JP2014137182A - Refrigerator - Google Patents
Refrigerator Download PDFInfo
- Publication number
- JP2014137182A JP2014137182A JP2013005881A JP2013005881A JP2014137182A JP 2014137182 A JP2014137182 A JP 2014137182A JP 2013005881 A JP2013005881 A JP 2013005881A JP 2013005881 A JP2013005881 A JP 2013005881A JP 2014137182 A JP2014137182 A JP 2014137182A
- Authority
- JP
- Japan
- Prior art keywords
- cold air
- temperature
- air duct
- temperature sensor
- refrigerator compartment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
Abstract
Description
本発明は、冷蔵庫に関する。 The present invention relates to a refrigerator.
本技術分野の背景技術として、特開2012−26677号公報(特許文献1)がある。特許文献1に記載の冷蔵庫では、冷蔵室の奥側から冷気を吹き出す奥側吹き出し風路と、冷蔵室の天井面側から冷気を吹き出す天井側吹き出し風路を備え、冷蔵室の奥側の庫内温度を検出する奥側温度センサと、冷蔵室の天井側と前方部の庫内温度を検出する天井側温度センサの値に基づき、奥側吹き出し風路と、天井側吹き出し風路へ送風する冷気量を風量調整装置(ツインダクトダンパ)で制御している。 As a background art in this technical field, there is JP 2012-26677 A (Patent Document 1). The refrigerator described in Patent Literature 1 includes a back side blowout air passage that blows out cold air from the back side of the refrigerator compartment, and a ceiling side blowout air passage that blows out cold air from the ceiling surface side of the refrigerator compartment, and a refrigerator in the back side of the refrigerator compartment Based on the values of the back side temperature sensor that detects the inside temperature and the ceiling side temperature sensor that detects the inside temperature of the ceiling side and the front part of the refrigerator compartment, the air is blown to the back side air duct and the ceiling side air duct. The amount of cold air is controlled by an air volume adjustment device (twin duct damper).
特許文献1に記載の冷蔵庫では、天井側吹き出し風路と、奥側吹き出し風路への冷気の送風を制御する風量調整装置(ツインダクトダンパ)は、それぞれ天井側温度センサと奥側温度センサで検出される温度に基づいて制御している。冷蔵室の奥側の温度を測定する奥側温度センサは、冷蔵室全体の温度を代表できるように、冷蔵室の高さ方向のほぼ中央付近で、奥側吹き出し風路が形成される冷蔵室の背面パネル壁面に設置してある。 In the refrigerator described in Patent Document 1, the air volume adjusting device (twin duct damper) that controls the blowing of cool air to the ceiling side blowing air path and the back side blowing air path is a ceiling side temperature sensor and a back side temperature sensor, respectively. Control is based on the detected temperature. The back side temperature sensor that measures the temperature of the back side of the refrigerating room is a refrigerating room in which a back blowing air passage is formed in the vicinity of the center in the height direction of the refrigerating room so that the temperature of the whole refrigerating room can be represented. It is installed on the back panel wall.
しかしながら、特許文献1に記載の冷蔵庫は、2つの冷気風路を切り替えて冷蔵室全体の温度分布を抑制しながら冷却することができるが、冷蔵室ドアに設けた回転仕切り用結露防止ヒータに関わる省エネ制御については、特に配慮されていない。 However, the refrigerator described in Patent Document 1 can be cooled while switching the two cold air passages to suppress the temperature distribution of the entire refrigeration room, but is related to a dew condensation prevention heater for a rotating partition provided on the refrigeration room door. There is no particular consideration for energy saving control.
本発明は、以上のような問題点に鑑みてなされたものであり、温度検知手段で貯蔵室内の温度を適切に検出することで、食品の保存性や信頼性を向上して、省エネルギー性が高い冷蔵庫を提供することを目的とする。 The present invention has been made in view of the above problems, and by appropriately detecting the temperature in the storage chamber by the temperature detection means, the preservation and reliability of food are improved, and the energy saving property is improved. The purpose is to provide a high refrigerator.
上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、冷蔵温度帯の貯蔵室と、該冷蔵温度帯の貯蔵室内に設けられた複数の棚と、前記冷蔵温度帯の記貯蔵室の前方の第一の扉と、該第一の扉に隣り合う第二の扉と、前記第一の扉と前記第二の扉の隙間の少なくとも一部を閉塞する上下方向の回動仕切体と、該回動仕切体の上下方向のヒータと、前記複数の棚で形成された空間に冷気を供給する第一の冷気ダクトと、前記複数の空間のうち前記第一の冷気ダクトによって冷却される空間よりも上部に位置する空間に冷気を供給する第二の冷気ダクトと、前記第一の冷気ダクト及び前記第二の冷気ダクトのそれぞれに冷気を送風する送風手段と、前記第一の冷気ダクトの送風を制御する第一の風量調整装置と、前記第二の冷気ダクトの送風を制御する第二の風量調整装置と、前記冷蔵温度帯の貯蔵室の下部の第一の温度検出手段と、前記冷蔵温度帯の貯蔵室の上部の第二の温度検出手段と、制御装置と、を備え、前記第一の風量調整装置と前記第二の風量調整装置は、それぞれ前記第一の温度検出手段と前記第二の温度検出手段に基づいて制御して、前記冷蔵温度帯の貯蔵室の設定温度を変更した場合、前記ヒータは上部と下部で独立して発熱量を制御することを特徴とする。 In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-described problems. For example, a storage room in a refrigeration temperature zone, a plurality of shelves provided in the storage room in the refrigeration temperature zone, and the refrigeration temperature zone A first door in front of the storage chamber, a second door adjacent to the first door, and a vertical direction that closes at least a part of a gap between the first door and the second door. A rotating partition, a heater in the vertical direction of the rotating partition, a first cool air duct that supplies cool air to a space formed by the plurality of shelves, and the first cool air among the plurality of spaces A second cold air duct for supplying cold air to a space located above the space cooled by the duct, and a blowing means for blowing cold air to each of the first cold air duct and the second cold air duct, A first air volume adjusting device for controlling air flow of the first cold air duct; A second air volume adjusting device for controlling the air flow of the cold air duct, a first temperature detecting means at the lower part of the storage room in the refrigerated temperature zone, and a second temperature detecting means at the upper part of the storage room in the refrigerated temperature zone; A control device, wherein the first air volume adjustment device and the second air volume adjustment device are controlled based on the first temperature detection means and the second temperature detection means, respectively, and the refrigeration When the set temperature of the storage room in the temperature zone is changed, the heater controls the amount of heat generated independently at the upper part and the lower part.
本発明によれば、温度検知手段で貯蔵室内の温度を適切に検出することで、食品の保存性や信頼性を向上して、省エネルギー性が高い冷蔵庫を提供することができる。 According to the present invention, by appropriately detecting the temperature in the storage chamber by the temperature detection means, it is possible to provide a refrigerator with improved energy conservation by improving the storability and reliability of food.
(第一の実施形態)
本発明の第一の実施形態について図面を用いて説明する。
(First embodiment)
A first embodiment of the present invention will be described with reference to the drawings.
図1は、本発明の第一の実施形態に係る冷蔵庫の正面図である。図1に示すように、本実施形態の冷蔵庫1は、上方から冷蔵室2(冷蔵温度帯の貯蔵室)、冷凍室7、野菜室6から構成されている。冷凍室7は、下段冷凍室5と、下段冷凍室5の上方に左右に併設された製氷室3及び上段冷凍室4を備えている。 FIG. 1 is a front view of the refrigerator according to the first embodiment of the present invention. As shown in FIG. 1, the refrigerator 1 of this embodiment is comprised from the upper part from the refrigerator compartment 2 (storage room of a refrigerator temperature zone), the freezer compartment 7, and the vegetable compartment 6. As shown in FIG. The freezer compartment 7 includes a lower freezer compartment 5, and an ice making room 3 and an upper freezer compartment 4 provided on the left and right above the lower freezer compartment 5.
冷蔵室2は左右に分割された冷蔵室ドア2a、2b(第一の扉2a、第二の扉2b)を備え、製氷室3、上段冷凍室4、下段冷凍室5、野菜室6は、それぞれ引き出し式の製氷室ドア3a、上段冷凍室ドア4a、下段冷凍室ドア5a、野菜室ドア6aを備えている。以下では、冷蔵室ドア2a,2b、製氷室ドア3a、上段冷凍室ドア4a、下段冷凍室ドア5a、野菜室ドア6aを、単にドア2a,2b,3a,4a,5a,6aと呼ぶ場合がある。冷蔵庫1と冷蔵室ドア2a,2bを固定するドアヒンジが冷蔵庫1上部に設けてあり、ドアヒンジはドアヒンジカバー53で覆われている。 The refrigerator compartment 2 includes refrigerator compartment doors 2a and 2b (first door 2a and second door 2b) which are divided into left and right, and an ice making compartment 3, an upper freezer compartment 4, a lower freezer compartment 5 and a vegetable compartment 6 are: Each has a drawer type ice making room door 3a, an upper freezer compartment door 4a, a lower freezer compartment door 5a, and a vegetable compartment door 6a. Hereinafter, the refrigerator compartment doors 2a and 2b, the ice making door 3a, the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a may be simply referred to as doors 2a, 2b, 3a, 4a, 5a, and 6a. is there. A door hinge that fixes the refrigerator 1 and the refrigerator compartment doors 2 a and 2 b is provided on the upper portion of the refrigerator 1, and the door hinge is covered with a door hinge cover 53.
2つに分割した冷蔵室ドア2aと冷蔵室ドア2bの間には、回動仕切体15を設けている。回動仕切体15は、冷蔵室ドア2aと冷蔵室ドア2bの間に形成される隙間から冷気が流出しないように、隙間の少なくとも一部を覆う位置に配置されている。回動仕切体15は、冷蔵室2を循環する冷気によって冷却されるので、回動仕切体15の庫外側表面に結露が発生して水滴が流下しないように、回動仕切体15の内部に設けた結露防止用のヒータ15A,15Bによって加熱制御されている。 A rotating partition 15 is provided between the refrigerator compartment door 2a and the refrigerator compartment door 2b divided into two. The rotating partition 15 is disposed at a position that covers at least a part of the gap so that cold air does not flow out from the gap formed between the refrigerator compartment door 2a and the refrigerator compartment door 2b. Since the rotating partition 15 is cooled by the cold air circulating in the refrigerator compartment 2, the inside of the rotating partition 15 prevents condensation from forming on the outer surface of the rotating partition 15 and causing water droplets to flow down. Heating is controlled by the provided heaters 15A and 15B for preventing condensation.
図2は、図1のA-A断面図である。図3は、本発明の第一の実施形態に係る冷蔵室ドアを省略した状態の冷蔵室の正面図である。図4は、図3のB−B断面図である。 2 is a cross-sectional view taken along the line AA in FIG. FIG. 3 is a front view of the refrigerator compartment in a state where the refrigerator compartment door according to the first embodiment of the present invention is omitted. 4 is a cross-sectional view taken along line BB in FIG.
冷蔵庫1の庫外と庫内は、外箱10aと内箱10bとの間に発泡断熱材を充填して形成される断熱箱体10により隔てられている。なお、断熱箱体10には、発泡断熱材に加えて、複数の真空断熱材25を外箱10aと内箱10bとの間に実装している。 The outside of the refrigerator 1 and the inside of the refrigerator are separated by a heat insulating box 10 formed by filling a foam heat insulating material between the outer box 10a and the inner box 10b. In addition to the foam heat insulating material, a plurality of vacuum heat insulating materials 25 are mounted on the heat insulating box 10 between the outer box 10a and the inner box 10b.
各貯蔵室は、上断熱仕切壁28により、冷蔵室2と上段冷凍室4及び製氷室3が隔てられ、また、同様に下断熱仕切壁29により、下段冷凍室5と野菜室6が隔てられている。
冷蔵室ドア2a,2bの庫内側には複数のドアポケット33a,33b,33cが上から順に備えてあり、冷蔵室2は複数の棚34a,34b,34c,34d,34e,34fが上から順に設けており(図3参照)、複数の貯蔵スペースに区画されている。なお、総称して棚34と表現する場合がある。
In each storage room, the refrigerator compartment 2 is separated from the upper freezer compartment 4 and the ice making chamber 3 by the upper heat insulating partition wall 28, and the lower freezer compartment 5 and the vegetable compartment 6 are similarly separated by the lower heat insulating partition wall 29. ing.
A plurality of door pockets 33a, 33b, 33c are provided in order from the top inside the refrigerator compartment doors 2a, 2b, and the refrigerator compartment 2 has a plurality of shelves 34a, 34b, 34c, 34d, 34e, 34f in order from the top. It is provided (see FIG. 3) and is partitioned into a plurality of storage spaces. Note that the term “shelf 34” may be used as a collective term.
上段冷凍室4及び製氷室3と、下段冷凍室5との間には、冷凍室7の断熱仕切壁40を設けている。上段冷凍室4、下段冷凍室5及び野菜室6には、それぞれの前方に備えられたドア4a,5a,6aと一体に移動する収納容器4b,5b,6bがそれぞれ設けられており、ドア4a,5a,6aを手前側に引き出すことにより、収納容器4b,5b,6bも引き出せるようになっている。なお、製氷室3にもドア3aと一体に移動する収納容器が設けられ、ドア3aを手前側に引き出すことにより、収納容器3bも引き出せる。また、庫外温度センサ52は、冷蔵庫1の温度影響を避けた位置として、例えば、冷蔵庫1のドアヒンジカバー53の内部に設けている。 A heat insulating partition wall 40 of the freezer compartment 7 is provided between the upper freezer compartment 4 and the ice making compartment 3 and the lower freezer compartment 5. The upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6 are provided with storage containers 4b, 5b, 6b that move integrally with the doors 4a, 5a, 6a provided in front of the respective compartments. , 5a, 6a are pulled out to the front side so that the storage containers 4b, 5b, 6b can also be pulled out. The ice making chamber 3 is also provided with a storage container that moves integrally with the door 3a, and the storage container 3b can be pulled out by pulling the door 3a to the front side. Moreover, the outside temperature sensor 52 is provided in the inside of the door hinge cover 53 of the refrigerator 1 as a position which avoided the temperature influence of the refrigerator 1, for example.
冷却器14は、下段冷凍室5の略背部に備えた冷却器収納室8内に設けてあり、冷却器14の上方に設けた送風手段である庫内ファン9により、冷却器14と熱交換した冷気が冷蔵室冷気ダクト11(第一の冷気ダクト11a、第二の冷気ダクト11b)、上段冷凍室冷気ダクト12、下段冷凍室送風ダクト13、及び製氷室送風ダクト(図示なし)を介して、冷蔵室2、上段冷凍室4、下段冷凍室5、製氷室3の各貯蔵室へそれぞれ送られる。 The cooler 14 is provided in a cooler storage chamber 8 provided substantially at the back of the lower freezer compartment 5, and exchanges heat with the cooler 14 by an internal fan 9 that is a blowing means provided above the cooler 14. The chilled air passes through the refrigerator compartment cold air duct 11 (first cold air duct 11a, second cold air duct 11b), the upper freezer compartment cold air duct 12, the lower freezer compartment air duct 13, and the ice making room air duct (not shown). , The refrigerator compartment 2, the upper freezer compartment 4, the lower freezer compartment 5, and the ice making compartment 3.
各貯蔵室への冷気の送風は、風量調整装置、すなわち冷蔵室ツインダンパ20(20a,20b)と、冷凍室ダンパ60の開閉により制御される。冷蔵室ツインダンパ20は、2つのバッフル20a,20bを有する、いわゆるツインバッフル型のダンパで、モータ駆動部46(図3参照)によってバッフル20a,20bを開閉させて風量を調整する。 The blowing of cool air to each storage room is controlled by opening and closing of the air volume adjusting device, that is, the refrigerator compartment twin damper 20 (20a, 20b) and the freezer compartment damper 60. The refrigerating room twin damper 20 is a so-called twin baffle type damper having two baffles 20a and 20b, and adjusts the air volume by opening and closing the baffles 20a and 20b by a motor drive unit 46 (see FIG. 3).
冷蔵室2を冷却する冷蔵室冷却運転の場合には、冷蔵室ツインダンパ20を開、冷凍室ダンパ60を閉にし、冷蔵室ダクト11を経て吐出口30a,30b,30c,31,32から冷蔵室2に冷気が送られる。冷蔵室2を循環した後の冷気は、冷蔵室2下部に設けた冷蔵室戻り口39(図3参照)に流入し、その後、冷却器14に戻される。 In the case of the refrigerating room cooling operation for cooling the refrigerating room 2, the refrigerating room twin damper 20 is opened, the freezing room damper 60 is closed, and refrigerating is performed from the discharge ports 30 a, 30 b, 30 c, 31, 32 through the refrigerating room duct 11. Cold air is sent to chamber 2. The cold air after circulating through the refrigerator compartment 2 flows into the refrigerator compartment return port 39 (see FIG. 3) provided at the lower part of the refrigerator compartment 2, and then returned to the cooler 14.
野菜室6の冷却手段については種々の方法があるが、例えば、冷蔵室2を冷却した後に野菜室6に冷気を送る方法や、野菜室専用の風量調整装置(ダンパ)を用いて冷却器14で熱交換した冷気を直接野菜室6に送る方法が考えられる。本実施例においては、野菜室6への冷気の供給方法についてはいずれの場合でも良い。図2に記載の例では、野菜室6に流入した冷気は、断熱仕切壁29の下部前方に設けた、野菜室戻り口18aから野菜室戻りダクト18を介して、野菜室戻り口18bから冷却器14下部に流入する。 There are various methods for cooling the vegetable compartment 6, for example, a method of sending cold air to the vegetable compartment 6 after cooling the refrigerator compartment 2, or a cooler 14 using an air volume adjusting device (damper) dedicated to the vegetable compartment. The method of sending the cold air heat-exchanged directly to the vegetable compartment 6 can be considered. In the present embodiment, any method may be used for supplying cold air to the vegetable compartment 6. In the example shown in FIG. 2, the cold air flowing into the vegetable compartment 6 is cooled from the vegetable compartment return port 18 b via the vegetable compartment return duct 18 from the vegetable compartment return port 18 a provided in front of the lower part of the heat insulating partition wall 29. Flows into the lower part of the container 14.
冷凍室7を冷却する冷凍室冷却運転の場合には、冷蔵室ツインダンパ20を閉、冷凍室ダンパ60を開にし、吐出口3c,4c,5c,6cからそれぞれ冷気が吐出されて、上段冷凍室4、下段冷凍室5、及び製氷室3を冷却した後、冷凍室戻り口17から冷却器14に戻される。 In the case of the freezing room cooling operation for cooling the freezing room 7, the refrigerating room twin damper 20 is closed, the freezing room damper 60 is opened, and cold air is discharged from the discharge ports 3c, 4c, 5c, and 6c, respectively, and the upper freezing After cooling the chamber 4, the lower freezing chamber 5, and the ice making chamber 3, the chamber 4 is returned to the cooler 14 through the freezer return port 17.
庫内の温度に応じて、冷蔵室2と冷凍室4、5を同時に冷却する運転もあり、その場合には冷蔵室ツインダンパ20と冷凍室ダンパ60をいずれも開として各貯蔵室に冷気を送風する。 There is also an operation of cooling the refrigerator compartment 2 and the freezer compartments 4 and 5 at the same time according to the temperature in the refrigerator. In this case, both the refrigerator compartment twin damper 20 and the freezer compartment damper 60 are opened to cool each storage compartment. Blow.
冷蔵室2の最上段の棚34a,34bと、最下段の棚34fで区画された領域2Cの温度を検出する第三の温度センサ42、最上段の棚34a,34bと冷蔵室2の上壁で区画された領域2Aの温度を検出する第二の温度センサ43、第一の冷気ダクト11aの吐出口32,33と第二の冷気ダクト11bの吐出口30a,30b,30cから送風された冷気が共通して循環する領域2Bの温度を検出する第一の温度センサ44で検出される温度に応じて、冷蔵室ツインダンパ20のバッフル20a、20bの開閉を制御する。 The third temperature sensor 42 for detecting the temperature of the region 2C defined by the uppermost shelf 34a, 34b and the lowermost shelf 34f, the uppermost shelf 34a, 34b and the upper wall of the refrigerator compartment 2 Cold air blown from the second temperature sensor 43 for detecting the temperature of the region 2A partitioned by the discharge port 32, 33 of the first cold air duct 11a and the discharge port 30a, 30b, 30c of the second cold air duct 11b The baffles 20a and 20b of the refrigerator compartment twin damper 20 are controlled according to the temperature detected by the first temperature sensor 44 that detects the temperature of the region 2B that circulates in common.
冷却器14の下部には除霜ヒータ22を設けている。除霜時に発生したドレン水は樋23に一旦落下し、ドレン孔27を介して圧縮機24の上部に設けた蒸発皿21に排出される。冷蔵庫1の背面下部に設けた機械室61内には、圧縮機24の他に放熱器と放熱用のファン(図示なし)が配置されている。 A defrost heater 22 is provided below the cooler 14. The drain water generated at the time of defrosting falls once to the trough 23 and is discharged to the evaporating dish 21 provided on the upper part of the compressor 24 through the drain hole 27. In the machine room 61 provided at the lower back of the refrigerator 1, a radiator and a heat radiating fan (not shown) are arranged in addition to the compressor 24.
冷蔵庫1の上壁上部後方にはメモリー、インターフェース回路を搭載した制御基板51が配置されており、制御基板51のROMに記憶された制御手段に従って冷凍サイクル、送風系、及びヒータ15A,15Bの制御が実施される。制御基板51は基板カバー50で覆われている。 A control board 51 equipped with a memory and an interface circuit is disposed behind the upper wall of the refrigerator 1 and controls the refrigeration cycle, the air blowing system, and the heaters 15A and 15B according to the control means stored in the ROM of the control board 51. Is implemented. The control board 51 is covered with a board cover 50.
図3,図4において、第一の冷気ダクト11aと、第二の冷気ダクト11bからなる冷蔵室冷気ダクト11は、冷蔵室ツインダンパ20のバッフル20a、20bにて開閉される開口部にそれぞれ接続されている。第一の冷気ダクト11aで冷却する場合はバッフル20aを開、バッフル20bは閉、第二の冷気ダクト11bで冷却する場合はバッフル20aを閉、バッフル20bを開、また、第一の冷気ダクト11a、第二の冷気ダクト11bの両方で冷却する場合はバッフル20a、20bをそれぞれ開にする。 3 and 4, the cold room cold air duct 11 including the first cold air duct 11 a and the second cold air duct 11 b is connected to the openings that are opened and closed by the baffles 20 a and 20 b of the cold room twin damper 20. Has been. When cooling by the first cold air duct 11a, the baffle 20a is opened, the baffle 20b is closed, and when cooling by the second cold air duct 11b, the baffle 20a is closed, the baffle 20b is opened, and the first cold air duct 11a is opened. The baffles 20a and 20b are respectively opened when cooling by both of the second cold air ducts 11b.
第一の冷気ダクト11aの途中には、上から順番に吐出口30a,30b,30cを設けてあり、それぞれの吐出口から送風される冷気で、最上段の棚34a,34bと最下段の棚34fで区画された領域2C(図2〜図4参照)、すなわち、棚34c,34d,34e,34fに置かれた食品を主に冷却する。冷蔵室2の最上段棚34a,34bは、棚仕切り54によって左右に分割されており、それぞれ棚の高さを変えられるようになっている。第二の冷気ダクト11bの先端部には吐出口31,32を設けてあり、それぞれの吐出口から送風される冷気で、最上段の棚34a,34bと天井面63で区画された領域2A(図2,図4参照)、すなわち、棚34a,34bやドアポケット33aに置かれた食品を主に冷却する。 Discharge ports 30a, 30b, and 30c are provided in the middle of the first cool air duct 11a in order from the top, and the uppermost shelves 34a and 34b and the lowermost shelf are cooled by the cool air blown from the respective discharge ports. The food placed on the region 2C (see FIGS. 2 to 4) partitioned by 34f, that is, the shelves 34c, 34d, 34e, and 34f is mainly cooled. The uppermost shelves 34a and 34b of the refrigerator compartment 2 are divided into left and right by a shelf partition 54 so that the height of each shelf can be changed. Discharge ports 31 and 32 are provided at the distal end of the second cold air duct 11b, and the region 2A (which is partitioned by the uppermost shelves 34a and 34b and the ceiling surface 63 by cool air blown from the respective discharge ports). In other words, the food placed on the shelves 34a and 34b and the door pocket 33a is mainly cooled.
棚34c,34d,34e,34fの前方のドアポケット33b、33cの周辺部、及び、最下段の棚34fと、上断熱仕切壁28で区画された場所を領域2B(図2,図4参照)とすると、領域2Bは第一の冷気ダクト11aと第二の冷気ダクト11bの両方からの冷気によって共通に冷却される。また、冷蔵室2の下部に設けた冷凍室7の影響により冷却され易い領域となる。領域2Bであって上断熱仕切壁28の上方には、製氷水タンク36と減圧貯蔵室35を設けている。第二の冷気ダクト11bの下部には吐出口38を設け(図3参照)、吐出口38の前方の減圧貯蔵室35の冷却を行っている。 A region 2B (see FIG. 2 and FIG. 4) is a region partitioned by the peripheral portions of the door pockets 33b and 33c in front of the shelves 34c, 34d, 34e, and 34f, the lowermost shelf 34f, and the upper heat insulating partition wall 28. Then, the area 2B is commonly cooled by the cold air from both the first cold air duct 11a and the second cold air duct 11b. Moreover, it becomes an area | region which is easy to cool by the influence of the freezer compartment 7 provided in the lower part of the refrigerator compartment 2. In the region 2B and above the upper heat insulating partition wall 28, an ice making water tank 36 and a decompression storage chamber 35 are provided. A discharge port 38 is provided below the second cold air duct 11b (see FIG. 3), and the decompression storage chamber 35 in front of the discharge port 38 is cooled.
減圧貯蔵室35内の温度は、外部から設定できるようになっており、減圧貯蔵室35の背面側に設けた吐出口38(風量調整装置(ダンパ)付き)からの冷気で、減圧貯蔵室35の背面側に設けた第一の温度センサ44で検出される温度に従い、温度調整がなされる。 The temperature in the decompression storage chamber 35 can be set from the outside, and the decompression storage chamber 35 is cold air from a discharge port 38 (with an air volume adjusting device (damper)) provided on the back side of the decompression storage chamber 35. The temperature is adjusted according to the temperature detected by the first temperature sensor 44 provided on the back side of the.
冷蔵室2に送風された冷気は、冷蔵室戻り口39を介して冷却器14に戻されて再び冷却される。 The cold air blown into the refrigerator compartment 2 is returned to the cooler 14 via the refrigerator compartment return port 39 and cooled again.
冷蔵室2の下部に設けた減圧貯蔵室35は、内部の圧力を低下させるために減圧用ポンプ(図示なし)を備えてあり、内部の圧力を維持するために減圧貯蔵室のドア56は、ハンドル55でロックできるようになっている(図3,図4参照)。 The decompression storage chamber 35 provided in the lower part of the refrigerator compartment 2 is provided with a decompression pump (not shown) in order to reduce the internal pressure, and in order to maintain the internal pressure, the door 56 of the decompression storage chamber is The handle 55 can be locked (see FIGS. 3 and 4).
図3には、一例として減圧貯蔵室35を設けた冷蔵室2を挙げているが、一般的には冷蔵室2の温度帯よりも低めの温度帯に設定されたチルドルームを設けていることが多い。
減圧貯蔵室35も、チルドルームとほぼ同じ温度帯で食品を保存している。
Although FIG. 3 shows the refrigerator compartment 2 provided with the decompression storage chamber 35 as an example, it is generally provided with a chilled room set in a temperature zone lower than the temperature zone of the refrigerator compartment 2. There are many.
The decompression storage chamber 35 also stores food in substantially the same temperature range as the chilled room.
ここで、製氷水タンク36や減圧貯蔵室35は、一般的に冷蔵室の最下段の棚34fの下に設けている場合が多いため、凍結しないように温度管理をする必要がある。 Here, since the ice making water tank 36 and the decompression storage chamber 35 are generally provided under the lowest shelf 34f of the refrigeration chamber, it is necessary to control the temperature so as not to freeze.
本実施例では、冷蔵室2の最上段の棚34a,34bと最下段の棚34fで区画された領域2Cに設けた第三の温度センサ42、最上段の棚34a,34bと冷蔵室2の上壁で区画された領域2Aに設けた第二の温度センサ43、第一の冷気ダクト11aの吐出口31,32と第二の冷気ダクト11bの吐出口30a,30b,30cから送風された冷気が共通して循環する領域2Bに設けた第一の温度センサ44を設けている。例えば、第三の温度センサ42は、第二の温度センサ43と第一の温度センサ44の間に位置し、冷蔵室2の奥側に設けた冷蔵室冷気ダクト11を形成する背面部材47の表面に設けている。
第二の温度センサ43は冷蔵室2の上壁63に設けている。また、第一の温度センサ44は最下段の棚34fと上断熱仕切壁28で区画された領域の冷蔵室冷気ダクト11を形成する背面部材47の表面に設けている。
In the present embodiment, the third temperature sensor 42, the uppermost shelves 34a, 34b, and the refrigerator compartment 2 provided in the region 2C defined by the uppermost shelves 34a, 34b and the lowermost shelf 34f of the refrigerator compartment 2 are used. Cold air blown from the second temperature sensor 43 provided in the region 2A defined by the upper wall, the discharge ports 31 and 32 of the first cold air duct 11a, and the discharge ports 30a, 30b and 30c of the second cold air duct 11b Are provided in a region 2B that circulates in common. For example, the third temperature sensor 42 is located between the second temperature sensor 43 and the first temperature sensor 44, and is a rear member 47 that forms the refrigerating room cool air duct 11 provided on the back side of the refrigerating room 2. Provided on the surface.
The second temperature sensor 43 is provided on the upper wall 63 of the refrigerator compartment 2. The first temperature sensor 44 is provided on the surface of the back member 47 that forms the refrigerator compartment cool air duct 11 in a region defined by the lowermost shelf 34 f and the upper heat insulating partition wall 28.
また、回動仕切体15の庫内側表面は、冷蔵室ドア2a,2bを閉めた状態では第一の冷気ダクト11aと第二の冷気ダクト11bから吐出される冷気循環に曝されるため、冷蔵室2の設定温度に応じた第一の冷気ダクト11aと第二の冷気ダクト11bから吐出される冷気の流れに、回動仕切体15の庫外側表面温度が影響される。 Further, the inner surface of the rotating partition 15 is exposed to the cold air circulation discharged from the first cold air duct 11a and the second cold air duct 11b when the refrigerator compartment doors 2a and 2b are closed. The outside surface temperature of the rotating partition 15 is affected by the flow of cold air discharged from the first cold air duct 11a and the second cold air duct 11b according to the set temperature of the chamber 2.
なお、第三の温度センサ42は、冷蔵室2の最上段の棚34a,34bと最下段の棚34fで区画された領域2A、第二の温度センサ43は、最上段の棚34a,34bと天井面63で区画された領域2C、第一の温度センサ44は、第一の冷気ダクト11aと第二の冷気ダクト11bの吐出口から送風された冷気が共通して循環する領域2Bの温度を検出できれば、必ずしもこの位置に限定されるものではない。さらに、各温度センサを少なくとも一部覆い、保護するカバーを設けてもよい。 The third temperature sensor 42 is a region 2A defined by the uppermost shelves 34a and 34b and the lowermost shelf 34f of the refrigerator compartment 2, and the second temperature sensor 43 is an uppermost shelf 34a and 34b. The area 2C defined by the ceiling surface 63, the first temperature sensor 44, detects the temperature of the area 2B in which the cold air blown from the discharge ports of the first cold air duct 11a and the second cold air duct 11b circulates in common. If it can be detected, the position is not necessarily limited to this position. Furthermore, you may provide the cover which covers and protects at least one part of each temperature sensor.
図5,図6は冷蔵室冷気ダクト11(第一の冷気ダクト11a、第二の冷気ダクト11b)を拡大したものであり、それぞれ正面図と背面図である。図7は、図5のC-C断面図である。 5 and 6 are enlarged views of the cold room cold air duct 11 (first cold air duct 11a and second cold air duct 11b), and are a front view and a rear view, respectively. 7 is a cross-sectional view taken along the line CC of FIG.
第一の冷気ダクト11aと第二の冷気ダクト11bは、例えば、発泡スチロール41を一例とする断熱性材料で風路が形成されており、第一の冷気ダクト11aの一部に吐出口30a、30b、30c、第二の冷気ダクト11bの一部に吐出口31、32をそれぞれ形成している。第一の冷気ダクト11a、第二の冷気ダクト11bの背面側には、シール部材62を用いてそれぞれ背面部材47に接続している。発泡スチロール41で形成された第一の冷気ダクト11a、第二の冷気ダクト11bは、例えば樹脂で成型されたパネル形状の背面部材47と組み合わせ、冷蔵室2の背面奥側に設置されている。第一の冷気ダクト11aは第二の冷気ダクト11bよりも流路断面積を大きくし、第一の冷気ダクト11aは、冷蔵室ツインダンパ20の開口面積が大きいバッフル20a側に接続することにより、冷蔵庫2の使用頻度が高い棚34c,34d,34e,34fの上の食品を効率良く冷却することができる。冷蔵室冷気ダクト11を形成する背面部材47には、第三の温度センサ42と、第一の温度センサ44を設けている。 The first cold air duct 11a and the second cold air duct 11b have an air passage formed of, for example, a heat insulating material such as a polystyrene foam 41, and discharge ports 30a and 30b are formed in a part of the first cold air duct 11a. 30c and discharge ports 31 and 32 are formed in part of the second cold air duct 11b, respectively. The back side of the first cold air duct 11a and the second cold air duct 11b is connected to the back member 47 using a seal member 62, respectively. The first cold air duct 11a and the second cold air duct 11b formed of the polystyrene foam 41 are combined with a panel-shaped back member 47 formed of resin, for example, and are installed on the back side of the refrigerator compartment 2. The first cold air duct 11a has a larger channel cross-sectional area than the second cold air duct 11b, and the first cold air duct 11a is connected to the baffle 20a side where the open area of the refrigerating room twin damper 20 is large, The food on the shelves 34c, 34d, 34e, 34f, which is frequently used in the refrigerator 2, can be efficiently cooled. A third temperature sensor 42 and a first temperature sensor 44 are provided on the back member 47 that forms the refrigerator compartment cool air duct 11.
図8aは、第一の冷気ダクト11aで冷却した場合、図8bは、第二の冷気ダクト11bで冷却した場合、図8cは、第一の冷気ダクト11aと第二の冷気ダクト11bを同時に使用して冷却した場合の、冷気の流れをそれぞれ模式的に示したものである。図8dは、第一の冷気ダクトと第二の冷気ダクトから冷蔵室内への冷気供給を停止した状態を模式的に示した図である。 FIG. 8a shows a case where the first cold air duct 11a is cooled, FIG. 8b shows a case where the second cold air duct 11b is cooled, and FIG. 8c shows that the first cold air duct 11a and the second cold air duct 11b are used simultaneously. FIG. 4 schematically shows the flow of the cold air when cooled. FIG. 8d is a diagram schematically showing a state where the supply of cold air from the first cold air duct and the second cold air duct to the refrigerator compartment is stopped.
冷蔵室2の庫外からの熱の侵入は、冷蔵室2内の壁面と外気との温度差に起因して生じる現象である。冷蔵室2の平均温度は、一例として約5℃のプラス温度に保たれているが、冷蔵室2の吐出口からの冷気はマイナス温度になることがあり、吐出冷気を冷蔵室2内の壁面に沿って循環させると、壁面が冷却されて温度がより低くなる。そのため、庫外からの熱の侵入が大きくなって、消費電力量の増加を招くことがある。 The invasion of heat from the outside of the refrigerator compartment 2 is a phenomenon caused by the temperature difference between the wall surface in the refrigerator compartment 2 and the outside air. The average temperature of the refrigerator compartment 2 is maintained at a plus temperature of about 5 ° C. as an example, but the cold air from the discharge port of the refrigerator compartment 2 may become a negative temperature, and the discharged cold air is used as the wall surface in the refrigerator compartment 2. When it circulates along the wall, the wall surface is cooled and the temperature becomes lower. For this reason, the heat intrusion from the outside becomes large, which may cause an increase in power consumption.
例えば、外気30℃の場合、冷蔵室2上部に設けた制御基板51付近の温度は約40℃になり、冷蔵室2の上壁63を過度に冷却することは庫内外の温度差が更に大きくなるため省エネルギー性が悪化する。 For example, when the outside air is 30 ° C., the temperature in the vicinity of the control board 51 provided in the upper part of the refrigerator compartment 2 is about 40 ° C., and excessive cooling of the upper wall 63 of the refrigerator compartment 2 causes a larger temperature difference between inside and outside the cabinet. As a result, the energy-saving property deteriorates.
従来の一般的な冷蔵庫では、冷蔵室ダクトの先端部付近から冷蔵室2の上壁面や側壁面に沿って冷気を常時循環させ、冷蔵室2の上部のドアポケット33a、最上段の棚34a,34bの上に置いた食品を冷やしてから冷蔵室2を全体的に冷却している。従って、冷蔵室2内の壁面が過度されることによる、省エネルギー性の悪化が課題となる。 In a conventional general refrigerator, cold air is constantly circulated along the upper wall surface and side wall surface of the refrigerator compartment 2 from the vicinity of the front end of the refrigerator compartment duct, and the upper door pocket 33a, the uppermost shelf 34a, The refrigerator 2 is cooled as a whole after the food placed on 34b is cooled. Therefore, the deterioration of energy saving property by the excessive wall surface in the refrigerator compartment 2 becomes a subject.
本実施形態の冷却方式では、第三の温度センサ42、第二の温度センサ43、第一の温度センサ44で検出される温度に基づいて、冷蔵室2用に設けた2つの冷気ダクト、すなわち、冷気風量の割合を多くした第一の冷気ダクト11aと、第二の冷気ダクト11bを切り替えて使用することにより、壁面の過度の冷却を抑制して省エネルギー性を高めた冷却運転が実施できる。 In the cooling system of the present embodiment, two cold air ducts provided for the refrigerator compartment 2 based on the temperatures detected by the third temperature sensor 42, the second temperature sensor 43, and the first temperature sensor 44, that is, Further, by switching and using the first cold air duct 11a and the second cold air duct 11b in which the ratio of the cold air flow rate is increased, it is possible to perform a cooling operation that suppresses excessive cooling of the wall surface and enhances energy saving.
図8aに第一の冷気ダクト11aで冷却した場合の、冷蔵室2の冷気の流れを示す。冷蔵室ツインダンパ20のバッフル20aを開(バッフル20bは閉)にし、第一の冷気ダクト11aに設けた吐出口30a,30b,30cから冷気を吐出して、主に最上段の棚34a,34bと最下段の棚34fで区画された領域2C、すなわち使用頻度が高い場所の棚34c,34d,34e,34fに置かれた食品を冷却してから、次にドアポケット33b,33c及び最下段の棚34fと上断熱仕切壁28で区画された領域2Bの冷却を行う、省エネルギー性を重視した冷却方法である。 FIG. 8a shows the flow of cold air in the refrigerator compartment 2 when cooled by the first cold air duct 11a. The baffle 20a of the refrigerating room twin damper 20 is opened (the baffle 20b is closed), and cold air is discharged from the discharge ports 30a, 30b, 30c provided in the first cold air duct 11a, and mainly the uppermost shelves 34a, 34b. After cooling the food placed in the region 2C partitioned by the lowermost shelf 34f, that is, the shelves 34c, 34d, 34e, 34f in the frequently used place, then the door pockets 33b, 33c and the lowermost shelf 34f In this cooling method, the region 2B partitioned by the shelf 34f and the upper heat insulating partition wall 28 is cooled, placing importance on energy saving.
第二の冷気ダクト11bに設けた吐出口31,32から冷気を送風してないので、領域2Aの温度が高まり、領域2Aに含まれる回動仕切体15の上部のヒータ15Aが位置する領域の庫外側の表面温度の低下が緩和される。回動仕切体15の内部に設けた結露防止用のヒータ15A,15Bは、回動仕切体15の上下方向に2分割し、それぞれ加熱制御することができる。すなわち、第二の冷気ダクト11bによる冷却の影響を受け易い回動仕切体15上部のヒータ15Aの領域と、第一の冷気ダクト11aと第二の冷気ダクト11bによる冷却の影響を受け易い回動仕切体15下部のヒータ15Bの領域で、庫外側の表面温度の加熱制御を別々に行うことができる。 Since the cool air is not blown from the discharge ports 31 and 32 provided in the second cool air duct 11b, the temperature of the region 2A is increased, and the heater 15A on the upper part of the rotating partition 15 included in the region 2A is located. The decrease in the surface temperature outside the warehouse is alleviated. The dew condensation prevention heaters 15A and 15B provided inside the rotating partition 15 can be divided into two in the vertical direction of the rotating partition 15 and can be controlled by heating. That is, the region of the heater 15A on the upper part of the rotating partition 15 that is susceptible to cooling by the second cold air duct 11b, and the rotation that is susceptible to cooling by the first cold air duct 11a and the second cold air duct 11b. In the region of the heater 15B below the partition 15, heating control of the surface temperature outside the warehouse can be performed separately.
その結果、第一の冷気ダクト11aにより冷蔵室2を冷却している状態では、第二の冷気ダクト11bからの冷気の影響を受けないので、冷蔵室2の上部に位置する回動仕切体15上部のヒータ15Aの領域における、ヒータ加熱量を少なくすることができる。 As a result, in the state in which the refrigerator compartment 2 is cooled by the first cold air duct 11a, it is not influenced by the cold air from the second cold air duct 11b. The heater heating amount in the upper heater 15A region can be reduced.
一方、図8bに示すように、第二の冷気ダクト11bによる冷蔵室2の冷気は、冷蔵室ツインダンパ20のバッフル20bを開にして(バッフル20aは閉)、冷蔵室2の上壁63の近傍に沿って循環させ、主に最上段の棚34a,34bと上壁63で区画された領域、及び冷蔵室ドア2a,2b上段のドアポケット33aの領域である領域2Aを冷却してから、中段のドアポケット33b,33cと、最下段の棚34fと断熱仕切壁28で区画された領域2Bの冷却を行っている。第一の冷気ダクト11aによる冷却を行っていないので、第一の冷気ダクト11aと第二の冷気ダクト11bの吐出口から送風された冷気が共通して循環する領域2Bの冷却が弱まり、回動仕切体15下部のヒータ15Bの領域における加熱量を少なくすることができる。 On the other hand, as shown in FIG. 8b, the cold air in the refrigerating chamber 2 by the second cold air duct 11b opens the baffle 20b of the refrigerating chamber twin damper 20 (the baffle 20a is closed), and the upper wall 63 of the refrigerating chamber 2 Circulating along the vicinity, after cooling the area 2A which is the area of the door pocket 33a of the upper stage of the refrigerator compartment doors 2a, 2b, and the area partitioned mainly by the uppermost shelves 34a, 34b and the upper wall 63, The region 2B defined by the middle door pockets 33b and 33c, the lowermost shelf 34f, and the heat insulating partition wall 28 is cooled. Since the cooling by the first cold air duct 11a is not performed, the cooling of the region 2B in which the cold air blown from the discharge ports of the first cold air duct 11a and the second cold air duct 11b circulates is weakened and rotated. The amount of heating in the area of the heater 15B below the partition 15 can be reduced.
更に、図8cに示すように、冷蔵室ツインダンパ20のバッフル20a,20bの両方を開にし、第一の冷気ダクト11aと第二の冷気ダクト11bの両方を用いて、冷蔵室2の冷気ダクトを分割しない従来と同様の冷却も実施でき、この冷気循環の際の回動仕切体15上部のヒータ15Aの領域と,下部のヒータ15Bの領域における加熱量を通常とする。この場合、ドアポケット33b,33cと、最下段の棚34fと断熱仕切壁28で区画された領域2Bは、第一の冷気ダクト11aの吐出口30a,30b,30cと第二の冷気ダクト11bの吐出口31,32から送風された冷気が共通して循環する領域となるため、冷やされ易くなる。また、図8dに示す冷蔵室2の冷気送風を停止した状態では、回動仕切体15上部のヒータ15Aと,下部のヒータ15Bの加熱量を少なくすることができる。 Furthermore, as shown in FIG. 8 c, both the baffles 20 a and 20 b of the refrigerating room twin damper 20 are opened, and both the first cold air duct 11 a and the second cold air duct 11 b are used to cool the cold air duct of the refrigerating room 2. The same cooling as in the conventional case can be performed without dividing, and the heating amount in the region of the heater 15A above the rotating partition 15 and the region of the lower heater 15B during the cold air circulation is normal. In this case, the region 2B defined by the door pockets 33b and 33c, the lowermost shelf 34f, and the heat insulating partition wall 28 has discharge ports 30a, 30b, and 30c of the first cold air duct 11a and the second cold air duct 11b. Since the cool air blown from the discharge ports 31 and 32 circulates in common, it becomes easy to be cooled. Moreover, in the state which stopped the cool air ventilation of the refrigerator compartment 2 shown to FIG. 8 d, the heating amount of the heater 15A of the rotation partition 15 upper part and the heater 15B of the lower part can be decreased.
以上の冷蔵室2内の冷気の流れと、回動仕切体15のヒータ15A,15Bの加熱量に関して、図9にまとめて示す。 The above-described flow of cool air in the refrigerator compartment 2 and the heating amounts of the heaters 15A and 15B of the rotating partition 15 are collectively shown in FIG.
第一の冷気ダクト11aと第二の冷気ダクト11bを用いた具体的な温度制御については、以下に説明するが、使用者の意思に応じて、省エネルギー運転を更に進めた節電運転も実施することができる。使用頻度が高い棚(食品)を冷却してから、次にその周辺の冷却を目的とした第一の冷気ダクト11aと、冷蔵室2の上部空間から全体を冷却する第二の冷気ダクト11bに分割しているので、冷蔵室2の上部、すなわち使用頻度が比較的低い最上段の棚34a,34bや、最上段ドアポケット33aに食品を置いていない場合、使用者は冷蔵室2の上部空間の温度を検出する第二の温度センサ43の設定値を高めにすることができ、冷蔵室2の上部空間の温度だけを高めた節電運転を実施することができる。 Specific temperature control using the first cold air duct 11a and the second cold air duct 11b will be described below. However, according to the intention of the user, the power saving operation in which the energy saving operation is further advanced should be performed. Can do. After cooling a shelf (food) that is frequently used, the first cold air duct 11a for cooling the periphery of the shelf and the second cold air duct 11b that cools the whole from the upper space of the refrigerator compartment 2 Since the food is divided, when the food is not placed in the upper part of the refrigerator compartment 2, that is, the uppermost shelves 34a, 34b and the upper door pocket 33a, which are relatively infrequently used, the user can use the upper space of the refrigerator compartment 2. The set value of the second temperature sensor 43 that detects the temperature of the second temperature sensor 43 can be increased, and a power saving operation can be performed in which only the temperature of the upper space of the refrigerator compartment 2 is increased.
次に、第一の冷気ダクト11aと第二の冷気ダクト11bを用いた場合の、冷却方法について温度チャートを用いて説明する。 Next, a cooling method when the first cold air duct 11a and the second cold air duct 11b are used will be described using a temperature chart.
図10は、本発明の第一の実施形態に係る冷蔵室の冷却運転時の温度チャートである。冷蔵室2の冷却運転の開始は、例えば、第三の温度センサ42で検出される温度が(TR1)Maxに到達した時に、冷蔵室ツインダンパ20のバッフル20aを開にして第一の冷気ダクト11aで冷蔵室2に冷気を送風する。同様に、第二の温度センサ43で検出される温度が(TR2)Maxに到達した時に、冷蔵室ツインダンパ20のバッフル20bを開にして第二の冷気ダクト11bで冷蔵室2に冷気を送風する。図10では一例として、第一の冷気ダクト11aと、第二の冷気ダクト11bによる冷却が時刻t1で同時に始まっているが、必ずしも同時開始でなくても良い。 FIG. 10 is a temperature chart during the cooling operation of the refrigerator compartment according to the first embodiment of the present invention. For example, when the temperature detected by the third temperature sensor 42 reaches (TR1) Max, the baffle 20a of the refrigerator compartment twin damper 20 is opened and the first cold air duct is started. Cold air is blown into the refrigerator compartment 2 at 11a. Similarly, when the temperature detected by the second temperature sensor 43 reaches (TR2) Max, the baffle 20b of the refrigerating room twin damper 20 is opened and the cold air is blown into the refrigerating room 2 by the second cold air duct 11b. To do. In FIG. 10, as an example, the cooling by the first cold air duct 11a and the second cold air duct 11b starts at the time t1, but it does not necessarily have to start simultaneously.
ただし、第一の冷気ダクト11aと、第二の冷気ダクト11bの2つの冷却手段によって、同じ冷蔵室2を冷却しているので、冷蔵室2の冷却を終了させるタイミングは重要となる。 However, since the same refrigerating chamber 2 is cooled by the two cooling means of the first cold air duct 11a and the second cold air duct 11b, the timing of ending the cooling of the refrigerating chamber 2 is important.
時刻t2において、第二の温度センサ43の近くにある、例えば、最上段の棚34a,34bや、ドアポケット33a等に高温の食品を収納したり、多くの食品を持ち込んだり、ドア2a,2bの開閉を頻繁に行ったりした場合(以下、これらを総称して「高負荷状態」という)、第二の温度センサ43で検出される温度は、熱負荷が増えるため一旦上昇した後、しばらく経ってから温度が低下する。バッフル20bを閉にして、第二の冷気ダクト11bからの冷気の送風を止める時の温度、すなわち(TR2)Minに到達するまでの時間(時刻t3)が長くなるので、その間、冷蔵室2の下部に設けた製氷水タンク36や減圧貯蔵室35の周囲(領域2B;図3参照)も同時に冷却され続ける。従って、第一の温度センサ44で検出される、製氷水タンク36や減圧貯蔵室35の周囲の温度が、予め定めた製氷水タンク36の水や減圧貯蔵室35内の食品が凍結しない下限の温度、すなわち、時刻t4の(TR3)Minに到達した場合、第二の温度センサ43が検出する温度が(TR2)Minに到達する前であっても、バッフル20bを閉にして第二の冷気ダクト11bによる冷却を終了させる。第三の温度センサ42で検出される温度が(TR1)Minに到達(時刻t5)すると、バッフル20aを閉にして第一の冷気ダクト11aによる冷却を終了させる。 At time t2, for example, high temperature food is stored in the uppermost shelves 34a, 34b, the door pocket 33a, etc. near the second temperature sensor 43, many foods are brought in, and the doors 2a, 2b. The temperature detected by the second temperature sensor 43 increases once due to an increase in the thermal load, and then passes for a while when it is frequently opened and closed (hereinafter collectively referred to as “high load state”). Then the temperature drops. The temperature when closing the baffle 20b and stopping the blowing of the cold air from the second cold air duct 11b, that is, the time (time t3) until reaching (TR2) Min becomes longer. The surroundings of the ice-making water tank 36 and the decompression storage chamber 35 provided in the lower part (area 2B; see FIG. 3) continue to be cooled at the same time. Therefore, the temperature around the ice-making water tank 36 and the decompression storage chamber 35 detected by the first temperature sensor 44 is a lower limit at which the water in the ice-making water tank 36 and the food in the decompression storage chamber 35 are not frozen. When the temperature, that is, (TR3) Min at time t4 is reached, the second cold air is closed by closing the baffle 20b even before the temperature detected by the second temperature sensor 43 reaches (TR2) Min. Cooling by the duct 11b is terminated. When the temperature detected by the third temperature sensor 42 reaches (TR1) Min (time t5), the baffle 20a is closed and the cooling by the first cold air duct 11a is ended.
このように、本実施形態の冷蔵室の冷却方法では、第一の冷気ダクト11aと第二の冷気ダクト11bの2つに分割して同じ冷蔵室2を冷却しているため、第二の冷気ダクト11bに供給する冷蔵室ツインダンパ20のバッフル20bの開閉制御は、第二の温度センサ43と第一の温度センサ44の2つを参照することが必要となる。 Thus, in the cooling method of the refrigerator compartment of this embodiment, since the same refrigerator compartment 2 is cooled by dividing | segmenting into the 1st cold air duct 11a and the 2nd cold air duct 11b, it is 2nd cold air The opening / closing control of the baffle 20b of the refrigerating room twin damper 20 supplied to the duct 11b needs to refer to the second temperature sensor 43 and the first temperature sensor 44.
次に、図11は本発明の第一の実施形態に係る冷蔵室の冷却運転時の温度チャートであって、図10とは異なる制御を示す図である。 Next, FIG. 11 is a temperature chart during the cooling operation of the refrigerating room according to the first embodiment of the present invention, and is a diagram showing control different from FIG.
図10では第二の冷気ダクト11bのバッフル20bの開閉制御に、第二の温度センサ42と第一の温度センサ44を参照することを説明したが、同様に第一の冷気ダクト11aのバッフル20aの開閉制御も、第一の温度センサ44で検出される温度を参照する場合が生じる。 In FIG. 10, the second temperature sensor 42 and the first temperature sensor 44 are referred to for the opening / closing control of the baffle 20b of the second cold air duct 11b. Similarly, the baffle 20a of the first cold air duct 11a is referred to. In the open / close control, there is a case where the temperature detected by the first temperature sensor 44 is referred to.
図11では、一例として、時刻t1において、冷蔵室ツインダンパ20のバッフル20aと、バッフル20bを開にして、第一の冷気ダクト11aと第二の冷気ダクト11bによって冷蔵室2の冷却を開始している。その後、時刻t2において、第三の温度センサ42の設置場所の近くの、使用頻度が高い棚34c、34d、34e、34fが高負荷状態となった場合、第三の温度センサ42で検出される温度は、一旦上昇した後、しばらく経ってから温度は低下する。第一の冷気ダクト11aからの冷気の送風を止める時の温度、すなわち(TR1)Minに到達するまでの時間(時刻t5)が長くなるので、その間、冷蔵室2の下部に設けた製氷水タンク36や、減圧貯蔵室35の周囲(領域2B;図3参照)も同時に冷却され続ける。 In FIG. 11, as an example, at time t1, the baffle 20a and the baffle 20b of the refrigerating room twin damper 20 are opened, and cooling of the refrigerating room 2 is started by the first cold air duct 11a and the second cold air duct 11b. ing. After that, at time t2, if the shelves 34c, 34d, 34e, and 34f near the place where the third temperature sensor 42 is installed are in a high load state, the third temperature sensor 42 detects them. The temperature rises once and then decreases after a while. The temperature at which the cooling air from the first cold air duct 11a is stopped, that is, the time (time t5) until reaching (TR1) Min becomes longer. During this time, the ice making water tank provided at the lower part of the refrigerator compartment 2 36 and the periphery of the decompression storage chamber 35 (region 2B; see FIG. 3) are also continuously cooled.
従って、第一の温度センサ44で温度を検出される製氷水タンク36や減圧貯蔵室35の周囲の温度が、予め定めた製氷水タンク36の水や減圧貯蔵室35内の食品が凍結しない下限の温度、すなわち、時刻t4で(TR3)Minに到達した場合、第三の温度センサ42が検出する温度が(TR1)Minに到達する前であっても、バッフル20aを閉にして第一の冷気ダクト11aによる冷却を終了させる。このような条件が満たされた場合、第二の温度センサ43で検出される温度が(TR2)Minに到達していなくても、バッフル20bを閉にして第二の冷気ダクト11bによる冷却も終了させる。 Therefore, the temperature around the ice making water tank 36 and the decompression storage chamber 35 whose temperature is detected by the first temperature sensor 44 is a lower limit at which the water in the ice making water tank 36 and the food in the decompression storage chamber 35 are not frozen. , That is, when (TR3) Min is reached at time t4, even if the temperature detected by the third temperature sensor 42 does not reach (TR1) Min, the baffle 20a is closed and the first Cooling by the cold air duct 11a is terminated. When such a condition is satisfied, even if the temperature detected by the second temperature sensor 43 does not reach (TR2) Min, the baffle 20b is closed and the cooling by the second cold air duct 11b is completed. Let
第一の冷気ダクト11aの風量を制御するバッフル20aと、第二の冷気ダクト11bの風量を制御するバッフル20bの開閉は、それぞれ第三の温度センサ42と第二の温度センサ43で検出される温度を基に、バッフル20aの開状態にする温度(TR1)Max、閉状態にする温度(TR1)Min、バッフル20bを開状態にする温度(TR2)Max、閉状態にする温度(TR2)Minを予め定めておき、それに従って制御するが、バッフル20aまたはバッフル20bを閉にする温度条件(TR1)Min、または(TR2)Minに到達する時間よりも、第一の温度センサ44で検出される凍結防止温度、すなわち(TR3)Minが先に到達してしまう時は、第一の温度センサ44で検出される温度(TR3)Minを優先させて、バッフル20aまたはバッフル20bを閉にする。 Opening and closing of the baffle 20a for controlling the air volume of the first cold air duct 11a and the baffle 20b for controlling the air volume of the second cold air duct 11b are detected by the third temperature sensor 42 and the second temperature sensor 43, respectively. Based on the temperature, the temperature (TR1) Max for opening the baffle 20a, the temperature (TR1) Min for closing, the temperature (TR2) Max for opening the baffle 20b, the temperature (TR2) Min for closing the baffle 20b Is determined in advance and controlled accordingly, but detected by the first temperature sensor 44 rather than the time to reach the temperature condition (TR1) Min or (TR2) Min for closing the baffle 20a or baffle 20b. When the anti-freezing temperature, that is, (TR3) Min reaches first, the temperature (TR3) Min detected by the first temperature sensor 44 is superior. By, the baffle 20a or baffle 20b in the closed.
バッフル20bを閉にする時の温度、すなわち(TR2)Minに到達する前に、第一の温度センサ44で検出される温度(TR3)Minを優先させてバッフル20bを閉にする場合は、自然対流の影響により温度が上がり易い冷蔵室2の上部空間を十分に冷却していないことになる。従って、冷凍室4、5の冷却が終了した後に、再び冷蔵室2を冷却する条件になった場合には、第二の冷気ダクト11bによる冷却を優先させる。例えば、第一の冷気ダクト11aのバッフル20aの開度を半分にし、第二の冷気ダクト11bのバッフル20bの開度を全開にして、第二の冷気ダクト11bへの風量割合を増やした冷却や、バッフル20aを全閉、バッフル20bを全開にした第二の冷気ダクト11b単独による冷却を実施する。 When the baffle 20b is closed with priority given to the temperature (TR3) Min detected by the first temperature sensor 44 before reaching the temperature at which the baffle 20b is closed, that is, (TR2) Min. The upper space of the refrigerator compartment 2 where the temperature tends to rise due to the influence of convection is not sufficiently cooled. Therefore, after the cooling of the freezer compartments 4 and 5 is finished, when the condition for cooling the refrigerator compartment 2 again is reached, the cooling by the second cold air duct 11b is prioritized. For example, cooling by increasing the air volume ratio to the second cold air duct 11b by halving the opening degree of the baffle 20a of the first cold air duct 11a and fully opening the opening degree of the baffle 20b of the second cold air duct 11b. Then, cooling is performed by the second cold air duct 11b alone in which the baffle 20a is fully closed and the baffle 20b is fully opened.
次に、図12は図10,図11と異なる制御の温度チャートを示す図である。図12を参照して、第三の温度センサ42で検出される温度が(TR1)Min、第二の温度センサ43で検出される温度が(TR2)Minに到達し、第一の冷気ダクト11aと第二の冷気ダクト11bによる冷気の送風を止めた後に、第一の温度センサ44で検出される温度が上昇し、予め定めた温度(TR3)Hを超えた場合の冷却方法について説明する。 Next, FIG. 12 is a diagram showing a temperature chart of control different from those in FIGS. Referring to FIG. 12, the temperature detected by third temperature sensor 42 reaches (TR1) Min, the temperature detected by second temperature sensor 43 reaches (TR2) Min, and first cold air duct 11a. A cooling method when the temperature detected by the first temperature sensor 44 rises and exceeds a predetermined temperature (TR3) H after stopping the blowing of the cold air by the second cold air duct 11b will be described.
例えば、第二の温度センサ43で検出される温度が(TR2)Minとなった後(時刻t3)に、第一の温度センサ44を設置した付近に一度に多くの食品を入れた場合、第三の温度センサ42と第二の温度センサ43で検出される温度も上昇し、特に第一の温度センサ44で検出される温度が、予め決めた温度(TR3)Hを超える場合がある。この時、第一の温度センサ44を設けている領域は、第一の冷気ダクト11aと第二の冷気ダクト11bの吐出口から送風された冷気が共通して循環する領域であるため、いずれかの冷気ダクトで冷却することができる。 For example, after a temperature detected by the second temperature sensor 43 becomes (TR2) Min (time t3), when many foods are put in the vicinity of where the first temperature sensor 44 is installed, The temperature detected by the third temperature sensor 42 and the second temperature sensor 43 also increases, and in particular, the temperature detected by the first temperature sensor 44 may exceed a predetermined temperature (TR3) H. At this time, the region where the first temperature sensor 44 is provided is a region where the cold air blown from the discharge ports of the first cold air duct 11a and the second cold air duct 11b circulates in common. It can be cooled with a cold air duct.
すなわち、図12に示したように、第一の温度センサ44で検出される温度が(TR3)Hを超える時刻t6において、第三の温度センサ42と第二の温度センサ43で検出される温度が、それぞれ(TR1)Min、(TR2)Min以上で、(TR1)Max、(TR2)Max以下の条件を満たす場合、バッフル20aとバッフル20bを開にして第一の冷気ダクト20aと第二の冷気ダクト20bによって冷気を送風する。第一の温度センサ44で検出される温度が(TR3)Lに到達するまで(時刻t8)、第一の冷気ダクト20aと第二の冷気ダクト20bによって冷気を送風するが、温度(TR3)Lに到達する前に、第三の温度センサ42で検出される温度が先に(TR1)Minに到達した場合には、この時点でバッフル20aを閉にして第一の冷気ダクト11aに冷気の送風は止め、第一の温度センサ44で検出される温度が(TR3)Lに到達するまで、第二の冷気ダクト11b単独による冷気の送風を継続する。 That is, as shown in FIG. 12, the temperature detected by the third temperature sensor 42 and the second temperature sensor 43 at time t6 when the temperature detected by the first temperature sensor 44 exceeds (TR3) H. Are (TR1) Min, (TR2) Min or more and satisfy the following condition (TR1) Max, (TR2) Max, the baffle 20a and the baffle 20b are opened and the first cold air duct 20a and the second Cold air is blown by the cold air duct 20b. Until the temperature detected by the first temperature sensor 44 reaches (TR3) L (time t8), cool air is blown by the first cold air duct 20a and the second cold air duct 20b, but the temperature (TR3) L If the temperature detected by the third temperature sensor 42 first reaches (TR1) Min before reaching the temperature, the baffle 20a is closed at this time and the cool air is blown to the first cool air duct 11a. Until the temperature detected by the first temperature sensor 44 reaches (TR3) L, the blowing of cool air by the second cool air duct 11b alone is continued.
図8bに示すように、第二の冷気ダクト11bによる冷却は、冷蔵室2の天井面63に沿って循環させ、主に最上段の棚34a,34bと上壁63で区画された領域及び冷蔵室ドア2a,2bの上部のドアポケット33aの領域である領域2Aを冷却してから、ドアポケット33b、33cと、最下段の棚34fと上断熱仕切壁28で区画された領域2Bの冷却を行っているので、使用頻度が高い領域2Cに配置した食品の冷やし過ぎを配慮した冷却が実施できる。 As shown in FIG. 8b, the cooling by the second cold air duct 11b is circulated along the ceiling surface 63 of the refrigerating room 2, and the region and the refrigerating mainly divided by the uppermost shelves 34a and 34b and the upper wall 63 After cooling the region 2A, which is the region of the upper door pocket 33a of the chamber doors 2a, 2b, the region 2B partitioned by the door pockets 33b, 33c, the bottom shelf 34f and the upper heat insulating partition wall 28 is cooled. Therefore, it is possible to perform cooling in consideration of excessive cooling of the food disposed in the region 2C where the usage frequency is high.
従って、第三の温度センサ42と第二の温度センサ43で検出される温度が、いずれも温度(TR1)Min、(TR2)Min以上の条件を満たし、第一の温度センサ44で検出される温度が(TR3)Lに到達するように、第一の冷気ダクト11aと第二の冷気ダクト11bで冷却を再開した場合は、使用頻度が高い領域Cに配置した食品の冷やし過ぎを防止するため、第一の冷気ダクト11aによる冷却は温度(TR1)Minに到達した時点で止め、領域Cに配置した食品への影響が比較的少ない第二の冷気ダクト11bによって、第二の温度センサ43で検出される温度が(TR2)Min以下になっても、第一の温度センサ44が温度(TR3)Lに到達するまで冷却できる。 Therefore, the temperatures detected by the third temperature sensor 42 and the second temperature sensor 43 both satisfy the conditions equal to or higher than the temperature (TR1) Min and (TR2) Min, and are detected by the first temperature sensor 44. In order to prevent the food disposed in the region C that is frequently used from being overcooled when cooling is resumed in the first cold air duct 11a and the second cold air duct 11b so that the temperature reaches (TR3) L. The cooling by the first cold air duct 11a is stopped when the temperature (TR1) Min is reached, and the second cold air duct 11b disposed in the region C has a relatively small influence on the food, and the second temperature sensor 43 Even if the detected temperature is equal to or lower than (TR2) Min, the first temperature sensor 44 can be cooled until it reaches the temperature (TR3) L.
次に、図13は本発明の第一の実施形態に係る冷蔵室の冷却運転時の温度チャートであって、図10から図12と異なる制御を示す図である。図13を参照して、第三の温度センサ42で検出される温度が(TR1)Min、第二の温度センサ43で検出される温度が(TR2)Minに到達し、第一の冷気ダクト11aと第二の冷気ダクト11bによる冷気の送風を止めた後に、第一の温度センサ44で検出される温度が上昇し、予め決めた温度(TR3)Hを超えた場合の他の冷却方法について説明する。 Next, FIG. 13 is a temperature chart during the cooling operation of the refrigerating room according to the first embodiment of the present invention, and is a diagram showing control different from FIGS. 10 to 12. Referring to FIG. 13, the temperature detected by third temperature sensor 42 reaches (TR1) Min, the temperature detected by second temperature sensor 43 reaches (TR2) Min, and first cold air duct 11a. After the cooling air blown by the second cold air duct 11b is stopped, the temperature detected by the first temperature sensor 44 rises, and another cooling method when the temperature exceeds a predetermined temperature (TR3) H will be described. To do.
例えば、第二の温度センサ43で検出される温度が(TR2)Minとなった後(時刻t3)に、第一の温度センサ44を設置した付近に一度に多くの食品を入れた場合、第一の温度センサ44で検出される温度が、予め決めた温度(TR3)Hを超える場合がある。第三の温度センサ42と第二の温度センサ43で検出される温度が、それぞれ(TR1)Min以上(TR1)Max以下、(TR2)Min以上(TR2)Max以下の条件を満たすまで、第一の温度センサ44で検出される温度が(TR3)Hを超えても(時刻t6)、食品の冷やし過ぎや凍結防止のため冷却は行わない。第三の温度センサ42と第二の温度センサ43で検出される温度が、それぞれ(TR1)Min以上(TR1)Max以下、(TR2)Min以上(TR2)Max以下の条件を満たす時刻t9になった時点でバッフル20aとバッフル20bを開にして、第一の冷気ダクト11aと第二の冷気ダクト11bによって冷気の送風を開始する。図13では第一の温度センサで出力される温度が(TR1)Min以上、第二の温度センサで出力される温度が(TR2)Min以上の条件を時刻t9の時点で両方満たしているが、先にこの条件満たした方から第一の冷気ダクト11a、第二の冷気ダクト11bによって順次冷却を開始すれば良い。第一の温度センサ44が温度(TR3)Minに到達するまでの制御に関しては、図11と同様である。 For example, after a temperature detected by the second temperature sensor 43 becomes (TR2) Min (time t3), when many foods are put in the vicinity of where the first temperature sensor 44 is installed, The temperature detected by one temperature sensor 44 may exceed a predetermined temperature (TR3) H. Until the temperatures detected by the third temperature sensor 42 and the second temperature sensor 43 satisfy the conditions of (TR1) Min to (TR1) Max and (TR2) Min to (TR2) Max, respectively. Even if the temperature detected by the temperature sensor 44 exceeds (TR3) H (time t6), the food is not cooled to prevent overcooling and freezing. The temperatures detected by the third temperature sensor 42 and the second temperature sensor 43 are times t9 that satisfy the conditions of (TR1) Min to (TR1) Max and below (TR2) Min to (TR2) Max and below, respectively. At that time, the baffle 20a and the baffle 20b are opened, and the blowing of the cold air is started by the first cold air duct 11a and the second cold air duct 11b. In FIG. 13, the condition that the temperature output from the first temperature sensor is (TR1) Min or higher and the temperature output from the second temperature sensor is (TR2) Min or higher is satisfied at the time t9. The cooling may be started sequentially by the first cold air duct 11a and the second cold air duct 11b from the one that satisfies this condition first. The control until the first temperature sensor 44 reaches the temperature (TR3) Min is the same as in FIG.
以上のように、第一の温度センサ44が設置されている領域は、第一の冷気ダクト11aと第二の冷気ダクト11bの吐出口から送風された冷気が共通して循環する領域2Bとなるため、第三の温度センサ42と第二の温度センサ43で検出される温度に応じて、2つの冷気ダクトによって第一の温度センサ44で検出される温度が(TR3)Max以下になるように、食品の冷やし過ぎを抑制しながら冷却することができる。 As described above, the region where the first temperature sensor 44 is installed is the region 2B where the cold air blown from the discharge ports of the first cold air duct 11a and the second cold air duct 11b circulates in common. Therefore, according to the temperature detected by the third temperature sensor 42 and the second temperature sensor 43, the temperature detected by the first temperature sensor 44 by the two cold air ducts is (TR3) Max or less. The food can be cooled while preventing the food from being overcooled.
(実施の形態2)
次に第一の温度センサ44を、他の設置場所にした場合の実施例について、図14aから図16を参照して説明する。なお、実施の形態1と同様の構成については、同一の符号を付して説明を省略する。
(Embodiment 2)
Next, an embodiment in which the first temperature sensor 44 is installed at another location will be described with reference to FIGS. 14a to 16. In addition, about the structure similar to Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
図14aは第一の冷気ダクト11aと、第二の冷気ダクト13bの両方で冷却している場合の冷気の流れを模式的に示す図である。図8a,8b,8cに示したように、中段の棚34c,34dに食品が置かれていない場合はもちろんであるが、食品が置かれていても第一の冷気ダクト11aの吐出口30a,30b,30cから吐出される冷気の流れがスムーズである場合には、棚34c,34dに置いた食品は効率よく冷却される。しかしながら、図14aに示すように、棚34c,34dに多くの食品を置いた場合、吐出口30a、30bから吐出された冷気の流れは悪くなり、食品を効率的に冷やすことができなくなる。このような場合、図14bに示すように第一の冷気ダクト11aによる冷却よりも、第二の冷気ダクト11bによる冷却を実施した方が良い。 FIG. 14a is a diagram schematically showing the flow of cold air when cooling is performed by both the first cold air duct 11a and the second cold air duct 13b. As shown in FIGS. 8a, 8b, and 8c, it goes without saying that food is not placed on the shelves 34c and 34d in the middle stage, but even if food is placed, the outlets 30a, When the flow of cool air discharged from 30b and 30c is smooth, the food placed on the shelves 34c and 34d is efficiently cooled. However, as shown in FIG. 14a, when many foods are placed on the shelves 34c and 34d, the flow of the cold air discharged from the discharge ports 30a and 30b becomes worse, and the foods cannot be efficiently cooled. In such a case, it is better to perform the cooling by the second cold air duct 11b than the cooling by the first cold air duct 11a as shown in FIG. 14b.
次に、このような冷却方法を実施するための、第一の温度センサ44の設置場所について説明する。 Next, an installation place of the first temperature sensor 44 for implementing such a cooling method will be described.
図15は、本発明の第二の実施形態に係る冷蔵室に設置する第一の温度センサを説明する図である。本実施形態において、第一の温度センサ44は、使用頻度が高い中段の棚34c,34d,34eを主に冷却する、第一の冷気ダクト11aの吐出口30a,30bの近傍に設けている。図14aに示したように、食品を詰め込み過ぎた場合には、吐出口からの冷気は食品によって流れが阻害されるため、第一の温度センサ44の周囲の温度は、冷却器14から送風されてきた低温冷気の影響を直接受け易く、急激に温度が低下する。棚34fよりも下方部の冷却用に設けた吐出口30cは、低温になり易い冷蔵室2下方部に位置しているので、吐出口の開口面積は小さく、吐出口30a,30bは、まず使用頻度が高い棚34c,34d,34eに置いた食品を冷却してから、次にその周辺部の冷却を行うため、吐出口の開口面積を大きめにしてある。従って、開口面積が大きい吐出口30a,30bから吐出される冷気の流れが、食品の冷却に大きく影響するため、吐出口30a,30bの近傍に第一の温度センサ44を設けた方が良い。 FIG. 15 is a diagram illustrating a first temperature sensor installed in the refrigerator compartment according to the second embodiment of the present invention. In the present embodiment, the first temperature sensor 44 is provided in the vicinity of the discharge ports 30a, 30b of the first cold air duct 11a that mainly cools the middle shelves 34c, 34d, 34e that are frequently used. As shown in FIG. 14a, when food is packed too much, the flow of cool air from the discharge port is hindered by the food, so the temperature around the first temperature sensor 44 is blown from the cooler 14. It is easily affected directly by low temperature and cold air, and the temperature drops rapidly. Since the discharge port 30c provided for cooling below the shelf 34f is located in the lower part of the refrigerator compartment 2 that tends to be low in temperature, the opening area of the discharge port is small, and the discharge ports 30a and 30b are first used. Since the food placed on the shelves 34c, 34d, and 34e having a high frequency is cooled and then the periphery thereof is cooled, the opening area of the discharge port is increased. Therefore, since the flow of cool air discharged from the discharge ports 30a and 30b having a large opening area greatly affects the cooling of food, it is preferable to provide the first temperature sensor 44 in the vicinity of the discharge ports 30a and 30b.
なお、吐出口30aと吐出口30bのそれぞれに第一の温度センサ44を設けるのが良いが、吐出口30aと吐出口30bから吐出された冷気は、食品に衝突した後に冷気が跳ね返って上下左右方向に流れが分配されるため、少なくとも吐出口30aと吐出口30bの間に第一の温度センサ44を設けると、吐出口30aと吐出口30bのいずれかからの冷気の影響を受け易くなる。 The first temperature sensor 44 is preferably provided in each of the discharge port 30a and the discharge port 30b. However, the cold air discharged from the discharge port 30a and the discharge port 30b rebounds after the collision with the food. Since the flow is distributed in the direction, if the first temperature sensor 44 is provided at least between the discharge port 30a and the discharge port 30b, it becomes easy to be affected by the cold air from either the discharge port 30a or the discharge port 30b.
図16は、本発明の第二の実施形態に係る冷蔵室の冷却運転時の温度チャートである。
第三の温度センサ42と第二の温度センサ43で検出される温度がそれぞれ(TR1)Max、(TR2)Maxに到達すると、バッフル20a,20bを開にして第一の冷気ダクト11a、第二の冷気ダクト11bによって冷蔵室2を冷却する。図16では、一例として時刻t1で、第一の冷気ダクト11aと、第二の冷気ダクト11bによる冷却を同時に始めている。
FIG. 16 is a temperature chart during the cooling operation of the refrigerator compartment according to the second embodiment of the present invention.
When the temperatures detected by the third temperature sensor 42 and the second temperature sensor 43 reach (TR1) Max and (TR2) Max, respectively, the baffles 20a and 20b are opened and the first cold air duct 11a and second The refrigerator compartment 2 is cooled by the cold air duct 11b. In FIG. 16, as an example, at the time t1, cooling by the first cold air duct 11a and the second cold air duct 11b is started simultaneously.
図15で示すように、第一の冷気ダクト11aの途中に設けた吐出口の近傍に、第一の温度センサ44を設けた場合、第一の温度センサ44の設置場所の近くの棚に多くの食品を置いた場合(時刻t2)、第一の冷気ダクト11aの吐出口30a、30bからの低温冷気の影響を直接受け易くなるため(図14a参照)、第一の温度センサ44で検出される温度は急激に低下してくる。このような現象が第一の温度センサ44で検出される時、棚に食品を多く配置して冷気の流れが悪くなったと判断する。冷蔵室2内の冷気の流れを改善して効率良く食品を冷却するために、第一の温度センサ44で検出される温度が、第三の温度センサ42で検出される温度よりも低い(TR3)1以下になったとき(時刻t5)又はその後、第一の冷気ダクト11aによる冷却から、第二の冷気ダクト11bによる冷蔵室2の上部からの冷却に切り替える。その後は、第二の冷気ダクト11bで冷蔵室2の上部から冷却し、第三の温度センサ42によって検出する温度が(TR1)Minになった時点(時刻t3)で、冷蔵室2の冷却を終了する。 As shown in FIG. 15, when the first temperature sensor 44 is provided in the vicinity of the discharge port provided in the middle of the first cold air duct 11 a, the first temperature sensor 44 is often provided on the shelf near the installation location of the first temperature sensor 44. When the food is placed (time t2), it is easily affected by the low temperature cold air from the discharge ports 30a and 30b of the first cold air duct 11a (see FIG. 14a), and therefore detected by the first temperature sensor 44. The temperature that falls is drastically reduced. When such a phenomenon is detected by the first temperature sensor 44, it is determined that a large amount of food is placed on the shelf and the flow of cold air has deteriorated. In order to improve the flow of cold air in the refrigerator compartment 2 and efficiently cool the food, the temperature detected by the first temperature sensor 44 is lower than the temperature detected by the third temperature sensor 42 (TR3 ) When 1 or less (time t5) or thereafter, switching from cooling by the first cold air duct 11a to cooling from the upper part of the refrigerator compartment 2 by the second cold air duct 11b. Thereafter, the second cold air duct 11b cools from the upper part of the refrigerator compartment 2, and when the temperature detected by the third temperature sensor 42 becomes (TR1) Min (time t3), the refrigerator compartment 2 is cooled. finish.
第二の温度センサ43で検出される温度が(TR2)Minに到達する前に、第三の温度センサ42で検出される温度が(TR1)Minになった場合は、冷蔵室2の下部に設けた製氷水タンク36や減圧貯蔵室35の水や食品の凍結防止のため、冷蔵室2の冷却は終了させる。この時、冷蔵室2の上部空間が十分に冷やされていないため、冷凍室7の冷却が終了した後に、再び冷蔵室2を冷却する条件になった場合には、第二の冷気ダクト11bによる冷却を優先させる。例えば、第一の冷気ダクト11aのバッフル20aの開度を半分にし、第二の冷気ダクト11bのバッフル20bの開度を全開にして、第二の冷気ダクト11bへの風量割合を増やした冷却や、バッフル20aを全閉、バッフル20bを全開にした第二の冷気ダクト11b単独による冷却を実施する。 If the temperature detected by the third temperature sensor 42 becomes (TR1) Min before the temperature detected by the second temperature sensor 43 reaches (TR2) Min, Cooling of the refrigerator compartment 2 is terminated in order to prevent freezing of water and food in the ice making water tank 36 and the decompression storage chamber 35 provided. At this time, since the upper space of the refrigerating room 2 is not sufficiently cooled, when the cooling room 2 is cooled again after the cooling of the freezing room 7, the second cold air duct 11b is used. Prioritize cooling. For example, cooling by increasing the air volume ratio to the second cold air duct 11b by halving the opening degree of the baffle 20a of the first cold air duct 11a and fully opening the opening degree of the baffle 20b of the second cold air duct 11b. Then, cooling is performed by the second cold air duct 11b alone in which the baffle 20a is fully closed and the baffle 20b is fully opened.
(実施の形態3)
次に図17,17を参照して、実施の形態3について説明する。なお、実施の形態1と同様の構成については、同一の符号を付して説明を省略する。
(Embodiment 3)
Next, Embodiment 3 will be described with reference to FIGS. In addition, about the structure similar to Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
図17は、本発明の第三の実施形態に係る冷蔵室に設置する第三の温度センサ42を説明する図である。第一の冷気ダクト11aと第二の冷気ダクト11bを通風する冷気量は、第一の冷気ダクト11aの吐出口30a,30b,30cと第二の冷気ダクト11bの吐出口31,32から送風された冷気が共に循環する領域、すなわち冷蔵室戻り口39に設けた第三の温度センサ42と、冷蔵室2の最上段の棚34a,34bと冷蔵室2の上壁63で区画された領域に設けた第二の温度センサ43(図2,図3参照)を用いて、それらが検出する温度に基づき制御される。冷蔵室戻り口39は、第一の冷気ダクト11aの吐出口30a,30b,30cと第二の冷気ダクト11bの吐出口31,32からそれぞれ送風された冷気が共に循環する領域(図2,図3における領域2B)の一部で、冷蔵室2に吐出された冷気が再び冷却器14に戻される戻り冷気ダクトの入口側に設けてある。 FIG. 17 is a diagram illustrating a third temperature sensor 42 installed in the refrigerator compartment according to the third embodiment of the present invention. The amount of cold air passing through the first cold air duct 11a and the second cold air duct 11b is blown from the discharge ports 30a, 30b, 30c of the first cold air duct 11a and the discharge ports 31, 32 of the second cold air duct 11b. In the region where the cool air circulates together, that is, in the region defined by the third temperature sensor 42 provided in the refrigerator return port 39, the uppermost shelves 34a, 34b of the refrigerator compartment 2, and the upper wall 63 of the refrigerator compartment 2. The second temperature sensor 43 (see FIGS. 2 and 3) provided is controlled based on the temperature detected by them. The refrigerating room return port 39 is a region in which cold air blown from the discharge ports 30a, 30b, 30c of the first cold air duct 11a and the discharge ports 31, 32 of the second cold air duct 11b circulates together (FIG. 2, FIG. 2). 3 is provided on the inlet side of the return cold air duct where the cold air discharged into the refrigerator compartment 2 is returned to the cooler 14 again.
次に、冷蔵室戻り口39に第三の温度センサ42を設けた場合の、冷蔵室2の冷却方法について説明する。図18は、本発明の第三の実施形態に係る冷蔵室の冷却運転時の温度チャートである。 Next, the cooling method of the refrigerator compartment 2 when the 3rd temperature sensor 42 is provided in the refrigerator compartment return port 39 is demonstrated. FIG. 18 is a temperature chart during the cooling operation of the refrigerating room according to the third embodiment of the present invention.
第三の温度センサ42で検出される温度が(TR1)Max(時間t1)の時、第一の冷気ダクト11aのバッフル20aを開、温度(TR1)Min(時間t5)の時、第一の冷気ダクト11aのバッフル20aを閉とする。また、第二の温度センサ43で検出される温度が(TR2)Max(時間t1)の時、第二の冷気ダクト11bのバッフル20bを開、温度(TR2)Min(時間t3)の時、第二の冷気ダクト11bのバッフル20bを閉とする制御を基本とする。 When the temperature detected by the third temperature sensor 42 is (TR1) Max (time t1), the baffle 20a of the first cold air duct 11a is opened, and when the temperature is (TR1) Min (time t5), the first The baffle 20a of the cold air duct 11a is closed. When the temperature detected by the second temperature sensor 43 is (TR2) Max (time t1), the baffle 20b of the second cold air duct 11b is opened, and when the temperature is (TR2) Min (time t3), Control based on closing the baffle 20b of the second cold air duct 11b is basically performed.
例えば、最上段の棚34a,34b等が高負荷状態となった場合(最上段の棚34a,34bやドアポケット33a等に高温の食品を収納したり、多くの食品を持ち込んだり、ドア2a,2bの開閉を頻繁に行ったりした場合)、第二の温度センサ43が温度(TR2)Minに到達するまでの時間がかかるので、第三の温度センサ42で検出される温度が(TR1)Minに到達して(時刻t5)、第一の冷気ダクト11aのバッフル20aは閉となった後でも、第二の冷気ダクト11bで冷却は継続され、冷蔵室2の下部の温度は低下し続ける。このような場合、冷蔵室2の下部に設けた製氷水タンク36や減圧貯蔵室35の周囲(領域2B;図3参照)の温度が低下して凍結の恐れがあるため、製氷水タンク36の水や減圧貯蔵室35内の食品が凍結しない下限の温度(TR1)Min´(時刻t4)を予め定めておき、第二の温度センサ43が(TR2)Minに到達する前に、第三の温度センサ42が温度(TR1)Min´に到達した時点(時刻t4)で第二の冷気ダクト11bのバッフル20bを閉にして、冷蔵室2の冷却を終了させる。 For example, when the uppermost shelves 34a, 34b and the like are in a high load state (hot food is stored in the uppermost shelves 34a, 34b, the door pocket 33a, etc., many foods are brought in, the door 2a, 2b), since it takes time until the second temperature sensor 43 reaches the temperature (TR2) Min, the temperature detected by the third temperature sensor 42 is (TR1) Min. (Time t5), even after the baffle 20a of the first cold air duct 11a is closed, cooling is continued in the second cold air duct 11b, and the temperature of the lower part of the refrigerator compartment 2 continues to decrease. In such a case, since the temperature around the ice making water tank 36 and the decompression storage room 35 (region 2B; see FIG. 3) provided in the lower part of the refrigerator compartment 2 may be frozen, there is a risk of freezing. A lower limit temperature (TR1) Min ′ (time t4) at which water or food in the decompression storage chamber 35 does not freeze is determined in advance, and before the second temperature sensor 43 reaches (TR2) Min, the third temperature When the temperature sensor 42 reaches the temperature (TR1) Min ′ (time t4), the baffle 20b of the second cold air duct 11b is closed, and the cooling of the refrigerator compartment 2 is ended.
このような場合も冷蔵室2の上部空間が十分に冷やされていないため、冷凍室7の冷却が終了した後に、再び冷蔵室2を冷却する条件になった場合には、第二の冷気ダクト11bによる冷却を優先させる。例えば、第一の冷気ダクト11aのバッフル20aの開度を半分にし、第二の冷気ダクト11bのバッフル20bの開度を全開にして、第二の冷気ダクト11bへの風量割合を増やした冷却や、バッフル20aを全閉、バッフル20bを全開にした第二の冷気ダクト11b単独による冷却を実施する。 Even in such a case, since the upper space of the refrigerating room 2 is not sufficiently cooled, the second cold air duct is used when the refrigerating room 2 is cooled again after the cooling of the freezing room 7 is completed. Prioritize cooling by 11b. For example, cooling by increasing the air volume ratio to the second cold air duct 11b by halving the opening degree of the baffle 20a of the first cold air duct 11a and fully opening the opening degree of the baffle 20b of the second cold air duct 11b. Then, cooling is performed by the second cold air duct 11b alone in which the baffle 20a is fully closed and the baffle 20b is fully opened.
本発明は以上説明した各実施の形態により、2つに分割して設けた第一の冷気ダクト及び第二の冷気ダクトから吐出される冷気の流れに応じて、冷蔵室ドアに設けた回動仕切体用のヒータの加熱制御を実施することができるので、省エネ効果を高めることができる。 According to each of the embodiments described above, the present invention provides a rotation provided in the cold room door according to the flow of the cold air discharged from the first cold air duct and the second cold air duct provided in two parts. Since heating control of the heater for a partition can be implemented, the energy saving effect can be enhanced.
1 冷蔵庫
2 冷蔵室(冷蔵温度帯の貯蔵室)
2a,2b 冷蔵室ドア
2A 領域(第二の領域)
2B 領域(第一の領域)
2C 領域(第三の領域)
7 冷凍室
8 冷却器収納室
9 庫内ファン(送風手段)
10 断熱箱体
11 冷蔵室冷気ダクト
11a 第一の冷気ダクト
11b 第一の冷気ダクト
12 上段冷凍室冷気ダクト
13 下段冷凍室冷気ダクト
14 冷却器
15 回動仕切体
15A ヒータ(回動仕切体15上部ヒータ)
15B ヒータ(回動仕切体15下部ヒータ)
17 冷凍室戻り口
18 野菜室戻りダクト
18a 野菜室戻り口
18b 野菜室戻り吐出口
20 冷蔵室ツインダンパ
20a バッフル(第一の風量調整装置)
20b バッフル(第二の風量調整装置)
21 蒸発皿
22 除霜ヒータ
23 樋
24 圧縮機
25 真空断熱材
27 ドレン孔
28 上断熱仕切壁
29 下断熱仕切壁
30a,30b,30c 吐出口
31,32 吐出口
33a,33b,33c ドアポケット
34,34a,34b,34c,34d,34e,34f 棚
35 減圧貯蔵室
36 製氷水タンク
38 吐出口
39 冷蔵室戻り口
42 第三の温度センサ(第三の温度検知手段)
43 第二の温度センサ(第二の温度検知手段)
44 第一の温度センサ(第一の温度検知手段)
47 背面部材
60 冷凍室ダンパ
61 機械室
62 シール材
63 上壁
64 食品
1 Refrigerator 2 Refrigerated room (storage room in refrigerated temperature zone)
2a, 2b refrigerator compartment door 2A area (second area)
2B area (first area)
2C area (third area)
7 Freezer room 8 Cooler storage room 9 Fan inside fan (air blowing means)
DESCRIPTION OF SYMBOLS 10 Heat insulation box 11 Cold room cold air duct 11a First cold air duct 11b First cold air duct 12 Upper freezer cold air duct 13 Lower freezer cold air duct 14 Cooler 15 Rotating partition 15A Heater (Upper rotating rotator 15 heater)
15B heater (rotating partition 15 lower heater)
17 Freezer compartment return port 18 Vegetable room return duct 18a Vegetable room return port 18b Vegetable room return discharge port 20 Refrigerated room twin damper 20a Baffle (first air volume adjusting device)
20b baffle (second air volume adjustment device)
21 Evaporating dish 22 Defrost heater 23 樋 24 Compressor 25 Vacuum heat insulating material 27 Drain hole 28 Upper heat insulating partition wall 29 Lower heat insulating partition walls 30a, 30b, 30c Discharge port 31, 32 Discharge port 33a, 33b, 33c Door pocket 34, 34a, 34b, 34c, 34d, 34e, 34f Shelf 35 Depressurized storage chamber 36 Ice making water tank 38 Discharge port 39 Refrigerating chamber return port 42 Third temperature sensor (third temperature detecting means)
43 Second temperature sensor (second temperature detection means)
44 1st temperature sensor (1st temperature detection means)
47 Back member 60 Freezer damper 61 Machine room 62 Sealing material 63 Upper wall 64 Food
Claims (2)
該冷蔵温度帯の貯蔵室内に設けられた複数の棚と、
前記冷蔵温度帯の貯蔵室の前方の第一の扉と、
該第一の扉に隣り合う第二の扉と、
前記第一の扉と前記第二の扉の隙間の少なくとも一部を閉塞する上下方向の回動仕切体と、
該回動仕切体の上下方向のヒータと、
前記複数の棚で形成された空間に冷気を供給する第一の冷気ダクトと、
前記複数の空間のうち前記第一の冷気ダクトによって冷却される空間よりも上部に位置する空間に冷気を供給する第二の冷気ダクトと、
前記第一の冷気ダクト及び前記第二の冷気ダクトのそれぞれに冷気を送風する送風手段と、
前記第一の冷気ダクトの送風を制御する第一の風量調整装置と、
前記第二の冷気ダクトの送風を制御する第二の風量調整装置と、
前記冷蔵温度帯の貯蔵室の下部の第一の温度検出手段と、
前記冷蔵温度帯の貯蔵室の上部の第二の温度検出手段と、
制御装置と、を備え、
前記第一の風量調整装置と前記第二の風量調整装置は、それぞれ前記第一の温度検出手段と前記第二の温度検出手段に基づいて制御して、前記冷蔵温度帯の貯蔵室の設定温度を変更した場合、前記ヒータは上部と下部で独立して発熱量を制御することを特徴とする冷蔵庫。 A refrigerated storage room,
A plurality of shelves provided in a storage room of the refrigerated temperature zone;
A first door in front of the storage room in the refrigerated temperature zone;
A second door adjacent to the first door;
A vertical partition that closes at least part of the gap between the first door and the second door;
A heater in the vertical direction of the rotating partition;
A first cold air duct for supplying cold air to a space formed by the plurality of shelves;
A second cold air duct for supplying cold air to a space located above the space cooled by the first cold air duct among the plurality of spaces;
Blower means for blowing cold air to each of the first cold air duct and the second cold air duct;
A first air volume adjusting device for controlling air flow of the first cold air duct;
A second air volume adjusting device for controlling the ventilation of the second cold air duct;
First temperature detection means at the bottom of the storage room in the refrigerated temperature zone;
Second temperature detection means at the upper part of the storage room in the refrigerated temperature zone;
A control device,
The first air volume adjusting device and the second air volume adjusting device are controlled based on the first temperature detecting means and the second temperature detecting means, respectively, and set temperature of the storage room in the refrigeration temperature zone The refrigerator is characterized in that the heater controls the amount of heat generation independently at the upper part and the lower part.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013005881A JP2014137182A (en) | 2013-01-17 | 2013-01-17 | Refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013005881A JP2014137182A (en) | 2013-01-17 | 2013-01-17 | Refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014137182A true JP2014137182A (en) | 2014-07-28 |
Family
ID=51414793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013005881A Pending JP2014137182A (en) | 2013-01-17 | 2013-01-17 | Refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014137182A (en) |
-
2013
- 2013-01-17 JP JP2013005881A patent/JP2014137182A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5909427B2 (en) | refrigerator | |
KR101306536B1 (en) | Refrigerator | |
JP6131116B2 (en) | refrigerator | |
KR101260277B1 (en) | Refrigerator | |
JP6134610B2 (en) | refrigerator | |
JP5487224B2 (en) | refrigerator | |
WO2018064866A1 (en) | Refrigerator | |
JP5417382B2 (en) | refrigerator | |
JP6890502B2 (en) | refrigerator | |
JP5941838B2 (en) | refrigerator | |
TWI678506B (en) | refrigerator | |
JP7064031B2 (en) | refrigerator | |
JP2018179466A (en) | Refrigerator | |
JP6800083B2 (en) | refrigerator | |
JP2015014435A (en) | Refrigerator | |
JP2014167361A (en) | Refrigerator | |
JP6719428B2 (en) | refrigerator | |
JP2014137182A (en) | Refrigerator | |
JP6847010B2 (en) | refrigerator | |
JP2013190124A (en) | Refrigerator | |
JP6192427B2 (en) | refrigerator | |
JP2019056501A (en) | refrigerator | |
JP2018179467A (en) | Refrigerator | |
JP2018179468A (en) | Refrigerator | |
JP2013108707A (en) | Refrigerator |