JP2014141760A - Carbon fiber bundle and production method of the same - Google Patents
Carbon fiber bundle and production method of the same Download PDFInfo
- Publication number
- JP2014141760A JP2014141760A JP2013011878A JP2013011878A JP2014141760A JP 2014141760 A JP2014141760 A JP 2014141760A JP 2013011878 A JP2013011878 A JP 2013011878A JP 2013011878 A JP2013011878 A JP 2013011878A JP 2014141760 A JP2014141760 A JP 2014141760A
- Authority
- JP
- Japan
- Prior art keywords
- fiber bundle
- carbon fiber
- pin body
- tension
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Inorganic Fibers (AREA)
Abstract
Description
本発明は、一定範囲の交絡形態に制御され、高次加工性に優れた炭素繊維束、およびその製造方法に関するものである。 The present invention relates to a carbon fiber bundle that is controlled in a certain range of entanglement form and excellent in high-order workability, and a method for producing the same.
炭素繊維は高強度・高弾性率を有する材料であり、航空機用途、スポーツ用途、一般産業用途として使用されている。炭素繊維をこのような用途に使用する場合、例えば中間基材として炭素繊維束と熱硬化性樹脂とを複合してなるプリプレグが用いられる。 Carbon fiber is a material having high strength and high elastic modulus, and is used for aircraft use, sports use, and general industrial use. When using carbon fiber for such an application, for example, a prepreg formed by combining a carbon fiber bundle and a thermosetting resin is used as an intermediate substrate.
用いられる炭素繊維束に毛羽が多いと、それを用いて製造される炭素繊維複合材料の欠点も多くなるため、毛羽の少ない高品位の炭素繊維束が求められる。 If the carbon fiber bundle used has a lot of fluff, the carbon fiber composite material produced using the fluff also has many disadvantages. Therefore, a high-quality carbon fiber bundle with few fluff is required.
また、近年より一層の軽量化のために、より厚みが薄いプリプレグが要求されるようになっている。このようなプリプレグを製造するに際し、用いられる炭素繊維束の集束性が乏しいと、容易に単繊維切れを起こし、毛羽が発生する。一方で、集束性の高い炭素繊維束は拡がり性に乏しく、より薄いプリプレグを製造することが困難になる。 In recent years, a prepreg with a thinner thickness has been required for further weight reduction. When producing such a prepreg, if the bundle of carbon fiber bundles used is poor, single fibers are easily cut and fluff is generated. On the other hand, carbon fiber bundles with high bundling properties have poor spreadability, making it difficult to produce thinner prepregs.
このように、炭素繊維束の毛羽の発生を抑制しようとして集束性を向上させることと、より薄いプリプレグを得ようと拡がり性を向上させることは相反する関係にあり、これらを両立させるためには、炭素繊維束の交絡形態をある一定範囲に制御する技術が求められる。 Thus, there is a contradictory relationship between improving the convergence and trying to suppress the fluff of the carbon fiber bundle, and improving the spreadability to obtain a thinner prepreg. A technique for controlling the entanglement form of the carbon fiber bundle within a certain range is required.
これらは、一方向材としてプリプレグに加工する場合に限らず、織物経由でプリプレグに加工する場合や、織物などのプリフォームを作成して液状の樹脂を含浸させて硬化させるRTM(レジン・トランスファー・モールディング)法などの加工方法や、フィラメントワインド法、プルトルージョン法、プルワインド法を始めとする種々の成形方法においても毛羽の抑制と良好な拡がり性の両立が必要とされる。 These are not limited to processing into a prepreg as a unidirectional material, but when processing into a prepreg via a woven fabric, or by preparing a preform such as a woven fabric and impregnating and curing it with a liquid resin. In various processing methods such as a molding method, a filament wind method, a pultrusion method, and a pull wind method, it is necessary to achieve both suppression of fuzz and good spreadability.
これらの両立を実現するために、例えば、特許文献1には、アクリロニトリル系重合体を紡出する口金の形状と高速流体の圧力によって、炭素繊維のフックドロップ法における繊維交絡値(以下CF値という)を10〜100の範囲に、ポリアクリロニトリル系繊維のCF値を10〜40の範囲に制御することで、集束性・樹脂含浸性に優れた炭素繊維が得られるとされている。特許文献2には、流体交絡処理によって、炭素繊維製造用のアクリル系繊維糸条のCF値が10〜80、CF値の均一性を示すCV値(標準偏差/平均値)が10%以下に制御することで、開繊性に優れた炭素繊維束が得られるとされている。
In order to realize both of these, for example,
CF値とは、JIS−L1013(2010)のフックドロップ法、すなわちフックの落下長により求められる指標である。つまり、フックが落下する間の繊維の交絡形態までは掴みきれておらず、炭素繊維束の交絡状態をより詳細に規定するには至っていない。そのため、CF値やそのCV値を規定しても、炭素繊維束の交絡形態を厳密には制御できておらず、高次加工時の開繊性に斑が生じるという問題が存在していた。 The CF value is an index determined by the hook drop method of JIS-L1013 (2010), that is, the hook drop length. That is, the entanglement form of the fibers during the fall of the hook has not been grasped, and the entanglement state of the carbon fiber bundle has not been defined in more detail. Therefore, even if the CF value and the CV value thereof are defined, the entanglement form of the carbon fiber bundle cannot be strictly controlled, and there is a problem that unevenness occurs in the opening property at the time of high-order processing.
本発明の課題は、構成する単糸を一定範囲の交絡形態に制御することで、高次加工性に優れた炭素繊維束、およびその製造方法を提供することにある。 The subject of this invention is providing the carbon fiber bundle excellent in high-order workability, and its manufacturing method by controlling the single yarn to comprise to the entanglement form of a fixed range.
本発明は、上記課題を解決するために次の構成を有する。すなわち、
(1)炭素繊維束を所定の経路で走行させる案内手段と、前記経路の終端部で炭素繊維束を回収する回収手段と、前記経路に配設され、走行する炭素繊維束にピン体を抜き差しするピン体抜き差し手段と、前記ピン体の入側と前記ピン体の出側に、炭素繊維束に作用する張力を検出する張力検出手段を有する装置を用いて測定される、前記ピン体の出側と前記ピン体の入側の張力の差の最大値Gmax(N)と、炭素繊維束の厚みa(mm)が、下記(式1)の関係にあり、かつ、構成する単糸の真円度が0.80〜0.99の範囲であり、表面積比が1.00〜1.10の範囲である炭素繊維束。
8≦Gmax/a≦50 (式1)。
The present invention has the following configuration in order to solve the above problems. That is,
(1) Guide means for causing the carbon fiber bundle to travel along a predetermined path, collection means for recovering the carbon fiber bundle at the end of the path, and inserting and removing a pin body into the traveling carbon fiber bundle disposed on the path Pin body insertion / removal means, and a device having tension detection means for detecting the tension acting on the carbon fiber bundle on the entry side of the pin body and the exit side of the pin body. The maximum value Gmax (N) of the difference in tension between the side and the entry side of the pin body and the thickness a (mm) of the carbon fiber bundle have the following relationship (Equation 1) and A carbon fiber bundle having a circularity in the range of 0.80 to 0.99 and a surface area ratio in the range of 1.00 to 1.10.
8 ≦ Gmax / a ≦ 50 (Formula 1).
(2)構成する単糸の真円度が0.90〜0.99の範囲であり、表面積比が1.00〜1.05の範囲であり、引張強度6.0GPa以上、弾性率300GPa以上の炭素繊維束であって、前記ピン体の出側と前記ピン体の入側の張力の差の最大値Gmax(N)と、炭素繊維束の厚みa(mm)が、下記(式2)の関係にある、請求項1に記載の炭素繊維束。
10≦Gmax/a≦40 (式2)。
(2) The roundness of the single yarn constituting is in the range of 0.90 to 0.99, the surface area ratio is in the range of 1.00 to 1.05, the tensile strength is 6.0 GPa or more, and the elastic modulus is 300 GPa or more. The maximum value Gmax (N) of the difference in tension between the exit side of the pin body and the entry side of the pin body, and the thickness a (mm) of the carbon fiber bundle are as follows (Formula 2): The carbon fiber bundle according to
10 ≦ Gmax / a ≦ 40 (Formula 2).
(3)ポリアクリロニトリル系重合体が溶媒に溶解してなる紡糸溶液を、湿式紡糸法または乾湿式紡糸法により口金から凝固浴に吐出した後、水浴中で洗浄・延伸し、油剤を付与した後に乾燥熱処理し、スチーム延伸して得られる炭素繊維前駆体繊維束を、酸化性雰囲気で耐炎化した後、不活性雰囲気中で最高温度1200〜1700℃の範囲で炭化する、上記(1)の炭素繊維束の製造方法であって、前記炭素繊維前駆体繊維束は、構成する単糸の真円度が0.80〜0.99の範囲で、表面積比が1.00〜1.10の範囲である繊維束を、ロール間で0.3〜1.2cN/dtexの範囲の張力緊張下に支えられた状態で、該繊維束の垂直方向から流体による交絡処理を施して得られたものである、炭素繊維束の製造方法。 (3) After a spinning solution in which a polyacrylonitrile-based polymer is dissolved in a solvent is discharged from a die to a coagulation bath by a wet spinning method or a dry-wet spinning method, and then washed and stretched in a water bath to give an oil agent The carbon of (1) above, wherein the carbon fiber precursor fiber bundle obtained by dry heat treatment and steam drawing is flame-resistant in an oxidizing atmosphere and then carbonized in an inert atmosphere at a maximum temperature of 1200 to 1700 ° C. A method of manufacturing a fiber bundle, wherein the carbon fiber precursor fiber bundle has a roundness of a single yarn constituting a range of 0.80 to 0.99 and a surface area ratio of 1.00 to 1.10. The fiber bundle is obtained by subjecting the fiber bundle to a tangling treatment with a fluid from the vertical direction in a state where the fiber bundle is supported under tension and tension in the range of 0.3 to 1.2 cN / dtex between the rolls. A method for producing a carbon fiber bundle.
