負極合剤スラリーを作製した。このスラリーを正極と同様の手順で厚さ15μmの圧延銅箔(負極集電体)の両面に実質的に均一かつ均等に塗布した。塗付後ロールプレス機により圧縮成形し、所定の大きさに切断し、ニッケル箔製のリード片を溶接し負極を作製した。負極合剤の厚さは30μmに調整した。 Next, a negative electrode was produced. As the negative electrode active material, graphite A having an average particle diameter of 3.2 μm in (Battery 1), graphite B having an average particle diameter of 15 μm in (Battery 2), graphite C having an average particle diameter of 11 μm in (Battery 3), (battery 1) In 4), graphite D having an average particle size of 9.3 μm was used. The intensity ratio R of the peak in the range of peak and 1580~1620Cm -1 in the range of 1300~1400Cm -1 by Raman spectroscopy, and the half width Δ value of the peak in the range of 1300~1400Cm -1 is graphite In the material A, the R value is 0.25 and the Δ value is 42 cm −1 , in the graphite material B, the R value is 0.20 and the Δ value is 51 cm −1 , and in the graphite material C, the R value is 0.40 and the Δ value is 98 cm −1 . In the material D, the R value was 0.34 and the Δ value was 63 cm −1 . The intensity ratio X value (I (110) / I (004) ) between the peak intensity (I (110) ) of the (110) plane and the peak intensity (I (004) ) of the (004) plane is graphitic. It was 0.42 for material A, 0.18 for graphite material B, 0.25 for graphite material C, and 0.11 for graphite material D. A negative electrode mixture slurry was prepared by adding and mixing a solution prepared by dissolving 4% by weight of acetylene black as a conductive agent and 92% by weight of an active material in advance in 4% by weight of PVDF in NMP. This slurry was applied substantially uniformly and evenly on both sides of a rolled copper foil (negative electrode current collector) having a thickness of 15 μm in the same procedure as the positive electrode. After coating, it was compression molded by a roll press, cut to a predetermined size, and a nickel foil lead piece was welded to produce a negative electrode. The thickness of the negative electrode mixture was adjusted to 30 μm.

図1に示すように、作製した正極と負極を用いて長さ65mm、径18mmの円筒型電池を作製した。作製した正極11と負極12とを厚さ25μmの微多孔性ポリプロピレン製セパレータ13を挟み捲回して電極群を作製し、電極群の重量を測定した。電極群をSUS製の電池缶14に挿入し、負極リード片15を缶底に溶接し、正極電流端子を兼ねる密閉蓋部16に正極リード片17を溶接した。電池缶内に電解液を注入した後に、正極端子が取り付けられた密閉ふた部16をパッキン18を介して電池缶14にかしめて密閉して円筒型電池とした。非水電解液はEC、DMC、DECの体積比1:1:1の混合溶媒に1モル/リットルのLiPF6を溶解させたものを用いた。   As shown in FIG. 1, a cylindrical battery having a length of 65 mm and a diameter of 18 mm was produced using the produced positive electrode and negative electrode. The produced positive electrode 11 and negative electrode 12 were wound with a microporous polypropylene separator 13 having a thickness of 25 μm interposed therebetween to produce an electrode group, and the weight of the electrode group was measured. The electrode group was inserted into a battery can 14 made of SUS, the negative electrode lead piece 15 was welded to the bottom of the can, and the positive electrode lead piece 17 was welded to the sealing lid portion 16 also serving as a positive electrode current terminal. After injecting the electrolyte into the battery can, the sealing lid portion 16 to which the positive electrode terminal was attached was caulked and sealed to the battery can 14 via the packing 18 to obtain a cylindrical battery. As the non-aqueous electrolyte, a solution obtained by dissolving 1 mol / liter of LiPF6 in a mixed solvent of EC, DMC, and DEC in a volume ratio of 1: 1: 1 was used.

(容量密度と入出力密度の測定)
実施例1の各電池の容量密度と入出力密度を以下のように測定した。
まず、電池の定格容量を測定した。作製したリチウムイオン二次電池について20℃で充電と放電を3回繰り返し、3回目の放電容量を電池の定格容量と定めた。充電条件は、0.33C相当の充電電流で上限電圧4.1Vで4時間の定電流定電圧充電とした。放電条件は0.33C相当の放電電流で下限電圧3.0Vの定電流放電とした。
(Measurement of capacity density and input / output density)
The capacity density and input / output density of each battery of Example 1 were measured as follows.
First, the rated capacity of the battery was measured. The manufactured lithium ion secondary battery was charged and discharged three times at 20 ° C., and the third discharge capacity was determined as the rated capacity of the battery. The charging conditions were constant current and constant voltage charging with a charging current equivalent to 0.33 C and an upper limit voltage of 4.1 V for 4 hours. The discharge conditions were a constant current discharge with a discharge voltage corresponding to 0.33 C and a lower limit voltage of 3.0 V.

