JP2014144435A - Treatment apparatus of salt-containing wastewater - Google Patents

Treatment apparatus of salt-containing wastewater Download PDF

Info

Publication number
JP2014144435A
JP2014144435A JP2013014980A JP2013014980A JP2014144435A JP 2014144435 A JP2014144435 A JP 2014144435A JP 2013014980 A JP2013014980 A JP 2013014980A JP 2013014980 A JP2013014980 A JP 2013014980A JP 2014144435 A JP2014144435 A JP 2014144435A
Authority
JP
Japan
Prior art keywords
salt
treatment apparatus
concentration
wastewater treatment
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013014980A
Other languages
Japanese (ja)
Inventor
Ayumi HATANO
亜由美 幡野
Kenji Okishiro
賢次 沖代
Hiroshi Sasaki
佐々木  洋
Toshiaki Matsuo
俊明 松尾
Hirotaka Yamamoto
浩貴 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2013014980A priority Critical patent/JP2014144435A/en
Publication of JP2014144435A publication Critical patent/JP2014144435A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently take valuable salts of a low environmental load out of salt-containing wastewater (accompanying water, etc.) that contains much of sodium hydrogencarbonate and sodium carbonate and has a large fluctuation of water quality.SOLUTION: An treatment apparatus includes a thickening mechanism for thickening salt-containing wastewater containing sodium chloride and an electrolysis tank that is partitioned into a positive electrode chamber and a negative electrode chamber by a sodium-ion-permeable ion-exchange membrane and electrolyzes the salt-containing wastewater to produce sodium hydroxide. The treatment apparatus further includes between the thickening mechanism and the electrolysis tank a decarbonation mechanism for removing sodium carbonate and sodium hydrogencarbonate from the salt-containing wastewater, a flocculation filtration mechanism for removing divalent ions as a flocculate from the salt-containing wastewater, and a chelate resin for removing divalent ions by adsorption from the salt-containing wastewater.

Description

本発明は、ガス田随伴水等に代表される炭酸水素ナトリウムを高濃度に含む塩排水処理装置に関する。   The present invention relates to a salt wastewater treatment apparatus containing sodium bicarbonate at a high concentration represented by water associated with a gas field.

油田、ガス田の採掘では、石油や天然ガスと共に塩分を含む随伴水が発生する。近年、環境保護の観点から、この随伴水を廃棄物発生量の少ない手法で処理することが求められている。随伴水の特徴は、炭酸水素ナトリウム、炭酸ナトリウム及び塩化ナトリウムの混合塩を高濃度に含むことである。   In the mining of oil and gas fields, accompanying water containing salt is generated along with oil and natural gas. In recent years, from the viewpoint of environmental protection, it has been required to treat this accompanying water by a method with a small amount of waste generation. The feature of accompanying water is that it contains a high concentration of a mixed salt of sodium hydrogen carbonate, sodium carbonate and sodium chloride.

炭酸ナトリウムを含む塩化ナトリウム排液を処理する手法として、特許文献1では排液に塩酸を添加して脱炭酸を行い、純度の高い塩化ナトリウムを取り出す手法が記載されている。   As a technique for treating sodium chloride drainage containing sodium carbonate, Patent Document 1 describes a technique in which hydrochloric acid is added to the drainage for decarboxylation to extract high-purity sodium chloride.

塩化ナトリウムを含む排水を処理する方法として、特許文献2では電気分解を利用する手法が記載されている。この手法では、一般的な電気分解と同様、正極室と負極室がイオン交換膜で仕切られた電解槽を用い、正極室に塩化ナトリウムを含む排水を注入し、負極室から水酸化ナトリウムを取り出す。   As a method for treating waste water containing sodium chloride, Patent Document 2 describes a technique using electrolysis. In this method, as in general electrolysis, an electrolytic cell in which a positive electrode chamber and a negative electrode chamber are partitioned by an ion exchange membrane is used, drainage containing sodium chloride is injected into the positive electrode chamber, and sodium hydroxide is extracted from the negative electrode chamber. .

特開2008−247647号公報JP 2008-247647 A 特表2003−514666号公報Special table 2003-514666 gazette

随伴水は水質の変動が大きく、かつ、電解槽の効率及び寿命を著しく低下させる2価イオン等の不純物を多く含む。よって、随伴水を電解槽によって処理し、効率良く有価塩(例えば水酸化ナトリウム等)を取り出すためには、電解槽に注入する処理水の水質の変動を小さくする必要がある。   The accompanying water has a large variation in water quality and contains a large amount of impurities such as divalent ions that significantly reduce the efficiency and life of the electrolytic cell. Therefore, in order to treat the accompanying water with an electrolytic cell and take out valuable salt (for example, sodium hydroxide) efficiently, it is necessary to reduce the fluctuation of the quality of the treated water injected into the electrolytic cell.

本発明の目的は、炭酸水素ナトリウム及び炭酸ナトリウムを多く含み、水質の変動が大きい塩排水(随伴水等)から、環境負荷の低い有価塩を高効率で取り出すことにある。   An object of the present invention is to take out highly valuable salt with low environmental load from salt drainage (eg, associated water) containing a large amount of sodium hydrogen carbonate and sodium carbonate and having a large fluctuation in water quality.

上記目的を達成するため、本発明は、塩化ナトリウムを含む塩排水を濃縮する濃縮機構と、正極室と負極室とがナトリウムイオンを透過するイオン交換膜で仕切られ、前記塩排水を電気分解して水酸化ナトリウムを生成する電解槽とを備え、前記濃縮機構と前記電解槽との間に、前記塩排水から炭酸ナトリウムと炭酸水素ナトリウムを除去する脱炭酸機構と、前記塩排水から2価イオンを凝集物として除去する凝集ろ過機構と、前記塩排水から2価イオンを吸着させて除去するキレート樹脂とを備えることを特徴とする。   In order to achieve the above object, the present invention provides a concentration mechanism for concentrating salt wastewater containing sodium chloride, and a positive electrode chamber and a negative electrode chamber separated by an ion exchange membrane that transmits sodium ions, and the salt wastewater is electrolyzed. An electrolyzer that generates sodium hydroxide, and a decarboxylation mechanism that removes sodium carbonate and sodium bicarbonate from the salt drainage between the concentration mechanism and the electrolyzer, and a divalent ion from the salt drainage And a chelating resin that adsorbs and removes divalent ions from the salt drainage.

本発明によれば、塩排水から、環境負荷の低い有価塩を高効率で取り出すことができる。   ADVANTAGE OF THE INVENTION According to this invention, valuable salt with low environmental impact can be taken out from salt waste water with high efficiency.