(4)ポリアクリロニトリル系重合体が溶媒に溶解してなる紡糸溶液を、乾湿式紡糸法により口金から凝固浴に吐出した後、水浴中で洗浄・延伸し、油剤を付与した後に乾燥熱処理し、スチーム延伸して得られる炭素繊維前駆体繊維束を、酸化性雰囲気で耐炎化した後、不活性雰囲気中で最高温度1300〜1700℃の範囲で炭化する、上記(2)に記載の炭素繊維束の製造方法であって、前記炭素繊維前駆体繊維束は、構成する単糸の繊度が0.4〜1.2dtexの範囲で、真円度が0.90〜0.99の範囲で、表面積比が1.00〜1.05の範囲である繊維束を、ロール間で0.3〜1.2cN/dtexの範囲の張力緊張下に支えられた状態で、該繊維束の垂直方向から流体による交絡処理を施し得られたものである、炭素繊維束の製造方法。 (4) A spinning solution in which a polyacrylonitrile-based polymer is dissolved in a solvent is discharged from a die to a coagulation bath by a dry and wet spinning method, then washed and stretched in a water bath, and after applying an oil agent, a drying heat treatment is performed. The carbon fiber bundle according to (2) above, wherein the carbon fiber precursor fiber bundle obtained by steam drawing is flame-resistant in an oxidizing atmosphere and then carbonized in an inert atmosphere at a maximum temperature of 1300 to 1700 ° C. The carbon fiber precursor fiber bundle is a surface area of the carbon fiber precursor fiber bundle having a fineness of 0.4 to 1.2 dtex and a roundness of 0.90 to 0.99. A fiber bundle having a ratio in the range of 1.00 to 1.05 is supported from the vertical direction of the fiber bundle in a state where the fiber bundle is supported under tension and tension in the range of 0.3 to 1.2 cN / dtex between the rolls. Carbon fiber obtained by entanglement treatment with Manufacturing method of the bundle.
(5)前記流体による交絡処理が、0.1〜0.4MPaの範囲の圧力下で行うものである、上記(3)または(4)の炭素繊維束の製造方法。 (5) The method for producing a carbon fiber bundle according to (3) or (4), wherein the entanglement treatment with the fluid is performed under a pressure in the range of 0.1 to 0.4 MPa.
本発明によれば、構成する単糸を一定範囲の交絡形態に制御することで、集束性と拡がり性を両立させることができ、プリプレグを始めとした高次加工時の加工性に優れた炭素繊維束およびその製造方法を提供することができる。 According to the present invention, by controlling the constituting single yarn to a certain range of entanglement form, it is possible to achieve both convergence and spreadability, and carbon excellent in workability at the time of high-order processing including prepreg. A fiber bundle and a manufacturing method thereof can be provided.
本発明の炭素繊維束は、ピン体を挿入して炭素繊維束を走行させたときの張力で規定される交絡形態が特定の範囲にあることに特徴があり、かかる交絡形態は、以下の方法で測定される。なお、図1は本発明で規定される張力の差G(N)を測定する装置の概略図である。 The carbon fiber bundle of the present invention is characterized in that the entanglement form defined by the tension when the pin body is inserted and the carbon fiber bundle is run is in a specific range. Measured in FIG. 1 is a schematic view of an apparatus for measuring the tension difference G (N) defined in the present invention.
本発明で規定される張力の差G(N)の測定に用いられる、交絡形態の測定装置は、炭素繊維束を所定の経路で走行させる案内手段2と、前記経路の終端部で炭素繊維束を回収する回収手段4と、前記経路に配設され、走行する炭素繊維束にピン体6を抜き差しするピン体抜き差し手段5と、前記ピン体の入側と前記ピン体の出側に、炭素繊維束に作用する張力を検出する張力検出手段3を有する。
The measuring device in the form of entanglement used for measuring the tension difference G (N) defined in the present invention includes a guide means 2 for causing a carbon fiber bundle to travel along a predetermined path, and a carbon fiber bundle at the end of the path. A recovery means 4 for recovering the carbon fiber, a pin body insertion / removal means 5 for inserting / removing the
炭素繊維束は巻き取られたボビン1から引き出され、適宜箇所に配置された前記案内手段2に従って所定の経路を走行し、前記張力検出手段3を通過した後、前記経路の終端部に配置された前記回収手段4によって回収される。
The carbon fiber bundle is pulled out from the
本発明で規定される、ピン体を挿入する以前の、走行する炭素繊維束に作用する張力(初期張力)は、2〜10Nの範囲に設定し、ばらつきを±1Nの範囲とすることが好ましいが、本発明では5N±1Nで測定すると良い。初期張力は、図示を省略したが公知のボビンの回転トルクやダンサーを介することで制御される。 The tension (initial tension) acting on the traveling carbon fiber bundle before inserting the pin body, defined in the present invention, is preferably set in the range of 2 to 10N, and the variation is preferably in the range of ± 1N. However, in this invention, it is good to measure at 5N ± 1N. Although not shown, the initial tension is controlled through a known bobbin rotational torque or a dancer.
本発明で規定される、前記案内手段は駆動ローラ、駆動ローラを回転させるモータなどからなり、その速度は0.1〜10m/分の範囲で有れば問題がないが、本発明では5m/分±0.5m/分で測定すると良い。 The guide means defined in the present invention comprises a drive roller, a motor for rotating the drive roller, etc., and there is no problem if the speed is in the range of 0.1 to 10 m / min. It is better to measure at a rate of ± 0.5 m / min.
前記ピン体抜き差し手段により走行する炭素繊維束にピン体が挿入され、前記張力検出手段によりピン体の入側とピン体の出側に作用する張力が検出される。 The pin body is inserted into the carbon fiber bundle traveling by the pin body insertion / extraction means, and the tension acting on the input side of the pin body and the exit side of the pin body is detected by the tension detection means.
なお、前記ピン体を挿入する以前では、ピン体の入側とピン体の出側に作用する張力は同じになる。前記ピン体を挿入することで、ピン体の出側の前記張力検出手段において検出される張力は、前記ピン体が炭素繊維束の交絡部付近に近づくにつれて次第にピン体に働く抵抗が大きくなり、ピン体の出側の炭素繊維束に作用する張力は高く検出される。一方、ピン体の入側の前記張力検出手段において検出される張力は、前記ピン体を挿入しても、ピン体を挿入する以前にピン体の入側の炭素繊維束に作用していた張力と等しく検出される。つまり、ピン体の出側とピン体の入側の張力の差G(N)を測定することで、炭素繊維束の交絡によって作用する張力が検出される。 Before inserting the pin body, the tension acting on the input side of the pin body and the exit side of the pin body is the same. By inserting the pin body, the tension detected by the tension detecting means on the exit side of the pin body gradually increases the resistance acting on the pin body as the pin body approaches the vicinity of the entangled portion of the carbon fiber bundle, The tension acting on the carbon fiber bundle on the exit side of the pin body is detected high. On the other hand, the tension detected by the tension detecting means on the entry side of the pin body is the tension that has acted on the carbon fiber bundle on the entry side of the pin body before the pin body is inserted. Is detected equal to That is, the tension acting by the entanglement of the carbon fiber bundle is detected by measuring the difference in tension G (N) between the exit side of the pin body and the entrance side of the pin body.
炭素繊維束の交絡が強いほど、炭素繊維束に前記ピン体を挿入した際、ピン体付近を走行する交絡部が増えるため、ピン体の出側の張力は高く検出される。 The stronger the entanglement of the carbon fiber bundle, the more entangled portions that run in the vicinity of the pin body when the pin body is inserted into the carbon fiber bundle, so that the tension on the exit side of the pin body is detected higher.
本発明で規定される張力は、用いられる前記ピン体の直径を2mmとすると良く、炭素繊維束に前記ピン体を挿入して所定の速度で走行させた際の張力を計測することにより求められる。ピン体の材質は走行する炭素繊維束に挿入しても折れたり曲がったりすることが無ければ特に問題ない。本発明では、安価な鉄製で表面が平滑に仕上げてあり、先端が鋭利なものを用いると良い。 The tension defined in the present invention is preferably 2 mm in diameter of the pin body used, and is obtained by measuring the tension when the pin body is inserted into a carbon fiber bundle and run at a predetermined speed. . The material of the pin body is not particularly problematic as long as it does not break or bend even when inserted into the traveling carbon fiber bundle. In the present invention, it is preferable to use an inexpensive iron having a smooth surface and a sharp tip.
本発明で規定される張力の測定は、炭素繊維束の厚みが大きいほど、ピン体の出側で検出される張力は高くなる。そのため、炭素繊維束の厚みを測定して、本発明で規定される張力の差Gを炭素繊維束の厚みで除した値を制御する必要がある。 In the measurement of the tension defined in the present invention, the greater the thickness of the carbon fiber bundle, the higher the tension detected on the outlet side of the pin body. Therefore, it is necessary to control the value obtained by measuring the thickness of the carbon fiber bundle and dividing the tension difference G defined in the present invention by the thickness of the carbon fiber bundle.
そして、前記ピン体抜き差し手段により前記ピン体を挿入してから炭素繊維束を500mm走行させた後、前記案内手段を停止し、炭素繊維束から前記ピン体抜き差し手段により前記ピン体を抜脱して少し糸を走行させる。以後、上記の動作を繰り返すことで複数回の測定が可能となる。 Then, after the pin body is inserted by the pin body inserting / removing means, the carbon fiber bundle is run for 500 mm, the guide means is stopped, and the pin body is removed from the carbon fiber bundle by the pin body inserting / removing means. Run a little yarn. Thereafter, a plurality of measurements can be performed by repeating the above operation.
前記ピン体を挿入してから炭素繊維束を500mm走行させた間の測定にすることで、糸の長手方向の斑を排除することができ、また、測定長が過大になって、炭素繊維束を構成する単糸が切れて前記ピン体に絡む影響を排除できる。測定を10回行った中での張力の差の最大値を本発明で規定されるGmax(N)とする。 By measuring while the carbon fiber bundle is run 500 mm after inserting the pin body, unevenness in the longitudinal direction of the yarn can be eliminated, and the measurement length becomes excessive, and the carbon fiber bundle It is possible to eliminate the influence of breaking the single yarn constituting the pin body. The maximum value of the tension difference after 10 measurements is taken as Gmax (N) defined in the present invention.
図2に、本発明で規定される張力の差Gの1回の測定結果の一例を示す。本例でのGmaxは0.82Nであり、別途測定した炭素繊維束の厚み0.05mmで除した値16が、本発明で規定されるGmax/a(N/mm)となる。 FIG. 2 shows an example of a single measurement result of the tension difference G defined in the present invention. Gmax in this example is 0.82 N, and a value 16 divided by the thickness 0.05 mm of the carbon fiber bundle separately measured is Gmax / a (N / mm) defined in the present invention.
本測定により求められたGmax/aは、CF値で現される交絡に比較して、束全体の絡みの度合いを測定することができる。したがって、プリプレグを始めとした高次加工時の加工性を評価するのに、より適当な値を規定できているといえる。 Gmax / a obtained by this measurement can measure the degree of entanglement of the entire bundle as compared with the entanglement expressed by the CF value. Therefore, it can be said that a more appropriate value can be defined for evaluating the workability at the time of high-order machining including prepreg.
そして本発明は、かかる方法で測定した結果、前記ピン体の出側と前記ピン体の入側の張力の差の最大値Gmax(N)と、炭素繊維束の厚みa(mm)が、下記(式1)の関係にあることが必要である
8≦Gmax/a≦50 (式1)。
And as for this invention, as a result of measuring by this method, the maximum value Gmax (N) of the tension | tensile_difference difference of the exit side of the said pin body and the entrance side of the said pin body, and the thickness a (mm) of a carbon fiber bundle are the following. It is necessary to satisfy the relationship of (Formula 1) 8 ≦ Gmax / a ≦ 50 (Formula 1).
Gmax/a(N/mm)を8以上とする炭素繊維束では、炭素繊維束製造時の毛羽発生を抑えることができると共に、炭素繊維束に適度な集束性を与えることができ、プリプレグを製造する際の単繊維切れを抑制できる。またGmax/a(N/mm)を50以下とした炭素繊維束では、炭素繊維束の集束性を適度に抑えることができ、炭素繊維束製造時の操業性が良好であると共に、薄いプリプレグを製造する際の拡がり性を良好なレベルとすることができる。かかる観点でより良好な範囲は、10≦Gmax/a≦40(式2)である。 Carbon fiber bundles with a Gmax / a (N / mm) of 8 or more can suppress the generation of fluff during the production of carbon fiber bundles, and can impart appropriate convergence to the carbon fiber bundle, producing prepregs. It is possible to suppress the breakage of the single fiber during the process. Further, in the carbon fiber bundle having Gmax / a (N / mm) of 50 or less, the convergence property of the carbon fiber bundle can be moderately suppressed, the operability at the time of manufacturing the carbon fiber bundle is good, and a thin prepreg is used. The expansibility at the time of manufacture can be made into a favorable level. From this viewpoint, a better range is 10 ≦ Gmax / a ≦ 40 (Formula 2).
本発明の炭素繊維束は、構成する単糸の真円度が0.80〜0.99の範囲であり、表面積比が1.00〜1.10の範囲である。炭素繊維前駆体で制御した真円度、表面積比は、炭素繊維化してもほぼ同じ値に保たれる。かかる観点から、本発明の炭素繊維束の製造に用いられる炭素繊維前駆体繊維束は、構成する単糸の断面形状が真円に近く、また表面の凹凸が小さい方が好ましい。その理由は後述するが、かかる観点で構成する単糸の真円度が0.90〜0.99の範囲であり、表面積比が1.00〜1.05の範囲であることがより好ましい。 In the carbon fiber bundle of the present invention, the roundness of the single yarn constituting the carbon fiber bundle is in the range of 0.80 to 0.99, and the surface area ratio is in the range of 1.00 to 1.10. The roundness and surface area ratio controlled by the carbon fiber precursor are maintained at substantially the same values even when the carbon fiber is formed. From such a viewpoint, the carbon fiber precursor fiber bundle used for the production of the carbon fiber bundle of the present invention preferably has a cross-sectional shape of the single yarn constituting a shape close to a perfect circle and a smaller surface irregularity. Although the reason is mentioned later, it is more preferable that the roundness of the single yarn constituted from this viewpoint is in the range of 0.90 to 0.99, and the surface area ratio is in the range of 1.00 to 1.05.
本発明の炭素繊維束は、ポリアクリロニトリル系重合体が溶媒に溶解してなる紡糸溶液を、湿式紡糸法または乾湿式紡糸法により口金から凝固浴に吐出した後、水浴中で洗浄・延伸し、油剤を付与した後に乾燥熱処理し、スチーム延伸して得られる炭素繊維前駆体繊維束を、酸化性雰囲気で耐炎化した後、不活性雰囲気中で炭化する、炭素繊維束の製造方法であって、前記炭素繊維前駆体繊維束は、構成する単糸の真円度が0.80〜0.99の範囲で、表面積比が1.00〜1.10の範囲である繊維束を、ロール間で0.3〜1.2cN/dtexの範囲の張力緊張下に支えられた状態で、該繊維束の垂直方向から流体による交絡処理を施して得られたものであることが好ましい。 The carbon fiber bundle of the present invention is a spinning solution in which a polyacrylonitrile-based polymer is dissolved in a solvent. After discharging the spinning solution from a die to a coagulation bath by a wet spinning method or a dry-wet spinning method, washing and stretching in a water bath, A method for producing a carbon fiber bundle in which a carbon fiber precursor fiber bundle obtained by drying and heat-treating after applying an oil agent and steam drawing is flame-resistant in an oxidizing atmosphere and then carbonized in an inert atmosphere, The carbon fiber precursor fiber bundle comprises a fiber bundle having a roundness of a single yarn constituting 0.80 to 0.99 and a surface area ratio of 1.00 to 1.10. It is preferably obtained by entanglement treatment with a fluid from the vertical direction of the fiber bundle in a state where the fiber bundle is supported under a tension of 0.3 to 1.2 cN / dtex.
本発明の炭素繊維束の製造に用いられる炭素繊維前駆体繊維束は、構成する単糸の断面形状が真円に近く、また表面の凹凸が小さい方が好ましい。具体的には、真円度は0.80〜0.99の範囲であることが好ましく、0.90〜0.99の範囲であることがより好ましい。また表面積比は1.00〜1.10の範囲であることが好ましく、1.00〜1.05の範囲であることがより好ましい。真円度を0.80以上とすることによって、交絡を付与する際に炭素繊維前駆体繊維束を構成する単糸間のたるみ発生を抑えて、毛羽発生を防ぐことができ、炭素繊維製造時や高次加工時の毛羽を防止し、拡がり性を確保することができる。表面積比も同様の理由で凹凸が小さい方が好ましい。かかる真円度、表面積比は後述する方法によって測定することができ、紡糸条件によって制御することができる。例えば、凝固浴より高温に保った紡糸溶液を口金から一旦空中に吐出し、比較的低温に保った凝固浴中に導入し、重合体濃度、凝固浴の溶媒濃度、温度を設定し、得られた凝固糸に延伸、水洗、油剤処理、スチーム延伸等を施すことで特定の真円度と表面積比を有する炭素繊維前駆体繊維束を製造し、耐炎化、炭化することで製造できる。かかる観点から好ましい凝固浴の温度は、0〜20℃の範囲が好ましく、より好ましくは5〜15℃の範囲である。炭素繊維前駆体で制御した真円度、表面積比は、炭素繊維化してもほぼ同じ値に保たれる。すなわち、かかる方法で製造される炭素繊維束は、構成する炭素繊維単糸の真円度、表面積比を、それぞれ0.80〜0.99、1.00〜1.10、好ましくは、それぞれ0.90〜0.99、1.00〜1.05の範囲とすることができる。 In the carbon fiber precursor fiber bundle used for the production of the carbon fiber bundle of the present invention, it is preferable that the cross-sectional shape of the single yarn constituting it is close to a perfect circle and the surface irregularities are small. Specifically, the roundness is preferably in the range of 0.80 to 0.99, and more preferably in the range of 0.90 to 0.99. The surface area ratio is preferably in the range of 1.00 to 1.10, and more preferably in the range of 1.00 to 1.05. By setting the roundness to 0.80 or more, it is possible to suppress the occurrence of sagging between single yarns constituting the carbon fiber precursor fiber bundle when imparting entanglement, and to prevent the occurrence of fluff. In addition, fluff during high-order processing can be prevented, and spreadability can be secured. The surface area ratio is preferably smaller for the same reason. Such roundness and surface area ratio can be measured by the method described later, and can be controlled by spinning conditions. For example, a spinning solution kept at a temperature higher than that of the coagulation bath is once discharged from the die into the air and introduced into a coagulation bath kept at a relatively low temperature, and the polymer concentration, the solvent concentration of the coagulation bath, and the temperature are set. It is possible to produce a carbon fiber precursor fiber bundle having a specific roundness and a surface area ratio by subjecting the solidified yarn to drawing, washing with water, oil treatment, steam drawing, and the like, and making it flame resistant and carbonized. From this viewpoint, the preferable temperature of the coagulation bath is preferably in the range of 0 to 20 ° C, more preferably in the range of 5 to 15 ° C. The roundness and surface area ratio controlled by the carbon fiber precursor are maintained at substantially the same values even when the carbon fiber is formed. That is, the carbon fiber bundle produced by such a method has a roundness and a surface area ratio of the carbon fiber single yarn constituting 0.80 to 0.99 and 1.00 to 1.10, preferably 0, respectively. .90 to 0.99 and 1.00 to 1.05.
本発明の炭素繊維束の製造に用いられる炭素繊維前駆体繊維束は、0.3〜1.2cN/dtexの範囲の張力緊張下に支えられた状態で、該繊維束の垂直方向から流体による交絡処理を施して得られたものであることが好ましく、0.5〜1.0cN/dtexの範囲であることがより好ましい。ここで説明される値は、張力を、交絡処理を施す前の総繊度で除した値である。なお、垂直方向から流体による交絡処理とあるが、本発明の目的を奏する範囲で傾いていても(例えば、繊維束に対して80°〜100°程度の角度であっても)良い。交絡処理を施す際の張力を0.3cN/dtex以上とすることによって、過度な交絡を防ぐことができるので開繊性が良好な範囲とされる。また、交絡処理を施す際の張力を1.2cN/dtex以下とすることによって、適度な交絡を付与することができ、炭化や高次加工に際しての毛羽を防ぎ良好なプロセス性が確保される。 The carbon fiber precursor fiber bundle used for the production of the carbon fiber bundle of the present invention is supported by a fluid from the vertical direction of the fiber bundle in a state where the carbon fiber precursor fiber bundle is supported under a tension of 0.3 to 1.2 cN / dtex. It is preferable that it is obtained by entanglement treatment, and more preferably in the range of 0.5 to 1.0 cN / dtex. The value described here is a value obtained by dividing the tension by the total fineness before performing the entanglement process. In addition, although it is the entanglement process by the fluid from the perpendicular | vertical direction, it may incline in the range with the objective of this invention (for example, it may be an angle of about 80-100 degree with respect to a fiber bundle). By setting the tension at the time of performing the entanglement treatment to 0.3 cN / dtex or more, excessive entanglement can be prevented, so that the fiber opening property is in a good range. In addition, by setting the tension at the time of performing the entanglement treatment to 1.2 cN / dtex or less, moderate entanglement can be imparted, and fluffing at the time of carbonization and high-order processing is prevented, and good processability is ensured.
本発明で規定される、前記流体による交絡処理が0.1〜0.4MPaの範囲の圧力下で行うことが好ましく、0.1〜0.3MPaの範囲の圧力下で行うことがより好ましい。交絡処理を施す際の流体圧力を0.1MPa以上とすることによって、流体を付与したときに開繊性が良好で、交絡を容易に付与される。また交絡処理を施す際の流体圧力を0.4MPa以下とすることによって、炭素繊維前駆体繊維束を構成する単糸が損傷し毛羽が発生することを抑制することができる。 The entanglement treatment with the fluid defined in the present invention is preferably performed under a pressure in the range of 0.1 to 0.4 MPa, and more preferably performed under a pressure in the range of 0.1 to 0.3 MPa. By setting the fluid pressure at the time of performing the entanglement treatment to 0.1 MPa or more, the spreadability is good when the fluid is applied, and the entanglement is easily applied. Moreover, it can suppress that the single yarn which comprises a carbon fiber precursor fiber bundle is damaged, and a fluff generate | occur | produces by making the fluid pressure at the time of performing an entangling process into 0.4 Mpa or less.
前記交絡処理を施す工程は、実質的に延伸が終了している工程が好ましく、その間で有ればどの工程間でも良いが、炭素繊維前駆体繊維束に付着している水、油剤を脱落させないとの観点から乾燥熱処理工程以降が好ましい。 The step of performing the entanglement treatment is preferably a step in which stretching has been substantially completed, and any step may be used as long as it is between them, but water and oil adhering to the carbon fiber precursor fiber bundle are not dropped off. From the point of view, the drying heat treatment step and after are preferable.
前記交絡処理の流体は、液体、気体のいずれであるかを問わないが、液体は吹きつけ時に油剤の脱落を伴いやすいので気体が好ましい。さらに気体については安価な空気が好ましい。 The entanglement fluid may be either liquid or gas, but gas is preferable because the liquid is likely to drop off the oil when sprayed. Furthermore, cheap air is preferable for the gas.
前記交絡処理で使用する交絡ノズルの形状や、炭素繊維前駆体繊維束の垂直面における吹き付け方向は特に限定されないが、炭素繊維前駆体繊維束に均一な交絡を与えるために360度方向より、つまり全方位から均等に吹き付けることが好ましい。好ましい吹きつけノズルは、スリット上の吹きつけ部を有するものや、孔形状から吹き付けるものが挙げられ、3〜6個の範囲の孔が等角度で配されたノズルから気体を吹き付けるものが好ましい。また、前記交絡ノズルは複数設置されていても良いが、糸に撚りが入ると均一な交絡が付与されないので無撚りの状態を保つように吹き付けることが望ましい。 The shape of the entanglement nozzle used in the entanglement process and the spraying direction on the vertical surface of the carbon fiber precursor fiber bundle are not particularly limited, but in order to give uniform entanglement to the carbon fiber precursor fiber bundle, from the 360 degree direction, that is, It is preferable to spray evenly from all directions. Preferred examples of the blowing nozzle include those having a blowing portion on the slit and those that blow from a hole shape, and those that blow gas from nozzles in which 3 to 6 holes are arranged at an equal angle are preferable. Further, a plurality of the entanglement nozzles may be provided, but it is desirable to spray the yarn so as to maintain a non-twisted state because uniform entanglement is not provided when the yarn is twisted.
前記交絡処理を行う際、炭素繊維前駆体繊維束を構成する単糸の本数は、24000本以下が好ましく、より好ましくは12000本以下とすることが好ましい。炭素繊維前駆体繊維束を構成する単糸の本数を24000本以下とすることによって、繊維束内に交絡が施されない部分の形成を防ぎ、交絡形成を均一とすることができる。前記交絡処理を行った後に、2糸条以上の炭素繊維前駆体繊維束を合糸し、最終製品として必要なフィラメント数に調整することもできる。好ましくは、炭素繊維前駆体繊維束を構成する単糸の本数が6000本以下の繊維束で交絡処理して、12000以上、より好ましくは24000以上の炭素繊維前駆体繊維束に撚が入らないように合糸して一体化し、耐炎化処理することが好ましく、後延伸から巻取りまでの間で合糸して、炭素繊維前駆体繊維束として巻き取ることが好ましい。 When performing the entanglement treatment, the number of single yarns constituting the carbon fiber precursor fiber bundle is preferably 24,000 or less, more preferably 12000 or less. By setting the number of single yarns constituting the carbon fiber precursor fiber bundle to 24,000 or less, formation of a portion where no entanglement is performed in the fiber bundle can be prevented, and entanglement formation can be made uniform. After performing the entanglement treatment, carbon fiber precursor fiber bundles of two or more yarns can be combined and adjusted to the number of filaments necessary for the final product. Preferably, the carbon fiber precursor fiber bundle constituting the carbon fiber precursor fiber bundle is entangled with a fiber bundle having a number of single strands of 6000 or less so that the carbon fiber precursor fiber bundle having 12000 or more, more preferably 24000 or more is not twisted. It is preferable that the yarns are integrated with each other and subjected to a flameproofing treatment, and it is preferable that the yarns are combined between the post-drawing and winding to be wound up as a carbon fiber precursor fiber bundle.
次に、本発明で好適に用いることができるポリアクリロニトリル系共重合体について説明する。本発明においては、モノマーであるアクリロニトリルを、90重量%以上重合してなるポリアクリロニトリル系重合体が好ましい。なお、10重量%未満の割合であれば、他のモノマーが共重合されることが好ましい。共重合可能なモノマーとしては、耐炎化を促進する観点から、アクリル酸、メタアクリル酸、イタコン酸およびそれらのメチルエステル、プロピルエステル、ブチルエステル、アルカリ金属塩、アンモニウム塩、あるいはアリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸、およびそれらのアルカリ金属塩等を使用することができる。 Next, a polyacrylonitrile-based copolymer that can be suitably used in the present invention will be described. In the present invention, a polyacrylonitrile-based polymer obtained by polymerizing 90% by weight or more of acrylonitrile as a monomer is preferable. In addition, if it is a ratio of less than 10 weight%, it is preferable that another monomer is copolymerized. As the copolymerizable monomer, acrylic acid, methacrylic acid, itaconic acid and their methyl ester, propyl ester, butyl ester, alkali metal salt, ammonium salt, or allyl sulfonic acid, Ryl sulfonic acid, styrene sulfonic acid, and alkali metal salts thereof can be used.
前記ポリアクリロニトリル系重合体を得るには、乳化重合、塊状重合、溶液重合等を用いることができる。アクリロニトリルと共重合成分を均一に重合する目的からは、溶液重合を用いることが好ましい。 In order to obtain the polyacrylonitrile-based polymer, emulsion polymerization, bulk polymerization, solution polymerization and the like can be used. For the purpose of uniformly polymerizing acrylonitrile and the copolymer component, it is preferable to use solution polymerization.
得られた前記ポリアクリロニトリル系重合体を、ジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、硝酸、塩化亜鉛水溶液、ロダンソーダ水溶液等の溶媒に溶解してなる紡糸溶液とすることができる。中でも、アクリロニトリル重合体の溶解性の観点から、ジメチルスルホキシドを用いることが好ましい。紡糸溶液における重合体濃度は、10〜30重量%の範囲であることが好ましく、15〜25重量%の範囲であることがより好ましい。 The obtained polyacrylonitrile-based polymer can be made into a spinning solution obtained by dissolving in a solvent such as dimethyl sulfoxide, dimethylacetamide, dimethylformamide, nitric acid, zinc chloride aqueous solution, and rhodium soda aqueous solution. Among these, dimethyl sulfoxide is preferably used from the viewpoint of solubility of the acrylonitrile polymer. The polymer concentration in the spinning solution is preferably in the range of 10 to 30% by weight, and more preferably in the range of 15 to 25% by weight.
得られた前記紡糸溶液を、湿式紡糸法または乾湿式紡糸法により口金から凝固浴に吐出することができる。前記凝固浴の構成としては、前記紡糸溶液で溶媒として用いたジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、硝酸、塩化亜鉛水溶液、ロダンソーダ水溶液等の溶媒と、水、メタノール、エタノールおよびアセトン等のアクリル系重合体を溶解せず、かつ重合体溶媒と相溶性がある凝固促進成分の混合物とすることが好ましい。 The obtained spinning solution can be discharged from a die into a coagulation bath by a wet spinning method or a dry and wet spinning method. The composition of the coagulation bath includes a solvent such as dimethyl sulfoxide, dimethylacetamide, dimethylformamide, nitric acid, zinc chloride aqueous solution, and rhodium soda aqueous solution used as a solvent in the spinning solution, and an acrylic resin such as water, methanol, ethanol, and acetone. It is preferable to use a mixture of coagulation promoting components that do not dissolve the coalesced and is compatible with the polymer solvent.
前記凝固浴に吐出した炭素繊維前駆体繊維束は、水浴中で洗浄・延伸することができる。洗浄に先立って延伸を行っても良いし、溶媒を洗浄により除去した後に延伸を行っても良い。延伸は、通常30〜98℃の範囲の温度に温調された単一または複数の延伸浴中で行うことが好ましい。その時の延伸倍率は、1〜3倍の範囲が好ましい。 The carbon fiber precursor fiber bundle discharged to the coagulation bath can be washed and stretched in a water bath. Stretching may be performed prior to washing, or stretching may be performed after removing the solvent by washing. Stretching is preferably performed in a single or a plurality of stretching baths that are usually temperature-controlled at a temperature in the range of 30 to 98 ° C. The draw ratio at that time is preferably in the range of 1 to 3 times.
前記洗浄・延伸工程した炭素繊維前駆体繊維束は、構成する単糸同士の接着を防止する目的から、油剤を付与することが好ましい。前記油剤としては、シリコーン等からなる油剤を付与することが好ましい。シリコーン油剤は、耐熱性の高いアミノ変性シリコーン等の変性されたシリコーンを含有するものを用いると好ましく、その他にエポキシ変性シリコーンやアルキレンオキシド変性のシリコーンやその他の界面活性剤、添加剤等を含んでいることもより好ましい。 It is preferable to apply an oil agent to the carbon fiber precursor fiber bundle subjected to the washing / stretching process for the purpose of preventing adhesion between the constituting single yarns. As the oil agent, it is preferable to apply an oil agent made of silicone or the like. It is preferable to use a silicone oil that contains a modified silicone such as an amino-modified silicone with high heat resistance. In addition, an epoxy-modified silicone, an alkylene oxide-modified silicone, other surfactants, additives, and the like are included. It is also more preferable.
前記油剤を付与した炭素繊維前駆体繊維束は、70〜200℃の範囲で乾燥熱処理し、スチーム延伸することが好ましい。前記スチーム延伸倍率は、2〜10倍の範囲であることが好ましい。このようにして得られた炭素繊維前駆体繊維束を構成する単糸の繊度は、0.4〜1.2dtexの範囲であることが好ましく、より好ましくは0.5〜1.1dtexの範囲である。炭素繊維前駆体繊維束を構成する単糸の繊度を0.4dtex以上とすることで、炭素繊維前駆体繊維束の毛羽発生と生産性の低下を防ぐことができ、1.2dtex以下とすることによって、耐炎化後の繊維束を構成する単糸の内外構造差を均一に保ち、続く炭化工程でのプロセス性低下や、得られる炭素繊維束の引張強度および引張弾性率の低下を防ぐことが可能となる。 The carbon fiber precursor fiber bundle to which the oil agent is applied is preferably subjected to a dry heat treatment in the range of 70 to 200 ° C. and then subjected to steam stretching. The steam stretch ratio is preferably in the range of 2 to 10 times. The fineness of the single yarn constituting the carbon fiber precursor fiber bundle thus obtained is preferably in the range of 0.4 to 1.2 dtex, more preferably in the range of 0.5 to 1.1 dtex. is there. By setting the fineness of the single yarn constituting the carbon fiber precursor fiber bundle to 0.4 dtex or more, generation of fluff of the carbon fiber precursor fiber bundle and a decrease in productivity can be prevented, and 1.2 dtex or less. Keeps the difference in the inner and outer structures of the single yarns that make up the fiber bundle after flame resistance uniform, and prevents deterioration in processability in the subsequent carbonization process and reduction in tensile strength and tensile modulus of the resulting carbon fiber bundle. It becomes possible.
前記乾燥熱処理し、スチーム延伸して得られる炭素繊維前駆体繊維束を、酸化性雰囲気で耐炎化した後、不活性雰囲気中で最高温度が1200〜1700℃の範囲で、より好ましくは1300〜1700℃の範囲で炭化することで、本発明で規定される、交絡形態に制御された炭素繊維束が得られる。こうして得られた炭素繊維束は、高次加工性に優れつつも、好ましくは引張強度6.0GPa以上、弾性率300GPa以上の高い機械特性を発現する。なお、前記炭素繊維束に集束性を付与するために、サイジング処理を施すこともできる。サイジング剤には、複合材料に使用されるマトリックス樹脂の種類に応じて、マトリックス樹脂との相溶性の良いサイジング剤を適宜選択できる。 The carbon fiber precursor fiber bundle obtained by the above heat treatment and steam drawing is flame-resistant in an oxidizing atmosphere, and then the maximum temperature is in the range of 1200 to 1700 ° C. in an inert atmosphere, more preferably 1300 to 1700. By carbonizing in the range of ° C., a carbon fiber bundle defined in the present invention and controlled in an entangled form is obtained. The carbon fiber bundle obtained in this manner is excellent in high-order workability, but preferably exhibits high mechanical properties such as a tensile strength of 6.0 GPa or more and an elastic modulus of 300 GPa or more. In addition, a sizing treatment can be performed to impart convergence to the carbon fiber bundle. As the sizing agent, a sizing agent having good compatibility with the matrix resin can be appropriately selected according to the type of the matrix resin used in the composite material.
以下、実施例により本発明を説明する。本発明で用いる特性は、具体的に次のようにして測定する。 Hereinafter, the present invention will be described by way of examples. The characteristics used in the present invention are specifically measured as follows.
<真円度>
炭素繊維束をカミソリで繊維軸に垂直に切断し、光学顕微鏡を用いて単繊維の断面形状を観察した。測定倍率は、最も細い単繊維が1mm程度に観察されるよう倍率200〜400倍とした。得られた画像を画像解析することにより炭素繊維束を構成する単糸の断面積と周長を求め、その断面積から真円と仮定した時の単糸の断面の直径(繊維径)を0.1μm単位で計算して求め、下記式を用いて炭素繊維束を構成する単糸の真円度を求めた。真円度は無作為に選んだ10本の単糸の平均値を用いた。
真円度=4πS/L2(式中、Sは炭素繊維束を構成する単糸の断面積を表し、Lは単糸の周長を表す)。
<Roundness>
The carbon fiber bundle was cut with a razor perpendicular to the fiber axis, and the cross-sectional shape of the single fiber was observed using an optical microscope. The measurement magnification was 200 to 400 times so that the thinnest single fiber was observed at about 1 mm. By analyzing the obtained image, the cross-sectional area and circumference of the single yarn constituting the carbon fiber bundle are obtained, and the cross-sectional diameter (fiber diameter) of the single yarn when assuming a perfect circle from the cross-sectional area is 0. Calculated in units of 1 μm, and the roundness of the single yarn constituting the carbon fiber bundle was determined using the following formula. As the roundness, an average value of 10 single yarns selected at random was used.
Roundness = 4πS / L 2 (wherein S represents the cross-sectional area of the single yarn constituting the carbon fiber bundle, and L represents the circumference of the single yarn).
<表面積比>
炭素繊維束を構成する単糸を数本試料台にのせ、両端を接着液(例えば、文具の修正液)で固定したものをサンプルとし、原子間力顕微鏡(セイコーインスツルメンツ製、SPI3800N/SPA−400)を用い、下記条件にて3次元表面形状の像を得る。
・探針:シリコンカンチレバー(セイコーインスツルメンツ製、DF−20)
・測定モード:ダイナミックフォースモード(DFM)
・走査速度:1.5Hz
・走査範囲:3μm×3μm
・分解能:256ピクセル×256ピクセル
得られた測定画像は、繊維断面の曲率を考慮し、付属のソフトウエアにより、画像の全データから最小二乗法により1次平面を求めてフィッティングし、面内の傾きを補正する1次傾き補正を行い、続いて同様に2次曲線を補正する2次傾き補正を行った後、付属のソフトウエアにより表面粗さ解析を行い、平滑と仮定した表面に対する表面積比を算出した。測定は、異なる単糸5本をランダムにサンプリングし、単糸1本につき、各1回ずつ、計5回行い、その平均値を値とした。
<Surface area ratio>
An atomic force microscope (SPI3800N / SPA-400, manufactured by Seiko Instruments Inc.) was prepared by placing several single yarns constituting a carbon fiber bundle on a sample stage and fixing both ends with an adhesive liquid (for example, a stationery correction liquid). ) To obtain an image of a three-dimensional surface shape under the following conditions.
Probe: Silicon cantilever (Seiko Instruments, DF-20)
Measurement mode: Dynamic force mode (DFM)
・ Scanning speed: 1.5Hz
・ Scanning range: 3μm × 3μm
・ Resolution: 256 pixels x 256 pixels The obtained measurement image is fitted with a first-order plane obtained from the entire data of the image by the least square method using the attached software in consideration of the curvature of the fiber cross section. After performing the first-order inclination correction to correct the inclination, and then the second-order inclination correction to similarly correct the quadratic curve, the surface roughness analysis is performed by the attached software, and the surface area ratio to the surface assumed to be smooth Was calculated. The measurement was performed by sampling five different single yarns at random, and performing each measurement once for each single yarn for a total of 5 times, and taking the average value as a value.
<炭素繊維の引張強度、弾性率>
炭素繊維束の引張強度、弾性率はJIS R7601(2006)に従って求めた。3、4−エポキシシクロヘキシルメチル−3、4−エポキシ−シクロヘキサン−カルボキシレート(100質量部)/3フッ化ホウ素モノエチルアミン(3質量部)/アセトン(4質量部)を炭素繊維束に含浸させ、130℃で35分硬化させて作製した。また測定本数は5本とし、各測定結果の算術平均値を、その炭素繊維束の引張強度、弾性率とした。
<Tensile strength and elastic modulus of carbon fiber>
The tensile strength and elastic modulus of the carbon fiber bundle were determined according to JIS R7601 (2006). Carbon fiber bundles were impregnated with 3,4-epoxycyclohexylmethyl-3,4-epoxy-cyclohexane-carboxylate (100 parts by mass) / 3 boron fluoride monoethylamine (3 parts by mass) / acetone (4 parts by mass), It was prepared by curing at 130 ° C. for 35 minutes. The number of measurement was set to five, and the arithmetic average value of each measurement result was taken as the tensile strength and elastic modulus of the carbon fiber bundle.
<交絡状態>
図1の概略図を示す測定装置を用いて、下記条件で張力差Gを測定した。
・ピン体直径:2mm
・糸速:5m/分±0.5m/分
・測定長:500mm
・初期張力:5N±1N
測定を10回行った中での最大値をGmaxとし、炭素繊維束の厚みで除してGmax/aを求めた。
図2に代表的な測定結果例を示す。
<Confounding state>
The tension difference G was measured under the following conditions using a measuring apparatus showing a schematic diagram of FIG.
・ Pin body diameter: 2mm
・ Thread speed: 5m / min ± 0.5m / min ・ Measurement length: 500mm
・ Initial tension: 5N ± 1N
Gmax / a was determined by dividing the maximum value of Gmax by 10 times during the measurement and dividing by the thickness of the carbon fiber bundle.
FIG. 2 shows a typical measurement result example.
炭素繊維束の厚みa(mm)はネジマイクロメータによって0.01mmの単位で測定し、10回の平均値として求めた。 The thickness a (mm) of the carbon fiber bundle was measured in 0.01 mm units with a screw micrometer, and obtained as an average value of 10 times.
<フックドロップ法における繊維交絡値(CF値)>
JIS−L1013(2010)「化学繊維フィラメント糸試験方法」の交絡度測定方法に準じて測定した。炭素繊維束試料の下方の位置に荷重100gを吊り下げ、荷重10gのフックを挿入し、その降下距離を50回測定し、その算術平均値より下記式で求めた。
CF値=1000/フック降下距離の50回算術平均値(mm)。
<Fiber entanglement value (CF value) in hook drop method>
It measured according to the entanglement degree measuring method of JIS-L1013 (2010) "Chemical fiber filament yarn test method". A load of 100 g was hung at a position below the carbon fiber bundle sample, a hook with a load of 10 g was inserted, the descent distance was measured 50 times, and the following formula was obtained from the arithmetic average value.
CF value = 1000/50 arithmetic average values of hook descent distance (mm).
<毛羽数>
サイジング剤を付着させた炭素繊維束を、第1〜第4の4個のステンレス製クロムメッキ鏡面ガイド(直径:9.5mm)に接触角がそれぞれ57±3度になるように順次通し、室温(23℃)下に3m/分の速度でガイド表面と擦過させた。このとき、第1のガイドに導かれる炭素繊維束の張力が5Nとなるように調整した。そして、第4のガイドから導き出された炭素繊維束の毛羽数を、東レエンジニアリング(株)製毛羽計数装置DT−105(S特)を用いて測定した。毛羽数は、3以下で有れば良好な高次加工性を与えることができる。
<Number of fuzz>
The carbon fiber bundle with the sizing agent attached is sequentially passed through the first to fourth stainless steel chrome-plated mirror surface guides (diameter: 9.5 mm) so that the contact angles are 57 ± 3 degrees, respectively. The guide surface was rubbed at a speed of 3 m / min under (23 ° C.). At this time, the tension of the carbon fiber bundle guided to the first guide was adjusted to be 5N. And the number of fluff of the carbon fiber bundle derived from the 4th guide was measured using Toray Engineering Co., Ltd. fluff counter DT-105 (S special). If the number of fluff is 3 or less, good high-order processability can be provided.
<拡がり性>
炭素繊維束の拡がり性は、次のようにして測定した。直径が50mm、表面粗さRmaxが3μmの表面にクロムメッキが施された金属円筒を表面温度80℃に加熱し、150mm間隔で5本、かつ炭素繊維束が金属円筒に合計で540°の接触角で接触しながら通過するよう上下方向に交互に配置する。そして、金属円筒に炭素繊維束を順次掛け渡し、1.2Nの張力下に6m/分の速度で通過させ、最終段の金属円筒上での炭素繊維束の幅を定規により0.5mm単位で30点測定し、その単純平均値をもって拡がり性とする。
<Spreadability>
The spreadability of the carbon fiber bundle was measured as follows. A metal cylinder having a diameter of 50 mm and a surface roughness Rmax of 3 μm and having a chromium plating applied is heated to a surface temperature of 80 ° C., and 5 carbon fibers are in contact with the metal cylinder at a distance of 150 mm and a total of 540 ° contacts. It arranges alternately in the up-down direction so that it may pass while contacting at the corner. Then, the carbon fiber bundles are sequentially passed over the metal cylinder and passed at a speed of 6 m / min under a tension of 1.2 N, and the width of the carbon fiber bundle on the metal cylinder at the final stage is measured in units of 0.5 mm by a ruler. 30 points are measured, and the simple average value is defined as spreadability.
<プリプレグ加工性>
得られた炭素繊維束を用いて、ホットメルトタイプのプリプレグ装置(製品幅1m)によって、面積50m2のプリプレグ加工を行ったときのプリプレグ加工性を評価した。評価に用いた樹脂は130℃キュアタイプエポキシ樹脂で、対応する繊維目付によって、樹脂含有率が32%となるように樹脂目付を調整し、上下から樹脂フィルムを供給して、速度10m/分でプリプレグ化した。その際、繊維目付を20g/m2単位で変更して、毛羽などの欠点が発生しない範囲で温度、圧力を調整し、製品に炭素繊維束引き揃え方向に長さ250mm以上、幅1mm以上の糸割れが生じない最小の目付と、そのときの官能検査によって毛羽品位を評価した。毛羽の長径10mm以上のものを毛羽欠点とし、50m2当たり2個以下を○、3〜4個を△、5個以上を×とした。
<Prepreg processability>
Using the obtained carbon fiber bundles, the prepreg processability when a prepreg process with an area of 50 m 2 was performed by a hot melt type prepreg apparatus (product width: 1 m) was evaluated. The resin used for the evaluation was a 130 ° C. cure type epoxy resin, the resin basis weight was adjusted to 32% according to the corresponding fiber basis weight, and the resin film was supplied from above and below at a speed of 10 m / min. Pre-preg. At that time, the fiber basis weight is changed in units of 20 g / m 2 , the temperature and pressure are adjusted within a range in which defects such as fluff do not occur, and the product has a length of 250 mm or more and a width of 1 mm or more in the direction of assembling the carbon fiber bundle. The fluff quality was evaluated by the minimum basis weight at which no yarn breakage occurred and the sensory test at that time. A fluff having a major axis of 10 mm or more was regarded as a fuzz defect, and 2 or less per 50 m 2 was marked with ◯, 3 to 4 were marked with Δ, and 5 or more were marked with ×.
[実施例1]
アクリロニトリル95重量部、アクリル酸メチル4重量部、イタコン酸1重量部を共重合したポリアクリロニトリル系重合体組成物を重合体濃度が20重量%になるようにジメチルスルホキシドに溶解してなる40℃の紡糸溶液を、乾湿式紡糸法により口金から一旦5mmエアギャップを走行させ、35重量%ジメチルスルホキシド水溶液からなる20℃の凝固浴に吐出した後、水浴中で水洗し、65℃の水浴中2倍に延伸し、アミノ変性シリコーン系油剤を主成分とする混合油剤を付与した後に180℃の温度に加熱したローラを用いて乾燥熱処理し、0.5MPaの加圧水蒸気中で5倍のスチーム延伸をして、構成する単糸の繊度が0.7dtexの炭素繊維前駆体繊維束を、ロール間で1.0cN/dtexの張力緊張下に支えられた状態で、0.3MPaの圧力下で、炭素繊維前駆体繊維束を構成する単糸12000本に、該繊維束の垂直方向から6つの小孔を通して、空気による交絡処理を施した。
[Example 1]
A polyacrylonitrile polymer composition obtained by copolymerizing 95 parts by weight of acrylonitrile, 4 parts by weight of methyl acrylate, and 1 part by weight of itaconic acid is dissolved in dimethyl sulfoxide so that the polymer concentration becomes 20% by weight. The spinning solution was once run through a 5 mm air gap from the die by a dry and wet spinning method, discharged into a 20 ° C. coagulation bath made of 35% by weight dimethyl sulfoxide aqueous solution, then washed in a water bath and doubled in a 65 ° C. water bath. Then, after applying a mixed oil mainly composed of an amino-modified silicone-based oil, it was subjected to a dry heat treatment using a roller heated to a temperature of 180 ° C., and subjected to 5 times steam stretching in 0.5 MPa pressurized steam. The carbon fiber precursor fiber bundle having a fineness of the single yarn constituting 0.7 dtex was supported under a tension of 1.0 cN / dtex between the rolls. In state, under a pressure of 0.3 MPa, the single yarns 12000 constituting the carbon fiber precursor fiber bundle, through six small holes in the vertical direction of the fiber bundle was subjected to entangling treatment by air.
この炭素繊維前駆体繊維束を、酸化性雰囲気で耐炎化した後、不活性雰囲気1500℃中で炭化することによって炭素繊維束を得た。得られた炭素繊維束を構成する単糸の真円度は0.91、表面積比は1.03であり、得られた炭素繊維束のCF値は15であった。得られた炭素繊維束は、毛羽数・拡がり性共に優れた結果となった。また、得られた炭素繊維束の引張強度は6.1GPa、弾性率は320GPaであった。 The carbon fiber precursor fiber bundle was made flame resistant in an oxidizing atmosphere and then carbonized in an inert atmosphere at 1500 ° C. to obtain a carbon fiber bundle. The roundness of the single yarn constituting the obtained carbon fiber bundle was 0.91, the surface area ratio was 1.03, and the CF value of the obtained carbon fiber bundle was 15. The obtained carbon fiber bundle was excellent in both the number of fluff and spreadability. Moreover, the tensile strength of the obtained carbon fiber bundle was 6.1 GPa, and the elastic modulus was 320 GPa.
[実施例2]
交絡処理を施す際の圧力を0.4MPaに変更した以外は、実施例1と同様にして炭素繊維束を得た。得られた炭素繊維束は、毛羽数・拡がり性共に優れ、プリプレグ加工性も良好であった。
[Example 2]
A carbon fiber bundle was obtained in the same manner as in Example 1 except that the pressure during the entanglement treatment was changed to 0.4 MPa. The obtained carbon fiber bundle was excellent in both the number of fluffs and spreadability, and the prepreg processability was also good.
[実施例3]
交絡処理を施す際の張力を0.5cN/dtexに変更した以外は、実施例1と同様にして炭素繊維束を得た。得られた炭素繊維束は、毛羽数・拡がり性共に優れ、プリプレグ加工性も良好であった。
[Example 3]
A carbon fiber bundle was obtained in the same manner as in Example 1 except that the tension during the entanglement treatment was changed to 0.5 cN / dtex. The obtained carbon fiber bundle was excellent in both the number of fluffs and spreadability, and the prepreg processability was also good.
[実施例4]
凝固浴のジメチルスルホキシド水溶液を70重量%に変更した以外は、実施例1と同様にして炭素繊維束を得た。得られた炭素繊維束を構成する単糸の真円度は0.85、表面積比は1.04であった。得られた炭素繊維束は、実施例1に比べ、毛羽数が悪化する結果となったが、プリプレグ加工性は実用上許容できるレベルであった。また、得られた炭素繊維束の引張強度は6.0GPa、弾性率は310GPaであった。
[Example 4]
A carbon fiber bundle was obtained in the same manner as in Example 1 except that the aqueous dimethylsulfoxide solution in the coagulation bath was changed to 70% by weight. The single yarn constituting the obtained carbon fiber bundle had a roundness of 0.85 and a surface area ratio of 1.04. The obtained carbon fiber bundle resulted in the number of fluffs being worse than that in Example 1, but the prepreg processability was at a practically acceptable level. Moreover, the tensile strength of the obtained carbon fiber bundle was 6.0 GPa, and the elastic modulus was 310 GPa.
[実施例5]
凝固浴のジメチルスルホキシド水溶液を79重量%に変更した以外は、実施例1と同様にして炭素繊維束を得た。得られた炭素繊維束を構成する単糸の真円度は0.90、表面積比は1.07であった。得られた炭素繊維束は、実施例1に比べ、毛羽数が悪化する結果となったが、プリプレグ加工性は実用上許容できるレベルであった。また、得られた炭素繊維束の引張強度は6.2GPa、弾性率は310GPaであった。
[Example 5]
A carbon fiber bundle was obtained in the same manner as in Example 1 except that the aqueous dimethylsulfoxide solution in the coagulation bath was changed to 79% by weight. The single yarn constituting the obtained carbon fiber bundle had a roundness of 0.90 and a surface area ratio of 1.07. The obtained carbon fiber bundle resulted in the number of fluffs being worse than that in Example 1, but the prepreg processability was at a practically acceptable level. Moreover, the tensile strength of the obtained carbon fiber bundle was 6.2 GPa, and the elastic modulus was 310 GPa.
[実施例6]
交絡処理を施す際の張力を0.5cN/dtexに変更した以外は、実施例5と同様にして炭素繊維束を得た。得られた炭素繊維束は、実施例3および実施例5と比べ、拡がり性が悪化する結果となったが実用上許容できるレベルであった。
[Example 6]
A carbon fiber bundle was obtained in the same manner as in Example 5 except that the tension during the entanglement treatment was changed to 0.5 cN / dtex. Although the obtained carbon fiber bundle resulted in deterioration of the spreadability as compared with Example 3 and Example 5, it was a practically acceptable level.
[比較例1]
湿式紡糸法に変更し、凝固浴のジメチルスルホキシド水溶液を60重量%に変更した以外は、実施例1と同様にして炭素繊維束を得た。得られた炭素繊維束を構成する単糸の真円度は0.78、表面積比は1.14であった。得られた炭素繊維束は、実施例1に比べ、毛羽数・拡がり性共に大幅に悪化する結果となった。また、得られた炭素繊維束の引張強度は5.9GPa、弾性率は315GPaであった。
[Comparative Example 1]
A carbon fiber bundle was obtained in the same manner as in Example 1 except that the wet spinning method was changed and the dimethyl sulfoxide aqueous solution in the coagulation bath was changed to 60% by weight. The roundness of the single yarn constituting the obtained carbon fiber bundle was 0.78, and the surface area ratio was 1.14. The obtained carbon fiber bundle had a result that the number of fluff and spreadability were significantly deteriorated as compared with Example 1. Moreover, the tensile strength of the obtained carbon fiber bundle was 5.9 GPa, and the elastic modulus was 315 GPa.