次いで出力を測定した。まず0.33C相当の電流で上限電圧4.1Vで4時間の定電流定電圧充電を行い、SOC100%の状態とした。次いで、定格容量の20%の電気量を放電し、SOC80%の状態とした。次いで、放電電流を1Cで10秒間放電し、放電前の開回路電圧(V(D))と放電10秒目の電圧(V(D)10)を測定し、両者の差(V(D)0―V(D)10)である電圧降下(ΔV(D))を求めた。この後、放電した電気量に相当する充電を行い、順次放電電流を5C、10Cと変化させ同様に電圧降下(ΔV)を求めた。放電電流値に対する電圧降下(ΔV(D))を外挿し、10秒間で放電終止電圧3.0Vに到達すると仮定した場合の最大電流値(I(D)MAX)を求め、I(D)MAXに3.0Vを乗じたものをSOC80%における出力とした。同様に、SOC60%、SOC40%、SOC20%の出力を順次測定した。 The output was then measured. First, constant current / constant voltage charging was performed for 4 hours at an upper limit voltage of 4.1 V with a current corresponding to 0.33 C to obtain a SOC of 100%. Next, 20% of the rated capacity was discharged and the SOC was 80%. Next, the discharge current was discharged at 1 C for 10 seconds, the open circuit voltage (V (D) 0 ) before discharge and the voltage (V (D) 10 ) at the 10th discharge were measured, and the difference between them (V (D) ) A voltage drop (ΔV (D)) of 0−V (D) 10 ) was obtained. Thereafter, charging corresponding to the discharged amount of electricity was performed, and the discharge current was sequentially changed to 5C and 10C to similarly determine the voltage drop (ΔV). Extrapolating the voltage drop (ΔV (D)) with respect to the discharge current value, the maximum current value (I (D) MAX ) is calculated when it is assumed that the discharge end voltage reaches 3.0 V in 10 seconds, and I (D) MAX The output at SOC 80% is obtained by multiplying 3.0V by 3.0V. Similarly, outputs of SOC 60%, SOC 40%, and SOC 20% were sequentially measured.

次いで、入力を測定した。上記出力測定後、0.33C相当の放電電流で下限電圧3.0Vの定電流放電し、SOC0%の状態とした。次に、定格容量の20%の電気量を充電し、SOC20%の状態とした。次いで、充電電流を1Cで10秒間充電し、充電前の開回路電圧(V(C)0)と充電10秒目の電圧(V(C)10)を測定し、両者の差(V(C)10―V(C)0)である電圧上昇(ΔV(C))を求めた。この後、充電した電気量に相当する放電を行い、順次充電電流を5C、10Cと変化させ同様に電圧上昇(ΔV(C))を求めた。充電電流値に対する電圧上昇(ΔV(C))を外挿し、10秒間で充電終止電圧4.1Vに到達すると仮定した場合の最大電流値(I(C)MAX)を求め、I(C)MAXに4.1Vを乗じたものをSOC20%における入力とした。同様に、SOC40%、SOC60%、SOC80%の入力を順次測定した。 The input was then measured. After the output measurement, a constant current discharge with a lower limit voltage of 3.0 V was performed with a discharge current corresponding to 0.33 C to obtain a SOC of 0%. Next, 20% of the rated capacity was charged and the SOC was 20%. Next, the charging current is charged at 1 C for 10 seconds, the open circuit voltage (V (C) 0 ) before charging and the voltage (V (C) 10 ) at the 10th charging time are measured, and the difference between them (V (C) ) A voltage increase (ΔV (C)) of 10−V (C) 0 ) was determined. Thereafter, discharging corresponding to the charged amount of electricity was performed, and the charging current was sequentially changed to 5C and 10C to similarly determine the voltage increase (ΔV (C)). Extrapolating the voltage rise (ΔV (C)) with respect to the charging current value, the maximum current value (I (C) MAX ) is calculated when it is assumed that the end-of-charge voltage is 4.1 V in 10 seconds, and I (C) MAX Multiplied by 4.1V was used as the input at SOC 20%. Similarly, inputs of SOC 40%, SOC 60%, and SOC 80% were sequentially measured.

