JP2014141696A - Method of determining necessity of modification of operation conditions during converter blowing - Google Patents

Method of determining necessity of modification of operation conditions during converter blowing Download PDF

Info

Publication number
JP2014141696A
JP2014141696A JP2013009349A JP2013009349A JP2014141696A JP 2014141696 A JP2014141696 A JP 2014141696A JP 2013009349 A JP2013009349 A JP 2013009349A JP 2013009349 A JP2013009349 A JP 2013009349A JP 2014141696 A JP2014141696 A JP 2014141696A
Authority
JP
Japan
Prior art keywords
blowing
exhaust gas
during
flow rate
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013009349A
Other languages
Japanese (ja)
Other versions
JP6000138B2 (en
Inventor
Takashi Abiko
貴 安孫子
Sei Kimura
世意 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013009349A priority Critical patent/JP6000138B2/en
Publication of JP2014141696A publication Critical patent/JP2014141696A/en
Application granted granted Critical
Publication of JP6000138B2 publication Critical patent/JP6000138B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of determining, reliably with better accuracy, necessity of modification of operation conditions by evaluating the state of the inside of the furnace, early by simple means, during converter blowing.SOLUTION: A method of determining the necessity of modification of operation conditions during converter blowing comprises counting the number Cf of occurrence times of the state in which the instantaneous value of the exhaust gas flow rate time change rate 'a', calculated by equation (1) every specified time in a specified period after desiliconization, deviates out of an acceptable range Bf and comparing the Cf with a threshold value Ccrit to determine the necessity of modification of operation conditions during the blowing operation. Bf and Ccrit are determined preliminarily from cases which are determined not to require modification of operation conditions during a blowing operation, according to the correlation between 'a' calculated by the equation (1) in a specified period after desiliconization and blowing indices during the blowing operation, on the basis of operation data of a plurality of the same-type blowing operations conducted in past. Equation (1): 'a'={Q(t+Δt)-Q(t)}/Δt, where Q is a flow rate of exhaust gas; t is a time; and Δt is a time interval.

Description

本発明は、転炉を用いた吹錬操業において、吹錬初期に炉内の反応進行状況を評価し、当該吹錬操業中に操業条件を変更する必要があるか否かを判定する方法に関する。   The present invention relates to a method for evaluating whether or not it is necessary to change the operating conditions during the blowing operation by evaluating the reaction progress in the furnace in the initial stage of blowing in the blowing operation using a converter. .

転炉を用いた吹錬にて、目標とする品質(例えばP濃度)の溶鋼を得るためには、吹錬条件を適正に制御する必要がある。しかし、吹錬開始時に鋼種や溶銑条件で決定されるスタティックな操業条件によっては、目標とする品質(例えばP濃度)が得られないと見込まれる場合や、炉内反応状況が思わしくない(例えばスロッピングの発生の可能性が高い)場合がある。このような場合、吹錬中に操業条件の変更(修正)のダイナミックコントロールを行うことで、品質の安定化や吹錬の安定化を図る必要がある。   In order to obtain molten steel with a target quality (for example, P concentration) by blowing using a converter, it is necessary to appropriately control the blowing conditions. However, depending on the static operating conditions determined by the steel type and hot metal conditions at the start of blowing, the target quality (for example, P concentration) is not expected to be obtained, or the reaction state in the furnace is unpredictable (for example, the There is a possibility of occurrence of lapping). In such a case, it is necessary to stabilize quality and to stabilize blowing by performing dynamic control of changing (correcting) operating conditions during blowing.

このため、吹錬中に炉内状況を評価する方法や、その評価に基づいて吹錬条件を制御する方法として、過去に多くの提案がなされている。例えば、吹錬中の排ガス組成および流量を連続的に測定し、マスバランス計算により、スラグ中の酸素ポテンシャルや蓄積酸素量等を計算し、それに基づいて吹練条件を設定し直す方法(例えば、特許文献1、2参照)、排ガス流量の波形状態を用いてニューラルネットワークや知識処理によりスロッピング発生を予測する方法(例えば、特許文献3、4参照)、排ガス流量の測定に音響センサーや炉圧センサーを組み合わせてスロッピングの発生を予知する方法(例えば、特許文献5参照)などが提案されている。   For this reason, many proposals have been made in the past as a method for evaluating the in-furnace condition during blowing and a method for controlling the blowing conditions based on the evaluation. For example, a method of continuously measuring the exhaust gas composition and flow rate during blowing, calculating the oxygen potential in the slag, the amount of accumulated oxygen, etc. by mass balance calculation, and resetting the blowing conditions based on it (for example, Patent Documents 1 and 2), a method of predicting the occurrence of slipping by a neural network or knowledge processing using the waveform state of the exhaust gas flow rate (see, for example, Patent Documents 3 and 4), an acoustic sensor or furnace pressure for measuring the exhaust gas flow rate A method of predicting the occurrence of slopping by combining sensors (for example, see Patent Document 5) has been proposed.

しかしながら、特許文献1、2に記載された方法は、排ガス組成を精度良く測定するために高価なガス分析機器を必要とするうえ、そのメンテナンスの負荷も大きく、特許文献3、4に記載された方法は、データ処理に煩雑なプロセスを経る必要があり、特許文献5に記載された方法は、音響センサーや炉圧センサーのメンテナンスの負荷が大きく、いずれの方法にも実用性に問題がある。つまり、過去に提案された方法で、実操業で実用化されたものはほとんど存在しないのが実情であった。   However, the methods described in Patent Documents 1 and 2 require expensive gas analyzers to accurately measure the exhaust gas composition, and the maintenance load is large. The method needs to go through complicated processes for data processing, and the method described in Patent Document 5 has a large maintenance load on the acoustic sensor and the furnace pressure sensor, and both methods have problems in practicality. In other words, the actual situation is that there are almost no methods proposed in the past that have been put into practical use.

特開2006−206930号公報JP 2006-206930 A 特開2001−279317号公報JP 2001-279317 A 特開2000−144229号公報JP 2000-144229 A 特開平5−222430号公報JP-A-5-222430 特開平6−279827号公報JP-A-6-279827

そこで本発明の目的は、転炉の吹錬操業において、簡便な手段にて、早期に炉内反応状況を評価し、当該吹錬中に操業条件を変更する必要があるか否かをより精度良く確実に判定しうる方法を提供することにある。   Therefore, an object of the present invention is to more accurately determine whether or not it is necessary to evaluate the reaction state in the furnace at an early stage by simple means and to change the operating conditions during the blowing in the converter blowing operation. It is to provide a method capable of making a good and reliable determination.

請求項1に記載の発明は、
転炉を用いた脱りん吹錬操業または脱りん脱炭吹錬操業において、脱珪後所定期間の吹錬初期における排ガス流量の変動により炉内反応進行状況を評価し、当該吹錬操業中に操業条件を変更する必要があるか否かを判定する方法であって、
前記脱珪後所定期間にて、一定時間ごとに下記式(1)で定義される排ガス流量時間変化度aを算出し、この排ガス流量時間変化度aの瞬間値が許容範囲Bfを外れる回数Cfをカウントし、
この回数Cfをしきい値Ccritと比較し、当該吹錬操業中に操業条件を変更する必要があるか否かを判定するものであり、
前記脱珪後所定期間は、脱珪期終了時点から全送酸量の1/4以下の所定の送酸量の時点までの期間であり、
前記許容範囲Bfおよび前記しきい値Ccritは、あらかじめ、前記と同種の過去に行われた複数の吹錬操業の操業データに基づき、前記脱珪後所定期間にて算出された、下記式(1)で定義される排ガス流量時間変化度aと、当該吹錬操業における吹錬指標との相関関係より、当該吹錬操業中に操業条件を変更する必要のないものから定められたものである、
転炉吹錬中における操業条件の変更要否の判定方法である。
a={Q(t+Δt)−Q(t)}/Δt ・・・式(1)
ここに、Q:排ガス流量、t:時間、Δt:時間間隔である。
The invention described in claim 1
In the dephosphorization blown operation or dephosphorization decarburization blown operation using a converter, the progress of the reaction in the furnace is evaluated by the fluctuation of the exhaust gas flow rate at the initial stage of the blown operation after the desiliconization, and during the blown operation A method for determining whether or not it is necessary to change operating conditions,
The exhaust gas flow rate time variation a defined by the following formula (1) is calculated at regular intervals during the predetermined period after the silicon removal, and the number of times Cf that the instantaneous value of the exhaust gas flow time variation a deviates from the allowable range Bf. Count
The number of times Cf is compared with a threshold Ccrit to determine whether or not the operation conditions need to be changed during the blowing operation.
The predetermined period after desiliconization is a period from the end of the desiliconization period to the time of a predetermined amount of acid sent that is 1/4 or less of the total amount of acid sent.
The allowable range Bf and the threshold value Ccrit are calculated in advance in the predetermined period after desiliconization based on operation data of a plurality of blowing operations performed in the past of the same type as the above (1 From the correlation between the exhaust gas flow rate time change degree a defined in) and the blowing index in the blowing operation, it is determined from those that do not require changing the operating conditions during the blowing operation.
This is a method for determining whether or not the operating conditions need to be changed during converter blowing.
a = {Q (t + Δt) −Q (t)} / Δt (1)
Here, Q: exhaust gas flow rate, t: time, Δt: time interval.

請求項2に記載の発明は、
前記のしきい値Ccritとの比較は、前記回数Cfが、当該回数Cfと前記しきい値Ccritとの大小関係を規定する条件式を満足する場合には、当該吹錬操業中に操業条件を変更する必要がないと判定する一方、前記回数Cfが前記条件式を満足しない場合には、当該吹錬操業中に操業条件を変更する必要があると判定するものである、請求項1に記載の転炉吹錬中における操業条件の変更要否の判定方法である。
The invention described in claim 2
In comparison with the threshold value Ccrit, when the number of times Cf satisfies the conditional expression that defines the magnitude relationship between the number of times Cf and the threshold value Ccrit, the operation condition is determined during the blowing operation. 2. While determining that there is no need to change, when the number of times Cf does not satisfy the conditional expression, it is determined that the operation condition needs to be changed during the blowing operation. This is a method for determining whether or not to change the operating conditions during the converter blowing.

請求項3に記載の発明は、
前記吹錬指標が、
吹錬後のりん濃度、吹錬前後での脱りん率および吹錬中におけるスロッピングの発生状況からなる群より選ばれた1種または2種以上である、
請求項1または2に記載の転炉吹錬中における操業条件の変更要否の判定方法である。
The invention according to claim 3
The blowing index is
It is one or more selected from the group consisting of phosphorus concentration after blowing, dephosphorization rate before and after blowing and occurrence of slopping during blowing.
It is a determination method of the necessity of change of the operating conditions during the converter blowing process of Claim 1 or 2.

本発明によれば、転炉での吹錬初期における反応進行状況を、既存の排ガス流量計で測定される排ガス流量のデータのみを用いて簡易に把握できるので、簡便な手段にて、早期に炉内反応状況を評価し、当該吹錬中における操業条件の変更の要否をより精度良く確実に判定できるようになった。その結果、吹錬中におけるスロッピングの発生などの重大トラブルを回避しつつ、目標品質の溶鋼がより安定して得られるようになった。   According to the present invention, since the progress of the reaction in the initial stage of blowing in the converter can be easily grasped using only the data of the exhaust gas flow rate measured by the existing exhaust gas flow meter, the simple means can be used at an early stage. The reaction status in the furnace was evaluated, and it became possible to determine more accurately and reliably whether or not the operating conditions need to be changed during the blowing. As a result, molten steel with the target quality can be obtained more stably while avoiding serious troubles such as occurrence of slopping during blowing.

排ガス流量時間変化度aの時間変動を模式的に示す推移グラフ図である。It is a transition graph which shows typically the time variation of exhaust gas flow rate time variation degree a. 非吹錬時におけるaの振れ幅(最大値と最小値との差)に及ぼすΔtの影響を示すグラフ図である。It is a graph which shows the influence of (DELTA) t which has on the runout width (difference between the maximum value and the minimum value) of a at the time of non-blowing. 実施例1における、aの経時変化を例示する推移グラフ図である。6 is a transition graph illustrating the change with time of a in Example 1. FIG. 許容範囲Bfの候補値Biと累積回数Ciの求め方を模式的に説明するための図である。It is a figure for demonstrating typically how to obtain | require the candidate value Bi of the tolerance | permissible_range Bf, and the accumulation frequency Ci. 実施例1における、BiとCiとの関係を例示する推移グラフ図である。6 is a transition graph illustrating the relationship between Bi and Ci in Example 1. FIG. 実施例1における、Ciと処理後りん濃度との相関関係を例示するグラフ図である。4 is a graph illustrating the correlation between Ci and the post-treatment phosphorus concentration in Example 1. FIG. 実施例1における、Biと図6に例示する相関係数Rとの関係を示すグラフ図である。In Example 1, it is a graph showing the relationship between the correlation coefficient R 2 illustrated in Bi and FIG. 実施例2における、aの経時変化を例示する推移グラフ図である。10 is a transition graph illustrating the change with time of a in Example 2. FIG. 実施例2における、脱珪期終了時点から吹錬開始後2000Nmの送酸量の時点までの期間におけるCiと吹錬開始後4000Nmから6000Nmの送酸量の時点までの期間におけるCi’との相関関係を例示するグラフ図である。In Example 2, Ci in the period from Ci and blowing after the start 4000 Nm 3 in the period from removal珪期end to a point oxygen-flow amount of the blow after the start 2000 Nm 3 up to the point of oxygen-flow amount of 6000 nm 3 ' It is a graph which illustrates the correlation with. 実施例2における、Biと図9に例示する相関係数Rとの関係を示すグラフ図である。FIG. 10 is a graph illustrating the relationship between Bi and the correlation coefficient R 2 illustrated in FIG. 9 in Example 2. 実施例3における、aの経時変化を例示する推移グラフ図である。In Example 3, it is a transition graph which illustrates the time-dependent change of a. 実施例3における、Ciと脱りん率との相関関係を例示するグラフ図である。6 is a graph illustrating the correlation between Ci and the dephosphorization rate in Example 3. FIG. 実施例3における、Biと図11に例示する相関係数Rとの関係を示すグラフ図である。In Example 3, it is a graph showing the relationship between the correlation coefficient R 2 illustrated in Bi and 11.

以下、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明は、「転炉を用いた吹錬操業において、吹錬初期における排ガス流量の変動により炉内反応進行状況を評価し、当該吹錬操業中に操業条件を変更する必要があるか否かを判定する方法」であるが、以下を前提条件とする。   According to the present invention, "in a blowing operation using a converter, whether or not it is necessary to evaluate the progress of the reaction in the furnace based on the fluctuation of the exhaust gas flow rate at the initial stage of blowing and to change the operating conditions during the blowing operation. The following is a prerequisite.

すなわち、本発明が対象とする「転炉」としては、上吹き転炉、上底吹き転炉のいずれかとし、底吹き転炉は対象としない。後述するように、本発明は、上吹き酸素による溶鉄からFeOへの酸化反応(FeO生成反応)と、このFeOの溶銑中Cによる還元反応(COガス発生反応)との優劣を評価することを技術的思想とするものであるためである。なお、底吹き攪拌ガスの種類は問わない。   That is, the “converter” targeted by the present invention is either a top blow converter or an top bottom converter, and does not cover a bottom blow converter. As will be described later, the present invention evaluates the superiority or inferiority of an oxidation reaction from molten iron to FeO (FeO formation reaction) by top blowing oxygen and a reduction reaction (CO gas generation reaction) by C in the molten iron. This is because it is a technical idea. In addition, the kind of bottom blowing stirring gas is not ask | required.

また、本発明が対象とする「吹錬操業」としては、脱りん吹錬操業、脱りん脱炭吹錬操業のいずれかとする。脱りんを伴わない単なる脱炭のみを目的とする脱炭吹錬操業では、CO発生反応を積極的に促進すればよく、そもそも脱りん促進に寄与するFeO生成反応との優劣を考慮する必要がなく、本発明を適用するまでもないためである。   In addition, the “blowing operation” targeted by the present invention is either a dephosphorization blowing operation or a dephosphorization decarburization blowing operation. In the decarburization blow smelting operation only for decarburization without dephosphorization, it is only necessary to actively promote the CO generation reaction, and it is necessary to consider the superiority or inferiority of the FeO formation reaction that contributes to the promotion of dephosphorization in the first place. This is because there is no need to apply the present invention.

また、本発明において、排ガス流量の変動に着目する「吹錬初期」とは、脱珪期終了時点から全送酸量の1/4以下の所定の送酸量の時点までの期間(以下、「脱珪後所定期間」という。)をいうものとする。吹錬が開始されると、上吹き酸素は、まず溶銑中のSiやFe−Si合金中のSiの酸化に優先的に消費されるため、Siの酸化が終了するまでは、上記FeO生成反応およびCO発生反応への寄与は小さい。したがって、排ガス流量の変動に着目するのは脱珪期終了時点以後の期間とする。一方、当該吹錬中に操業条件を変更して目標品質を得たり、以後の吹錬の安定化を図るためには、できるだけ早期に炉内反応進行状況を評価する必要があるので、「吹錬初期」の終了時点は、遅くとも、全送酸量の1/4の送酸量の時点までとする。この「吹錬初期」の終了時点は、吹錬操業の種類によって変化するので、スタティック制御で予測される全送酸量の1/4の送酸量の時点までの範囲で適宜最適な時点(所定の送酸量の時点)を選択すればよい。   Further, in the present invention, “the initial stage of blowing”, which focuses on the fluctuation of the exhaust gas flow rate, is the period from the end of the desiliconization period to the time of a predetermined acid supply amount that is 1/4 or less of the total acid supply amount (hereinafter, "A predetermined period after desiliconization"). When blowing is started, the top blown oxygen is preferentially consumed for the oxidation of Si in the hot metal and Si in the Fe-Si alloy. Therefore, until the oxidation of Si is completed, the above FeO generation reaction is performed. And the contribution to the CO evolution reaction is small. Therefore, focusing on fluctuations in the exhaust gas flow rate is the period after the end of the desiliconization period. On the other hand, in order to obtain the target quality by changing the operating conditions during the blowing and to stabilize the subsequent blowing, it is necessary to evaluate the progress of the reaction in the furnace as soon as possible. The end point of “the initial stage of smelting” is at the latest, up to the time point of 1/4 of the total amount of acid sent. Since the end point of this “initial stage of blowing” varies depending on the type of blowing operation, an optimal time point (appropriately within the range up to the time of 1/4 of the total amount of acid feed predicted by static control ( What is necessary is just to select the time of a predetermined acid delivery amount.

なお、脱珪期は、溶銑中SiおよびFe−Si合金中のSiが酸化してSiOになるまでの必要酸素量で規定するが、脱珪期においても脱炭反応が起こるので、上吹き酸素の80%がSiの酸化に消費されると仮定する。例えば、溶銑中Si濃度:0.3質量%(以下、化学成分につき、単に「%」と表示する。)、溶銑質量:250tの場合、脱珪期は750Nm(=0.3×250/28×22.4×10/0.8)となる。 The desiliconization period is defined by the amount of oxygen required until Si in the hot metal and Si in the Fe—Si alloy are oxidized to SiO 2. However, since the decarburization reaction occurs in the desiliconization period, Assume that 80% of the oxygen is consumed in the oxidation of Si. For example, when the concentration of Si in the hot metal is 0.3 mass% (hereinafter simply expressed as “%” for each chemical component) and the hot metal mass is 250 t, the desiliconization period is 750 Nm 3 (= 0.3 × 250 / 28 × 22.4 × 10 / 0.8).

そして、本発明は、上記を前提条件として、「前記脱珪後所定期間にて、一定時間ごとに排ガス流量の時間変化度aを算出し、この排ガス流量時間変化度aの瞬間値が許容範囲Bfを外れる回数Cfをカウントし、この回数Cfをしきい値Ccritと比較し、当該吹錬操業中に操業条件を変更する必要があるか否かを判定する」ものである。   And, the present invention is based on the above premise that “a time change a of the exhaust gas flow rate a is calculated every predetermined time in the predetermined period after the desiliconization, and an instantaneous value of the exhaust gas flow rate time change a is within an allowable range. The number of times Cf that deviates from Bf is counted, and the number of times Cf is compared with a threshold value Ccrit to determine whether or not the operating conditions need to be changed during the blowing operation.

ここで、転炉において吹錬を開始すると、上吹き酸素は、まず溶銑中のSiや装入したFe−Si合金中のSiの酸化(脱珪反応)に優先的に消費される。Siの酸化(脱珪反応)が終了すると、下記式(2)で示される上吹き酸素による溶鉄の酸化反応(FeO生成反応)と、下記式(3)で示される溶鉄中のCによる溶融スラグ中酸化鉄の還元反応(CO発生反応)とが開始され、両反応が同時に進行する。   Here, when blowing is started in the converter, the top-blown oxygen is preferentially consumed for the oxidation (desiliconization reaction) of Si in the hot metal and Si in the charged Fe—Si alloy. When the oxidation (desiliconization reaction) of Si is completed, the molten iron oxidation reaction (FeO formation reaction) by the blown oxygen represented by the following formula (2) and the molten slag by C in the molten iron represented by the following formula (3) The reduction reaction (CO generation reaction) of intermediate iron oxide is started, and both reactions proceed simultaneously.

Fe+(1/2)O(g)→FeO・・・式(2)
FeO+C→Fe+CO(g)・・・式(3)
Fe + (1/2) O 2 (g) → FeO (2)
FeO + C → Fe + CO (g) (3)

脱珪期終了後の吹錬中には、上記2つの反応のうち、いずれの反応が優先的に起きているかにより、系全体で酸素消費がFeO生成とCO発生のどちらの反応で支配されているかが決まる。   During blowing after the desiliconization period, oxygen consumption is controlled by either FeO generation or CO generation in the entire system, depending on which of the above two reactions occurs preferentially. Is determined.

上記式(2)で表されるFeO生成反応はガスが減少する方向の反応であり、一方、上記式(3)で表されるCO発生反応はガスが増加する方向の反応である。したがって、排ガス流量の変動に着目することにより、炉内において上記式(2)、式(3)のいずれの反応が優先的に起きているかを推測することができる。   The FeO production reaction represented by the above formula (2) is a reaction in which the gas decreases, while the CO generation reaction represented by the above formula (3) is a reaction in which the gas increases. Therefore, by paying attention to the fluctuation of the exhaust gas flow rate, it can be estimated which reaction of the above formulas (2) and (3) occurs preferentially in the furnace.

吹錬中に酸素流量、底吹き攪拌ガス流量等の操業条件の変更を行わない場合、上記両反応はいずれバランスして定常状態となる。従来の排ガス流量による吹錬状況の判断は、上記両反応がバランスして定常状態になった後に行われていたため、判断のタイミングが遅くなり、その後に操業条件を変更したとしても、目標とする溶鋼品質が得られなかったり、スロッピングによる吹錬状況の悪化を防止することができない等の問題があった。   When the operating conditions such as the oxygen flow rate and the bottom blowing stirring gas flow rate are not changed during the blowing, both of the above reactions are eventually balanced and become a steady state. Judgment of the conventional blowing status based on the exhaust gas flow rate is made after the above two reactions are balanced and reach a steady state, so the timing of the judgment is delayed, and even if the operating conditions are subsequently changed, the target is set. There were problems such as inability to obtain molten steel quality and prevention of deterioration of blowing conditions due to slopping.

そこで、上記両反応のいずれの反応が優先的(優勢)になるかの兆候を極力早期に把握するため、そのパラメータとして下記の再掲式(1)で定義される排ガス流量の時間変化度(以下、「排ガス流量変化速度」ともいう。)aを採用することとした。   Therefore, in order to grasp as soon as possible a sign of which of the two reactions is preferential (dominant), as a parameter, the degree of time variation of the exhaust gas flow rate defined by the following re-expression (1) (below) , Also referred to as “exhaust gas flow rate change rate.”) A was adopted.

a={Q(t+Δt)−Q(t)}/Δt ・・・再掲式(1)
ここに、Q:排ガス流量、t:時間、Δt:時間間隔である。
a = {Q (t + Δt) −Q (t)} / Δt (reprinted formula (1))
Here, Q: exhaust gas flow rate, t: time, Δt: time interval.

概念的には、a>0の場合には、排ガス流量が増加する傾向を示し、上記式(3)で表されるCOガス発生が優先的(優勢)になる兆候を示している。一方、a<0の場合には、排ガス流量が減少する傾向を示し、上記式(2)で表されるFeO生成が優先的(優勢)になる兆候を示している。そして、a=0の場合には、排ガス流量が安定化する傾向を示し、上記式(2)で表されるFeO生成と式(3)で表されるCOガス発生とがバランスし、定常状態になる兆候を示している。   Conceptually, in the case of a> 0, the exhaust gas flow rate tends to increase, and this indicates a sign that the generation of CO gas represented by the above formula (3) is preferential (dominant). On the other hand, in the case of a <0, the exhaust gas flow rate tends to decrease, indicating that the FeO generation represented by the above formula (2) becomes preferential (dominant). When a = 0, the exhaust gas flow rate tends to stabilize, and the generation of FeO expressed by the above formula (2) and the generation of CO gas expressed by the formula (3) are balanced, and the steady state Showing signs of becoming.

上記で概念的と表現した理由は、実際の操業中においては、上記式(2)の反応が優先的であっても、上記式(3)の反応は常に起こっており、aは一定の振幅(aの絶対値)で+と−の値を往復するハンチング挙動を示している。   The reason of expressing the above as conceptual is that during the actual operation, even if the reaction of the above formula (2) is preferential, the reaction of the above formula (3) always occurs, and a is a constant amplitude. The hunting behavior of reciprocating + and-values is shown in (absolute value of a).

転炉を用いた吹錬では、吹錬初期は溶銑中のC濃度が高いため、COガス発生の反応が優先的に起こりやすい。このため、一度、COガス発生が優先的な定常状態となるとFeO生成が起こり難くなる傾向にある。   In blowing using a converter, since the C concentration in the hot metal is high at the initial stage of blowing, the reaction of generating CO gas is likely to occur preferentially. For this reason, once the CO gas generation reaches a preferential steady state, the generation of FeO tends to hardly occur.

すなわち、FeO生成を促進させるために制御するには、極力COガス発生が優先的になる兆候が小さくなければならず、そのため、aの絶対値(振れ幅)を小さく制御する必要がある(aの絶対値が大きいと、aの負の値が大きくなり、上記式(3)の反応の優先性が大きくなる)。   That is, in order to control in order to promote the generation of FeO, the sign that the generation of CO gas is preferential must be small, and therefore the absolute value (amplitude) of a needs to be controlled to be small (a When the absolute value of is large, the negative value of a is large, and the priority of the reaction of the above formula (3) is large).

以上より、目的とする反応ごと、特にFeO生成反応の優先性の度合いごとに適正なaの値(範囲)が異なる。   From the above, the appropriate value (range) of a differs for each target reaction, particularly for each degree of priority of the FeO production reaction.

本発明が対象とする脱りん吹錬および脱りん脱炭吹錬の場合においては、脱りんを促進するためにはCaOの溶解を促進させるFeO生成が重要となるため、上記式(2)が優先的である必要がある。すなわち、aの絶対値が小さい(振れ幅が小さい)ことが求められる。   In the case of dephosphorization blowing and dephosphorization decarburization blowing targeted by the present invention, in order to promote dephosphorization, FeO generation that promotes dissolution of CaO is important. Must be prioritized. That is, the absolute value of a is required to be small (the swing width is small).

一方、本発明の対象外である脱炭吹錬の場合においては、上記式(3)で表されるCOガス発生を促進させる必要がある。すなわち、aの絶対値は大きくて(振れ幅は大きくて)よいこととなる。   On the other hand, in the case of decarburization blowing which is not the subject of the present invention, it is necessary to promote the generation of CO gas represented by the above formula (3). That is, the absolute value of a may be large (the swing width may be large).

目的とする反応が優先的になる兆候をキャッチするタイミングは、吹錬開始後のできるだけ早い時期であることが望ましい。しかしながら、上述したように、吹錬開始直後の脱珪期においては、上吹き酸素はSiの酸化に消費されるため、FeO生成反応とCOガス発生反応の2つの反応への寄与は小さい。したがって、上記両反応の優先性が重要となるのは、脱珪期以降である。   It is desirable that the timing for catching the indication that the target reaction is preferential is as early as possible after the start of blowing. However, as described above, in the desiliconization period immediately after the start of blowing, since the top blown oxygen is consumed for the oxidation of Si, the contribution to the two reactions of FeO generation reaction and CO gas generation reaction is small. Therefore, the priority of the two reactions is important after the desiliconization period.

よって、両反応の優先性を評価するタイミングは、脱珪期以後となるが、早ければ早いほど望ましい。そこで、目的とする上記両反応の優先性が定常状態に移行しつつあるか否かを判断するために、優先性の変化の兆候を示した回数を積算することで判断することとした。   Therefore, the timing for evaluating the priority of both reactions is after the desiliconization period, but the earlier the better. Therefore, in order to determine whether or not the priority of both the above-mentioned reactions of interest is shifting to a steady state, the determination was made by accumulating the number of times indicating a change in priority.

上述したように、aは正(+)と負(−)の値を取るが、本発明ではその絶対値に着目し、具体的には、正(+)の値のみで吹錬状況を判定する。   As described above, a takes positive (+) and negative (-) values, but in the present invention, focusing on the absolute value, specifically, the blowing condition is determined only by the positive (+) value. To do.

本発明では、脱珪期終了時点から所定時間後までにおける排ガス流量の時間変化度aが所定の許容範囲Bfを外れた累積回数Cfと、しきい値Ccritとの大小を比較することで吹錬状況(反応進行状況)を評価し、当該吹錬中に操業条件を変更する必要があるか否かを判定することとした。なお、許容範囲Bfを外れた累積回数Cfに代えて、許容範囲Bfを外れた累積時間等の同様の概念で評価するようにしてもよい。   In the present invention, blowing is performed by comparing the cumulative number of times Cf in which the time change degree a of the exhaust gas flow rate deviates from a predetermined allowable range Bf from the end of the desiliconization period to a predetermined time and the threshold value Ccrit. The situation (reaction progress) was evaluated and it was decided whether or not it was necessary to change the operating conditions during the blowing. In addition, instead of the cumulative number of times Cf outside the allowable range Bf, evaluation may be made based on a similar concept such as an accumulated time outside the allowable range Bf.

「許容範囲Bfおよびしきい値Ccritは、あらかじめ、前記と同種の過去に行われた複数の吹錬操業の操業データに基づき、前記脱珪後所定期間にて算出された排ガス流量時間変化度aと、当該吹錬操業における吹錬指標との相関関係より、当該吹錬操業中に操業条件を変更する必要のないものから定める」ことができる。   “The permissible range Bf and the threshold value Ccrit are preliminarily determined based on the operation data of a plurality of blowing operations performed in the past of the same type as described above, and the exhaust gas flow rate time variation a calculated in the predetermined period after the desiliconization. And the correlation with the blowing index in the blowing operation can be determined from those that do not require changing the operating conditions during the blowing operation.

より詳しくは、例えば、本発明を適用しようとしている現在の吹錬操業(例えば、脱りん吹錬)と同種の吹錬操業(脱りん吹錬)であって、過去に行われた複数チャージの操業データを用い、その各チャージごとに、脱珪期終了時点から所定時間後までにおいて、排ガス流量時間変化度aと吹錬指標との関係を調査する。吹錬指標としては、吹錬後のりん濃度(「処理後りん濃度」ともいう。)、吹錬前後での脱りん率、吸錬中におけるスロッピングの発生状況(規模や頻度)などが挙げられるが、これらの指標は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。   More specifically, for example, the current blowing operation (for example, dephosphorizing blowing) to which the present invention is applied is the same type of blowing operation (dephosphorizing blowing), and a plurality of charges that have been performed in the past. Using the operation data, for each charge, the relationship between the exhaust gas flow rate time variation a and the blowing index is investigated from the end of the desiliconization period to a predetermined time later. Blowing indicators include phosphorus concentration after blowing (also referred to as “phosphorus concentration after treatment”), dephosphorization rate before and after blowing, and the state of occurrence of slopping (scale and frequency) during smelting. However, these indicators may be used alone or in combination of two or more.

そして、上記各チャージごとに調査した排ガス流量時間変化度aと吹錬指標との関係を上記複数チャージについて集約して得られた、上記排ガス流量時間変化度aと吹錬指標との相関関係より、許容範囲Bfとしきい値Ccritとを決定する。   And, from the correlation between the exhaust gas flow rate time variation degree a and the blowing index obtained by consolidating the relationship between the exhaust gas flow rate time variation degree a and the blowing index investigated for each charge with respect to the plurality of charges. The allowable range Bf and the threshold value Ccrit are determined.

そして、本発明を適用しようとしている現在の吹錬操業において、脱珪期終了時点から上記所定時間後までにおいて、排ガス流量時間変化度aを算出し、許容範囲Bfを外れた回数を積算し、その累積回数Cfと上記しきい値Ccritとを比較し、その大小によって、当該吹錬中に操業条件を変更するか否かを判定する。   And in the current blowing operation to which the present invention is to be applied, the exhaust gas flow rate time change degree a is calculated from the end of the desiliconization period to the time after the predetermined time, and the number of times outside the allowable range Bf is integrated, The cumulative number Cf is compared with the threshold value Ccrit, and it is determined whether or not the operation condition is changed during the blowing by the magnitude.

例えば、累積回数Cfが上記しきい値Ccrit以下である場合には、操業条件を変更することなく、操業を継続する。一方、累積回数Cfが上記しきい値Ccritを超えた場合には、現在の操業条件を継続すると、目的とする溶銑や溶鋼の品質が得られないと判断し、この時点で操業条件(吹錬条件)を変更する必要があると判定する。   For example, when the cumulative number Cf is equal to or less than the threshold value Ccrit, the operation is continued without changing the operation condition. On the other hand, when the cumulative number of times Cf exceeds the threshold value Ccrit, it is determined that if the current operating conditions are continued, the intended quality of the molten iron or molten steel cannot be obtained. It is determined that the (condition) needs to be changed.

上記の操業条件(吹錬条件)の変更とは、例えば、上吹き条件や底吹き条件を変更することで、攪拌力を変更することを意味する。   The change in the above operating conditions (blowing conditions) means, for example, changing the stirring force by changing the top blowing condition or the bottom blowing condition.

すなわち、排ガス流量時間変化度aの振れ幅が小さく、許容範囲Bfを外れた累積回数Cfが上記しきい値Ccritを下回る場合には、FeO生成反応(上記式(2))が優先的で滓化過剰状態であるので、溶銑CによるFeOの還元反応(上記式(3))を促進する必要があり、攪拌力を強化する必要がある。攪拌力を強化する手段としては、上吹き酸素量の増加、上吹きランスの下降、底吹き流量の増加などが挙げられる。   That is, when the fluctuation range of the exhaust gas flow rate time variation a is small and the cumulative number of times Cf outside the allowable range Bf is below the threshold value Ccrit, the FeO generation reaction (the above formula (2)) is preferential. Since it is in the excessive formation state, it is necessary to promote the reduction reaction of FeO by hot metal C (the above formula (3)), and it is necessary to strengthen the stirring force. Examples of means for enhancing the stirring force include an increase in the amount of top blowing oxygen, a lowering of the top blowing lance, and an increase in the bottom blowing flow rate.

一方、排ガス流量時間変化度aの振れ幅が大きく、許容範囲Bfを外れた累積回数Cfが上記しきい値Ccritを超える場合には、COガス発生反応(上記式(3))が優先的で滓化不良状態であるので、溶銑CによるFeOの還元反応(上記式(3))を抑制する必要があり、攪拌力を弱める必要がある。攪拌力を弱める手段としては、上吹き酸素量の減少、上吹きランスの上昇、底吹き流量の減少などが挙げられる。   On the other hand, when the fluctuation range of the exhaust gas flow rate variation degree a is large and the cumulative number of times Cf outside the allowable range Bf exceeds the threshold value Ccrit, the CO gas generation reaction (the above formula (3)) is preferential. Since the hatching is in a poor state, it is necessary to suppress the FeO reduction reaction by the hot metal C (the above formula (3)), and it is necessary to weaken the stirring force. Examples of means for weakening the stirring force include a reduction in the amount of top blowing oxygen, an increase in the top blowing lance, and a reduction in the bottom blowing flow rate.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することももちろん可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

下記に示す設備仕様および基本の操業条件にて、上底吹き転炉での各種吹錬操業を実施した。   Various blowing operations were carried out in the top-bottom blowing converter under the equipment specifications and basic operating conditions shown below.

・上底吹き転炉
容量:250ton
MgO−C耐火物
・上吹きランス
ノズル数:6孔
ノズル出口径:55mm
ノズル傾斜角:15°
吹込み酸素流量:0.6〜3.4Nm/min/ton
・底吹き
ノズル数:4孔
ガス種:N、Ar、CO
底吹きガス流量:0.02〜0.09Nm/min/ton
・副原料
CaO源として生石灰を使用した。
SiO源は、溶銑中Si、Fe−Si合金、珪石である。
なお、Fe−Si合金は昇熱剤として用いた。
珪石はスラグの塩基度調整剤として用いた。
耐火物保護を目的として軽焼ドロマイトを用いた。
温度調整、鉄源としてミルスケール、鉄鉱石を用いた。
・ Top-bottom blowing converter Capacity: 250ton
MgO-C refractory, top blowing lance Nozzle number: 6 holes Nozzle outlet diameter: 55 mm
Nozzle tilt angle: 15 °
Blowing oxygen flow rate: 0.6 to 3.4 Nm 3 / min / ton
・ Bottom blow Nozzle number: 4 holes Gas type: N 2 , Ar, CO
Bottom blowing gas flow rate: 0.02-0.09 Nm 3 / min / ton
-Auxiliary raw material Quick lime was used as a CaO source.
The SiO 2 source is Si, Fe—Si alloy, and silica in hot metal.
Note that the Fe—Si alloy was used as a heat raising agent.
Silica was used as a slag basicity adjuster.
Light-burned dolomite was used for the purpose of protecting refractories.
Temperature control, mill scale and iron ore were used as iron sources.

[実施例1]脱りん吹錬操業
目標の処理後りん濃度(吹錬後のりん濃度)を0.03%以下として実施した脱りん吹錬の複数チャージについて、それらの排ガス流量のデータを用いて、各チャージにおける炉内反応状況を評価し、目標の処理後りん濃度を達成するために操業条件の変更が必要であったか否かの判定を試みた。
[Example 1] Dephosphorization blow smelting operation With regard to a plurality of charges of dephosphorization blown performed with the target post-treatment phosphorus concentration (phosphorus concentration after blown) being 0.03% or less, the data of the exhaust gas flow rate are used. Then, the reaction state in the furnace at each charge was evaluated, and an attempt was made to determine whether or not the operating conditions had to be changed in order to achieve the target post-treatment phosphorus concentration.

本実施例における脱りん吹錬の操業条件は以下のとおりである。   The operating conditions of dephosphorization blowing in this example are as follows.

・溶銑条件
装入量:260〜280ton
吹錬前の溶銑成分:
C=4%
Si=0.2〜0.5%
P=0.10〜0.16%
吹錬後の溶銑成分:
C=3.5〜4%
P=0.02〜0.05%
・上吹き条件
脱珪期(吹錬開始から最大送酸量1500Nm):ε=1〜5kW/ton
脱りん期(脱珪期以後):ε=0.04〜0.2kW/ton
・底吹き条件
ε=0.6〜1.5kW/ton
-Hot metal conditions Charge: 260-280ton
Hot metal components before blowing:
C = 4%
Si = 0.2-0.5%
P = 0.10-0.16%
Hot metal components after blowing:
C = 3.5-4%
P = 0.02-0.05%
-Top blowing condition Desiliconization period (Maximum acid feed amount 1500 Nm 3 from the start of blowing): ε T = 1 to 5 kW / ton
Dephosphorization period (after desiliconization period): ε T = 0.04 to 0.2 kW / ton
・ Bottom blowing condition ε B = 0.6 to 1.5 kW / ton

ここに、εは、甲斐ら(鉄と鋼,68(1982),1946)によって提唱された下記式(4)で定義される、上吹き酸素による攪拌動力密度である。 Here, epsilon T is Kai et al. (Iron and Steel, 68 (1982), 1946) is defined by the following equation proposed by (4), a stirring power density due to the top-blown oxygen.

Figure 2014141696
Figure 2014141696

また、εは、森ら(鉄と鋼,67(1981),672)によって提唱された下記式(5)で定義される、底吹きガスによる攪拌動力密度である。 Ε B is the stirring power density by the bottom blowing gas defined by the following formula (5) proposed by Mori et al. (Iron and Steel, 67 (1981), 672).

Figure 2014141696
Figure 2014141696

各チャージにおいて、吹錬中に所定のサンプリング間隔(本実施例では1s)で測定された排ガス流量Q(t)のデータを用いて、上記式(1)により排ガス流量時間変化度aを算出した。なお、排ガス流量は、ベンチュリ流量計を用いて測定した。算出したaを時間tに対してプロットすると、図1に模式的に示すように、時間変動を示す。   In each charge, the exhaust gas flow rate time variation a was calculated by the above formula (1) using the data of the exhaust gas flow rate Q (t) measured at a predetermined sampling interval (1 s in this example) during blowing. . The exhaust gas flow rate was measured using a venturi flow meter. When the calculated a is plotted against time t, time variation is shown as schematically shown in FIG.

なお、上記式(1)中の時間間隔Δtを決定するに当り、非吹錬時において、Δtを順次変更してaを算出し、上記式(2)および式(3)の反応が関与していない状態でのaの振れ幅に及ぼすΔtの影響を確認したうえでΔtを決定した。   In determining the time interval Δt in the above formula (1), at the time of non-blowing, Δt is sequentially changed to calculate a, and the reactions of the above formulas (2) and (3) are involved. Δt was determined after confirming the effect of Δt on the deflection width of “a” in a state in which it was not.

図2は、非吹錬時におけるaの振れ幅(最大値と最小値との差)に及ぼすΔtの影響を示したものである。この図からわかるように、Δtの減少に伴い、aの振れ幅が大きくなる傾向を示す。つまり、排ガス流量のわずかな変動でもaの変化の兆候として捉えるため、感度が高くなると考えられるが、感度が高くなりすぎて操業変更が必要との判定を過剰に行ってしまうことが懸念される。一方、Δtを大きくしすぎるとaの振れ幅が小さくなり、吹錬時におけるaの変化の兆候を捉える感度が低下することが懸念される。また、Δt=5s付近を境にaの振れ幅の変化に及ぼすΔtの影響が小さくなる傾向を示している。以上のことより、本実施例ではΔt=5sとした。   FIG. 2 shows the effect of Δt on the amplitude of a (the difference between the maximum value and the minimum value) during non-blowing. As can be seen from this figure, the fluctuation width of a tends to increase as Δt decreases. In other words, even a slight fluctuation in the exhaust gas flow rate is regarded as a sign of a change in a, and thus the sensitivity is considered to be high. However, there is a concern that the sensitivity becomes too high and it may be excessively determined that the operation change is necessary. . On the other hand, if Δt is increased too much, the swing width of a decreases, and there is a concern that the sensitivity of capturing signs of a change during blowing is reduced. Further, it shows a tendency that the influence of Δt on the change of the swing width of “a” becomes small around Δt = 5 s. From the above, in this embodiment, Δt = 5 s.

処理後りん濃度が、目標りん濃度(0.030%以下)に到達したチャージと、到達しなかったチャージのそれぞれについて、aの経時変化の一例を図3に示す。   FIG. 3 shows an example of a change with time of a for each of the charge whose post-treatment phosphorus concentration has reached the target phosphorus concentration (0.030% or less) and the charge that has not reached the target phosphorus concentration.

図3に示すように、脱珪期終了時点から吹錬全体の約1/2の400sまでにおいては、aの時間変動はほぼ同じ挙動を示す。吹錬中期以降においては鉄鉱石等の副原料を途中装入するため、この副原料投入などによる外乱因子によりaの挙動に急激な変化が起こる。そのため、外乱因子が少ない吹錬初期に吹錬状況を把握(評価)することが望ましい。本実施例では、吹錬全体の約1/4の200sの時点で吹錬状況を評価することとした。以上により、脱珪期終了時点から吹錬開始後200sの時点までの期間(脱珪後所定期間)におけるaを用いた。   As shown in FIG. 3, the time variation of “a” shows almost the same behavior from the end of the desiliconization period to 400 seconds, which is about ½ of the entire blowing. Since the secondary raw materials such as iron ore are charged in the middle of the blowing, the behavior of a rapidly changes due to disturbance factors due to the addition of the secondary raw materials. Therefore, it is desirable to grasp (evaluate) the blowing condition in the early stage of blowing with few disturbance factors. In this example, the blowing condition was evaluated at 200 seconds, which is about ¼ of the entire blowing. As described above, a in the period from the end of the silicon removal period to the time of 200 s after the start of blowing (a predetermined period after the silicon removal) was used.

複数チャージについてaを算出した結果、脱珪期終了時点から吹錬開始後200sの時点までの期間におけるaの値は、図3(b)に示すように、処理後りん濃度が目標りん濃度に到達しなかったチャージでは、「−20」〜「20」の範囲を外れる値を示すタイミングも認められたが、ほぼ「−20」〜「20」の範囲内を推移した。一方、同期間におけるaの値は、図3(a)に示すように、処理後りん濃度が目標りん濃度に到達したチャージでは、ほぼ「−4」〜「4」の範囲内を推移した。   As a result of calculating a for a plurality of charges, the value of a in the period from the end of the desiliconization period to the time of 200 s after the start of blowing is as shown in FIG. In the charge that did not reach, a timing indicating a value out of the range of “−20” to “20” was recognized, but it changed within the range of “−20” to “20”. On the other hand, as shown in FIG. 3A, the value of “a” during the same period changed within the range of “−4” to “4” in the charge in which the post-treatment phosphorus concentration reached the target phosphorus concentration.

そこで、本実施例では、aの振れ幅の絶対値として「4」〜「20」の間で、当該吹錬中に操業条件を変更する必要のない許容範囲Bfを定めることが有効と判断した。   Therefore, in this example, it was determined that it was effective to set an allowable range Bf that does not require changing the operating conditions during the blowing, between “4” and “20” as the absolute value of the amplitude of a. .

以上より、Bfを定めるために、Bfの候補値Bi(i=1,2,・・・,17)として「4」〜「20」の間の「1」刻みの値を採り、図4に模式的に示すように、各Bi(i=1,2,・・・,n)において、そのBiの値を超えた回数を積算して累積回数Ci(i=1,2,・・・,17)を求めた。図5は、図3における脱珪期終了時点から吹錬開始後200sの時点までの期間について、Biとして「15」の値を採用したときの例を示すものである。同図に示すように、(a)の処理後りん濃度が目標りん濃度に到達したチャージではCi=2、(b)の処理後りん濃度が目標りん濃度に到達しなかったチャージではCi=15である。そして、このCiと吹錬指標の一つである処理後りん濃度との相関関係を調査した。   From the above, in order to determine Bf, a value in increments of “1” between “4” and “20” is taken as a candidate value Bi (i = 1, 2,..., 17) of Bf. As schematically shown, in each Bi (i = 1, 2,..., N), the cumulative number of times Ci (i = 1, 2,... 17) was obtained. FIG. 5 shows an example when a value of “15” is adopted as Bi for the period from the end of the silicon removal period in FIG. 3 to the time of 200 s after the start of blowing. As shown in the figure, Ci = 2 for the charge in which the processed phosphorus concentration reached the target phosphorus concentration in (a), and Ci = 15 for the charge in which the processed phosphorus concentration in (b) did not reach the target phosphorus concentration. It is. And the correlation between this Ci and the post-treatment phosphorus concentration which is one of the blowing indices was investigated.

図6は、Bi=11,15,20のときにおける、Ciと処理後りん濃度との相関関係を直線回帰により調査し、その相関係数を求めた結果を例示したものである。このようにして求めた相関係数Rについて、図7に、候補値Biとの関係を示した。同図に示すように、候補値Biが「13」〜「18」の間で相関係数Rが最大となった。本実施例ではBfとして「15」を採用した。なお、脱珪期終了時点から200sまでと300sまでとのそれぞれについて、候補値Biと相関係数Rとの関係を比較した結果、両者に有意な差異がないことを確認した。このため、既述したとおり、本実施例では、より早いタイミングである200sを採用した。 FIG. 6 exemplifies the result of investigating the correlation between Ci and the post-treatment phosphorus concentration by linear regression and obtaining the correlation coefficient when Bi = 11, 15, and 20. FIG. 7 shows the relationship between the correlation coefficient R 2 obtained in this way and the candidate value Bi. As shown in the figure, the candidate value Bi correlation coefficient R 2 between the "13" - "18" is maximized. In this embodiment, “15” is adopted as Bf. In addition, as a result of comparing the relationship between the candidate value Bi and the correlation coefficient R 2 for each of 200 s and 300 s from the end of the desiliconization period, it was confirmed that there was no significant difference between the two. For this reason, as described above, 200 s, which is an earlier timing, is employed in this embodiment.

そして、Bfとして「15」を採用したことから、候補値Biが「15」の図6(b)を用いて、目標処理後りん濃度0.030%以下を満足する累積回数Cfのしきい値Ccritを「4」に決定した。   Since “15” is adopted as Bf, the threshold value of the cumulative number of times Cf that satisfies the target post-processing phosphorus concentration of 0.030% or less using FIG. 6B where the candidate value Bi is “15”. Ccrit was determined to be “4”.

つまり、脱珪期終了時点から吹錬開始後200sまでの間にaがBfを超えた累積回数Cf>Ccrit=4となった場合、その条件で吹錬を継続すると処理後りん濃度が0.03%超となる確率(可能性)が高いことがわかる。言い換えれば、目標である0.030%以下の処理後りん濃度とするためには、Cf>Ccrit=4となった時点(すなわち、Cf=5に達した時点)で吹錬条件を変更する必要があるとの判定が可能となる。   That is, if the cumulative number Cf> Ccrit = 4 in which a exceeds Bf from the end of the desiliconization period to 200 s after the start of blowing, if the blowing is continued under that condition, the post-treatment phosphorus concentration will be 0. It can be seen that the probability (possibility) of exceeding 03% is high. In other words, it is necessary to change the blowing conditions when Cf> Ccrit = 4 (that is, when Cf = 5 is reached) in order to obtain the target post-treatment phosphorus concentration of 0.030% or less. It is possible to determine that there is.

下記表1に示す脱りん吹錬の6チャージについて、上記のようにして決定したBf=15およびCcrit=4を用いて、吹錬中に操業条件を変更する必要があったか否かの判定を試みた。   For 6 charges of dephosphorization blowing shown in Table 1 below, using Bf = 15 and Ccrit = 4 determined as described above, an attempt was made to determine whether the operating conditions had to be changed during blowing. It was.

同表に示すとおり、チャージNo.A1〜A3は、脱珪期終了時点から吹錬開始後200sの時点でaがBfを超えた累積回数CfがCcrit=4を超えていないため、当該吹錬中に操業条件を変更する必要がないと判定されるものである。そして、これらのチャージは、実際の操業においても吹錬中に操業条件を変更していないが、吹錬後(処理後)のP濃度は、目標の0.030%以下を達成している。   As shown in the table, charge no. A1 to A3, since the cumulative number of times Cf where a exceeds Bf at the time of 200 s from the end of the desiliconization period to the start of blowing does not exceed Ccrit = 4, it is necessary to change the operating conditions during the blowing. It is determined that there is no. These charges do not change the operating conditions during blowing even in actual operation, but the P concentration after blowing (after treatment) achieves the target of 0.030% or less.

これに対し、チャージNo.A4〜A6は、脱珪期終了時点から吹錬開始後200sの時点でaがBfを超えた累積回数CfがCcrit=4を超えているため、当該吹錬中に操業条件を変更する必要があると判定されるものである。しかしながら、実際の操業においては吹錬中に操業条件を変更していないため、吹錬後(処理後)のP濃度は、目標の0.030%以下を達成できていない。   On the other hand, charge no. In A4 to A6, since the cumulative number of times Cf in which a exceeds Bf at the time of 200 s after the desiliconization period ends and after the start of blowing, Cfrit exceeds 4, it is necessary to change the operating conditions during the blowing. It is determined that there is. However, in actual operation, since the operation conditions are not changed during blowing, the P concentration after blowing (after treatment) cannot achieve the target of 0.030% or less.

このことから、脱りん吹錬操業において本発明を適用すれば、吹錬中早期に操業条件の変更の要否を簡易かつ精度良く判定でき、安定して目標の処理後P濃度の溶銑を製造しうることが確認できた。   From this, if the present invention is applied in dephosphorization blow smelting operation, it is possible to easily and accurately determine whether or not the operating conditions need to be changed early during blowing, and stably produce hot metal having a target P concentration after treatment. It was confirmed that it was possible.

Figure 2014141696
Figure 2014141696

[実施例2]脱りん脱炭吹錬操業(一般銑・低炭素鋼吹錬)
一般銑の脱りん脱炭吹錬の複数チャージについて、それらの排ガスデータを用いて、各チャージにおける炉内反応状況を評価し、下記で定義する「スロッピング大」を回避するために操業条件の変更が必要であったか否かの判定を試みた。
[Example 2] Dephosphorization and decarburization blowing operation (general dredging, low carbon steel blowing)
For multiple charges of dephosphorization and decarburization blowing of general dredging, using the exhaust gas data, the reaction conditions in the furnace at each charge are evaluated, and in order to avoid the “sloping large” defined below, An attempt was made to determine if a change was necessary.

ここに、スロッピングとは、転炉炉口から溶融したスラグが炉外に噴出する現象をいう。転炉容器の容量、転炉内に装入する溶銑および副原料の量に影響されるため、操業固有の現象である。本明細書においては、炉外に溶融スラグが多量に噴出して、操業をそのまま継続することが困難な状態を「スロッピング大」、スロッピングの発生は見られるものの、操業を継続しうる状態を「スロッピング小」、スロッピングの発生がない状態を「スロッピングなし」と、それぞれ定義した。   Here, slopping refers to a phenomenon in which molten slag is ejected from the furnace outlet. This is an operation-specific phenomenon because it is affected by the capacity of the converter vessel, the amount of hot metal and auxiliary materials charged in the converter. In this specification, a large amount of molten slag is ejected to the outside of the furnace and it is difficult to continue the operation as it is, “sloping is large”, although the occurrence of slopping is seen, the state where the operation can be continued Was defined as “no slopping”, and “no slopping” as a state where no slopping occurred.

本実施例における一般銑の脱りん脱炭吹錬の操業条件は以下のとおりである。   The operating conditions of dephosphorization and decarburization blowing of general soot in this example are as follows.

・溶銑条件
装入量:260〜290ton
吹錬前の溶銑成分:
C=4%
Si=0.2〜0.5%
P=0.09〜0.16%
吹錬後の溶鋼成分:
C=0.001〜0.4%
P=0.005〜0.03%
・上吹き条件
ε=2〜5kW/ton
・底吹き条件
ε=0.2〜0.3kW/ton
-Hot metal conditions Charge: 260-290ton
Hot metal components before blowing:
C = 4%
Si = 0.2-0.5%
P = 0.09-0.16%
Molten steel composition after blowing:
C = 0.001 to 0.4%
P = 0.005 to 0.03%
・ Top blowing condition ε T = 2 to 5 kW / ton
・ Bottom blowing condition ε B = 0.2 to 0.3 kW / ton

ここに、εおよびεの定義は、ともに上記実施例1と同じである。 Here, the definitions of ε T and ε B are the same as those in the first embodiment.

また、上記実施例1と同じく、排ガス流量のサンプリング間隔は1s、Δt=5sとした。   Further, as in Example 1, the sampling interval of the exhaust gas flow rate was 1 s and Δt = 5 s.

上記実施例1の脱りん吹錬では、目標の処理後りん濃度の達成が最優先課題であるのに対し、本実施例の一般銑の脱りん脱炭吹錬ではスロッピング抑制が最優先課題である。   In the dephosphorization blowing of Example 1 above, achieving the target post-treatment phosphorus concentration is the highest priority, whereas in the general phosphorus dephosphorization decarburization of this example, the suppression of slopping is the highest priority. It is.

吹錬中に「スロッピング大」に至ったチャージと、「スロッピング小」に留まったチャージのそれぞれについて、aの経時変化の各一例を図8に示す。   FIG. 8 shows an example of each change of a with respect to each of the charge that has reached “large slipping” and the charge that has remained “small slipping” during blowing.

ここで、スロッピングは吹錬初期に過剰に生成したFeOが吹錬中期に溶銑中Cによって還元され、その結果発生するCOガスが溶融スラグ中に充満し、あるタイミングでそのCOガスが急激に溶融スラグから抜けて炉内の溶融スラグが炉外に噴出する突沸現象をいう。   Here, in the slopping, FeO produced excessively in the early stage of blowing is reduced by hot metal C in the middle of blowing, and as a result, the generated CO gas fills the molten slag, and at a certain timing, the CO gas rapidly increases. It refers to a bumping phenomenon in which molten slag escapes from the molten slag and the molten slag in the furnace is ejected outside the furnace.

つまり、スロッピングは、吹錬初期における過剰なFeO生成が主要因であると考えられる。すなわち、スロッピングの予測は、この吹錬初期における過剰なFeO生成を把握することが重要である。   That is, it is considered that the slopping is mainly caused by excessive FeO generation in the early stage of blowing. That is, for the prediction of slopping, it is important to grasp the excessive FeO production in the initial stage of blowing.

また、図8(a)において、排ガス流量時間変化度aが急上昇している、吹錬時間5min(=300s)付近で「スロッピング大」に至っており、「スロッピング大」を回避するためには、より早期に操業条件変更の要否の判断が必要である。このため、本実施例では、「スロッピング大」に至った吹錬時間5minの約1/2の時間に相当する送酸量2000Nmの時点で吹錬状況を評価することとした。 Further, in FIG. 8 (a), the exhaust gas flow rate time variation a is rapidly increasing, reaching the “sloping large” in the vicinity of the blowing time 5 min (= 300 s), in order to avoid the “sloping large”. Therefore, it is necessary to determine whether it is necessary to change the operating conditions at an earlier stage. Therefore, in this embodiment, it was decided to evaluate the blowing conditions at the time of the oxygen-flow amount 2000 Nm 3 corresponding to about 1/2 of the time of blowing time 5min that led to "slopping large".

上記実施例1と同様にして、複数チャージについてaを算出した結果、脱珪期終了時点から吹錬開始後2000Nmの送酸量の時点までの期間(脱珪後所定期間)におけるaの値は、図8(b)に示すように、「スロッピング小」に留まったチャージでは、「−9」〜「9」の範囲を外れる値を示すタイミングも認められたが、ほぼ「−9」〜「9」の範囲内を推移した。一方、同期間におけるaの値は、図8(a)に示すように、「スロッピング大」に至ったチャージでは、ほぼ「−1」〜「1」の範囲内を推移した。 In the same manner as in Example 1, the results of calculating the a plurality charge, de珪期period from the end to the point of oxygen-flow amount of the blow after the start 2000 Nm 3 of a in (de珪後predetermined period) value As shown in FIG. 8 (b), in the charge staying in “sloping small”, a timing indicating a value out of the range of “−9” to “9” was recognized, but almost “−9”. It moved within the range of ~ 9. On the other hand, as shown in FIG. 8A, the value of “a” during the same period was almost in the range of “−1” to “1” in the charge that reached “large slipping”.

そこで、本実施例では、aの振れ幅の絶対値として「1」〜「9」の間で、当該吹錬中に操業条件を変更する必要のない許容範囲Bfを定めることが有効と判断した。   Therefore, in this example, it was determined that it is effective to set an allowable range Bf that does not require changing the operating conditions during the blowing, between “1” and “9” as the absolute value of the amplitude of a. .

以上より、Bfを定めるために、Bfの候補値Biとして「1」〜「9」の間の「1」刻みの値を採り、既述の図4に模式的に示すように、各Biにおいて、そのBiの値を上回った回数を積算して累積回数Ciを求めた。   From the above, in order to determine Bf, a value in increments of “1” between “1” to “9” is taken as a candidate value Bi of Bf, and as schematically shown in FIG. The cumulative number of times Ci was obtained by integrating the number of times that exceeded the value of Bi.

ここで、スロッピングの大きさを評価する指標として、本実施例では、送酸量が4000Nmから6000Nmまでの期間におけるaの値がBiを超える累積回数Ci’を用いた。つまり、スロッピング発生時には、COガス発生により排ガス流量が増加するためaが大きくなり、累積回数Ci’が大きくなるため、スロッピングの発生を評価する指標として、Ci’を用いた。なお、上記図8(a)に例示したように、「スロッピング大」に至る時期が吹錬中期であり、本実施例では全送酸量が10000Nm強であるため、スロッピングを評価する期間としての吹錬中期を送酸量が4000Nmから6000Nmまでとした。 Here, as an index for evaluating the magnitude of slopping, in this example, the cumulative number Ci ′ in which the value of a exceeds Bi in the period from 4000 Nm 3 to 6000 Nm 3 was used. In other words, when slopping occurs, the exhaust gas flow rate increases due to the generation of CO gas, so a increases, and the cumulative number Ci ′ increases. Therefore, Ci ′ is used as an index for evaluating the occurrence of slopping. In addition, as illustrated in FIG. 8A above, the time to reach “large slopping” is the middle stage of blowing, and in this example, the total amount of acid sent is over 10,000 Nm 3 , so that the slopping is evaluated. The middle stage of blowing as a period was set so that the amount of acid sent was 4000 Nm 3 to 6000 Nm 3 .

図9は、図8における脱珪期終了時点から吹錬開始後2000Nmの送酸量の時点までの期間(脱珪後所定期間)におけるCiと、吹錬開始後4000Nmから6000Nmの送酸量の時点までの期間におけるCi’との相関関係を調査した結果について、Biとして「4」、「7」、「9」の値をそれぞれ採用したときの例を示すものである。 9, transmission and Ci in the period (de珪後predetermined period) up to the time of the oxygen-flow amount of the blow after the start 2000 Nm 3 from the de-珪期end in FIG. 8, the blow after the start 4000 Nm 3 of 6000 nm 3 An example in which values of “4”, “7”, and “9” are employed as Bi for the results of investigating the correlation with Ci ′ in the period up to the time point of the acid amount is shown.

各BiにおいてCiとCi’との相関関係を直線回帰してその相関係数Rを求め、このようにして求めた相関係数Rについて、図10に、候補値Biとの関係を示した。同図に示すように、候補値Biが「6」〜「8」の間で相関係数Rが最大となった。本実施例ではBfとして「7」を採用した。 The correlation coefficient R 2 determine the correlation between Ci and Ci 'in each Bi and linear regression correlation coefficient R 2 determined in this way, in FIG. 10 shows the relationship between the candidate value Bi It was. As shown in the figure, the candidate value Bi correlation coefficient R 2 between the "6" to "8" is maximized. In this embodiment, “7” is adopted as Bf.

そして、Bfとして「7」を採用したことから、候補値Biが「7」の図9(b)を用いて、「スロッピング大」に至らない累積回数Cfのしきい値Ccritを「11」に決定した。   Since “7” is adopted as Bf, the threshold value Ccrit of the cumulative number of times Cf that does not result in “large slopping” is set to “11” using FIG. 9B where the candidate value Bi is “7”. Decided.

つまり、脱珪期終了時点から吹錬開始後2000Nmの送酸量の時点(脱珪後所定期間)でaがBfを上回った累積回数Cf<Ccrit=11であった場合、その条件で吹錬を継続すると吹錬中期に「スロッピング大」に至る確率(可能性)が高いことがわかる。言い換えれば、吹錬中期における「スロッピング大」を回避するためには、2000Nmの送酸量の時点でCf<Ccrit=11であった場合に、この時点で吹錬条件を変更する必要があるとの判定が可能となる。 That is, when a is a cumulative number Cf <Ccrit = 11 which exceeds the Bf in oxygen-flow amount of time of blowing start after 2000 Nm 3 from the de-珪期end (de珪後predetermined period), blown in the condition It can be seen that if the smelting is continued, there is a high probability (possibility) of reaching “large slopping” in the middle of blowing. In other words, in order to avoid the “large amount of slopping” in the middle stage of blowing, if Cf <Ccrit = 11 at the time of the amount of acid sent of 2000 Nm 3 , it is necessary to change the blowing conditions at this point It can be determined that there is.

下記表2に示す一般銑の脱りん脱炭吹錬の5チャージについて、上記のようにして決定したBf=7およびCcrit=11を用いて、吹錬中に操業条件を変更する必要があったか否かの判定を試みた。   Whether or not it was necessary to change the operating conditions during blowing using Bf = 7 and Ccrit = 11 determined as described above for 5 charges of dephosphorization and decarburization blowing of general dredge shown in Table 2 below I tried to determine whether.

同表に示すとおり、チャージNo.B1〜B3は、脱珪期終了時点から吹錬開始後2000Nmの送酸量の時点でaがBfを上回った累積回数CfがCcrit=11を上回っているため、当該吹錬中に操業条件を変更する必要がないと判定されるものである。そして、これらのチャージは、実際の操業においても吹錬中に操業条件を変更していないが、吹錬中において「スロッピングなし」あるいは「スロッピング小」に留まり、吹錬を完了することができた。 As shown in the table, charge no. B1 to B3 are the operating conditions during the blowing because the cumulative number of times Cf exceeds Ccrit = 11 when a exceeds the Bf at the time of oxygen delivery amount of 2000 Nm 3 after the start of blowing from the end of the desiliconization period. Is determined not to need to be changed. These charges do not change the operating conditions during blowing even in the actual operation, but during the blowing, the charge remains “no slopping” or “sloping small” and the blowing can be completed. did it.

これに対し、チャージNo.B4およびB5は、脱珪期終了時点から吹錬開始後2000Nmの送酸量の時点でaがBfを上回った累積回数CfがCcrit=11を下回っているため、当該吹錬中に操業条件を変更する必要があると判定されるものである。しかしながら、実際の操業においては吹錬中に操業条件を変更していないため、「スロッピング大」に至り、操業を途中で停止せざるを得なかった。 On the other hand, charge no. B4 and B5 are the operating conditions during the blowing because the cumulative number of times Cf is less than Ccrit = 11 when a exceeds the Bf at the time of the feed amount of 2000 Nm 3 after the start of blowing from the end of the desiliconization period. Is determined to need to be changed. However, in the actual operation, the operating conditions were not changed during the blowing, so the “sloping was large” and the operation had to be stopped halfway.

このことから、一般銑の脱りん脱炭吹錬操業において本発明を適用すれば、吹錬中早期に操業条件の変更の要否を簡易かつ精度良く判定でき、吹錬中期におけるスロッピングによる操業停止を招くことなく、安定して目的の溶鋼を製造しうることが確認できた。   Therefore, if the present invention is applied to the dephosphorization and decarburization blowing operation of general dredging, it is possible to easily and accurately determine whether or not the operating conditions need to be changed at an early stage during blowing, and the operation by slapping in the middle stage of blowing It was confirmed that the target molten steel could be produced stably without causing the stoppage.

Figure 2014141696
Figure 2014141696

[実施例3]脱りん脱炭吹錬操業(処理銑・高炭素鋼吹錬)
処理銑をP:0.025%以下、C:0.5%以上で吹き止める脱りん脱炭吹錬の複数チャージについて、それらの排ガスデータを用いて、各チャージにおける炉内反応状況を評価し、「スロッピング大」を回避しつつ、目標の脱りん率を確保するために操業条件の変更が必要であったか否かの判定を試みた。
[Example 3] Dephosphorization and decarburization blowing operation (treated steel, high carbon steel blowing)
Regarding the multiple charges of dephosphorization and decarburization blowing at which the treated soot is blown at P: 0.025% or less and C: 0.5% or more, the reaction status in the furnace at each charge is evaluated using the exhaust gas data. In order to avoid the “large slopping” and to secure the target dephosphorization rate, an attempt was made to determine whether or not the operating conditions had to be changed.

本実施例における処理銑の脱りん脱炭吹錬の操業条件は以下のとおりである。   The operating conditions of the dephosphorization and decarburization blowing of the treated slag in this example are as follows.

・溶銑条件
装入量:250〜275ton
吹錬前の溶銑成分:
C=4%
Si=0.01〜0.04%
P=0.01〜0.03%
吹錬後の溶鋼成分:
C=0.5〜0.9%
P=0.004〜0.025%
・上吹き条件
ε=1〜3kW/ton
・底吹き条件
ε=0.15〜0.25kW/ton
-Hot metal conditions Charging amount: 250-275ton
Hot metal components before blowing:
C = 4%
Si = 0.01-0.04%
P = 0.01-0.03%
Molten steel composition after blowing:
C = 0.5-0.9%
P = 0.004 to 0.025%
・ Top blowing condition ε T = 1 to 3 kW / ton
・ Bottom blowing condition ε B = 0.15 to 0.25 kW / ton

ここに、εおよびεの定義は、ともに上記実施例1、2と同じである。 Here, both definitions of ε T and ε B are the same as those in the first and second embodiments.

また、上記実施例1、2と同じく、排ガス流量のサンプリング間隔は1s、Δt=5sとした。   Further, as in Examples 1 and 2, the sampling interval of the exhaust gas flow rate was 1 s and Δt = 5 s.

上記実施例1の脱りん吹錬では、目標の処理後りん濃度の達成が最優先課題、上記実施例2の一般銑の脱りん脱炭吹錬ではスロッピング抑制が最優先課題であるのに対し、本実施例の処理銑の脱りん脱炭吹錬では、目標の脱りん率の達成とスロッピング抑制の両立が最優先課題である。   In the dephosphorization blowing of Example 1, the achievement of the target post-treatment phosphorus concentration is the highest priority, and in the general phosphorus dephosphorization decarburization blowing of the above Example 2, the suppression of slipping is the highest priority. On the other hand, in the dephosphorization and decarburization blowing of the treatment tank of the present embodiment, the achievement of the target dephosphorization rate and the suppression of the slopping are the highest priority issues.

吹錬後の脱りん率が、目標脱りん率(0.5)を達成したチャージと、達成できなかったチャージのそれぞれについて、aの経時変化の一例を図11に示す。   FIG. 11 shows an example of a change with time of a for each of the charge at which the dephosphorization rate after blowing achieved the target dephosphorization rate (0.5) and the charge that could not be achieved.

図11に示すように、脱珪期終了時点から吹錬全体の約1/2の400sまでにおいては、aの時間変動はほぼ同じ挙動を示す。本実施例においても、上記実施例1と同じく、吹錬全体の約1/4の200sの時点で吹錬状況を評価することとし、脱珪期終了時点から吹錬開始後200sの時点までの期間(脱珪後所定期間)におけるaを用いた。   As shown in FIG. 11, the time variation of a shows substantially the same behavior from the end of the desiliconization period to 400 seconds, which is about ½ of the entire blowing. Also in this example, as in Example 1 above, the blowing status is evaluated at about ¼ 200 s of the entire blowing, and from the end of the desiliconization period to 200 s after the start of blowing. A in the period (predetermined period after desiliconization) was used.

複数チャージについてaを算出した結果、脱珪期終了時点から吹錬開始後200sの時点までの期間(脱珪後所定期間)におけるaの値は、図11(b)に示すように、脱りん率が目標脱りん率を達成できなかったチャージでは、ほぼ「−7.5」〜「7.5」の範囲内を推移した。一方、同期間におけるaの値は、図11(a)に示すように、処理後りん濃度が目標りん濃度に到達したチャージでは、ほぼ「−1.0」〜「1.0」の範囲内を推移した。   As a result of calculating a for a plurality of charges, the value of a in the period from the end of the desiliconization period to the time of 200 s after the start of blowing (predetermined period after desiliconization) is as shown in FIG. In the charge in which the rate could not achieve the target dephosphorization rate, the rate changed within the range of “−7.5” to “7.5”. On the other hand, as shown in FIG. 11A, the value of “a” during the same period is approximately in the range of “−1.0” to “1.0” when the post-treatment phosphorus concentration reaches the target phosphorus concentration. Changed.

そこで、本実施例では「1.0」〜「7.5」の間で、当該吹錬中に操業条件を変更する必要のない許容範囲Bfを定めることが有効と判断した。   Therefore, in this example, it was determined that it was effective to set an allowable range Bf between “1.0” and “7.5” that does not require the operation condition to be changed during the blowing.

以上より、Bfを定めるために、Bfの候補値Biとして「1.0」〜「7.5」の間の「0.5」刻みの値を採り、図4に模式的に示すように、各Biにおいて、そのBiの値を超えた回数を積算して累積回数Ciを求めた。そして、このCiと吹錬指標の一つである脱りん率との相関関係を調査した。   From the above, in order to determine Bf, a value in increments of “0.5” between “1.0” and “7.5” is taken as the candidate value Bi of Bf, and as schematically shown in FIG. For each Bi, the number of times exceeding the value of Bi was integrated to obtain the cumulative number Ci. And the correlation between this Ci and the dephosphorization rate which is one of blowing indexes was investigated.

図12は、Bi=2.0,3.5,6.0のときにおける、Ciと脱りん率との相関関係を直線回帰により調査し、その相関係数を求めた結果を例示したものである。このようにして求めた相関係数Rについて、図12に、候補値Biとの関係を示した。同図に示すように、候補値Biが「3.5」のときに相関係数Rが最大となったので、本実施例ではBfとして「3.5」を採用した。 FIG. 12 illustrates the result of investigating the correlation between Ci and the dephosphorization rate by linear regression when Bi = 2.0, 3.5, 6.0, and obtaining the correlation coefficient. is there. FIG. 12 shows the relationship between the correlation coefficient R 2 obtained in this way and the candidate value Bi. As shown in the figure, when the candidate value Bi is “3.5”, the correlation coefficient R 2 is maximized. Therefore, in this embodiment, “3.5” is adopted as Bf.

そして、Bfとして「3.5」を採用したことから、候補値Biが「3.5」の図12(b)を用いて、目標脱りん率0.5以下を満足する累積回数Cfのしきい値Ccrit.maxを「5」に決定した。   Since “3.5” is adopted as Bf, the cumulative number Cf that satisfies the target dephosphorization rate of 0.5 or less is calculated using FIG. 12B where the candidate value Bi is “3.5”. Threshold Ccrit. The max was determined as “5”.

つまり、脱珪期終了時点から吹錬開始後200sまでの間にaがBfを超えた累積回数Cf>Ccrit.max=5となった場合、その条件で吹錬を継続すると脱りん率が0.5を達成できない確率(可能性)が高いことがわかる。言い換えれば、目標である0.5以上の脱りん濃率を達成するためには、Cf>Ccrit.max=5となった時点(すなわち、Cf=6に達した時点)で吹錬条件を変更する必要があるとの判定が可能となる。   That is, the cumulative number of times C exceeds Bf between the end of the silicon removal period and 200 s after the start of blowing, Cf> Ccrit. When max = 5, it can be seen that there is a high probability (possibility) that the dephosphorization rate cannot reach 0.5 if blowing is continued under that condition. In other words, in order to achieve the target dephosphorization concentration of 0.5 or more, Cf> Ccrit. It is possible to determine that it is necessary to change the blowing conditions when max = 5 (that is, when Cf = 6).

一方で、吹錬初期でのFeO生成が過剰であった場合、吹錬中期でのCOガスの急激な発生により「スロッピング大」に至るおそれがある。このため、吹錬初期でのFeO生成を過剰にしないことにも配慮する必要がある。吹錬初期におけるaの振れ幅が小さい場合にFeO生成傾向にあり、Bfを超える累積回数Cfが少なくなる。図12に示すように、Cf=0のときに「スロッピング大」が発生したことから、「スロッピング大」を回避する累積回数Cfのしきい値Ccrit.minを「1」に決定した。   On the other hand, if the FeO generation at the initial stage of blowing is excessive, there is a risk that “sloping is large” due to the rapid generation of CO gas in the middle stage of blowing. For this reason, it is necessary to consider not excessively generating FeO at the initial stage of blowing. When the swing width of a at the initial stage of blowing is small, there is a tendency to generate FeO, and the cumulative number of times Cf exceeding Bf decreases. As shown in FIG. 12, since “large slipping” occurred when Cf = 0, the threshold value Ccrit. min was determined to be “1”.

つまり、脱珪期終了時点から吹錬開始後200sの時点でaがBfを超えた累積回数Cf<Ccrit.min=1であった場合(すなわち、Cf=0であった場合)、その条件で吹錬を継続すると吹錬中期に「スロッピング大」に至る確率(可能性)が高いことがわかる。言い換えれば、吹錬中期における「スロッピング大」を回避するためには、Cf<Ccrit.min=1(すなわち、Cf=0)であった場合には吹錬条件を変更する必要があるとの判定が可能となる。   That is, the cumulative number of times C exceeds Bf at the time of 200 s after the start of blowing from the end of the silicon removal period Cf <Ccrit. When min = 1 (that is, when Cf = 0), it is found that if blowing is continued under that condition, there is a high probability (possibility) of reaching “large slipping” in the middle of blowing. In other words, in order to avoid “sloping large” in the middle of blowing, Cf <Ccrit. When min = 1 (that is, Cf = 0), it is possible to determine that the blowing condition needs to be changed.

下記表3に示す処理銑の脱りん脱炭吹錬の5チャージについて、上記のようにして決定したBf=3.5、Ccrit.max=5およびCcrit.min=1を用いて、吹錬中に操業条件を変更する必要があったか否かの判定を試みた。   For 5 charges of dephosphorization and decarburization blowing of the treated soot shown in Table 3 below, Bf = 3.5, Ccrit. max = 5 and Ccrit. Using min = 1, an attempt was made to determine whether the operating conditions had to be changed during blowing.

同表に示すとおり、チャージNo.C1〜C3は、脱珪期終了時点から吹錬開始後200sの時点でaがBfを超えた累積回数CfがCcrit.min=1とCcrit.max=5との間にあるため、当該吹錬中に操業条件を変更する必要がないと判定されるものである。そして、これらのチャージは、実際の操業においても吹錬中に操業条件を変更していないが、吹錬中においてスロッピングが発生せず、吹錬後の脱りん率は、目標の0.5以上を達成している。   As shown in the table, charge no. C1 to C3 indicate that the cumulative number of times Cf exceeds Bf at the time of 200 s from the end of the desiliconization period and 200 s after the start of blowing. min = 1 and Ccrit. Since it is between max = 5, it is determined that there is no need to change the operating conditions during the blowing. These charges do not change the operating conditions during blowing even in actual operation, but no slopping occurs during blowing, and the dephosphorization rate after blowing is the target of 0.5 The above has been achieved.

これに対し、チャージNo.C4は、脱珪期終了時点から吹錬開始後200sの時点でaがBfを超えた累積回数CfがCcrit.min=1を下回っているため、当該吹錬中に操業条件を変更する必要があると判定されるものである。しかしながら、実際の操業においては吹錬中に操業条件を変更していないため、「スロッピング大」に至ってしまい、当該吹錬の脱りん率は目標の脱りん率を達成したものの、以後の操業を長時間停止せざるを得なかった。   On the other hand, charge no. C4 indicates that the cumulative number of times Cf exceeds Bf at the time of 200 s after the start of blowing from the end of the desiliconization period is Ccrit. Since it is less than min = 1, it is determined that it is necessary to change the operation condition during the blowing. However, in the actual operation, the operating conditions were not changed during the blowing operation, resulting in a “sloping large”, and although the dephosphorization rate of the blowing operation achieved the target dephosphorization rate, the subsequent operation Had to stop for a long time.

また、チャージNo.C5は、脱珪期終了時点から吹錬開始後200sの時点でaがBfを超えた累積回数CfがCcrit.max=5を上回っているため、当該吹錬中に操業条件を変更する必要があると判定されるものである。しかしながら、実際の操業においては吹錬中に操業条件を変更していないため、目標の脱りん率を達成できなかった。   In addition, charge No. C5 is the cumulative number of times Cf exceeds Cfrit at the time of 200 seconds after the start of blowing from the end of the desiliconization period. Since it exceeds max = 5, it determines with it being necessary to change an operating condition during the said blowing. However, in the actual operation, since the operation conditions were not changed during blowing, the target dephosphorization rate could not be achieved.

このことから、処理銑の脱りん脱炭吹錬操業において本発明を適用すれば、吹錬中早期に操業条件の変更の要否を簡易かつ精度良く判定でき、吹錬中期におけるスロッピングによる操業停止を招くことなく、安定して目的の品質の溶鋼を製造しうることが確認できた。   Therefore, if the present invention is applied to the dephosphorization and decarburization blowing operation of the treated slag, it is possible to easily and accurately determine whether or not the operating conditions need to be changed at an early stage during blowing, and the operation by slapping in the middle stage of blowing It was confirmed that molten steel of the desired quality could be manufactured stably without incurring a stop.

Figure 2014141696
Figure 2014141696

Claims (3)

転炉を用いた脱りん吹錬操業または脱りん脱炭吹錬操業において、脱珪後所定期間の吹錬初期における排ガス流量の変動により炉内反応進行状況を評価し、当該吹錬操業中に操業条件を変更する必要があるか否かを判定する方法であって、
前記脱珪後所定期間にて、一定時間ごとに下記式(1)で定義される排ガス流量時間変化度aを算出し、この排ガス流量時間変化度aの瞬間値が許容範囲Bfを外れる回数Cfをカウントし、
この回数Cfをしきい値Ccritと比較し、当該吹錬操業中に操業条件を変更する必要があるか否かを判定するものであり、
前記脱珪後所定期間は、脱珪期終了時点から全送酸量の1/4以下の所定の送酸量の時点までの期間であり、
前記許容範囲Bfおよび前記しきい値Ccritは、あらかじめ、前記と同種の過去に行われた複数の吹錬操業の操業データに基づき、前記脱珪後所定期間にて算出された、下記式(1)で定義される排ガス流量時間変化度aと、当該吹錬操業における吹錬指標との相関関係より、当該吹錬操業中に操業条件を変更する必要のないものから定められたものである、
転炉吹錬中における操業条件の変更要否の判定方法。
a={Q(t+Δt)−Q(t)}/Δt ・・・式(1)
ここに、Q:排ガス流量、t:時間、Δt:時間間隔である。
In the dephosphorization blown operation or dephosphorization decarburization blown operation using a converter, the progress of the reaction in the furnace is evaluated by the fluctuation of the exhaust gas flow rate at the initial stage of the blown operation after the desiliconization, and during the blown operation A method for determining whether or not it is necessary to change operating conditions,
The exhaust gas flow rate time variation a defined by the following formula (1) is calculated at regular intervals during the predetermined period after the silicon removal, and the number of times Cf that the instantaneous value of the exhaust gas flow time variation a deviates from the allowable range Bf. Count
The number of times Cf is compared with a threshold Ccrit to determine whether or not the operation conditions need to be changed during the blowing operation.
The predetermined period after desiliconization is a period from the end of the desiliconization period to the time of a predetermined amount of acid sent that is 1/4 or less of the total amount of acid sent.
The allowable range Bf and the threshold value Ccrit are calculated in advance in the predetermined period after desiliconization based on operation data of a plurality of blowing operations performed in the past of the same type as the above (1 From the correlation between the exhaust gas flow rate time change degree a defined in) and the blowing index in the blowing operation, it is determined from those that do not require changing the operating conditions during the blowing operation.
A method for determining whether or not to change operating conditions during converter blowing.
a = {Q (t + Δt) −Q (t)} / Δt (1)
Here, Q: exhaust gas flow rate, t: time, Δt: time interval.
前記のしきい値Ccritとの比較は、前記回数Cfが、当該回数Cfと前記しきい値Ccritとの大小関係を規定する条件式を満足する場合には、当該吹錬操業中に操業条件を変更する必要がないと判定する一方、前記回数Cfが前記条件式を満足しない場合には、当該吹錬操業中に操業条件を変更する必要があると判定するものである、請求項1に記載の転炉吹錬中における操業条件の変更要否の判定方法。   In comparison with the threshold value Ccrit, when the number of times Cf satisfies the conditional expression that defines the magnitude relationship between the number of times Cf and the threshold value Ccrit, the operation condition is determined during the blowing operation. 2. While determining that there is no need to change, when the number of times Cf does not satisfy the conditional expression, it is determined that the operation condition needs to be changed during the blowing operation. To determine whether or not the operating conditions need to be changed during converter blowing. 前記吹錬指標が、吹錬後のりん濃度、吹錬前後での脱りん率および吹錬中におけるスロッピングの発生状況からなる群より選ばれた1種または2種以上である、請求項1または2に記載の転炉吹錬中における操業条件の変更要否の判定方法。   The said blowing index is 1 type (s) or 2 or more types selected from the group which consists of the phosphorus density | concentration after blowing, the dephosphorization rate before and behind blowing, and the generation | occurrence | production state of the slopping in blowing. Or the determination method of the necessity of a change of the operating condition in the converter blowing of 2 or 2.
JP2013009349A 2013-01-22 2013-01-22 Judgment method of necessity of changing operating conditions during converter blowing. Expired - Fee Related JP6000138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013009349A JP6000138B2 (en) 2013-01-22 2013-01-22 Judgment method of necessity of changing operating conditions during converter blowing.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013009349A JP6000138B2 (en) 2013-01-22 2013-01-22 Judgment method of necessity of changing operating conditions during converter blowing.

Publications (2)

Publication Number Publication Date
JP2014141696A true JP2014141696A (en) 2014-08-07
JP6000138B2 JP6000138B2 (en) 2016-09-28

Family

ID=51423235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013009349A Expired - Fee Related JP6000138B2 (en) 2013-01-22 2013-01-22 Judgment method of necessity of changing operating conditions during converter blowing.

Country Status (1)

Country Link
JP (1) JP6000138B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02209411A (en) * 1989-02-07 1990-08-20 Nippon Steel Corp Method for pre-treating molten iron
JPH05222430A (en) * 1992-02-17 1993-08-31 Nkk Corp Method for predicting slopping in converter
JP2000144229A (en) * 1998-11-09 2000-05-26 Nkk Corp Method for predicting slopping in converter and device therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02209411A (en) * 1989-02-07 1990-08-20 Nippon Steel Corp Method for pre-treating molten iron
JPH05222430A (en) * 1992-02-17 1993-08-31 Nkk Corp Method for predicting slopping in converter
JP2000144229A (en) * 1998-11-09 2000-05-26 Nkk Corp Method for predicting slopping in converter and device therefor

Also Published As

Publication number Publication date
JP6000138B2 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
JP5582105B2 (en) Converter blowing control method
JP5145790B2 (en) Blowing end point temperature target setting method for converter
JP5686091B2 (en) Converter refining method
CN102791399B (en) Converter splash prediction and oxygen lance optimization system
JP6515385B2 (en) Hot metal pretreatment method and hot metal pretreatment control device
KR20170094560A (en) Method and device for predicting, controlling and/or regulating steelworks processes
JP2018178200A (en) Phosphorus concentration estimation method in molten steel, converter blowing control device, program, and recording medium
JP5924186B2 (en) Method of decarburizing and refining hot metal in converter
CN110551867A (en) Converter smelting control method based on slag component prediction
JP6000138B2 (en) Judgment method of necessity of changing operating conditions during converter blowing.
JP6601631B2 (en) Method for estimating amount of waste from molten metal refining vessel and method for refining molten metal
JP2012136767A (en) Method for estimating phosphorus concentration in converter
JP2014037605A (en) Molten iron dephosphorization method, molten iron dephosphorization system, production method of low-phosphorous molten iron, and production apparatus of low-phosphorous molten iron
WO2019039539A1 (en) Method for estimating phosphorus concentration in molten steel, converter blowing control device, program, and recording medium
JP4667284B2 (en) Converter operation method
JP5601185B2 (en) Operating method of RH vacuum degassing equipment
JP5423554B2 (en) Hot metal pretreatment method
JP2015129319A (en) Method for judging change of operational condition in dephosphorization treatment of molten pig iron
JP4421314B2 (en) Determination of slag amount in hot metal refining
JP2004277830A (en) Steelmaking method in converter
RU2768084C1 (en) Method for metal melting in oxygen converter
JP2008223047A (en) Method for presuming molten steel component
JP6331601B2 (en) Blowing control method in steelmaking converter.
JP6795133B1 (en) Blow control method and smelt control device for converter type dephosphorization smelting furnace
WO2021106441A1 (en) Operation method of ladle refining process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160607

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160830

R150 Certificate of patent or registration of utility model

Ref document number: 6000138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees