JP2014141565A - Polyester composition and method for manufacturing the same - Google Patents

Polyester composition and method for manufacturing the same Download PDF

Info

Publication number
JP2014141565A
JP2014141565A JP2013009958A JP2013009958A JP2014141565A JP 2014141565 A JP2014141565 A JP 2014141565A JP 2013009958 A JP2013009958 A JP 2013009958A JP 2013009958 A JP2013009958 A JP 2013009958A JP 2014141565 A JP2014141565 A JP 2014141565A
Authority
JP
Japan
Prior art keywords
polyester composition
particles
polyester
less
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013009958A
Other languages
Japanese (ja)
Other versions
JP6175778B2 (en
Inventor
Hiromitsu Sai
浩光 齋
Hitoshi Yoshimura
仁 吉村
Yoshiki Uekakiuchi
善規 上垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2013009958A priority Critical patent/JP6175778B2/en
Publication of JP2014141565A publication Critical patent/JP2014141565A/en
Application granted granted Critical
Publication of JP6175778B2 publication Critical patent/JP6175778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polyester composition exhibiting a favorable polymer filterability at the time of melt extrusion molding and capable of providing a film having a homogeneous surface roughness and a favorable peel strength from a receptive layer.SOLUTION: The provided polyester composition is obtained by including, within a polyester including ethylene terephthalate as a main repeating unit, 0.05-10 wt.% of flocculated silica particles having an average diameter of 0.5-5.0 μm, whereas flocculated silica particles from which lumpy singular particles including elemental silicon as a main component have been removed by air stream separation are added thereto in such a way that the unfiltered residue prevailing on an occasion for transmitting the polyester composition through a sieve opening of 20 μm will be no more than 5 ppm with respect to the entire filtered quantity and that the density of the lumpy singular particles within the unfiltered residue will be 5 particles/cmor less.

Description

本発明は、繊維、フィルム、シート、中空成形体などに用いられるポリエステル組成物およびその製造方法に関するものである。さらに詳しくは凝集シリカ粒子の塊状単一粒子が少なく、押出成形時の濾圧上昇が抑制され、塊状単一粒子による欠点が少ないポリエステル成形体に好適な組成物およびその製造方法に関する。   The present invention relates to a polyester composition used for fibers, films, sheets, hollow molded articles, and the like, and a method for producing the same. More specifically, the present invention relates to a composition suitable for a polyester molded body having a small amount of aggregated silica particles and suppressing an increase in filtration pressure during extrusion molding, and having few defects due to the aggregated single particles, and a method for producing the same.

ポリエチレンテレフタレートなどのポリエステルは、機械的性質及び化学的性質が共に優れているため、工業的価値が高く、繊維、フィルム、シート、中空成形体などに広く使用されている。特にポリエチレンテレフタレートフィルムは優れた機械的特性、熱的特性、電気的特性により産業用途に広く使用されている。   Polyesters such as polyethylene terephthalate are excellent in mechanical properties and chemical properties, and thus have high industrial value, and are widely used for fibers, films, sheets, hollow molded articles and the like. In particular, polyethylene terephthalate films are widely used in industrial applications due to their excellent mechanical properties, thermal properties, and electrical properties.

ポリエチレンテレフタレートフィルムの中で、艶消しポリステルフィルムは表面粗さが均一にできるため、研磨フィルム、記録シート用途に用いられている。   Among polyethylene terephthalate films, matte polyester films have a uniform surface roughness and are used for polishing films and recording sheet applications.

艶消しポリエステルフィルムは添加物としてシリカ粒子が広く用いられ、特許文献1は、その成形時の濾圧上昇を抑制するために、平均粒径を0.01〜10.0μmとすることが提案されている。しかし、平均粒径5.0μm程度としても、濾圧上昇が散見され、不十分であった。特許文献2は、凝集物がほとんどない球状シリカ粒子を樹脂に多量に含有させ、成形時のポリエステルの流動性に優れていることが提案されている。しかし、流動性に優れ、ポリエステル成形時の濾圧上昇の抑制に効果があるものの、フィルムに成形した際に表面が平滑過ぎて、艶消し性ポリエステルフィルムとしては不向きであった。特許文献3は、平均粒径5.0μm以下である凝集シリカをポリエステル組成物に含有させて、ポリエステルフィルムを粒状化してペレット化した濾過性試験での濾圧上昇が80kg/cm以下であることが提案されている。しかし、ポリエステル組成物中にシリカの塊状単一粒子が見られ、ポリエステル成形時の濾圧の上昇が散見され、研磨フィルムの支持体とした際に研磨面に傷がつきやすく、記録シートにおいては受容層との剥離強度が安定しなかった。 In the matte polyester film, silica particles are widely used as an additive, and Patent Document 1 proposes that the average particle size be 0.01 to 10.0 μm in order to suppress an increase in filtration pressure during molding. ing. However, even when the average particle size is about 5.0 μm, an increase in filtration pressure was observed occasionally, which was insufficient. Patent Document 2 proposes that the resin contains a large amount of spherical silica particles having almost no aggregates and is excellent in the fluidity of the polyester during molding. However, although it is excellent in fluidity and effective in suppressing an increase in filtration pressure at the time of forming a polyester, the surface is too smooth when formed into a film, which is unsuitable as a matte polyester film. In Patent Document 3, the increase in the filtration pressure is 80 kg / cm 2 or less in a filterability test in which aggregated silica having an average particle size of 5.0 μm or less is contained in a polyester composition and the polyester film is granulated and pelletized. It has been proposed. However, a single lump of silica particles is seen in the polyester composition, an increase in the filtration pressure at the time of polyester molding is observed, and the polishing surface is easily damaged when used as a support for an abrasive film. The peel strength with the receiving layer was not stable.

特開2001−348733号公報(3ページ)JP 2001-348733 A (page 3) 特開2002−338231号公報(4ページ)JP 2002-338231 A (page 4) 特開2002−309014号公報(2ページ)JP 2002-309014 A (2 pages)

本発明は、上記した従来の課題を解決し、ポリエステルフィルム成形時の濾圧上昇が小さく、ポリエステルフィルム表面の欠点が少ないポリエステル組成物およびその製造方法に関する。   The present invention solves the above-described conventional problems, and relates to a polyester composition having a small increase in filtration pressure during molding of a polyester film and having few defects on the surface of the polyester film and a method for producing the same.

前記した課題は、主たる繰り返し単位がエチレンテレフタレートから成るポリエステル中に平均粒径0.5〜5.0μmの凝集シリカ0.05〜10重量%を含有するポリエステル組成物であって、該ポリエステル組成物を目開き20μmを通過した際の濾上物が、全体の濾過量に対して5ppm以下であり、かつ濾上物がケイ素元素を主成分とする塊状単一粒子が5個/cm以下であることを特徴とするポリエステル組成物によって達成できる。 The above-described problem is a polyester composition containing 0.05 to 10% by weight of agglomerated silica having an average particle size of 0.5 to 5.0 μm in a polyester whose main repeating unit is ethylene terephthalate, and the polyester composition The filtered material when passing through 20 μm of mesh is 5 ppm or less with respect to the total amount of filtration, and the filtered material is 5 single particles / cm 2 or less of massive single particles mainly composed of silicon element. It can be achieved by a polyester composition characterized by being.

本発明のポリエステル組成物を使用したポリエステルフィルムは、ポリエステルフィルム製造時において濾圧上昇が小さい。また、得られた成形物、例えばポリエステルフィルムは、表面粗度が均一で研磨面に傷がつきにくく、受容層との剥離強度が安定している。   The polyester film using the polyester composition of the present invention has a small increase in filtration pressure during the production of the polyester film. Moreover, the obtained molded product, for example, a polyester film, has a uniform surface roughness, hardly scratches the polished surface, and has a stable peel strength from the receiving layer.

本発明で用いられる気流分離装置Airflow separation device used in the present invention

本発明で用いるポリエステル組成物は主たる繰り返し単位がエチレンテレフタレートから成るポリエステルであり、ポリエステル構成単位の80モル%以上がエチレンテレフタレート単位であることが好ましい。エチレンテレフタレート単位以外の構成繰り返し単位を構成する他の酸成分および/または他のグリコール成分を20モル%未満の範囲で含んでもよいが、エチレンテレフタレート成分が80モル%未満である場合、ポリエステルの結晶性が不十分となり、ポリエステル成形前の乾燥時に乾燥機内の壁面にポリエステルチップが融着しやすくなる。また、成形体としての物理特性が不十分となるので、ポリエステル構成単位の80モル%以上がエチレンテレフタレート単位であることがより好ましい。   The polyester composition used in the present invention is a polyester mainly composed of ethylene terephthalate, and 80 mol% or more of the polyester structural units are preferably ethylene terephthalate units. Other acid components and / or other glycol components constituting the structural repeating unit other than the ethylene terephthalate unit may be contained in a range of less than 20 mol%. When the ethylene terephthalate component is less than 80 mol%, polyester crystals Insufficient property is obtained, and the polyester chip is easily fused to the wall surface in the dryer at the time of drying before the polyester molding. Moreover, since the physical characteristics as a molded object become inadequate, it is more preferable that 80 mol% or more of a polyester structural unit is an ethylene terephthalate unit.

本発明のポリエステル組成物は、本発明の成形体の機能が損なわれない範囲であれば、2,6−ナフタレンジカルボン酸、ジフェニルジカルボン酸、フタル酸、イソフタル酸、スルホイソフタル酸ナトリウムおよびこれらのアルキルエステルなどの芳香族ジカルボン酸成分、アジピン酸、セバシン酸、およびこれらのアルキルエステルなどの脂肪族ジカルボン酸成分、1,4シクロヘキサンジカルボン酸およびこれらのアルキルエステルなどの脂環族ジカルボン酸成分を含んでもよい。グリコール成分としては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、1,4シクロヘキサンジメタノール、ネオペンチルグリコール、スピログリコール、ビスフェノールAのエチレンオキサイド付加物、イソソルベート等を含んでもよい。また多官能成分としては、トリメリット酸、ピロメリット酸などの多官能カルボン酸成分、トリメチロールプロパン、ペンタエリスリトールなどの多官能アルコールを含んでもよい。さらに本発明の成形体の機能が損なわれない範囲であれば、pヒドロキシ安息香酸等のヒドロキシカルボン酸を共重合成分として用いてもよい。   The polyester composition of the present invention has 2,6-naphthalenedicarboxylic acid, diphenyldicarboxylic acid, phthalic acid, isophthalic acid, sodium sulfoisophthalate, and alkyl thereof as long as the function of the molded article of the present invention is not impaired. An aromatic dicarboxylic acid component such as an ester, an adipic acid, sebacic acid, an aliphatic dicarboxylic acid component such as an alkyl ester thereof, an alicyclic dicarboxylic acid component such as 1,4 cyclohexanedicarboxylic acid and an alkyl ester thereof Good. The glycol component may include ethylene glycol, diethylene glycol, propylene glycol, butanediol, 1,4 cyclohexanedimethanol, neopentyl glycol, spiroglycol, ethylene oxide adduct of bisphenol A, isosorbate, and the like. The polyfunctional component may include a polyfunctional carboxylic acid component such as trimellitic acid and pyromellitic acid, and a polyfunctional alcohol such as trimethylolpropane and pentaerythritol. Furthermore, hydroxycarboxylic acids such as p-hydroxybenzoic acid may be used as a copolymerization component as long as the function of the molded article of the present invention is not impaired.

エステル交換反応触媒は、酢酸マグネシウム、酢酸マンガン、酢酸カルシウム、酢酸コバルト、酢酸リチウムおよび酢酸亜鉛などを用いることが可能であるが、耐加水分解性の点から、酢酸マンガン、酢酸マグネシウムおよび酢酸カルシウムを用いることが好ましい。   As the transesterification catalyst, magnesium acetate, manganese acetate, calcium acetate, cobalt acetate, lithium acetate and zinc acetate can be used. From the viewpoint of hydrolysis resistance, manganese acetate, magnesium acetate and calcium acetate are used. It is preferable to use it.

重縮合反応触媒は、三酸化アンチモン、五酸化アンチモン、酢酸アンチモン、アンチモングリコラート、二酸化ゲルマニウム、有機チタン化合物などの一種または二種以上を用いることができる。中でも得られるポリエステルの透明性および入手性の面から三酸化アンチモン、酢酸アンチモン、二酸化ゲルマニウムが好ましい。   As the polycondensation reaction catalyst, one or more of antimony trioxide, antimony pentoxide, antimony acetate, antimony glycolate, germanium dioxide, an organic titanium compound, and the like can be used. Among them, antimony trioxide, antimony acetate, and germanium dioxide are preferable from the viewpoint of transparency and availability of the obtained polyester.

本発明のポリエステル組成物は用途に応じて、シリカ、アルミナ、炭酸カルシウム、チタン化合物、顔料などの滑剤、艶消し剤を添加することができる。特に凝集シリカ粒子は分散性に優れ、ポリエステルフィルムの表面を均一に粗面化できるので好ましい。   The polyester composition of the present invention can be added with a lubricant such as silica, alumina, calcium carbonate, titanium compound, pigment, and a matting agent depending on the application. Aggregated silica particles are particularly preferable because they are excellent in dispersibility and can uniformly roughen the surface of the polyester film.

本発明で用いる凝集シリカ粒子の平均粒子径は、レーザ−回折散乱式粒度分布測定装置で測定される平均粒子径(体積基準の積算50%粒子径)で0.5〜5.0μm、好ましくは2.0〜4.0μmである。平均粒子径が小さ過ぎるとフィルム表面が平滑過ぎ、一方平均粒子径が大きいとフィルム表面の突起が大きくなり過ぎる。
凝集シリカ粒子の含有量はポリエステル組成物に対して、ケイ素原子として0.05〜10重量%であり、好ましくは1.0〜6.0重量%である。0.05重量%未満ではポリエステルフィルム表面の粗面化が不十分であり、10重量%を越えると、粗大な粒子ができやすく、また液相重縮合の工程で攪拌機の負荷が大きくなるので、得られた成形品の表面品位が劣り、また所定の重合度とすることが困難になる。
The average particle size of the agglomerated silica particles used in the present invention is 0.5 to 5.0 μm in terms of an average particle size (volume-based cumulative 50% particle size) measured with a laser-diffraction scattering type particle size distribution analyzer, preferably It is 2.0-4.0 micrometers. If the average particle size is too small, the film surface is too smooth, while if the average particle size is large, the protrusions on the film surface become too large.
The content of the agglomerated silica particles is 0.05 to 10% by weight, preferably 1.0 to 6.0% by weight, as silicon atoms, based on the polyester composition. If the amount is less than 0.05% by weight, the surface of the polyester film is not sufficiently roughened. If the amount exceeds 10% by weight, coarse particles are easily formed, and the load of the stirrer increases in the liquid phase polycondensation process. The surface quality of the obtained molded product is inferior, and it becomes difficult to obtain a predetermined degree of polymerization.

本発明で用いる凝集シリカ粒子の具体的な製造方法は、ケイ酸ナトリウム水溶液に硫酸を加えて、シリカゾルを得る。その後、水洗してシリカヒドロゲルを得て、乾燥してシリカキセロゲルを得る。得られたシリカキセロゲルを円盤型粉砕機で粉砕して平均粒子径(体積基準の積算50%粒子径)0.5〜5.0μmの粒子を得て、図1に示す気流分離方式で、塊状単一粒子を含まない凝集シリカ粒子を得る。気流分離方式の工程は、具体的には図1に基づいて説明する。直径50cm、高さ200cmの円筒形の気流分離装置1に、凝集シリカ粒子を5体積%含有させた気流を、流入口6から20m/hrの速度で流入させる。流入口6から入った気流は気流分離装置1内で旋回流を発生させ、塊状単一粒子は落下して塊状単一粒子回収ボックス2に回収される。一方、塊状単一粒子を含まない凝集シリカ粒子は上昇気流により気流分離装置1の上部に移動し、バグフィルター3で捕捉し、中間槽4で回収し、サイロ5で貯蔵される。バグフィルター3に凝集シリカ捕捉後の気流を大気に放出させるため、ベント7を設ける。凝集シリカ粒子を含む気流は、気流分離装置1の側面の流入口6から流入する。ここで、流入角度Aは3〜5度であることが好ましい。流入角度が3度以上であれば気流が旋回しながら上昇気流を発生させることができ、5度以下であれば塊状単一粒子を効率よく、塊状単一粒子回収ボックス2で回収して収率を向上させることができる。 In a specific method for producing the aggregated silica particles used in the present invention, sulfuric acid is added to an aqueous sodium silicate solution to obtain a silica sol. Thereafter, it is washed with water to obtain a silica hydrogel, and dried to obtain a silica xerogel. The obtained silica xerogel is pulverized with a disk-type pulverizer to obtain particles having an average particle diameter (volume-based integrated 50% particle diameter) of 0.5 to 5.0 μm, and is agglomerated by the airflow separation method shown in FIG. Agglomerated silica particles free of single particles are obtained. The airflow separation process will be specifically described with reference to FIG. An air stream containing 5% by volume of agglomerated silica particles is introduced into the cylindrical airflow separator 1 having a diameter of 50 cm and a height of 200 cm from the inlet 6 at a speed of 20 m 3 / hr. The airflow entering from the inflow port 6 generates a swirling flow in the airflow separator 1, and the lump single particles fall and are collected in the lump single particle collection box 2. On the other hand, the agglomerated silica particles that do not contain massive single particles move to the upper part of the airflow separation device 1 by the rising airflow, are captured by the bag filter 3, recovered by the intermediate tank 4, and stored in the silo 5. A vent 7 is provided to cause the bag filter 3 to release the airflow after capturing the aggregated silica to the atmosphere. The airflow containing the agglomerated silica particles flows from the inlet 6 on the side surface of the airflow separator 1. Here, the inflow angle A is preferably 3 to 5 degrees. If the inflow angle is 3 degrees or more, the ascending airflow can be generated while the airflow swirls, and if it is 5 degrees or less, the lump single particles are efficiently recovered by the lump single particle recovery box 2 and the yield Can be improved.

凝集シリカ粒子はポリエステル組成物の製造において、粒子分散性の点で、エチレングリコールを媒体としたスラリー状で添加するのが好ましい。また粒子分散性の向上をはかるために、スラリー化する際に凝集シリカ粒子に対して、0.10重量%以上、1.20重量%以下のリン酸の存在下で高速分散を行なうことが好ましく、より好ましくは0.15重量%以上、0.72重量%以下である。リン酸が0.10重量%以上であれば粒子分散性向上が得られ、1.20重量%以下であればポリエステル組成物に添加した際に重合反応性が悪くならない。   In the production of the polyester composition, the agglomerated silica particles are preferably added in the form of a slurry using ethylene glycol as a medium from the viewpoint of particle dispersibility. In order to improve particle dispersibility, it is preferable to perform high-speed dispersion in the presence of 0.10% by weight or more and 1.20% by weight or less of phosphoric acid with respect to the aggregated silica particles when slurryed. More preferably, it is 0.15% by weight or more and 0.72% by weight or less. If phosphoric acid is 0.10% by weight or more, particle dispersibility is improved, and if it is 1.20% by weight or less, polymerization reactivity does not deteriorate when added to the polyester composition.

高速分散は攪拌機の回転数が600rpm以上、3600rpm以下であり、好ましくは700rpm以上、3000rpm以下である。600rpm以上であれば分散性が良好であり、効率的である。一方、3600rpm以下であれば分散性が十分であり、またスラリーが増粘し過ぎることもない。   In the high-speed dispersion, the rotation speed of the stirrer is 600 rpm or more and 3600 rpm or less, preferably 700 rpm or more and 3000 rpm or less. If it is 600 rpm or more, the dispersibility is good and efficient. On the other hand, if it is 3600 rpm or less, the dispersibility will be sufficient and the slurry will not be too thick.

本発明のポリエステル組成物は、公知の液相重合方法で得ることができ、たとえば、ジメチルテレフタレートとエチレングリコールを原料とし、エステル交換反応槽に移送して、エステル交換反応触媒の存在下でエステル交換反応によって低重合体を得て、エステル交換反応が実質的に完結した後から重縮合開始前までに、凝集シリカ粒子スラリーを添加する。エステル交換反応後に凝集シリカ粒子スラリーを添加することで、ジエチレングリコールなどの副生を抑制でき、重縮合開始前までに凝集シリカ粒子を添加することで粒子がポリエステル組成物中に均一に分散させることができる。また凝集シリカ粒子スラリーの濃度はシリカ濃度として10重量%以上、20重量%以下であることが好ましく、より好ましくは11重量%以上、17重量%以下である。シリカ濃度が10重量%以上であれば貯槽の容量が小さくて設備費が安く、スラリー調整作業時間も短縮でき、シリカ濃度が20重量%以下であれば凝集シリカ粒子スラリー中で凝集体の生成を抑制して粒子分散性を維持できる。
引き続き、得られた低分子量体を重縮合反応槽に移送し、液相重合反応させる重縮合工程、またチップ化するカッティング工程で製造できる。
The polyester composition of the present invention can be obtained by a known liquid phase polymerization method. For example, dimethyl terephthalate and ethylene glycol are used as raw materials, transferred to a transesterification reactor, and transesterified in the presence of a transesterification reaction catalyst. A low polymer is obtained by the reaction, and the aggregated silica particle slurry is added after the transesterification reaction is substantially completed and before the start of polycondensation. By adding the agglomerated silica particle slurry after the transesterification reaction, by-products such as diethylene glycol can be suppressed, and by adding the agglomerated silica particles before the start of polycondensation, the particles can be uniformly dispersed in the polyester composition. it can. The concentration of the aggregated silica particle slurry is preferably 10% by weight or more and 20% by weight or less, more preferably 11% by weight or more and 17% by weight or less as the silica concentration. If the silica concentration is 10% by weight or more, the capacity of the storage tank is small, the equipment cost is low, the slurry adjustment work time can be shortened, and if the silica concentration is 20% by weight or less, aggregates are generated in the agglomerated silica particle slurry. It can suppress and maintain particle dispersibility.
Subsequently, the obtained low molecular weight product can be transferred to a polycondensation reaction tank, and can be produced by a polycondensation step in which a liquid phase polymerization reaction is carried out, or a cutting step in which chips are formed.

本発明のポリエステル組成物に含まれる凝集シリカ粒子の平均粒子径は0.5〜5.0μmである。本発明の平均粒子径は、ポリエステル組成物をプラズマ低温灰化処理して粒子を露出させ、これを走査型電子顕微鏡(SEM)で観察して、粒子の画像をイメージアナライザーで処理し、粒子数5000個以上を数え体積平均粒子径を求めた。
本発明のポリエステル組成物はケイ素元素が主成分の塊状の単一粒子が5個/cm以下である。塊状の単一粒子が5個/cmを越えると、押出成形時の濾圧上昇が早く、フィルターの交換周期が短くなる。これは塊状の単一粒子は凝集体に比べて固く、フイルターで捕捉された際に崩れにくいので、より濾圧上昇を招きやすいと考えられる。またフィルム表面に存在する塊状の単一粒子は固く、研磨フィルムの支持体に使用した際に、研磨する面に傷がつきやすい。また記録シートにした際に受容層に積層されたフィルムや紙の剥離強度が安定しない。
The average particle diameter of the agglomerated silica particles contained in the polyester composition of the present invention is 0.5 to 5.0 μm. The average particle size of the present invention is such that the polyester composition is subjected to plasma low-temperature ashing treatment to expose the particles, which are observed with a scanning electron microscope (SEM), and the image of the particles is processed with an image analyzer. The volume average particle diameter was determined by counting 5000 or more particles.
The polyester composition of the present invention has 5 single particles / cm 2 or less of massive single particles mainly composed of silicon element. If the number of massive single particles exceeds 5 particles / cm 2 , the filtration pressure rises rapidly during extrusion, and the filter replacement cycle is shortened. This is considered to be because the lump-like single particles are harder than the aggregates and are less likely to collapse when captured by the filter, and thus more likely to increase the filtration pressure. Moreover, the lump single particle which exists in the film surface is hard, and when it uses for the support body of an abrasive film, the surface to grind | polishes easily is damaged. Further, when the recording sheet is formed, the peel strength of the film or paper laminated on the receiving layer is not stable.

本発明でいう塊状単一粒子とは、ケイ素元素を主成分とするもので、走査型電子顕微鏡でポリエステル組成物を観察した際に、粒子が平面で平滑な部分があり、凝集体に見られる微細な細孔容積が観察されず、元素分析でケイ素が測定される粒子である。また塊状単一粒子の組成はケイ素原子が99%以上である。   The bulk single particles referred to in the present invention are mainly composed of silicon element, and when the polyester composition is observed with a scanning electron microscope, the particles are flat and have a smooth portion, and are found in aggregates. Particles in which fine pore volume is not observed and silicon is measured by elemental analysis. The composition of the bulk single particles is 99% or more of silicon atoms.

本発明のポリエステル組成物の濾過性試験(ΔP)は、0.80MPa以下であることが好ましく、より好ましくは0.70MPa以下である。ΔPが0.80MPa以下であると押出成形機での濾圧上昇が少なく、フィルターの交換周期が長いため生産性が良好である。   The filterability test (ΔP) of the polyester composition of the present invention is preferably 0.80 MPa or less, more preferably 0.70 MPa or less. When ΔP is 0.80 MPa or less, the increase in the filtration pressure in the extruder is small, and the filter replacement cycle is long, so the productivity is good.

本発明のポリエステル組成物で、繊維、フィルム、中空成形体を製造することができる。以下にフィルムの製造方法の具体例を説明する。   With the polyester composition of the present invention, fibers, films and hollow molded articles can be produced. The specific example of the manufacturing method of a film is demonstrated below.

フィルムに成形する際にはポリエステル組成物を乾燥機で乾燥し、次いで溶融押出機に投入し、押出機に備え付けたスリット口金から連続して溶融シートを押し出す。押し出された溶融シートは静電印加法によって鏡面冷却ドラムに密着させ、非晶のキャストシートを得る。なお、積層フィルムとする際には、2台以上の押出機を用いてポリマーを溶融し、溶融したポリマーを積層ブロックや口金で合流させて積層することができる。   When forming into a film, the polyester composition is dried with a drier, then charged into a melt extruder, and a molten sheet is continuously extruded from a slit die provided in the extruder. The extruded molten sheet is brought into close contact with the mirror cooling drum by an electrostatic application method to obtain an amorphous cast sheet. In addition, when setting it as a laminated film, a polymer can be fuse | melted using 2 or more extruders, and the melted polymer can be united and laminated | stacked with a lamination | stacking block or a nozzle | cap | die.

得られた非晶性のシートは次いで、種々の延伸法、たとえば、ロール延伸法あるいはテンター延伸法により一軸もしくは二軸に延伸し、これを巻き取る。延伸の順序は逐次でも同時でもいずれでも良い。ここで縦方向への延伸とはフィルムに長手方向の分子配向を与えるための延伸をいい、例えば、延伸ロールを用いてロールの周速差により施される。この延伸は1段階で行ってもよく、また複数本のロール対を使用して多段階に行っても良い。延伸の倍率としては2〜15倍が好ましく、より好ましくは2.5〜7倍である。横方向の延伸とはフィルムに幅方向の配向を与えるための延伸をいい、例えば、テンターを用いてフィルムの両端をクリップで把持しながら搬送して幅方向に延伸する。延伸の倍率としては2〜10倍が好ましい。同時二軸延伸の場合はテンター内にてフィルムの両端をクリップで把持しながら搬送しつつ、縦方向および横方向に同時に延伸するものであり、この方法を用いてもよい。   The obtained amorphous sheet is then stretched uniaxially or biaxially by various stretching methods, for example, a roll stretching method or a tenter stretching method, and is wound up. The order of stretching may be either sequential or simultaneous. Here, stretching in the longitudinal direction refers to stretching for imparting a molecular orientation in the longitudinal direction to the film. For example, the stretching is performed by using a stretching roll depending on a difference in peripheral speed of the roll. This stretching may be performed in one stage, or may be performed in multiple stages using a plurality of roll pairs. The stretching ratio is preferably 2 to 15 times, more preferably 2.5 to 7 times. Stretching in the transverse direction refers to stretching for giving the film an orientation in the width direction. For example, the film is stretched in the width direction by using a tenter while gripping both ends of the film with clips. The stretching ratio is preferably 2 to 10 times. In the case of simultaneous biaxial stretching, the film is stretched simultaneously in the longitudinal direction and the lateral direction while being conveyed while being gripped by clips in the tenter, and this method may be used.

こうして二軸延伸されたフィルムは平面性、寸法安定性を付与するためにテンター内で延伸温度以上融点以下の熱処理を行うのが好ましく、均一に除冷後、室温まで冷却して巻き取られる。本発明におけるフィルムの熱処理温度は120〜240℃であることが平面性、寸法安定性などの点から好ましい。   The biaxially stretched film is preferably subjected to a heat treatment at a temperature not lower than the stretching temperature and not higher than the melting point in the tenter in order to impart flatness and dimensional stability. The film is uniformly cooled and then cooled to room temperature and wound. In the present invention, the heat treatment temperature of the film is preferably 120 to 240 ° C. from the viewpoints of flatness and dimensional stability.

また、易接着層、粒子層等を形成する場合は、グラビアコートやメタリングバーなどのコーティング技術を用いて、延伸前、または縦延伸と横延伸の間でコーティング成分をインラインで塗布してもよいし、延伸後オフラインコーティングしてもよい。   In addition, when forming an easy-adhesion layer, particle layer, etc., the coating components may be applied in-line before stretching or between longitudinal stretching and lateral stretching using a coating technique such as gravure coating or metering bar. It is also possible to perform off-line coating after stretching.

本発明のポリエステル組成物を使用したポリエステルフィルムは、中心線平均表面粗さ(SRa)が100nm以上、1000nm以下であることが好ましく、より好ましくは200nm以上、700nm以下であり、さらに好ましくは、250nm以上、500nm以下である。該中心線平均表面粗さが100nm以上であると表面の粗面化が十分であり、研磨支持体としての研磨の目的を達成できる。また該中心線平均表面粗さが1000nm以下であると研磨面に傷がつきにくい。   The polyester film using the polyester composition of the present invention preferably has a center line average surface roughness (SRa) of 100 nm or more and 1000 nm or less, more preferably 200 nm or more and 700 nm or less, and further preferably 250 nm. As mentioned above, it is 500 nm or less. When the center line average surface roughness is 100 nm or more, the surface is sufficiently roughened, and the purpose of polishing as a polishing support can be achieved. Further, when the center line average surface roughness is 1000 nm or less, the polished surface is hardly damaged.

中心線平均表面粗さ(SRa)は触針曲率半径2μmの触針式の3次元粗さ計で測定ができ、5μm間隔で40回測定した値の平均値である。   The center line average surface roughness (SRa) can be measured with a stylus type three-dimensional roughness meter having a stylus radius of curvature of 2 μm, and is an average value of values measured 40 times at intervals of 5 μm.

本発明において、受容層と該受容層面に積層されるプラスチックフィルムや紙との剥離強度は200g/cm以下1g/cm以上であることが好ましい。より好ましくは150g/cm以下1g/cm以上、さらに好ましくは100g/cm以下1g/cm以上である。剥離強度が1g/cm以上であると、記録シートとして使用時プラスチックフィルムや紙を剥離するとき、受容層がプラスチックフィルムや紙に転写することがないので好ましい。また剥離強度が200g/cm以下であると走行中受容層から剥離してシワ等が発生することがない。   In the present invention, the peel strength between the receiving layer and the plastic film or paper laminated on the receiving layer surface is preferably 200 g / cm or less and 1 g / cm or more. More preferably, it is 150 g / cm or less and 1 g / cm or more, More preferably, it is 100 g / cm or less and 1 g / cm or more. When the peel strength is 1 g / cm or more, when the plastic film or paper is peeled off when used as a recording sheet, the receiving layer is preferably not transferred to the plastic film or paper. Further, if the peel strength is 200 g / cm or less, it will not peel off from the receiving layer during running and wrinkles will not occur.

本発明のポリエステル組成物を使用したポリエステルフィルムの厚さはその用途によって異なるが、研磨性、経済性の観点から10μm以上、300μmが好ましく、より好ましくは、20μm以上、200μm以下、さらに好ましくは20〜100μmの範囲である。   Although the thickness of the polyester film using the polyester composition of the present invention varies depending on its use, it is preferably 10 μm or more and 300 μm, more preferably 20 μm or more and 200 μm or less, and still more preferably 20 from the viewpoints of abrasiveness and economy. It is in the range of ~ 100 μm.

本発明のポリエステル組成物を使用したポリエステルフィルムは、塊状の単一粒子による欠点が少ないので、ポリエステルフィルム製造時において濾圧上昇が小さい。また、得られたポリエステルフィルムは、表面粗度が均一で研磨フィルムの支持体、受容層との剥離強度にばらつきが少なく記録シート用途に好適である。   Since the polyester film using the polyester composition of the present invention has few defects due to massive single particles, the increase in filtration pressure is small during the production of the polyester film. Further, the obtained polyester film has a uniform surface roughness, and has little variation in peel strength with respect to the support of the polishing film and the receiving layer, and is suitable for recording sheet applications.

以下本発明を実施例によりさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

(1)凝集シリカ粒子の平均粒子径
ポリエステル組成物をプラズマ低温灰化処理して粒子を露出させる。これを走査型電子顕微鏡(SEM)で観察して、粒子の画像をイメージアナライザーで処理し、粒子数5000個以上を数え体積平均粒子径を求めた。
(1) Average particle diameter of aggregated silica particles The polyester composition is subjected to plasma low-temperature ashing to expose the particles. This was observed with a scanning electron microscope (SEM), and the image of the particles was processed with an image analyzer, and the number of particles of 5000 or more was counted to determine the volume average particle diameter.

(2)凝集シリカ粒子の含有量
ポリエステル組成物を蛍光X線元素分析装置(堀場製作所製、MESA−500W型)で、ケイ素元素を測定し、予め求めた検量線により求めた。
(2) Content of Aggregated Silica Particles The polyester composition was measured with a fluorescent X-ray elemental analyzer (manufactured by Horiba, Ltd., MESA-500W type) to measure silicon elements, and was determined from a calibration curve determined in advance.

(3)濾過性試験(ΔP)
ポリエステル組成物中の粗大粒子量の指標として、富士フィルター製フジメルトスピニングテスター(MST−C400)を用いて濾過圧力を測定した。ポリエステル組成物のチップをあらかじめ145℃で7.5時間乾燥後、メルトスピニングテスターのシリンダー温度290℃で、濾過面積2.5cmのフィルタ−目開き20μm焼結繊維フィルター、吐出量10g/分の条件下で測定し、初期圧力と3時間後圧力との差を濾過圧力ΔPとして判定した。
(3) Filterability test (ΔP)
As an index of the amount of coarse particles in the polyester composition, a filtration pressure was measured using a Fujimelt spinning tester (MST-C400) manufactured by Fuji Filter. A polyester composition chip is dried at 145 ° C. for 7.5 hours in advance, and a melt spinning tester cylinder temperature of 290 ° C., a filter area of 2.5 cm 2, a 20 μm-sintered sintered fiber filter, and a discharge rate of 10 g / min. The measurement was performed under the conditions, and the difference between the initial pressure and the pressure after 3 hours was determined as the filtration pressure ΔP.

(4)目開き20μm濾上物量の測定
前記の濾過性試験機のフイルターをヘキサフロロイソプロパノール(HFIP)でポリマー分を溶解した後、その液を目開き5μmのニッケルスクリーンで濾過した。次いで、ニッケルスクリーンを乾燥させ、濾上物の重さを測定し、前記の濾過性試験で通過したポリエステル組成物の量から、濾上物の量(ppm)を求めた。
(4) Measurement of the amount of material on the filter with an opening of 20 μm After the polymer content of the filter of the filterability tester was dissolved with hexafluoroisopropanol (HFIP), the liquid was filtered with a nickel screen having an opening of 5 μm. Next, the nickel screen was dried, the weight of the filtered product was measured, and the amount (ppm) of the filtered product was determined from the amount of the polyester composition passed in the filterability test.

(5)塊状単一粒子の測定
塊状の単一粒子の特徴は、走査型電子顕微鏡でポリエステル組成物を倍率1000倍で観察した際に、面が平らで凹凸が少なく、また20000倍で観察した際に、凝集シリカ特有である細孔容積が観察されない。
走査型電子顕微鏡を用いてポリエステル組成物の任意の箇所について、1000倍の倍率で20枚撮影した。その写真から、塊状の単一粒子に蛍光X線を当てて、ケイ素であることを確認できたものをカウントし、写真20枚での平均値から単位面積当たりの塊状の単一粒子数を算出した。
(5) Measurement of lump single particles The characteristics of lump single particles were observed when the polyester composition was observed with a scanning electron microscope at a magnification of 1000 times, and the surface was flat and there were few irregularities and was observed at 20000 times. In this case, the pore volume peculiar to the agglomerated silica is not observed.
Using a scanning electron microscope, 20 images of an arbitrary portion of the polyester composition were taken at a magnification of 1000 times. From the photograph, fluorescent X-rays were applied to the massive single particles, and the number of those confirmed to be silicon was counted, and the number of massive single particles per unit area was calculated from the average value of 20 photographs. did.

(6)押出成形機のフィルター交換周期
下記のように評価した。
○○:交換周期の間隔が14日間以上
○:交換周期の間隔が7日間以上、14日間未満
△:交換周期の間隔が5日間以上、7日間未満
×:交換周期の間隔が5日間未満
(7)フィルム表面の中心線平均表面粗さ(SRa)
小坂研究所製Surfcorder ET30HKを用い、下記条件にてフィルム表面の中心線平均粗さ(SRa)を求めた。
触針曲率半径 : 2μm
カットオフ : 0.25mm
測定長 : 0.5mm
測定間隔 : 5μm
測定回数 : 40回。
(6) Extruder filter replacement period The evaluation was performed as follows.
◯: Exchange cycle interval is 14 days or more ○: Exchange cycle interval is 7 days or more and less than 14 days Δ: Exchange cycle interval is 5 days or more and less than 7 days ×: Exchange cycle interval is less than 5 days ( 7) Centerline average surface roughness (SRa) of the film surface
The center line average roughness (SRa) of the film surface was determined under the following conditions using Surfcorder ET30HK manufactured by Kosaka Laboratory.
Stylus radius of curvature: 2 μm
Cut-off: 0.25mm
Measurement length: 0.5mm
Measurement interval: 5 μm
Number of measurements: 40 times.

(8)研磨状態
次の研磨層用塗工液組成の配合物を1時間攪拌した後、細孔径約1μmのフィルターで濾過して固形分30%の研磨層用塗工液を得た。研磨層用塗工液組成は、シリカゾル(有効成分30重量%、MEK−ST、日産化学社製、平均粒径10〜20nm)を24重量部、アクリルポリオール(有効成分50重量%、アクリディックA804、大日本インキ化学工業社製)を3重量部、イソシアネート硬化剤(有効成分60重量%、タケネートD110N、武田薬品工業社製)を1重量部、メチルエチルケトンを2重量部である。上記の研磨層用塗工液を支持体上にバーコーティングにより塗布し、加熱乾燥し、その後熱処理して硬化させて研磨フィルムを作製した。該研磨フィルム(φ127mm)を用いて、光コネクタ研磨機(SFP−120A、精工技研社製)により光ファイバコネクタフェルールを最終研磨した。研磨は、光ファイバコネクタフェルール12本を研磨機の研磨ホルダーに取り付け、最終研磨時間30〜60秒で行った。研磨後のフェルール表面のジルコニア部分及びガラスファイバー部分における鏡面性(傷の発生状態)を顕微鏡で観察した。
(8) Polishing State After the composition having the following coating composition for polishing layer was stirred for 1 hour, it was filtered through a filter having a pore diameter of about 1 μm to obtain a coating liquid for polishing layer having a solid content of 30%. The coating liquid composition for the polishing layer is composed of 24 parts by weight of silica sol (30% by weight of active ingredient, MEK-ST, manufactured by Nissan Chemical Co., Ltd., average particle size 10 to 20 nm), acrylic polyol (50% by weight of active ingredient, ACRYDIC A804). 3 parts by weight, manufactured by Dainippon Ink & Chemicals, Inc., 1 part by weight of isocyanate curing agent (active ingredient 60% by weight, Takenate D110N, Takeda Pharmaceutical Company Limited), and 2 parts by weight of methyl ethyl ketone. The above polishing layer coating solution was applied onto a support by bar coating, heat-dried, then heat-treated and cured to produce a polishing film. Using this polishing film (φ127 mm), the optical fiber connector ferrule was finally polished by an optical connector polishing machine (SFP-120A, manufactured by Seiko Giken Co., Ltd.). Polishing was performed in a final polishing time of 30 to 60 seconds with 12 optical fiber connector ferrules attached to a polishing holder of a polishing machine. The specularity (scratch occurrence state) in the zirconia portion and the glass fiber portion on the ferrule surface after polishing was observed with a microscope.

(9)剥離強度
ポリエステルフィルムの表面にコロナ放電処理を行ない、次にコロナ放電処理面に受容層として架橋ポリアルキレンオキシド樹脂を厚さ30μmになるように220℃でエクストルージョンラミネートし、さらにエンボスロール法によって得られた表面粗さRa0.55μm、厚さ25μmの粗面化ポリプロピレンフィルムを積層して記録シートを得て、JIS−Z0237に準じて25℃、55%RH雰囲気下で引っ張り試験機を用いて剥離角180°、引っ張り速度300mm/分で剥離させることにより剥離強度を求めた。
(9) Peel strength The surface of the polyester film is subjected to a corona discharge treatment, and then a cross-linked polyalkylene oxide resin is extrusion laminated at 220 ° C. to a thickness of 30 μm as a receiving layer on the corona discharge treatment surface. A recording sheet is obtained by laminating a roughened polypropylene film having a surface roughness Ra of 0.55 μm and a thickness of 25 μm obtained by the method, and a tensile tester is used in an atmosphere of 25 ° C. and 55% RH according to JIS-Z0237. The peel strength was determined by peeling using a peeling angle of 180 ° and a pulling speed of 300 mm / min.

(参考例1)凝集シリカ粒子の製造方法
ケイ酸ナトリウム水溶液に硫酸を加えて、シリカゾルを得た。その後、水洗してシリカヒドロゲルを得て、次いで乾燥してシリカキセロゲルを得た。得られたシリカキセロゲルを円盤型粉砕機で粉砕処理して平均粒子径(体積基準の積算50%粒子径)3.2μmの粒子を得て、図1に示す気流分離方式で、塊状単一粒子を含まない凝集シリカ粒子を得た。気流分離方式は、直径50cm、高さ200cmの円筒形の気流分離装置1に、凝集シリカ粒子を5体積%含有させた気流を、20m/hrの速度で投入して旋回流を発生させ、塊状単一粒子は落下して塊状単一粒子回収ボックス2に回収した。一方、塊状単一粒子を含まない凝集シリカ粒子は上昇気流により気流分離装置1の上部に移動し、バグフィルター3で捕捉して塊状単一粒子を含まない凝集シリカ粒子を得た。また凝集シリカ粒子を含む気流は、気流分離装置1の側面から流入口6から入り、流入角度Aは3度とした。
Reference Example 1 Method for Producing Aggregated Silica Particles Sulfuric acid was added to an aqueous sodium silicate solution to obtain a silica sol. Thereafter, it was washed with water to obtain a silica hydrogel, and then dried to obtain a silica xerogel. The obtained silica xerogel is pulverized by a disk-type pulverizer to obtain particles having an average particle diameter (volume-based integrated 50% particle diameter) of 3.2 μm, and the single particles are formed by the air flow separation method shown in FIG. Agglomerated silica particles not containing sucrose were obtained. In the airflow separation method, an airflow containing 5% by volume of agglomerated silica particles is introduced into a cylindrical airflow separator 1 having a diameter of 50 cm and a height of 200 cm at a speed of 20 m 3 / hr to generate a swirling flow. The lump single particles dropped and were collected in the lump single particle collection box 2. On the other hand, the agglomerated silica particles not containing the lump single particles moved to the upper part of the airflow separator 1 by the ascending air current and captured by the bag filter 3 to obtain agglomerated silica particles not containing the lump single particles. The air flow containing the agglomerated silica particles entered from the side of the air flow separation device 1 through the inlet 6 and the inflow angle A was 3 degrees.

また目開き20μmの濾上物量は50ppmであった。
(参考例2)凝集シリカ粒子スラリー
参考例1で得た塊状単一粒子を含まない凝集シリカ粒子をエチレングリコールに含有し、また凝集シリカ粒子に対して0.72重量%のリン酸を添加し、分散槽の攪拌機の回転数が700rpmで、2時間、高速分散を行ない、シリカ粒子の濃度が17重量%の凝集シリカ粒子スラリーを得た。
(実施例1)
ジメチルテレフタレート100重量部、エチレングリコール70重量部およびエステル交換触媒として酢酸マンガン0.06重量部、重合触媒として三酸化アンチモン0.043部を加え、140〜220℃の間でほぼ理論量のメタノールを溜出させ、エステル交換反応を終了させた。次いで、系内に平均粒径が3.2μm、吸油量が210ml/100gの凝集シリカ(BET法による比表面積が、300m2/gのもの)を使用して、 参考例2の方法で得た凝集シリカ粒子スラリーを添加した。次いで系内を30分で徐々に減圧、1mmHgとし、290℃で撹拌所要動力4.0kg・cmでポリマーの極限粘度が0.605になるまで重縮合反応を行った。得られたポリエステル組成物のシリカ粒子の平均粒子径は3.2μmであり、目開き20μmの濾上物は1ppm、塊状単一粒子は0個/cm、濾過性試験(ΔP)は0.31MPaであった。さらに該ポリエステル組成物を、180℃×3mmHgで24時間乾燥し、90mmの押出機で7m2の15μm、98%カットポーラスメタルフィルターを通過させた後、シート状にTダイから500kg/hrで押出し、縦に100℃で3.0倍、横140℃で3.5倍に延伸した。
Moreover, the amount of matter on the filter having an opening of 20 μm was 50 ppm.
Reference Example 2 Aggregated Silica Particle Slurry Aggregated silica particles not containing massive single particles obtained in Reference Example 1 are contained in ethylene glycol, and 0.72% by weight of phosphoric acid is added to the aggregated silica particles. Then, high-speed dispersion was performed for 2 hours at a rotation speed of the stirrer in the dispersion tank of 700 rpm, and an agglomerated silica particle slurry having a silica particle concentration of 17% by weight was obtained.
Example 1
Add 100 parts by weight of dimethyl terephthalate, 70 parts by weight of ethylene glycol, 0.06 part by weight of manganese acetate as a transesterification catalyst, and 0.043 part of antimony trioxide as a polymerization catalyst, and add almost theoretical amount of methanol between 140-220 ° C. Distilled to complete the transesterification reaction. Next, using the agglomerated silica (having a specific surface area by the BET method of 300 m 2 / g) having an average particle diameter of 3.2 μm and an oil absorption of 210 ml / 100 g in the system, it was obtained by the method of Reference Example 2. Aggregated silica particle slurry was added. Subsequently, the pressure in the system was gradually reduced to 1 mmHg in 30 minutes, and a polycondensation reaction was performed at 290 ° C. with a required power of stirring of 4.0 kg · cm until the intrinsic viscosity of the polymer became 0.605. The average particle diameter of the silica particles of the obtained polyester composition is 3.2 μm, the filtered material having an opening of 20 μm is 1 ppm, the bulk single particles are 0 particles / cm 2 , and the filterability test (ΔP) is 0.3. It was 31 MPa. Further, the polyester composition was dried at 180 ° C. × 3 mmHg for 24 hours, passed through a 7 m 2 15 μm, 98% cut porous metal filter with a 90 mm extruder, and then extruded into a sheet form from a T die at 500 kg / hr. The film was stretched 3.0 times vertically at 100 ° C and 3.5 times horizontally at 140 ° C.

このフィルムの中心線平均粗さは380nmであり、本フィルムを支持体とした研磨フィルムを用いて研磨されたフェルールは、ジルコニア部分及びガラスファイバー部分の双方において、凝集シリカの塊状単一粒子が含まれないために極めて傷の発生なかった。また受容層との剥離強度は50g/cmであった。フイルター交換周期は14日間であった。結果を表1、2に示す。
(実施例2)
凝集シリカの平均粒子径を表1に示す条件に変更した以外は実施例1と同様の方法でポリエステル組成物、フィルムを得た。結果を表1、2に示す。
(実施例3)
凝集シリカの平均粒子径、凝集シリカスラリーの分散槽の回転数を表1に示す条件に変更した以外は実施例1と同様の方法でポリエステル組成物、フィルムを得た。結果を表1、2に示す。
(実施例4)
シリカ含有量、凝集シリカスラリーの分散槽の回転数を表1に示す条件に変更した以外は実施例1と同様の方法でポリエステル組成物、フィルムを得た。結果を表1、2に示す。
(実施例5)
シリカ含有量を表1に示す条件に変更した以外は実施例1と同様の方法でポリエステル組成物、フィルムを得た。結果を表1、2に示す。
(実施例6)
凝集シリカスラリーを分散する際に添加するリン酸の含有量を表1に示す条件に変更した以外は実施例1と同様の方法でポリエステル組成物、フィルムを得た。結果を表1、2に示す。
(実施例7)
シリカ濃度、分散槽の回転数を表1に示す条件に変更した以外は実施例1と同様の方法でポリエステル組成物、フィルムを得た。結果を表1、2に示す。
(実施例8)
凝集シリカの平均粒子径、シリカ濃度、凝集シリカスラリーを分散する際に添加するリン酸の含有量、分散槽の回転数を表1に示す条件に変更した以外は実施例1と同様の方法でポリエステル組成物、フィルムを得た。結果を表1、2に示す。
(実施例9)
凝集シリカの平均粒子径、シリカ濃度、凝集シリカスラリーを分散する際に添加するリン酸の含有量、分散槽の回転数、シリカ含有量を表1に示す条件に変更した以外は実施例1と同様の方法でポリエステル組成物、フィルムを得た。結果を表1、2に示す。
(比較例1)
気流分離をしていない凝集シリカを使用し、シリカ濃度、凝集シリカスラリーを分散する際の攪拌機の回転数を表1に示す条件に変更した以外は実施例1と同様の方法でポリエステル組成物、フィルムを得た。結果を表1、2に示す。濾過性試験(ΔP)が高く、塊状の単一粒子が10個/cmであった。
(比較例2)
気流分離をしていない凝集シリカを使用し、シリカ濃度、凝集シリカスラリーを分散する際の攪拌機の回転数、シリカ含有量を表1に示す条件に変更した以外は実施例1と同様の方法でポリエステル組成物、フィルムを得た。結果を表1、2に示す。濾過性試験(ΔP)が高く、塊状の単一粒子が15個/cmであった。
(比較例3)
気流分離をしていない凝集シリカを使用し、シリカ濃度、凝集シリカスラリーを分散する際の攪拌機の回転数、シリカ含有量を表1に示す条件に変更した以外は実施例1と同様の方法でポリエステル組成物、フィルムを得た。結果を表1、2に示す。濾過性試験(ΔP)が高く、塊状の単一粒子が10個/cmであった。
(比較例4)
気流分離をしていない凝集シリカを使用し、シリカ濃度、凝集シリカスラリーを分散する際の攪拌機の回転数、凝集シリカスラリーを分散する際に添加するリン酸の含有量を表1に示す条件に変更した以外は実施例1と同様の方法でポリエステル組成物、フィルムを得た。結果を表1、2に示す。フィルター交換周期が3日間であり、短かった。
(比較例5)
凝集シリカの平均粒子径、気流分離をしていない凝集シリカを使用し、シリカ濃度、凝集シリカスラリーを分散する際の攪拌機の回転数、凝集シリカスラリーを分散する際に添加するリン酸の含有量を表1に示す条件に変更した以外は実施例1と同様の方法でポリエステル組成物、フィルムを得た。結果を表1、2に示す。濾過性試験(ΔP)が高く、塊状の単一粒子が2個/cmで少ないものの、研磨面に傷が見られた。
(比較例6)
シリカ粒子を球状シリカ、シリカの平均粒子径、シリカ濃度、シリカスラリーを分散する際の攪拌機の回転数、シリカスラリーを分散する際に添加するリン酸の含有量を表1に示す条件に変更した以外は実施例1と同様の方法でポリエステル組成物、フィルムを得た。結果を表1、2に示す。濾過性試験(ΔP)が高く、塊状の単一粒子が15個/cmであり、研磨面に傷がなかった。
The center line average roughness of this film is 380 nm, and the ferrule polished using a polishing film with this film as a support contains agglomerated single particles of agglomerated silica in both the zirconia part and the glass fiber part. As a result, no damage was generated. The peel strength from the receiving layer was 50 g / cm. The filter change cycle was 14 days. The results are shown in Tables 1 and 2.
(Example 2)
A polyester composition and a film were obtained in the same manner as in Example 1 except that the average particle diameter of the agglomerated silica was changed to the conditions shown in Table 1. The results are shown in Tables 1 and 2.
(Example 3)
A polyester composition and a film were obtained in the same manner as in Example 1 except that the average particle diameter of the agglomerated silica and the rotation speed of the dispersion tank of the agglomerated silica slurry were changed to the conditions shown in Table 1. The results are shown in Tables 1 and 2.
(Example 4)
A polyester composition and a film were obtained in the same manner as in Example 1 except that the silica content and the number of revolutions of the dispersion tank of the agglomerated silica slurry were changed to the conditions shown in Table 1. The results are shown in Tables 1 and 2.
(Example 5)
A polyester composition and a film were obtained in the same manner as in Example 1 except that the silica content was changed to the conditions shown in Table 1. The results are shown in Tables 1 and 2.
(Example 6)
A polyester composition and a film were obtained in the same manner as in Example 1, except that the phosphoric acid content added when dispersing the agglomerated silica slurry was changed to the conditions shown in Table 1. The results are shown in Tables 1 and 2.
(Example 7)
A polyester composition and a film were obtained in the same manner as in Example 1 except that the silica concentration and the rotational speed of the dispersion tank were changed to the conditions shown in Table 1. The results are shown in Tables 1 and 2.
(Example 8)
The same method as in Example 1 except that the average particle diameter of the agglomerated silica, the silica concentration, the content of phosphoric acid added when dispersing the agglomerated silica slurry, and the number of revolutions of the dispersion tank were changed to the conditions shown in Table 1. A polyester composition and film were obtained. The results are shown in Tables 1 and 2.
Example 9
Example 1 except that the average particle diameter of the agglomerated silica, the silica concentration, the content of phosphoric acid added when dispersing the agglomerated silica slurry, the rotational speed of the dispersion tank, and the silica content were changed to the conditions shown in Table 1. A polyester composition and a film were obtained in the same manner. The results are shown in Tables 1 and 2.
(Comparative Example 1)
The polyester composition was used in the same manner as in Example 1 except that the agglomerated silica that was not subjected to airflow separation was used, and the silica concentration and the rotation speed of the stirrer when dispersing the agglomerated silica slurry were changed to the conditions shown in Table 1. A film was obtained. The results are shown in Tables 1 and 2. The filterability test (ΔP) was high, and the number of lump single particles was 10 / cm 2 .
(Comparative Example 2)
In the same manner as in Example 1 except that the agglomerated silica not subjected to airflow separation was used, and the silica concentration, the rotation speed of the stirrer when dispersing the agglomerated silica slurry, and the silica content were changed to the conditions shown in Table 1. A polyester composition and film were obtained. The results are shown in Tables 1 and 2. The filterability test (ΔP) was high, and the number of massive single particles was 15 / cm 2 .
(Comparative Example 3)
In the same manner as in Example 1 except that the agglomerated silica not subjected to airflow separation was used, and the silica concentration, the rotation speed of the stirrer when dispersing the agglomerated silica slurry, and the silica content were changed to the conditions shown in Table 1. A polyester composition and film were obtained. The results are shown in Tables 1 and 2. The filterability test (ΔP) was high, and the number of lump single particles was 10 / cm 2 .
(Comparative Example 4)
Using the agglomerated silica not subjected to airflow separation, the silica concentration, the rotation speed of the stirrer when dispersing the agglomerated silica slurry, and the content of phosphoric acid added when dispersing the agglomerated silica slurry are as shown in Table 1. A polyester composition and a film were obtained in the same manner as in Example 1 except for the change. The results are shown in Tables 1 and 2. The filter exchange period was 3 days and was short.
(Comparative Example 5)
The average particle diameter of the agglomerated silica, the agglomerated silica that has not been air-flow separated, the silica concentration, the rotational speed of the stirrer when dispersing the agglomerated silica slurry, the content of phosphoric acid added when dispersing the agglomerated silica slurry A polyester composition and a film were obtained in the same manner as in Example 1 except that the conditions were changed to those shown in Table 1. The results are shown in Tables 1 and 2. Although the filterability test (ΔP) was high and there were few lump-like single particles / cm 2 , scratches were observed on the polished surface.
(Comparative Example 6)
The silica particles were changed to the conditions shown in Table 1 for the spherical silica, the average particle diameter of silica, the silica concentration, the rotational speed of the stirrer when dispersing the silica slurry, and the content of phosphoric acid added when dispersing the silica slurry. Except for the above, a polyester composition and a film were obtained in the same manner as in Example 1. The results are shown in Tables 1 and 2. The filterability test (ΔP) was high, the number of lump single particles was 15 / cm 2 , and the polished surface was not damaged.

Figure 2014141565
Figure 2014141565

Figure 2014141565
Figure 2014141565

1:気流分離装置
2:塊状単一粒子回収ボックス
3:バグフィルター
4:中間槽
5:サイロ
6:流入口
7:ベント
A:流入角度
1: Airflow separation device 2: Bulk single particle recovery box 3: Bag filter 4: Intermediate tank 5: Silo 6: Inlet 7: Vent A: Inflow angle

Claims (5)

主たる繰り返し単位がエチレンテレフタレートから成るポリエステル中に平均粒径0.5〜5.0μmの凝集シリカを0.05〜10重量%含有するポリエステル組成物であって、該ポリエステル組成物を目開き20μmを通過した際の濾上物が、全体の濾過量に対して5ppm以下であり、かつ濾上物がケイ素元素を主成分とする塊状単一粒子が5個/cm以下であることを特徴とするポリエステル組成物。 A polyester composition containing 0.05 to 10% by weight of agglomerated silica having an average particle size of 0.5 to 5.0 μm in a polyester composed mainly of ethylene terephthalate, wherein the polyester composition has an opening of 20 μm. The filtered product when passing through is 5 ppm or less with respect to the total amount of filtration, and the filtered product is 5 or less 2 / cm 2 of massive single particles mainly composed of silicon element. A polyester composition. 成形する前のポリエステル組成物であって、溶融温度290℃、目開き20μm、吐出10g/分の速度で、3時間での濾過性試験(ΔP)が0.80MPa以下であることを特徴とする請求項1記載のポリエステル組成物。   A polyester composition before molding, characterized by having a melt temperature of 290 ° C., an opening of 20 μm, a discharge rate of 10 g / min, and a filterability test (ΔP) in 3 hours of 0.80 MPa or less. The polyester composition according to claim 1. 請求項1または請求項2記載のポリエステル組成物からなるポリエステルフィルム。   A polyester film comprising the polyester composition according to claim 1. ジカルボン酸成分とジオール成分とをエステル交換触媒の存在下でエステル交換反応し、次いで重縮合反応を行うポリエステルの製造方法において、エステル交換反応完結後に、ケイ素元素を主成分とする塊状単一粒子が5個/cm以下の凝集シリカ粒子スラリーをポリエステル組成物に対して0.05〜10重量%添加することを特徴とするポリエステル組成物の製造方法。 In the polyester production method in which a dicarboxylic acid component and a diol component are transesterified in the presence of a transesterification catalyst, and then a polycondensation reaction is performed, after completion of the transesterification reaction, massive single particles mainly composed of silicon element are obtained. A method for producing a polyester composition, comprising adding 5 to 10% by weight of an aggregated silica particle slurry of 5 particles / cm 2 or less to the polyester composition. 凝集シリカ粒子スラリーが、凝集シリカ粒子をグリコールの存在下に分散槽でスラリー化する際に、該凝集シリカ粒子に対して0.10重量%以上、1.20重量%以下のリン酸を含有し、かつ分散槽の撹拌回転数が600rpm以上、3600rpm以下で分散したものであることを特徴とする請求項4記載のポリエステル組成物の製造方法。   When the agglomerated silica particle slurry is slurried in a dispersion tank in the presence of glycol, the agglomerated silica particle slurry contains 0.10% by weight or more and 1.20% by weight or less of phosphoric acid with respect to the agglomerated silica particles. The method for producing a polyester composition according to claim 4, wherein the dispersion tank is dispersed at a stirring rotation speed of 600 rpm or more and 3600 rpm or less.
JP2013009958A 2013-01-23 2013-01-23 Polyester composition and method for producing the same Active JP6175778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013009958A JP6175778B2 (en) 2013-01-23 2013-01-23 Polyester composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013009958A JP6175778B2 (en) 2013-01-23 2013-01-23 Polyester composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014141565A true JP2014141565A (en) 2014-08-07
JP6175778B2 JP6175778B2 (en) 2017-08-09

Family

ID=51423134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013009958A Active JP6175778B2 (en) 2013-01-23 2013-01-23 Polyester composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP6175778B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001552A (en) * 1998-04-13 2000-01-07 Teijin Ltd Polyester film for metal sheet lamination and production thereof
JP2001026638A (en) * 1999-07-15 2001-01-30 Toray Ind Inc Preparation of polyester for coating metallic can
JP2002309014A (en) * 2001-04-12 2002-10-23 Toray Ind Inc Mat polyester film and method for producing the same
JP2006225584A (en) * 2005-02-21 2006-08-31 Teijin Ltd Process for production glycol slurry for polyester, polyester resin composition and polyester film
JP2010254804A (en) * 2009-04-24 2010-11-11 Teijin Ltd Method for producing polyester composition and ethylene glycol slurry
JP2011231262A (en) * 2010-04-30 2011-11-17 Mitsubishi Plastics Inc Polyester film for optical element protective film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001552A (en) * 1998-04-13 2000-01-07 Teijin Ltd Polyester film for metal sheet lamination and production thereof
JP2001026638A (en) * 1999-07-15 2001-01-30 Toray Ind Inc Preparation of polyester for coating metallic can
JP2002309014A (en) * 2001-04-12 2002-10-23 Toray Ind Inc Mat polyester film and method for producing the same
JP2006225584A (en) * 2005-02-21 2006-08-31 Teijin Ltd Process for production glycol slurry for polyester, polyester resin composition and polyester film
JP2010254804A (en) * 2009-04-24 2010-11-11 Teijin Ltd Method for producing polyester composition and ethylene glycol slurry
JP2011231262A (en) * 2010-04-30 2011-11-17 Mitsubishi Plastics Inc Polyester film for optical element protective film

Also Published As

Publication number Publication date
JP6175778B2 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
JP6273717B2 (en) Release film for forming ceramic sheets
JP2014133373A (en) Biaxially orientated polyester film for mold release and method of producing the same
JP5471062B2 (en) Lens sheet base film
KR20150075471A (en) Polyester resin composition and polyester film using thereof
JP3948333B2 (en) Ceramic release polyester film
JP6175778B2 (en) Polyester composition and method for producing the same
JP2018062656A (en) Biaxially oriented polyester film
JP2011251511A (en) Base film for lens sheet
JP5230998B2 (en) Polyester film
TWI504669B (en) Polyester resin composition and polyester film using thereof
JP3799211B2 (en)   Method for producing polyester composition for film
JP3541745B2 (en) Method for producing release film for producing ceramic sheet
JPH08253624A (en) Thermoplastic polymer film
JP2021088185A (en) Biaxially oriented laminated polyester film and method for producing the same
JP2013147616A (en) Method for producing polyester composition, polyester composition using the method, and polyester film
JP6210243B2 (en) Biaxially oriented polyethylene terephthalate film
JP3148351B2 (en) Polyethylene naphthalate composition
JP5045078B2 (en) Production method of polyester resin
JP5592196B2 (en) Film production method
JP2011184605A (en) Biaxially oriented film
JP2003182012A (en) Laminated polyester film
JP2696909B2 (en) Polyester production method
JP5451438B2 (en) Film production method
JP5920640B2 (en) Biaxially oriented polyester film
JP2020131483A (en) Method for producing thermoplastic resin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170626

R151 Written notification of patent or utility model registration

Ref document number: 6175778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151