以上測定した、電極群の重量、電池の定格容量と各SOCにおける入力と出力を基に、入力密度及び出力密度がともに2000W/kg以上となる容量密度を算出した。縦軸に、各SOCにおける出力の電極群重量の商である出力密度と、各SOCにおける入力の電極群重量の商である入力密度をとる。横軸に容量の電極群重量の商である容量密度をとる。定格容量における容量密度をSOC100%として、各SOCにおける容量密度を算出し、各SOCにおける入力密度と出力密度の値をプロットし、容量密度に対する入力密度と出力密度の関係を得た。最後にこの関係から入力密度及び出力密度がともに2000W/kg以上となる容量密度を算出した。   Based on the measured weight of the electrode group, the rated capacity of the battery, and the input and output at each SOC, the capacity density at which the input density and the output density were both 2000 W / kg or more was calculated. The vertical axis represents the output density, which is the quotient of the output electrode group weight in each SOC, and the input density, which is the quotient of the input electrode group weight in each SOC. The horizontal axis represents the capacity density which is the quotient of the weight of the electrode group of capacity. The capacity density in each SOC was calculated by setting the capacity density in the rated capacity as 100% SOC, and the values of the input density and the output density in each SOC were plotted to obtain the relationship between the input density and the output density with respect to the capacity density. Finally, the capacity density at which both the input density and the output density were 2000 W / kg or more was calculated from this relationship.

表1に実施例1の各電池について、負極に用いた黒鉛の平均粒径、R値、Δ値、X値、入出力密度がともに2000W/kg以上となる容量密度を示す。表1に示すように、(電池1)の容量密度は21.0Ah/kg、(電池2)の容量密度は21.3Ah/kg、(電池3)の容量密度は22.4Ah/kg、(電池4)の容量密度は21.8Ah/kgであった。実施例1の各電池の入出力密度がともに2000W/kg以上となる容量密度は、いずれも20Ah/kg以上であり、後述する比較例の電池に比べ優れていた。   Table 1 shows the capacity density at which the average particle diameter, R value, Δ value, X value, and input / output density of the graphite used for the negative electrode are all 2000 W / kg or more for each battery of Example 1. As shown in Table 1, the capacity density of (Battery 1) is 21.0 Ah / kg, the capacity density of (Battery 2) is 21.3 Ah / kg, the capacity density of (Battery 3) is 22.4 Ah / kg, (Battery 4) The volume density of was 21.8 Ah / kg. The capacity densities at which the input / output densities of the batteries of Example 1 were both 2000 W / kg or more were all 20 Ah / kg or more, which was superior to the batteries of Comparative Examples described later.

Figure 0004529445
Figure 0004529445

比較例Comparative example

比較例1の18650円筒型リチウムイオン二次電池(比較電池1)、(比較電池2)、(比較電池3)、(比較電池4)を以下のとおり作製した。   The 18650 cylindrical lithium ion secondary battery (Comparative Battery 1), (Comparative Battery 2), (Comparative Battery 3), and (Comparative Battery 4) of Comparative Example 1 were produced as follows.

負極活物質として、(比較電池1)においては平均粒径20μmの黒鉛E、(比較電池2)においては平均粒径2.5μmの黒鉛F、(比較電池3)においては平均粒径9μmの黒鉛G、(比較電池4)においては平均粒径14μmの黒鉛Hを用いた。黒鉛EのR値は0.26、Δ値は50cm−1、X値は0.31、黒鉛FのR値は0.23、Δ値は46cm−1、X値は0.25、黒鉛GのR値は0.16、Δ値は35cm−1、X値は0.15、黒鉛HのR値は0.45、Δ値は103cm−1、X値は0.48であった。上述以外は実施例1と同様にリチウムイオン二次電池を作製した。 As the negative electrode active material, graphite E having an average particle diameter of 20 μm in (Comparative Battery 1), graphite F having an average particle diameter of 2.5 μm in (Comparative Battery 2), and graphite G having an average particle diameter of 9 μm in (Comparative Battery 3). In (Comparative Battery 4), graphite H having an average particle size of 14 μm was used. The R value of graphite E is 0.26, Δ value is 50 cm −1 , X value is 0.31, R value of graphite F is 0.23, Δ value is 46 cm −1 , X value is 0.25, R value of graphite G is 0.16, Δ value Was 35 cm −1 , the X value was 0.15, the R value of graphite H was 0.45, the Δ value was 103 cm −1 , and the X value was 0.48. A lithium ion secondary battery was produced in the same manner as in Example 1 except for the above.

表1に比較例の各電池について、負極に用いた黒鉛の平均粒径、R値、Δ値、X値、入出力密度がともに2000W/kg以上となる容量密度を示す。(比較電池1)の容量密度は8.6Ah/kg、(比較電池2)の容量密度は6.3Ah/kg、(比較電池4)の容量密度は18.1Ah/kgであった。(比較電池3)においては入出力密度がともに2000W/kgを満たすSOCの領域がなかった。比較例の各電池の出力密度は、入出力密度がともに2000W/kg以上となる容量密度は、いずれも20Ah/kg未満であり、実施例の電池に比べ特性が劣っていた。   Table 1 shows the capacity density at which the average particle diameter, R value, Δ value, X value, and input / output density of the graphite used for the negative electrode are each 2000 W / kg or more for each battery of the comparative example. The capacity density of (Comparative Battery 1) was 8.6 Ah / kg, the capacity density of (Comparative Battery 2) was 6.3 Ah / kg, and the capacity density of (Comparative Battery 4) was 18.1 Ah / kg. In (Comparative Battery 3), there was no SOC area where the input / output density was 2000 W / kg. As for the output density of each battery of the comparative example, the capacity density at which the input / output density is 2000 W / kg or more is less than 20 Ah / kg, and the characteristics are inferior to those of the battery of the example.

[実施例2]
本発明の実施例2の18650円筒型リチウムイオン二次電池(電池5)、(電池6)、(電池7)、(電池8)を以下のとおり作製した。
[Example 2]
The 18650 cylindrical lithium ion secondary battery (battery 5), (battery 6), (battery 7), and (battery 8) of Example 2 of the present invention were produced as follows.

負極活物質として、(電池5)においては黒鉛Aを用い、負極合剤厚さを15μmとした。(電池6)においては黒鉛Bを用い、負極合剤厚さを20μmとした。(電池7)においては黒鉛Bを用い、負極合剤厚さを40μmとした。(電池8)においては黒鉛Bを用い、負極合剤厚さを45μmとした。各電池の正極厚さは正極の塗付量を調整することで、実施例1における正極と負極の厚み比を同様に作製した。上述以外は実施例1と同様にリチウムイオン二次電池を作製した。   In (Battery 5), graphite A was used as the negative electrode active material, and the negative electrode mixture thickness was 15 μm. In (Battery 6), graphite B was used, and the thickness of the negative electrode mixture was 20 μm. In (Battery 7), graphite B was used, and the thickness of the negative electrode mixture was 40 μm. In (Battery 8), graphite B was used, and the negative electrode mixture thickness was 45 μm. The positive electrode thickness of each battery was prepared in the same manner as the thickness ratio of the positive electrode to the negative electrode in Example 1 by adjusting the coating amount of the positive electrode. A lithium ion secondary battery was produced in the same manner as in Example 1 except for the above.

表2に実施例2の各電池について、負極に用いた黒鉛の種類、負極合剤厚さ及び入出力密度がともに2000W/kg以上となる容量密度を示す。表2に示すように、(電池5)の容量密度は20.3Ah/kg、(電池6)の容量密度は22.1Ah/kg、(電池7)の容量密度は21.0Ah/kg、(電池8)の容量密度は20.1Ah/kgであった。実施例2の各電池の入出力密度がともに2000W/kg以上となる容量密度は、いずれも20Ah/kg以上であり比較例の電池に比べ優れていた。(電池5)及び(電池8)の電池の容量密度は他の実施例に比べ劣っていた。   Table 2 shows the capacity density at which the type of graphite used in the negative electrode, the thickness of the negative electrode mixture, and the input / output density of each battery of Example 2 are 2000 W / kg or more. As shown in Table 2, the capacity density of (Battery 5) is 20.3 Ah / kg, the capacity density of (Battery 6) is 22.1 Ah / kg, the capacity density of (Battery 7) is 21.0 Ah / kg, (Battery 8) The volume density of was 20.1 Ah / kg. The capacity densities at which the input / output densities of the batteries of Example 2 were both 2000 W / kg or more were all 20 Ah / kg or more, which was superior to the battery of the comparative example. The capacity densities of the batteries (Battery 5) and (Battery 8) were inferior to those of the other examples.

Figure 0004529445
Figure 0004529445

本発明の円筒型リチウムイオン二次電池の一例を示す模式図The schematic diagram which shows an example of the cylindrical lithium ion secondary battery of this invention

符号の説明Explanation of symbols

11‥正極、12‥負極、13‥セパレータ、14‥電池缶、15‥負極リード片、16‥ふた、17‥正極リード片、18‥パッキン、19‥絶縁板。 11: positive electrode, 12: negative electrode, 13: separator, 14: battery can, 15: negative electrode lead piece, 16: lid, 17: positive electrode lead piece, 18: packing, 19: insulating plate.

Claims (3)

(1)平均粒径が3μm以上15μm以下であり、かつ(2)ラマン分光スペクトルで測定される1300〜1400cm−1の範囲にあるピーク強度(I)と1580〜1620cm−1の範囲にあるピーク強度(I)の強度比であるR値(I/ I)が0.2以上0.4以下であり、かつ(3)1300〜1400cm−1の範囲にあるピークの半値幅Δ値が40cm−1以上100cm−1以下であり、かつ(4)X線回折における(110)面のピーク強度(I(110))と(004)面のピーク強度(I(004))との強度比X値(I(110)/ I(004))が0.1以上0.45以下の条件を同時に満たす黒鉛質材料からなるリチウムイオン二次電池用負極材料。 (1) is an average particle diameter of at 3μm or 15μm or less, and (2) the peak intensity in the range of 1300~1400Cm -1 as measured by Raman spectroscopy and (I D) in the range of 1580~1620Cm -1 R value (I D / I G ) which is an intensity ratio of peak intensity (I G ) is 0.2 or more and 0.4 or less, and (3) half width Δ of a peak in the range of 1300 to 1400 cm −1 value is at 40 cm -1 or more 100 cm -1 or less, and (4) of the peak intensity of the X-ray diffraction (110) plane (I (110)) and (004) plane peak intensity (I (004)) A negative electrode material for a lithium ion secondary battery, which is made of a graphite material that simultaneously satisfies the condition that the strength ratio X value (I (110) / I (004) ) is 0.1 or more and 0.45 or less. 正極活物質を含む正極合剤を塗付してなる正極と、負極活物質を含む負極合剤を塗付してなる負極と、セパレータからなる電極群を有し、かつ電解液とを有するリチウムイオン二次電池であって、前記負極活物質が、(1)平均粒径が3μm以上15μm以下であり、(2)ラマン分光スペクトルで測定される1300〜1400cm−1の範囲にあるピーク強度(I)と1580〜1620cm−1の範囲にあるピーク強度(I)の強度比であるR値(I/ I)が0.2以上0.4以下であり、(3)1300〜1400cm−1の範囲にあるピークの半値幅Δ値が40cm−1以上100cm−1以下であり、(4)X線回折における(110)面のピーク強度(I(110))と(004)面のピーク強度(I(004))との強度比X値(I(110)/ I(004))が0.1以上0.45以下の要件を同時に満たす黒鉛質材料であることを特徴とするリチウムイオン二次電池。 Lithium having a positive electrode formed by applying a positive electrode mixture containing a positive electrode active material, a negative electrode formed by applying a negative electrode mixture containing a negative electrode active material, an electrode group consisting of separators, and an electrolyte In the ion secondary battery, the negative electrode active material has (1) an average particle diameter of 3 μm or more and 15 μm or less, and (2) a peak intensity in a range of 1300 to 1400 cm −1 measured by a Raman spectrum ( R value (I D / I G ), which is an intensity ratio of peak intensity (I G ) in the range of I D ) and 1580 to 1620 cm −1 , is 0.2 or more and 0.4 or less, (3) 1300 half width Δ value of the peak in the range of 1400 cm -1 is not more than 40 cm -1 or more 100 cm -1, (4) the peak intensity of the X-ray diffraction (110) plane (I (110)) with (004) plane the strength of the peak intensity (I (004)) The ratio X values (I (110) / I ( 004)) is a lithium ion secondary battery, which is a graphite material that simultaneously satisfies 0.1 0.45 requirements. 請求項記載のリチウムイオン二次電池であって、前記負極合剤の厚さが20μm以上40μm以下であることを特徴とするリチウムイオン二次電池。 3. The lithium ion secondary battery according to claim 2 , wherein the negative electrode mixture has a thickness of 20 μm or more and 40 μm or less.
JP2004005512A 2004-01-13 2004-01-13 Negative electrode material for lithium ion secondary battery and lithium ion secondary battery Expired - Fee Related JP4529445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004005512A JP4529445B2 (en) 2004-01-13 2004-01-13 Negative electrode material for lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004005512A JP4529445B2 (en) 2004-01-13 2004-01-13 Negative electrode material for lithium ion secondary battery and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2005203130A JP2005203130A (en) 2005-07-28
JP4529445B2 true JP4529445B2 (en) 2010-08-25