本発明の塩排水処理装置の実施例の一例を示すシステム構成図である。It is a system block diagram which shows an example of the Example of the salt waste water treatment apparatus of this invention. 本発明の塩排水処理装置の実施例の一例を示すシステム構成図である。It is a system block diagram which shows an example of the Example of the salt waste water treatment apparatus of this invention. 本発明の塩排水処理装置の実施例の一例を示すシステム構成図である。It is a system block diagram which shows an example of the Example of the salt waste water treatment apparatus of this invention. 本発明の塩排水処理装置の実施例の一例を示すシステム構成図である。It is a system block diagram which shows an example of the Example of the salt waste water treatment apparatus of this invention. 本発明の塩排水処理装置の実施例の一例を示すシステム構成図である。It is a system block diagram which shows an example of the Example of the salt waste water treatment apparatus of this invention. 本発明の塩排水処理装置の実施例の一例を示すシステム構成図である。It is a system block diagram which shows an example of the Example of the salt waste water treatment apparatus of this invention. 本発明の塩排水処理装置の実施例の一例を示すシステム構成図である。It is a system block diagram which shows an example of the Example of the salt waste water treatment apparatus of this invention. 本発明の塩排水処理装置をガス田随伴水処理に適用する場合の例を示すシステム構成図である。It is a system block diagram which shows the example in the case of applying the salt drainage processing apparatus of this invention to a gas field accompanying water treatment.

本発明は、水分を分離して濃縮した塩排水から炭酸根(炭酸水素イオン、炭酸イオン等)と2価イオンを除去した後に、電気分解して水酸化ナトリウムを得るものである。   In the present invention, sodium hydroxide is obtained by electrolysis after removing carbonate radicals (bicarbonate ions, carbonate ions, etc.) and divalent ions from a salt drainage obtained by separating and concentrating water.

以下の説明では、塩排水を蒸発させて濃縮する蒸発濃縮装置を用いる。蒸発濃縮装置と電解槽との間に、炭酸根を除去する脱炭酸機構、2価イオンの大半を凝集物として除去する凝集ろ過機構、更に高精度に2価イオンを除去するキレート樹脂を設けることで、電解槽に供給される塩排水の水質の変動を抑えることができ、有価塩である水酸化ナトリウムを効率良く生成することができる。   In the following description, an evaporative concentration apparatus that evaporates and concentrates salt water is used. Provide a decarbonation mechanism that removes carbonate radicals, an aggregation filtration mechanism that removes most of the divalent ions as aggregates, and a chelate resin that removes divalent ions with high accuracy between the evaporation concentrator and the electrolytic cell. Therefore, the fluctuation | variation of the water quality of the salt waste_water | drain supplied to an electrolytic cell can be suppressed, and sodium hydroxide which is valuable salt can be produced | generated efficiently.

図1は、凝集ろ過機構2とキレート樹脂3で濃縮塩排水から2価イオンを除去した後に、脱炭酸機構4で炭酸根を除去する場合の図である。塩排水11は蒸発濃縮機構1で濃縮され、浄水と濃縮塩排水とに分離される。凝集ろ過機構2で濃縮塩排水中の2価イオンを二次廃棄物13として除去して粗精製し、後段のキレート樹脂3で更に2価イオンを除去して精密精製する。キレート樹脂3に吸着した2価イオンは、薬洗液14で洗い流される。2価イオンを除去した濃縮塩排水を脱炭酸機構4に送り、塩酸等の酸を加えて炭酸根を塩化ナトリウムに変換することで炭酸根を除去し、濃縮塩排水中の塩化ナトリウムを高濃度化する。脱炭酸機構4での反応は以下の式で示される。
〔化1〕
〔Na2CO3+HCl→NaCl+NaHCO3
〔化2〕
NaHCO3+HCl→NaCl+H2O+CO2
FIG. 1 is a diagram in the case where carbonate radicals are removed by a decarboxylation mechanism 4 after removing divalent ions from the concentrated salt drainage by the coagulation filtration mechanism 2 and the chelate resin 3. The salt water 11 is concentrated by the evaporative concentration mechanism 1 and separated into purified water and concentrated salt water. The divalent ions in the concentrated salt effluent are removed as secondary waste 13 by the coagulation filtration mechanism 2 to be roughly purified, and the divalent ions are further removed by the chelate resin 3 at the subsequent stage to perform precise purification. The divalent ions adsorbed on the chelate resin 3 are washed away by the chemical washing solution 14. Concentrated salt drainage from which divalent ions have been removed is sent to the decarboxylation mechanism 4 and acid such as hydrochloric acid is added to convert carbonate radicals to sodium chloride to remove carbonate radicals. Turn into. The reaction in the decarboxylation mechanism 4 is represented by the following formula.
[Chemical formula 1]
[Na 2 CO 3 + HCl → NaCl + NaHCO 3
[Chemical formula 2]
NaHCO 3 + HCl → NaCl + H 2 O + CO 2

凝集ろ過機構2、キレート樹脂3、脱炭酸機構4により塩排水を高純度な高濃度塩化ナトリウム溶液へと変換する。この溶液と希水酸化ナトリウム溶液12を電解槽5に注入し、電気分解することにより水酸化ナトリウムを生成する。電解槽5での反応は以下の式で示される。
〔化3〕
2NaCl→2Na++2Cl-→2Na++Cl2+2e-
〔化4〕
2H2O+2e-→2OH-+H2
〔化5〕
Na++OH-→NaOH
The salt drainage is converted into a high-concentration sodium chloride solution with high purity by the coagulation filtration mechanism 2, the chelate resin 3, and the decarboxylation mechanism 4. This solution and dilute sodium hydroxide solution 12 are poured into the electrolytic cell 5 and electrolyzed to produce sodium hydroxide. The reaction in the electrolytic cell 5 is represented by the following formula.
[Chemical formula 3]
2NaCl → 2Na + + 2Cl → 2Na + + Cl 2 + 2e
[Chemical formula 4]
2H 2 O + 2e → 2OH + H 2
[Chemical formula 5]
Na + + OH → NaOH

この時、電解槽5の正極室からは希薄塩水15が排出されるので、前段の装置(例えば蒸発濃縮機構1)に戻して、再度電気分解に利用してもよい。塩排水中に含まれている炭酸根はCO3 2-やHCO-の陰イオンなので、凝集ろ過工程において陽イオンと反応し炭酸塩としても分離・除去される。そのため、凝集ろ過機構2とキレート樹脂3の後段に脱炭酸機構4を備えることにより脱炭酸時に使用する塩酸の添加量を低減することができる。 At this time, since the diluted salt water 15 is discharged from the positive electrode chamber of the electrolytic cell 5, it may be returned to the previous apparatus (for example, the evaporation and concentration mechanism 1) and used again for electrolysis. Carbonates contained in the salt wastewater CO 3 2- and HCO - because anions are also separated and removed as a reaction to the carbonate with a cation in the aggregation filtration step. Therefore, by providing the decarboxylation mechanism 4 at the subsequent stage of the coagulation filtration mechanism 2 and the chelate resin 3, the amount of hydrochloric acid used during decarboxylation can be reduced.

図2は脱炭酸機構4の後段に他の濃縮機構1bを設けて塩排水を再度濃縮し、その後段に凝集ろ過機構2とキレート樹脂3を設ける場合の図である。濃縮機構1bは蒸発濃縮機構1aと同じ物を用いてもよい。脱炭酸機構4において酸を添加することから、脱炭酸機構4の後段の塩排水のpHは低く、濃縮機構1bでのスケールの発生を防止することができる。電解槽5の正極室から排出される希薄塩水15には炭酸根がほとんど含まれていないため、希薄塩水15を濃縮機構1bに返送する場合は、蒸発濃縮機構1aに返送する場合に比べて脱炭酸機構4での処理液量を少なくすることができる。   FIG. 2 is a diagram in the case where another concentration mechanism 1b is provided at the subsequent stage of the decarbonation mechanism 4 to concentrate the salt drainage again, and the aggregation filtration mechanism 2 and the chelate resin 3 are provided at the subsequent stage. The concentration mechanism 1b may be the same as the evaporation concentration mechanism 1a. Since the acid is added in the decarboxylation mechanism 4, the pH of the salt drainage downstream of the decarboxylation mechanism 4 is low, and scale formation in the concentration mechanism 1b can be prevented. Since the dilute salt water 15 discharged from the positive electrode chamber of the electrolytic cell 5 contains almost no carbonate radicals, when returning the dilute salt water 15 to the concentrating mechanism 1b, the dilute salt water 15 is removed compared to returning it to the evaporating and concentrating mechanism 1a. The amount of treatment liquid in the carbonic acid mechanism 4 can be reduced.

図3は凝集ろ過機構2とキレート樹脂3の後段に濃縮機構1bを設けて塩排水を再度濃縮し、その後段に脱炭酸機構4を設ける場合の図である。電解槽5の正極室から排出される希薄塩水15は不純物が十分除去されているため、希薄塩水15を濃縮機構1bに返送されるようにして、凝集ろ過機構2とキレート樹脂3による処理を行なわずに希薄塩水を再度の電気分解に利用することができ、凝集ろ過機構2やキレート樹脂3で使用する薬剤を節約することができる。   FIG. 3 shows a case where the concentration mechanism 1b is provided at the subsequent stage of the coagulation filtration mechanism 2 and the chelate resin 3 to concentrate the salt drainage again, and the decarbonation mechanism 4 is provided at the subsequent stage. Since the diluted salt water 15 discharged from the positive electrode chamber of the electrolytic cell 5 has sufficiently removed impurities, the diluted salt water 15 is returned to the concentrating mechanism 1b and treated with the coagulation filtration mechanism 2 and the chelate resin 3. Therefore, dilute salt water can be used for re-electrolysis, and chemicals used in the coagulation filtration mechanism 2 and the chelate resin 3 can be saved.

図4はキレート樹脂3から排出される薬洗液14を蒸発濃縮機構1に返送する場合の図である。薬洗液14は、キレート樹脂3で吸着除去した2価イオンに加えて、薬洗に使用する塩酸と水酸化ナトリウムから生成される塩化ナトリウムを含んでいる。薬洗液14を蒸発濃縮機構1に返送する循環ループを備えることにより、薬洗液中の塩化ナトリウムを再度電気分解に使用することができ、また、二次廃棄物を減量することができる。   FIG. 4 is a diagram when the chemical washing liquid 14 discharged from the chelate resin 3 is returned to the evaporation concentration mechanism 1. The chemical washing solution 14 contains sodium chloride produced from hydrochloric acid and sodium hydroxide used for chemical washing in addition to the divalent ions adsorbed and removed by the chelate resin 3. By providing a circulation loop that returns the chemical washing liquid 14 to the evaporation and concentration mechanism 1, sodium chloride in the chemical washing liquid can be used again for electrolysis, and the amount of secondary waste can be reduced.

図5は電解槽5で生成した水酸化ナトリウムに脱炭酸機構4で発生した二酸化炭素16を作用させ、中和・乾燥することで、有価塩として炭酸ナトリウムを得る場合の図である。脱炭酸機構4で発生する二酸化炭素16を中和・乾燥機構6に吹込むことで、固体の炭酸ナトリウムが得られるため、運搬が容易となる。また、系内で発生した二酸化炭素を使用するため、環境負荷を低減することができる。なお、スラリ状の炭酸ナトリウムを得たい場合は、乾燥させずに中和反応だけさせればよい。脱炭酸機構4で発生した二酸化炭素を用いる以外にも、ボンベやパイプラインを引くことで、系外から二酸化炭素を導入して中和させてもよい。   FIG. 5 is a diagram in the case where sodium carbonate is obtained as a valuable salt by allowing the carbon dioxide 16 generated in the decarboxylation mechanism 4 to act on sodium hydroxide generated in the electrolytic cell 5 and neutralizing and drying. Since carbon dioxide 16 generated by the decarbonation mechanism 4 is blown into the neutralization / drying mechanism 6, solid sodium carbonate is obtained, so that transportation becomes easy. Moreover, since carbon dioxide generated in the system is used, the environmental load can be reduced. If it is desired to obtain slurry-like sodium carbonate, only neutralization reaction may be performed without drying. In addition to using carbon dioxide generated in the decarbonation mechanism 4, carbon dioxide may be introduced from outside the system and neutralized by drawing a cylinder or a pipeline.

図6は凝集ろ過機構2の前段に、脱炭酸機構4で発生した二酸化炭素16を塩排水に吹き込む炭酸吹込み機構9を備える場合の図である。二酸化炭素を塩排水に吹き込むことにより、塩排水中の炭酸根濃度が上昇し、塩排水中の2価イオンが炭酸塩を形成しやすくなる。形成した炭酸塩を二次廃棄物13として分離することにより、塩排水中の2価イオン濃度が低下し、凝集ろ過機構2での凝集剤添加量が低減される。図5の場合と同様に、二酸化炭素を系外から炭酸吹込み機構9に導入してもよい。   FIG. 6 is a diagram in the case where a carbon dioxide blowing mechanism 9 for blowing carbon dioxide 16 generated by the decarbonation mechanism 4 into the salt drainage is provided in the previous stage of the aggregation filtration mechanism 2. By blowing carbon dioxide into the salt drainage, the carbonate root concentration in the salt drainage increases, and the divalent ions in the salt drainage easily form carbonates. By separating the formed carbonate as the secondary waste 13, the concentration of divalent ions in the salt drainage is reduced, and the amount of flocculant added in the aggregation filtration mechanism 2 is reduced. Similarly to the case of FIG. 5, carbon dioxide may be introduced into the carbon dioxide blowing mechanism 9 from outside the system.

図7は電解槽5の負極室から排出される水酸化ナトリウムを、電解槽5の負極室に加えられる注入液として再利用する場合の図である。電解槽5の負極室から排出される水酸化ナトリウムの一部を有価塩として取り出し、残りを水で所定の水酸化ナトリウムの濃度まで希釈した希水酸化ナトリウム12として、再度電解槽(5)の負極室へ注入する。このとき、タンク中以外にも、電解槽5、配管、及びその他のいずれの場所で希釈してもよい。電解槽5の負極室から排出された水酸化ナトリウムを再利用することにより、系外からの水酸化ナトリウムの持ち込みが不要となる。   FIG. 7 is a diagram in the case where sodium hydroxide discharged from the negative electrode chamber of the electrolytic cell 5 is reused as an injection solution added to the negative electrode chamber of the electrolytic cell 5. A part of sodium hydroxide discharged from the negative electrode chamber of the electrolytic cell 5 is taken out as valuable salt, and the remainder is diluted with water to a predetermined concentration of sodium hydroxide 12 as diluted sodium hydroxide 12 and again in the electrolytic cell (5). Inject into the negative electrode chamber. At this time, you may dilute in the electrolytic cell 5, piping, and any other place besides the inside of a tank. By reusing sodium hydroxide discharged from the negative electrode chamber of the electrolytic cell 5, it is not necessary to bring sodium hydroxide from outside the system.

図8は塩排水処理装置を、石炭ガス田に適用する場合の図である。該図に示す塩排水処理システムは、逆浸透膜システム8で石炭ガス田101から生じる随伴水を処理し、蒸発濃縮装置1で浄水と濃縮塩排水に分離し、濃縮塩排水を脱炭酸機構4、凝集ろ過装置2、キレート樹脂3で炭酸根と2価イオンを除去して精製する。精製した塩排水を電解槽5で電気分解して水酸化ナトリウムを得て、これに脱炭酸機構4又はガス田101から捕捉した二酸化炭素を反応させることにより炭酸ナトリウムを有価塩として回収する塩排水処理システムである。   FIG. 8 is a diagram when the salt drainage treatment apparatus is applied to a coal gas field. In the salt wastewater treatment system shown in the figure, the accompanying water generated from the coal gas field 101 is treated by the reverse osmosis membrane system 8 and separated into purified water and concentrated salt wastewater by the evaporative concentrating device 1, and the concentrated salt wastewater is decarboxylated. Then, the carbonic acid radical and divalent ions are removed by the coagulation filtration device 2 and the chelate resin 3 and purified. The salt drainage which collects sodium carbonate as a valuable salt by electrolyzing the refined salt drainage in the electrolytic cell 5 to obtain sodium hydroxide, and reacting this with the carbon dioxide captured from the decarbonation mechanism 4 or the gas field 101 Processing system.

逆浸透膜システム8は精密ろ過膜ユニット102と逆浸透膜ユニット103を備え、塩排水から、濃縮塩排水と浄水を分離する。   The reverse osmosis membrane system 8 includes a microfiltration membrane unit 102 and a reverse osmosis membrane unit 103, and separates concentrated salt waste water and purified water from salt waste water.

蒸発濃縮機構1においては、逆浸透膜システム8から排出された濃縮塩排水を蒸発させ、水分を分離することにより、濃縮塩排水を更に濃縮する。   In the evaporative concentration mechanism 1, the concentrated salt drainage is further concentrated by evaporating the concentrated salt drainage discharged from the reverse osmosis membrane system 8 and separating the water.

凝集ろ過機構2においては、塩排水中2価イオンをフロックとして分離する。凝集剤としては、無機塩、高分子、あるいは無機塩と高分子の両方を添加する。例えば、無機塩と高分子の両方を凝集剤として用いる場合を記載する。蒸発濃縮機構1から排出された濃縮塩排水に無機凝集剤を添加して、2価イオンを含む無機塩を形成する。無機凝集剤としては、例えば炭酸ナトリウム、水酸化ナトリウム、リン酸、リン酸ナトリウム等を用いる。塩排水中に含まれている2価イオンに対して、無機凝集剤とあらかじめ含有されている炭酸根の和が当量以上となる様、無機凝集剤を添加することが好ましい。また、pHは沈殿形成が起こりやすく、かつ後段のキレート樹脂3に過剰な負荷を与えない範囲である、8〜12に調整することが好ましい。   In the coagulation filtration mechanism 2, divalent ions in the salt drain are separated as flocs. As the flocculant, an inorganic salt, a polymer, or both an inorganic salt and a polymer are added. For example, a case where both an inorganic salt and a polymer are used as the flocculant will be described. An inorganic flocculant is added to the concentrated salt effluent discharged from the evaporation and concentration mechanism 1 to form an inorganic salt containing divalent ions. As the inorganic flocculant, for example, sodium carbonate, sodium hydroxide, phosphoric acid, sodium phosphate and the like are used. It is preferable to add the inorganic flocculant so that the sum of the inorganic flocculant and the carbonate radical previously contained is equal to or more than the equivalent to the divalent ions contained in the salt drainage. Moreover, it is preferable to adjust pH to 8-12 which is a range which does not give excessive load to the chelate resin 3 of the latter stage | paragraph easily in which precipitation formation occurs.

無機凝集剤を添加して形成した無機塩に対して、更に高分子凝集剤を添加し、微細なサイズの無機塩を沈降性の良いフロックとする。高分子凝集剤としては、無機塩を形成していない2価イオンを同時に絡めとることのできる、アニオン系高分子を用いることが好ましい。より好ましくは、2価イオンとの反応性が高く、安価であることからカルボキシル基を分子内に持つ高分子である。   A polymer flocculant is further added to the inorganic salt formed by adding the inorganic flocculant to make the fine-sized inorganic salt a floc with good sedimentation. As the polymer flocculant, it is preferable to use an anionic polymer capable of simultaneously entwining divalent ions not forming an inorganic salt. More preferably, it is a polymer having a carboxyl group in the molecule because it has high reactivity with divalent ions and is inexpensive.

キレート樹脂3においては、凝集ろ過機構2より精製された塩排水から2価イオンを吸着分離することにより、塩排水を更に精製する。キレート樹脂としては、イミノジ酢酸型やアミノ―リン酸型等の低原子量金属を吸着することのできる官能基を持つ樹脂でよい。例えば、三菱化学社製の「ダイヤイオン」(登録商標)CR−11等が挙げられる。   In the chelate resin 3, the salt drainage is further purified by adsorbing and separating divalent ions from the salt drainage purified by the coagulation filtration mechanism 2. The chelate resin may be a resin having a functional group capable of adsorbing a low atomic weight metal such as iminodiacetic acid type or amino-phosphate type. Examples thereof include “Diaion” (registered trademark) CR-11 manufactured by Mitsubishi Chemical Corporation.

キレート樹脂3は、定期的に薬洗を行う。薬洗時の連続運転に備えて、2段式あるいは3段式のキレート樹脂3を用いてもよい。キレート樹脂の薬洗は、酸による吸着イオンの洗浄と水酸化ナトリウム溶液による樹脂のナトリウム型への再生を行う。洗浄に用いる酸は塩酸が好ましい。なお、薬洗時に排出される薬洗液を蒸発濃縮機構1に返送し、再度電解することにより、二次廃棄物量が低減される。   The chelate resin 3 is regularly washed with chemicals. In preparation for continuous operation during chemical washing, a two-stage or three-stage chelate resin 3 may be used. In the chemical washing of the chelate resin, the adsorbed ions are washed with an acid and the resin is regenerated into a sodium type with a sodium hydroxide solution. The acid used for washing is preferably hydrochloric acid. In addition, the amount of secondary waste is reduced by returning the chemical washing liquid discharged at the time of chemical washing to the evaporation concentration mechanism 1 and performing electrolysis again.

脱炭酸機構4においては、酸を添加し、塩排水中の炭酸根を除去する。酸としては、塩酸が好ましい。酸添加量は、添加した酸がすべて炭酸と反応するわけではないことを加味し、塩排水中の炭酸根の当量の1.0倍程度から1.2倍程度が好ましい。また、塩化ナトリウム濃度として飽和濃度付近まで高濃度化することが好ましい。脱炭酸機構4において、塩排水から二酸化炭素として脱離する炭酸根を捕捉し、乾燥・中和機構6における水酸化ナトリウムの中和に用いてもよい。   In the decarboxylation mechanism 4, an acid is added to remove carbonate radicals in the salt effluent. As the acid, hydrochloric acid is preferred. Taking into account that not all of the added acid reacts with carbonic acid, the amount of acid added is preferably about 1.0 to 1.2 times the equivalent of the carbonate radical in the salt effluent. Further, it is preferable to increase the sodium chloride concentration to near the saturation concentration. In the decarboxylation mechanism 4, the carbonic acid radicals desorbed as carbon dioxide from the salt drainage may be captured and used for neutralization of sodium hydroxide in the drying / neutralization mechanism 6.

電解槽5においては、2価イオン及び炭酸根が除去された濃縮塩排水に対して、電気分解を行う。塩排水中の塩化ナトリウムは電気分解により、水酸化ナトリウム、塩素、水素に転換される。水酸化ナトリウムは水溶液として電解槽から排出する。塩素、水素は電解槽外へ排出した後、捕捉し塩酸製造機構7に送られる。塩酸製造機構7では電解槽5の正極室で生成される塩素及び負極室で生成される水素から、塩酸を製造する。製造された塩酸は、脱炭酸機構4、ガス田101のガス排出時、キレート樹脂3の薬洗時の洗浄に使用できる。   In the electrolytic cell 5, electrolysis is performed on the concentrated salt drainage from which divalent ions and carbonate radicals have been removed. Sodium chloride in the salt effluent is converted into sodium hydroxide, chlorine and hydrogen by electrolysis. Sodium hydroxide is discharged from the electrolytic cell as an aqueous solution. Chlorine and hydrogen are discharged out of the electrolytic cell and then captured and sent to the hydrochloric acid production mechanism 7. The hydrochloric acid production mechanism 7 produces hydrochloric acid from chlorine produced in the positive electrode chamber of the electrolytic cell 5 and hydrogen produced in the negative electrode chamber. The manufactured hydrochloric acid can be used for cleaning when degassing mechanism 4 and gas field 101 are discharged, and chelating resin 3 is washed with chemicals.

電気分解により精製した高濃度水酸化ナトリウム溶液17はその一部を抜き取り、商業用又はキレート樹脂の薬洗時の再生に用いてもよい。残りの高濃度水酸化ナトリウム溶液17は水により所定の濃度まで希釈して希水酸化ナトリウム溶液12として、再度電解槽5負極室への供給液として用いることができる。この時使用する水は逆浸透膜システム8あるいは蒸発濃縮システム1により分離した浄水を用いてもよい。   A part of the high-concentration sodium hydroxide solution 17 purified by electrolysis may be extracted and used for commercial or chelate resin regeneration during chemical washing. The remaining high-concentration sodium hydroxide solution 17 can be diluted with water to a predetermined concentration and used as a dilute sodium hydroxide solution 12 and again as a supply liquid to the electrolytic cell 5 negative electrode chamber. The water used at this time may be purified water separated by the reverse osmosis membrane system 8 or the evaporative concentration system 1.

電解槽5は正極室と負極室の間が陽イオン交換膜で隔離されたものを使用する。陽イオン交換膜としては、電解槽に一般的に用いられるものであればよい。例えば、デュポン社製の「ナフィオン」(登録商標)324等が挙げられる。電気分解後の希薄塩水は、電解槽5より排出し、蒸発濃縮装置1に返送してもよい。返送により、電解槽5中の塩化ナトリウム濃度を、イオン交換膜のナトリウム通過速度を維持することのできる濃度である18重量%以上に保つことができる。   The electrolytic cell 5 is one in which the positive electrode chamber and the negative electrode chamber are separated by a cation exchange membrane. Any cation exchange membrane may be used as long as it is generally used in an electrolytic cell. Examples thereof include “Nafion” (registered trademark) 324 manufactured by DuPont. The diluted salt water after electrolysis may be discharged from the electrolytic cell 5 and returned to the evaporative concentration apparatus 1. By returning, the sodium chloride concentration in the electrolytic cell 5 can be maintained at 18% by weight or more which is a concentration capable of maintaining the sodium passage speed of the ion exchange membrane.

電解槽5で生成された水酸化ナトリウムは乾燥・中和機構6において、固体の炭酸ナトリウムへと変換する。乾燥・中和は高温の二酸化炭素と水酸化ナトリウム溶液を接触させることにより行う。例えば、高温の二酸化炭素で満たしたチャンバーに水酸化ナトリウムを吹き付けることにより行う。二酸化炭素は、ガス田101、あるいは脱炭酸機構4から排出されたものを用いることができる。   The sodium hydroxide produced in the electrolytic cell 5 is converted into solid sodium carbonate in the drying / neutralization mechanism 6. Drying and neutralization is carried out by bringing hot carbon dioxide into contact with a sodium hydroxide solution. For example, sodium hydroxide is sprayed into a chamber filled with high-temperature carbon dioxide. Carbon dioxide discharged from the gas field 101 or the decarbonation mechanism 4 can be used.

本発明における実施例を以下に示す。なお、本発明はこれら実施例に制限されるものではない。   Examples of the present invention are shown below. In addition, this invention is not restrict | limited to these Examples.

図8に示したシステムに従った際の実施例について説明する。ガス田101から排出される石油や天然ガスと随伴水(塩排水)とを分離した後、石油等をポンプ104a、塩排水をポンプ104bで搬出した。塩排水20tを逆浸透膜システム8により処理し、16tの浄水と3.64tの濃縮塩排水を得た。濃縮塩排水を蒸発濃縮機構1により濃縮し、浄水2.91tと濃縮塩排水0.73tを得た。この濃縮塩水中のカルシウム濃度は385ppm、マグネシウム濃度は165ppm、重炭酸イオンの濃度は202,000ppm、炭酸イオンの濃度は45,400ppmであった。濃縮塩排水0.73tに対して、水酸化ナトリウムを650ppmとなるよう添加し、500rpmで1分間攪拌した。   An embodiment in accordance with the system shown in FIG. 8 will be described. After separating the oil and natural gas discharged from the gas field 101 and the accompanying water (salt drainage), the oil and the like were carried out by the pump 104a and the salt drainage by the pump 104b. The salt effluent 20t was processed by the reverse osmosis membrane system 8 to obtain 16t of purified water and 3.64t of concentrated salt effluent. The concentrated salt drainage was concentrated by the evaporative concentration mechanism 1 to obtain 2.91 t of purified water and 0.73 t of the concentrated salt drainage. In this concentrated salt water, the calcium concentration was 385 ppm, the magnesium concentration was 165 ppm, the bicarbonate ion concentration was 202,000 ppm, and the carbonate ion concentration was 45,400 ppm. Sodium hydroxide was added at 650 ppm to 0.73 t of the concentrated salt waste water, and the mixture was stirred at 500 rpm for 1 minute.

その後に高分子凝集剤として、ポリアクリル酸ナトリウム(PAA)0.5%溶液を5ppmとなるよう添加し、250rpmで10分間攪拌した。静置後、凝集物をサンドフィルターにより分離した。凝集物分離後の塩排水中カルシウム濃度は7.7ppm、マグネシウム濃度は3.3ppm、重炭酸成分の濃度は202,000ppmだった。この塩排水をキレート樹脂3に通水し、溶解している2価イオンを除去した。キレート樹脂3通水後の塩排水中の2価イオン濃度はカルシウム:10ppb、マグネシウム:6ppb、バリウム:0.2ppm、ストロンチウム:0.08ppm、重炭酸成分:202,000ppmであった。   Thereafter, a 0.5% sodium polyacrylate (PAA) solution as a polymer flocculant was added to 5 ppm, and the mixture was stirred at 250 rpm for 10 minutes. After standing, the aggregate was separated by a sand filter. After separation of the aggregates, the calcium concentration in the salt effluent was 7.7 ppm, the magnesium concentration was 3.3 ppm, and the concentration of the bicarbonate component was 202,000 ppm. This salt drainage was passed through the chelate resin 3 to remove dissolved divalent ions. The concentration of divalent ions in the salt effluent after passing 3 chelating resins was calcium: 10 ppb, magnesium: 6 ppb, barium: 0.2 ppm, strontium: 0.08 ppm, bicarbonate component: 202,000 ppm.

更に、脱炭酸機構4により、塩酸を添加し、炭酸ナトリウムを塩化ナトリウムに転換し、脱炭酸を行った。脱炭酸機構4で排出された二酸化炭素ガスを捕捉し、乾燥・中和機構6に輸送した。脱炭酸機構4を通過した塩排水中の各成分の濃度は、塩化ナトリウム:180,000ppm、重炭酸イオン:202ppm、炭酸イオン:6.5ppmであった。   Furthermore, by the decarboxylation mechanism 4, hydrochloric acid was added, sodium carbonate was converted to sodium chloride, and decarboxylation was performed. The carbon dioxide gas discharged by the decarbonation mechanism 4 was captured and transported to the drying / neutralization mechanism 6. The concentration of each component in the salt effluent that passed through the decarboxylation mechanism 4 was sodium chloride: 180,000 ppm, bicarbonate ion: 202 ppm, and carbonate ion: 6.5 ppm.

精製済みの塩排水を電解槽5に注入し、32重量%水酸化ナトリウム溶液1t、水素ガス2kg、塩素ガス82kgを得た。32重量%水酸化ナトリウム溶液を150℃の二酸化炭素ガスで満たしたチャンバー内に吹き込み、純度99.6%の炭酸ナトリウムの固体を得た。水素ガス2kgと塩素ガス82kgを塩酸製造機構7に輸送し、塩酸84kgを製造した。   Purified salt effluent was poured into the electrolytic cell 5 to obtain a 32 wt% sodium hydroxide solution 1 t, hydrogen gas 2 kg, and chlorine gas 82 kg. A 32 wt% sodium hydroxide solution was blown into a chamber filled with carbon dioxide gas at 150 ° C. to obtain a solid of sodium carbonate having a purity of 99.6%. 2 kg of hydrogen gas and 82 kg of chlorine gas were transported to the hydrochloric acid production mechanism 7 to produce 84 kg of hydrochloric acid.

実施例1の蒸発濃縮機構1と電解槽5との間に、脱炭酸機構4、濃縮機構1b、凝集ろ過機構2、キレート樹脂3の順で処理を行なった場合も、実施例1と同等の炭酸ナトリウムの固体を得た。   Even when the decarboxylation mechanism 4, the concentration mechanism 1 b, the coagulation filtration mechanism 2, and the chelate resin 3 are processed in this order between the evaporation and concentration mechanism 1 and the electrolytic cell 5 in Example 1, the same as in Example 1 A solid of sodium carbonate was obtained.

実施例1で使用したキレート樹脂3の薬洗液を循環ループにより処理した場合を説明する。キレート樹脂3の2価イオン吸着量が飽和に達した後、薬洗を行なった。循環ループを用いて、薬洗液中の塩化ナトリウムを再利用することにより、廃棄物量は循環ループを用いない場合の1/40まで低減した。   The case where the chemical washing solution of the chelate resin 3 used in Example 1 is processed by the circulation loop will be described. After the amount of adsorbed divalent ions of the chelate resin 3 reached saturation, chemical washing was performed. By recycling the sodium chloride in the chemical washing solution using the circulation loop, the amount of waste was reduced to 1/40 of that when the circulation loop was not used.

実施例1で中和を行なわず、水酸化ナトリウムを有価塩として得る場合を説明する。塩排水を処理し、得られた水酸化ナトリウム溶液を乾燥させると、純度99%の固体水酸化ナトリウム0.32tが得られた。   The case where sodium hydroxide is obtained as a valuable salt without neutralization in Example 1 will be described. The salt effluent was treated and the resulting sodium hydroxide solution was dried to obtain 0.32t of solid sodium hydroxide having a purity of 99%.

1: 蒸発濃縮機構(濃縮機構)
1a: 蒸発濃縮機構(濃縮機構)
1b:濃縮機構
2: 凝集ろ過機構
3:キレート樹脂
4:脱炭酸機構
5:電解槽
6:乾燥・中和機構
7:塩酸製造機構
8:逆浸透膜システム
9:炭酸吹込み機構
11:塩排水(随伴水)
12:希水酸化ナトリウム溶液
13:二次廃棄物
14:薬洗液
15:希薄塩水
16:二酸化炭素
17:高濃度水酸化ナトリウム溶液
101:ガス田
102:精密ろ過膜ユニット
103:逆浸透膜ユニット
104a:ポンプ
104b:ポンプ
1: Evaporation concentration mechanism (concentration mechanism)
1a: Evaporation concentration mechanism (concentration mechanism)
1b: Concentration mechanism 2: Coagulation filtration mechanism 3: Chelate resin 4: Decarbonation mechanism 5: Electrolysis tank 6: Drying / neutralization mechanism 7: Hydrochloric acid production mechanism 8: Reverse osmosis membrane system 9: Carbon dioxide blowing mechanism 11: Salt drainage (Accompanying water)
12: Dilute sodium hydroxide solution 13: Secondary waste
14: Drug wash
15: Dilute brine 16: Carbon dioxide 17: High concentration sodium hydroxide solution 101: Gas field 102: Microfiltration membrane unit
103: Reverse osmosis membrane unit
104a: Pump 104b: Pump

Claims (14)

塩化ナトリウムを含む塩排水を濃縮する濃縮機構と、
正極室と負極室とがナトリウムイオンを透過するイオン交換膜で仕切られ、前記塩排水を電気分解して水酸化ナトリウムを生成する電解槽とを備え、
前記濃縮機構と前記電解槽との間に、
前記塩排水から炭酸ナトリウムと炭酸水素ナトリウムを除去する脱炭酸機構と、
前記塩排水から2価イオンを凝集物として除去する凝集ろ過機構と、
前記塩排水から2価イオンを吸着させて除去するキレート樹脂と
を備えることを特徴とする塩排水処理装置。
A concentration mechanism for concentrating salt drainage containing sodium chloride;
The positive electrode chamber and the negative electrode chamber are partitioned by an ion exchange membrane that transmits sodium ions, and an electrolytic cell that electrolyzes the salt drainage to generate sodium hydroxide,
Between the concentration mechanism and the electrolytic cell,
A decarboxylation mechanism for removing sodium carbonate and sodium bicarbonate from the salt drainage,
A coagulation filtration mechanism for removing divalent ions as aggregates from the salt drainage;
A salt drainage treatment apparatus comprising: a chelate resin that adsorbs and removes divalent ions from the salt drainage.
前記脱炭酸機構の後段に、前記凝集ろ過機構と前記キレート樹脂とを備えることを特徴とする請求項1に記載の塩排水処理装置。   The salt wastewater treatment apparatus according to claim 1, wherein the coagulation filtration mechanism and the chelate resin are provided after the decarbonation mechanism. 前記凝集ろ過機構と前記キレート樹脂の後段に、前記脱炭酸機構を備えることを特徴とする請求項1に記載の塩排水処理装置。 The salt wastewater treatment apparatus according to claim 1, wherein the decarboxylation mechanism is provided downstream of the aggregation filtration mechanism and the chelate resin. 前記凝集ろ過機構の前段に、前記塩排水に二酸化炭素を吹込む炭酸吹込み機構を備えることを特徴とする請求項1に記載の塩排水処理装置。   The salt wastewater treatment apparatus according to claim 1, further comprising a carbonic acid blowing mechanism that blows carbon dioxide into the salt drainage before the coagulation filtration mechanism. 前記水酸化ナトリウムに二酸化炭素を接触させ、炭酸ナトリウム又は炭酸水素ナトリウムを生成する中和機構を備えることを特徴とする請求項1に記載の塩排水処理装置。   The salt wastewater treatment apparatus according to claim 1, further comprising a neutralization mechanism for bringing carbon dioxide into contact with the sodium hydroxide to produce sodium carbonate or sodium bicarbonate. 前記二酸化炭素が前記脱炭酸機構で生成されるものであることを特徴とする請求項5に記載の塩排水処理装置。   6. The salt wastewater treatment apparatus according to claim 5, wherein the carbon dioxide is generated by the decarboxylation mechanism. 前記濃縮機構と前記電解槽との間に、更に他の濃縮機構を備えることを特徴とする請求項1に記載の塩排水処理装置。   The salt wastewater treatment apparatus according to claim 1, further comprising another concentration mechanism between the concentration mechanism and the electrolytic cell. 前記濃縮機構と前記他の濃縮機構との間に前記脱炭酸機構、前記凝集ろ過機構、前記キレート樹脂の何れかを少なくとも1つ備えることを特徴とする請求項7に記載の塩排水処理装置。   The salt wastewater treatment apparatus according to claim 7, wherein at least one of the decarboxylation mechanism, the aggregation filtration mechanism, and the chelate resin is provided between the concentration mechanism and the other concentration mechanism. 前記キレート樹脂を薬洗する際に排出される薬洗液を前記濃縮機構又は前記他の濃縮機構に返送することを特徴とする請求項7に記載の塩排水処理装置。   The salt wastewater treatment apparatus according to claim 7, wherein a chemical washing liquid discharged when the chelate resin is washed with chemicals is returned to the concentration mechanism or the other concentration mechanism. 前記電解槽の正極室から排出される希薄塩水を前記濃縮機構又は前記他の濃縮機構に返送することを特徴とする請求項7に記載の塩排水処理装置。   8. The salt wastewater treatment apparatus according to claim 7, wherein dilute salt water discharged from the positive electrode chamber of the electrolytic cell is returned to the concentration mechanism or the other concentration mechanism. 前記電解槽から排出される塩素と水素から塩酸を生成する塩酸製造機構を備え、前記塩酸を前記脱炭酸機構、前記塩排水の供給元又は前記キレート樹脂の何れかへ返送することを特徴とする請求項7に記載の塩排水処理装置。   A hydrochloric acid production mechanism for generating hydrochloric acid from chlorine and hydrogen discharged from the electrolytic cell is provided, and the hydrochloric acid is returned to any one of the decarboxylation mechanism, the salt drainage supply source, or the chelate resin. The salt wastewater treatment apparatus according to claim 7. 前記濃縮機構の前段に、前記塩排水を濃縮する逆浸透膜を備えることを特徴とする請求項1に記載の塩排水処理装置。   The salt wastewater treatment apparatus according to claim 1, further comprising a reverse osmosis membrane for concentrating the salt drainage before the concentration mechanism. 前記電解槽の負極室から排出される水酸化ナトリウム溶液を前記電解槽又は前記キレート樹脂に返送することを特徴とする請求項1に記載の塩排水処理装置。   2. The salt wastewater treatment apparatus according to claim 1, wherein the sodium hydroxide solution discharged from the negative electrode chamber of the electrolytic cell is returned to the electrolytic cell or the chelate resin. 前記キレート樹脂が、イミノジ酢酸型又はアミノ‐リン酸型の官能基を持つ樹脂であることを特徴とする請求項1に記載の塩排水処理装置。   The salt wastewater treatment apparatus according to claim 1, wherein the chelate resin is a resin having an iminodiacetic acid type or amino-phosphate type functional group.
JP2013014980A 2013-01-30 2013-01-30 Treatment apparatus of salt-containing wastewater Pending JP2014144435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013014980A JP2014144435A (en) 2013-01-30 2013-01-30 Treatment apparatus of salt-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013014980A JP2014144435A (en) 2013-01-30 2013-01-30 Treatment apparatus of salt-containing wastewater

Publications (1)

Publication Number Publication Date
JP2014144435A true JP2014144435A (en) 2014-08-14

Family

ID=51425149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013014980A Pending JP2014144435A (en) 2013-01-30 2013-01-30 Treatment apparatus of salt-containing wastewater

Country Status (1)

Country Link
JP (1) JP2014144435A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017114705A (en) * 2015-12-22 2017-06-29 学校法人福岡大学 Method for producing sodium hypochlorite, and sodium hypochlorite production device
JP2018035024A (en) * 2016-08-30 2018-03-08 クボタ環境サ−ビス株式会社 Method for producing sodium hypochlorite, and sodium hypochlorite production device
CN109264886A (en) * 2018-09-17 2019-01-25 大丰跃龙化学有限公司 A kind of wastewater treatment method in cyclopropylamine production process
CN111992044A (en) * 2020-09-11 2020-11-27 江苏坤奕环境工程有限公司 Energy-saving ultrahigh-power concentration membrane module, membrane bag thereof, water treatment system and method
WO2022071153A1 (en) * 2020-09-30 2022-04-07 日東電工株式会社 Method for treating oil-containing drainage water

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017114705A (en) * 2015-12-22 2017-06-29 学校法人福岡大学 Method for producing sodium hypochlorite, and sodium hypochlorite production device
JP2018035024A (en) * 2016-08-30 2018-03-08 クボタ環境サ−ビス株式会社 Method for producing sodium hypochlorite, and sodium hypochlorite production device
CN109264886A (en) * 2018-09-17 2019-01-25 大丰跃龙化学有限公司 A kind of wastewater treatment method in cyclopropylamine production process
CN111992044A (en) * 2020-09-11 2020-11-27 江苏坤奕环境工程有限公司 Energy-saving ultrahigh-power concentration membrane module, membrane bag thereof, water treatment system and method
CN111992044B (en) * 2020-09-11 2022-04-26 江苏坤奕环境技术股份有限公司 Energy-saving ultrahigh-power concentration membrane module, membrane bag thereof, water treatment system and method
WO2022071153A1 (en) * 2020-09-30 2022-04-07 日東電工株式会社 Method for treating oil-containing drainage water

Similar Documents

Publication Publication Date Title
JP6223442B2 (en) Method and apparatus for producing or recovering hydrochloric acid from a metal salt solution
CN108623063B (en) Desulfurization wastewater treatment method and system
US20190023585A1 (en) Method and apparatus for the recovery and deep treatment of polluted acid
JP5873771B2 (en) Organic wastewater treatment method and treatment apparatus
CN105084587A (en) Treatment method and equipment of high-salt waste water
CN106495404B (en) A kind of processing method of the high salinity cupric organic wastewater of highly acidity
AU2007261790A1 (en) Method and integral system for treating water for cooling towers and processess requiring removal of silica from the water
JP2014144435A (en) Treatment apparatus of salt-containing wastewater
CN108455680B (en) Environment-friendly resource utilization method of steel pickling waste liquid
KR102207458B1 (en) A fresh water system capable of producing hydrogen gas
KR102328974B1 (en) A fresh water system capable of producing hydrogen gas
CN105906128A (en) Method and system for recovering sodium chloride from high salinity wastewater
CN106007110A (en) Low-salt wastewater recycled treatment and recycling method
CN113461236A (en) Zero discharge system that high salt waste water of power plant divides matter to handle
KR20240124883A (en) Methods for waste water treatment of Nitrogen trifluoride(NF3) process
CN111170516A (en) Treatment process and treatment system for desulfurization wastewater
CN105540958A (en) Zero-discharge treatment process of power plant wastewater
CN106637215B (en) Method for recycling electrolytic oxidant of circuit board acidic etching waste liquid resource
JP2014015639A (en) Method and apparatus for treating salt waste water
JPS62161973A (en) Production of high-purity lithium carbonate
CN107226572B (en) Zero-emission system and method for advanced treatment of mercury-containing wastewater
TW201427910A (en) Device for treating ammonia-containing wastewater, and method for treating ammonia-containing wastewater
KR20190028936A (en) Method for treating seawater desalination concentrates using pH control
CN113461237A (en) Zero discharge system for salt wastewater treatment
CN104529016A (en) Method for treating high-salinity wastewater