[比較例2]
交絡処理を施す際の張力を0.1cN/dtexに変更した以外は、実施例5と同様にして炭素繊維束を得た。得られた炭素繊維束は、実施例5に比べ、毛羽数・拡がり性共に悪化する結果となった。
[Comparative Example 2]
A carbon fiber bundle was obtained in the same manner as in Example 5 except that the tension during the entanglement treatment was changed to 0.1 cN / dtex. The obtained carbon fiber bundle resulted in deterioration in both the number of fluff and spreadability as compared with Example 5.
[比較例3]
交絡処理を施す際の張力を0.1cN/dtexに変更した以外は、実施例1と同様にして炭素繊維束を得た。得られた炭素繊維束は、実施例1に比べ、毛羽数・拡がり性共に悪化する結果となった。
[Comparative Example 3]
A carbon fiber bundle was obtained in the same manner as in Example 1 except that the tension during the entanglement treatment was changed to 0.1 cN / dtex. The obtained carbon fiber bundle resulted in deterioration in both the number of fluff and spreadability as compared with Example 1.
[比較例4]
交絡処理を施す際の張力を1.6cN/dtexに変更した以外は、実施例1と同様にして炭素繊維束を得た。得られた炭素繊維束は、実施例1に比べ、毛羽数が大幅に悪化する結果となった。
[Comparative Example 4]
A carbon fiber bundle was obtained in the same manner as in Example 1 except that the tension during the entanglement treatment was changed to 1.6 cN / dtex. The obtained carbon fiber bundle had a result that the number of fluffs was significantly deteriorated as compared with Example 1.
[比較例5]
交絡処理を施す際の圧力を0.05MPaに変更した以外は、実施例1と同様にして炭素繊維束を得た。得られた炭素繊維束は、実施例1に比べ、毛羽数が大幅に悪化する結果となった。
[Comparative Example 5]
A carbon fiber bundle was obtained in the same manner as in Example 1 except that the pressure during the entanglement treatment was changed to 0.05 MPa. The obtained carbon fiber bundle had a result that the number of fluffs was significantly deteriorated as compared with Example 1.
[比較例6]
交絡処理を施す際の空気の方向を、炭素繊維前駆体繊維束の垂直方向に対して30度進行方向に傾けた方向に変更した以外は、実施例1と同様にして炭素繊維束を得た。得られた炭素繊維束のCF値は17と、実施例1と同等の値であった。しかし得られた炭素繊維束は、実施例1に比べ、毛羽数、拡がり性共に悪化する結果となった。
[Comparative Example 6]
A carbon fiber bundle was obtained in the same manner as in Example 1 except that the direction of air when performing the entanglement treatment was changed to a direction inclined in the traveling direction by 30 degrees with respect to the vertical direction of the carbon fiber precursor fiber bundle. . The CF value of the obtained carbon fiber bundle was 17, which was the same value as in Example 1. However, the obtained carbon fiber bundle resulted in deterioration in both the number of fluff and spreadability as compared with Example 1.
1 炭素繊維束
2 案内手段
3 張力検出手段
4 回収手段
5 ピン体抜き差し手段
6 ピン体
DESCRIPTION OF
Claims (5)
8≦Gmax/a≦50 (式1) Guide means for causing the carbon fiber bundle to travel along a predetermined path, collection means for recovering the carbon fiber bundle at the end portion of the path, and a pin body that is disposed in the path and inserts and removes the pin body into the traveling carbon fiber bundle Measured by using an apparatus having tension detecting means for detecting tension acting on a carbon fiber bundle on the entry side of the pin body and the exit side of the pin body, and the exit side of the pin body and the pin body The maximum value Gmax (N) of the difference in tension on the entry side of the pin body and the thickness a (mm) of the carbon fiber bundle are in the relationship of (Equation 1) below, and the roundness of the single yarn to be configured is A carbon fiber bundle having a range of 0.80 to 0.99 and a surface area ratio of 1.00 to 1.10.
8 ≦ Gmax / a ≦ 50 (Formula 1)
10≦Gmax/a≦40 (式2) A carbon fiber having a roundness of 0.90 to 0.99, a surface area ratio of 1.00 to 1.05, a tensile strength of 6.0 GPa or more, and an elastic modulus of 300 GPa or more. The maximum value Gmax (N) of the difference in tension between the exit side of the pin body and the entrance side of the pin body and the thickness a (mm) of the carbon fiber bundle are in the relationship of the following (formula 2): The carbon fiber bundle according to claim 1, wherein
10 ≦ Gmax / a ≦ 40 (Formula 2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013011878A JP2014141760A (en) | 2013-01-25 | 2013-01-25 | Carbon fiber bundle and production method of the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013011878A JP2014141760A (en) | 2013-01-25 | 2013-01-25 | Carbon fiber bundle and production method of the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014141760A true JP2014141760A (en) | 2014-08-07 |
Family
ID=51423274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013011878A Pending JP2014141760A (en) | 2013-01-25 | 2013-01-25 | Carbon fiber bundle and production method of the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014141760A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017160563A (en) * | 2016-03-10 | 2017-09-14 | 東レ株式会社 | Precursor fiber bundle for carbon fiber, manufacturing method therefor and manufacturing method of carbon fiber |
WO2020071445A1 (en) | 2018-10-05 | 2020-04-09 | 帝人株式会社 | Precursor fiber bundle production method, carbon fiber bundle production method, and carbon fiber bundle |
-
2013
- 2013-01-25 JP JP2013011878A patent/JP2014141760A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017160563A (en) * | 2016-03-10 | 2017-09-14 | 東レ株式会社 | Precursor fiber bundle for carbon fiber, manufacturing method therefor and manufacturing method of carbon fiber |
WO2020071445A1 (en) | 2018-10-05 | 2020-04-09 | 帝人株式会社 | Precursor fiber bundle production method, carbon fiber bundle production method, and carbon fiber bundle |
JP2020059937A (en) * | 2018-10-05 | 2020-04-16 | 帝人株式会社 | Method for producing precursor fiber bundle, method for producing carbon fiber bundle, and carbon fiber bundle |
CN112840066A (en) * | 2018-10-05 | 2021-05-25 | 帝人株式会社 | Method for producing precursor fiber bundle, method for producing carbon fiber bundle, and carbon fiber bundle |
JP7341648B2 (en) | 2018-10-05 | 2023-09-11 | 帝人株式会社 | Precursor fiber bundle manufacturing method, carbon fiber bundle manufacturing method, and carbon fiber bundle |
CN112840066B (en) * | 2018-10-05 | 2024-05-24 | 帝人株式会社 | Method for producing precursor fiber bundle, method for producing carbon fiber bundle, and carbon fiber bundle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5772012B2 (en) | Carbon fiber for filament winding molding and method for producing the same | |
JP6020201B2 (en) | Carbon fiber bundle and method for producing the same | |
US20100252439A1 (en) | Carbon fiber strand and process for producing the same | |
KR102194940B1 (en) | Carbon fiber bundle and its manufacturing method | |
JP2015067910A (en) | Carbon fiber and manufacturing method thereof | |
JP5708896B1 (en) | Carbon fiber bundle and flameproof fiber bundle | |
JP6520767B2 (en) | Precursor fiber bundle for carbon fiber, method for producing the same, and method for producing carbon fiber | |
US20210115597A1 (en) | Carbon fiber and method of producing same | |
JP5741815B2 (en) | Carbon fiber precursor acrylic fiber bundle and carbon fiber bundle | |
US10464776B2 (en) | Method for manufacturing combined yarn bundle, and method for manufacturing carbon fiber in which resulting combined yarn bundle is used (as amended) | |
JP2014141760A (en) | Carbon fiber bundle and production method of the same | |
TW202117127A (en) | Carbon fiber manufacturing method and carbon fiber using the same | |
JP6295874B2 (en) | Carbon fiber bundle | |
TWI830787B (en) | Precursor fiber bundle manufacturing method and carbon fiber bundle manufacturing method and carbon fiber bundle | |
JP2019151956A (en) | Carbon fiber bundle, carbon fiber and manufacturing method of carbon fiber bundle | |
JP2008240203A (en) | Steam drawing apparatus and method for producing precursor yarn for carbon fiber | |
WO2023140212A1 (en) | Carbon fiber bundle | |
JP2023133739A (en) | carbon fiber bundle | |
JP6547924B1 (en) | Method of manufacturing flameproofed fiber bundle and carbon fiber bundle | |
WO2023090310A1 (en) | Carbon fiber bundle and production method therefor | |
JP2023037536A (en) | Sizing agent-attached fiber bundle and method for producing the same | |
JP2018095992A (en) | Process for manufacturing carbon fiber precursor fiber and process for manufacturing carbon fiber | |
JP2017133123A (en) | Carbon fiber and method for producing the same |