Family

ID=34819809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004005512A Expired - Fee Related JP4529445B2 (en) 2004-01-13 2004-01-13 Negative electrode material for lithium ion secondary battery and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4529445B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857073B2 (en) 2006-10-20 2012-01-18 富士重工業株式会社 Lithium ion capacitor
JP5462445B2 (en) * 2008-04-30 2014-04-02 三菱マテリアル株式会社 Lithium ion secondary battery
JP5754098B2 (en) * 2009-09-15 2015-07-22 三菱化学株式会社 Carbon material for lithium ion secondary battery
EP3691001A1 (en) * 2010-07-30 2020-08-05 Hitachi Chemical Company, Ltd. Anode material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
JP2012114201A (en) * 2010-11-24 2012-06-14 Nec Tokin Corp Power storage device
US11502326B2 (en) 2011-09-21 2022-11-15 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
KR101325555B1 (en) * 2011-12-09 2013-11-05 주식회사 엘지화학 Lithium Secondary Battery Comprising Spherical Graphite as Anode Active Material
JP2022120217A (en) * 2019-07-01 2022-08-18 昭和電工株式会社 lithium ion secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241013A (en) * 1996-03-05 1997-09-16 Toyota Central Res & Dev Lab Inc Graphite microcrystal
JPH1154123A (en) * 1997-05-30 1999-02-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2000133315A (en) * 1998-10-27 2000-05-12 Hitachi Ltd Lithium secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241013A (en) * 1996-03-05 1997-09-16 Toyota Central Res & Dev Lab Inc Graphite microcrystal
JPH1154123A (en) * 1997-05-30 1999-02-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2000133315A (en) * 1998-10-27 2000-05-12 Hitachi Ltd Lithium secondary battery

Also Published As

Publication number Publication date
JP2005203130A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
TWI697148B (en) Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for manufacturing negative electrode material for non-aqueous electrolyte secondary battery
US10629890B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of producing negative electrode active material particles
EP3096379B1 (en) Negative electrode material for nonaqueous electrolyte secondary batteries and method for producing negative electrode active material particles
US10529984B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery and method of producing negative electrode active material particles
TWI691115B (en) Negative electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and method for producing non-aqueous electrolyte secondary battery and negative electrode material for non-aqueous electrolyte secondary battery using the negative electrode active material
KR101514586B1 (en) 2 negative electrode acte material for lithium ion secondary battery
KR20180014710A (en) Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery and method for manufacturing negative active material particle
US9172083B2 (en) Lithium ion secondary battery
KR102307067B1 (en) A negative electrode active material, a negative electrode, a lithium ion secondary battery, a method of using a lithium ion secondary battery, a manufacturing method of a negative electrode active material, and a manufacturing method of a lithium ion secondary battery
EP3309877A1 (en) Negative electrode active substance for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing negative electrode material for non-aqueous electrolyte secondary battery
US20140227562A1 (en) Lithium secondary-battery pack, electronic device using same, charging system, and charging method
JP2006331702A (en) Power storage device
CN113207318A (en) Secondary battery, electrolyte and device comprising the same
JP2005197002A (en) Lithium ion secondary battery
JP2019160782A (en) Negative electrode and lithium ion secondary battery
US10811681B2 (en) Negative electrode active material, negative electrode, lithium ion secondary battery, method for producing negative electrode material for non-aqueous electrolyte secondary battery and method for producing lithium ion secondary battery
JP2010272380A (en) Negative electrode for lithium secondary battery, and lithium secondary battery using the same
JP4529445B2 (en) Negative electrode material for lithium ion secondary battery and lithium ion secondary battery
US11476465B2 (en) Anode active material and preparation method therefor
CN111435729B (en) Lithium ion secondary battery
US20230223536A1 (en) Negative electrode active material, method for producing the same, and lithium ion secondary battery using the same
KR101483332B1 (en) Electrode assembly and electrochemical device comprising the same
JP2004158461A (en) Lithium secondary battery and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R151 Written notification of patent or utility model registration

Ref document number: 4529445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees