JP2014134157A - Fuel addition device - Google Patents

Fuel addition device Download PDF

Info

Publication number
JP2014134157A
JP2014134157A JP2013003060A JP2013003060A JP2014134157A JP 2014134157 A JP2014134157 A JP 2014134157A JP 2013003060 A JP2013003060 A JP 2013003060A JP 2013003060 A JP2013003060 A JP 2013003060A JP 2014134157 A JP2014134157 A JP 2014134157A
Authority
JP
Japan
Prior art keywords
fuel
fuel addition
oxidation catalyst
addition valve
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013003060A
Other languages
Japanese (ja)
Inventor
Kazuyasu Nozue
和靖 野末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2013003060A priority Critical patent/JP2014134157A/en
Publication of JP2014134157A publication Critical patent/JP2014134157A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the dilution of engine oil by minimizing post injection to be used.SOLUTION: In a fuel addition device, a fuel addition valve 11 (a first fuel addition valve) is provided on the downstream side of a pre-oxidation catalyst 9 provided in the outlet of a turbine 2b of a turbocharger 2 so that fuel addition can be performed by at least one means out of the fuel addition valve 11 and post injection on the side of a diesel engine 1 (an engine). A fuel addition valve 14 (a second fuel addition valve) is provided on the upstream side of the pre-oxidation catalyst 9 so that fuel addition can be also performed by the fuel addition valve 14.

Description

本発明は、燃料添加弁により排気系路内を流れる排気ガスに燃料を添加するようにした燃料添加装置に関するものである。   The present invention relates to a fuel addition apparatus in which fuel is added to exhaust gas flowing in an exhaust system passage by a fuel addition valve.

ディーゼルエンジンから排出されるパティキュレート(Particulate Matter:粒子状物質)は、炭素質から成る煤と、高沸点炭化水素成分から成るSOF分(Soluble Organic Fraction:可溶性有機成分)とを主成分とし、更に微量のサルフェート(ミスト状硫酸成分)を含んだ組成を成すものであるが、この種のパティキュレートの低減対策としては、排気ガスが流通する排気管の途中に、パティキュレートフィルタを装備することが以前より行われている。   Particulate matter (particulate matter) discharged from a diesel engine is mainly composed of soot made of carbonaceous matter and SOF content (Soluble Organic Fraction) made of high-boiling hydrocarbon components. The composition contains a small amount of sulfate (mist-like sulfuric acid component). As a measure to reduce this type of particulates, a particulate filter is installed in the middle of the exhaust pipe through which the exhaust gas flows. It has been done since before.

この種のパティキュレートフィルタは、コージェライトなどのセラミックから成る多孔質のハニカム構造となっており、格子状に区画された各流路の入口が交互に目封じされ、入口が目封じされていない流路については、その出口が目封じされるようになっており、各流路を区画する多孔質薄壁を透過した排気ガスのみが下流側へ排出されるようにしてある。   This type of particulate filter has a porous honeycomb structure made of ceramics such as cordierite, and the inlets of each flow path partitioned in a lattice pattern are alternately sealed, and the inlets are not sealed. About the flow path, the exit is sealed, and only the exhaust gas which permeate | transmitted the porous thin wall which divides each flow path is discharged | emitted downstream.

そして、排気ガス中のパティキュレートは、前記多孔質薄壁の内側表面に捕集されて堆積するので、目詰まりにより排気抵抗が増加しないうちにパティキュレートを適宜に燃焼除去してパティキュレートフィルタの再生を図る必要があるが、通常のディーゼルエンジンの運転状態においては、パティキュレートが自己燃焼するほどの高い排気温度が得られる機会が少ない。   Then, the particulates in the exhaust gas are collected and deposited on the inner surface of the porous thin wall, so that the particulates are appropriately burned and removed before the exhaust resistance increases due to clogging. Although it is necessary to regenerate, in an ordinary diesel engine operation state, there are few opportunities to obtain an exhaust temperature high enough for the particulates to self-combust.

この為、例えばアルミナに白金を担持させたものに適宜な量のセリウムなどの希土類元素を添加して成る酸化触媒を一体的にパティキュレートフィルタに担持させ、該パティキュレートフィルタ内に捕集されたパティキュレートの酸化反応を前記酸化触媒により促進して着火温度を低下せしめ、従来より低い排気温度でもパティキュレートを燃焼除去できるようにしている。   For this reason, for example, an oxidation catalyst formed by adding an appropriate amount of a rare earth element such as cerium to a material in which platinum is supported on alumina is integrally supported on a particulate filter and collected in the particulate filter. The oxidation reaction of the particulates is promoted by the oxidation catalyst to lower the ignition temperature, so that the particulates can be burned and removed even at an exhaust temperature lower than that of the prior art.

ただし、このようにした場合であっても、排気温度の低い運転領域では、パティキュレートの処理量よりも捕集量が上まわってしまうので、このような低い排気温度での運転状態が続くと、パティキュレートフィルタの再生が良好に進まずに該パティキュレートフィルタが過捕集状態に陥る虞れがあり、パティキュレートの堆積量が増加してきた段階でパティキュレートフィルタを強制的に加熱して捕集済みパティキュレートを焼却する必要がある。   However, even in such a case, in the operation region where the exhaust temperature is low, the trapped amount exceeds the processing amount of the particulates, and therefore the operation state at such a low exhaust temperature continues. There is a risk that the particulate filter will fall into an over-collected state without the particulate filter regenerating well, and the particulate filter is forcibly heated and trapped when the amount of accumulated particulate matter has increased. It is necessary to incinerate the collected particulates.

より具体的には、パティキュレートフィルタの前段にフロースルー型の酸化触媒を備えると共に、該酸化触媒より上流側に燃料を添加するようにし、その添加燃料をパティキュレートフィルタの前段の酸化触媒で酸化反応させ、その反応熱により昇温した排気ガスをパティキュレートフィルタへと導入して触媒床温度を上げてパティキュレートを燃やし尽くし、パティキュレートフィルタの再生化を図るようにしている。   More specifically, a flow-through type oxidation catalyst is provided in front of the particulate filter, and fuel is added upstream from the oxidation catalyst, and the added fuel is oxidized by the oxidation catalyst in front of the particulate filter. The exhaust gas heated by the reaction heat is introduced into the particulate filter, the catalyst bed temperature is raised to burn out the particulate, and the particulate filter is regenerated.

斯かるパティキュレートフィルタの強制再生を行う場合、アイドリング停車時を含む軽負荷時にあっては、排気温度が低すぎて酸化触媒の活性が十分に高まらないため、ターボチャージャのタービン出口にプレ酸化触媒を配置しておき、該プレ酸化触媒をタービン出口の未だ温度低下してない高温の排気ガスにより昇温して活性状態とし、エンジン側でポスト噴射(圧縮上死点付近で行われる燃料のメイン噴射に続く非着火のタイミングで行われる噴射)を追加して燃料添加を実施し、その添加燃料を前記プレ酸化触媒で酸化反応させることで排気温度を上昇させるようにしている。   When forcibly regenerating such a particulate filter, the exhaust temperature is too low and the activity of the oxidation catalyst is not sufficiently increased at light loads including when idling is stopped. The pre-oxidation catalyst is heated to an active state by high-temperature exhaust gas that has not yet decreased in temperature at the turbine outlet, and is post-injected on the engine side (the main fuel in the vicinity of compression top dead center). (Addition of injection performed at the timing of non-ignition following injection) is added to perform fuel addition, and the exhaust temperature is raised by oxidizing the added fuel with the pre-oxidation catalyst.

そして、このようなプレ酸化触媒による排気昇温が実施された後、下流の酸化触媒が昇温して活性状態となったら、前記プレ酸化触媒の下流側に配置した燃料添加弁を併用し、該燃料添加弁からも燃料添加を実施してパティキュレートフィルタの強制再生を行うようにしており、また、排気温度の高い高負荷以上の運転条件においては、燃料添加弁による燃料添加に切り替えてパティキュレートフィルタの強制再生を行うようにしている。   Then, after the exhaust temperature increase by such a pre-oxidation catalyst is carried out, when the downstream oxidation catalyst is heated to an active state, a fuel addition valve arranged on the downstream side of the pre-oxidation catalyst is used in combination, Fuel addition is also performed from the fuel addition valve to perform forced regeneration of the particulate filter. Also, under operating conditions with high exhaust gas temperature and higher load, the fuel addition valve is switched to fuel addition. The curative filter is forcibly regenerated.

即ち、パティキュレートフィルタの前段の酸化触媒が活性状態となって強制再生を実施できる温度条件が整った場合に、ポスト噴射だけでパティキュレートフィルタの強制再生のための燃料添加を賄おうとすると、プレ酸化触媒で必要以上の添加燃料が消費されてしまう虞れがあったため、該プレ酸化触媒の下流側に配置した燃料添加弁による燃料添加を行うようにしているのである。   That is, if the oxidation catalyst in the previous stage of the particulate filter is in an active state and the temperature condition is set so that forced regeneration can be carried out, if the fuel addition for forced regeneration of the particulate filter is to be covered only by post injection, Since there is a possibility that an excessive amount of added fuel may be consumed by the oxidation catalyst, fuel is added by a fuel addition valve arranged on the downstream side of the pre-oxidation catalyst.

尚、この種のパティキュレートフィルタの強制再生を図る方法に関しては、本発明と同じ出願人による下記の特許文献1や特許文献2でも説明されている。   A method for forcibly regenerating this type of particulate filter is also described in the following Patent Document 1 and Patent Document 2 by the same applicant as the present invention.

特開2003−83139号公報JP 2003-83139 A 特開2003−155913号公報JP 2003-155913 A

しかしながら、前述した通り、軽負荷時におけるパティキュレートフィルタの強制再生ではポスト噴射が必須となっているが、斯かるポスト噴射をあまり多用してしまうと、非着火のタイミングで噴射された燃料の一部がエンジン底部のオイルパンに流れ落ちてエンジンオイルを希釈させてしまう事態を招く虞れがあった。   However, as described above, post-injection is indispensable for forced regeneration of the particulate filter at light loads. However, if such post-injection is used excessively, one of the fuel injected at the non-ignition timing is used. There is a possibility that the engine part flows down to the oil pan at the bottom of the engine and dilutes the engine oil.

本発明は上述の実情に鑑みてなしたもので、ポスト噴射の使用を極力減らしてエンジンオイルの希釈を抑制することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to reduce the use of post-injection as much as possible and suppress dilution of engine oil.

本発明は、ターボチャージャのタービン出口に備えたプレ酸化触媒の下流側に第一の燃料添加弁を設け、該第一の燃料添加弁とエンジン側でのポスト噴射との少なくとも何れか一方の手段により燃料添加を行い得るようにした燃料添加装置であって、前記プレ酸化触媒の上流側に第二の燃料添加弁を設け、該第二の燃料添加弁によっても燃料添加を行い得るように構成したことを特徴とするものである。   The present invention provides a first fuel addition valve on the downstream side of the pre-oxidation catalyst provided at the turbine outlet of the turbocharger, and at least one of the first fuel addition valve and post injection on the engine side The fuel addition device is configured to be able to perform fuel addition by using a second fuel addition valve provided upstream of the pre-oxidation catalyst, and the fuel addition can also be performed by the second fuel addition valve. It is characterized by that.

而して、このようにすれば、アイドリング停車時を含む軽負荷時に、排気温度が低すぎてパティキュレートフィルタの強制再生を実施できない場合であっても、タービン出口の未だ温度低下してない高温の排気ガスに晒されたプレ酸化触媒は活性状態となっているので、ここに第二の燃料添加弁により燃料添加を実施(必要に応じてエンジン側でのポスト噴射を補助的に使用)すれば、その添加燃料が前記プレ酸化触媒で酸化反応することにより排気温度が上昇されてパティキュレートフィルタの強制再生を実施するための温度条件が整い、その結果としてポスト噴射の使用が大幅に低減されることになる。   Thus, in this way, even when the exhaust temperature is too low and forced regeneration of the particulate filter cannot be performed at light loads including when idling is stopped, the high temperature at which the temperature at the turbine outlet has not yet decreased. Since the pre-oxidation catalyst exposed to the exhaust gas is in an active state, add fuel to the pre-oxidation catalyst here using the second fuel addition valve (subject to post-injection on the engine side as needed). For example, the added fuel undergoes an oxidation reaction with the pre-oxidation catalyst, so that the exhaust gas temperature is raised and the temperature condition for forcibly regenerating the particulate filter is established. As a result, the use of post injection is greatly reduced. Will be.

そして、このようなプレ酸化触媒による排気昇温が実施された後、パティキュレートフィルタの強制再生を実施できる状態となったら、前記プレ酸化触媒の下流側に配置した第一の燃料添加弁からも燃料添加を実施し、パティキュレートフィルタの再生化を図るようにすれば良い。   Then, after the exhaust gas temperature is raised by such a pre-oxidation catalyst, when the particulate filter can be forcibly regenerated, the first fuel addition valve disposed downstream of the pre-oxidation catalyst is also used. It is only necessary to add fuel and regenerate the particulate filter.

更に、本発明においては、第二の燃料添加弁を排気ガスの流れ方向に対し斜め下流側へ燃料を噴射し得るように配置すると共に、前記第二の燃料添加弁からの噴射燃料を衝突させて上流側へ跳ね返すリフレクタを前記第二の燃料添加弁とプレ酸化触媒との間に設けるようにすると良い。   Further, in the present invention, the second fuel addition valve is arranged so that the fuel can be injected obliquely downstream with respect to the flow direction of the exhaust gas, and the injected fuel from the second fuel addition valve is allowed to collide. It is preferable that a reflector that bounces upstream is provided between the second fuel addition valve and the pre-oxidation catalyst.

このようにすれば、第二の燃料添加弁からの噴射燃料がリフレクタに衝突して上流側へ跳ね返され、ターボチャージャのタービン出口から吐出される排気ガスの流れに対し対向流として混ざり、排気ガスの流れに正面からぶつかることで蒸発と分散が著しく促進される結果、排気温度の低い軽負荷時であっても、添加燃料をHCガスとして良好に分散した状態でプレ酸化触媒に導くことが可能となり、添加燃料の大半がミストの状態でプレ酸化触媒に導かれてしまうような事態が未然に回避される。   In this way, the injected fuel from the second fuel addition valve collides with the reflector and bounces upstream, and mixes as an opposite flow to the flow of exhaust gas discharged from the turbine outlet of the turbocharger. As a result of striking the flow of the gas from the front, evaporation and dispersion are significantly accelerated, and even at light loads with low exhaust temperatures, it is possible to guide the added fuel to the pre-oxidation catalyst in a well-distributed state as HC gas Thus, a situation in which most of the added fuel is led to the pre-oxidation catalyst in a mist state is avoided.

即ち、第二の燃料添加弁から排気ガスの流れ方向に対し斜め下流側に燃料を噴射するだけでは、排気ガスの流れと同じ向きに噴射された燃料が円滑に排気ガスの流れに乗って微細化や拡散が起こらないまま進んでしまい、添加燃料の蒸発と分散が良好に進まないままミストの状態でプレ酸化触媒に導かれて効率の良い酸化処理が望めなくなる懸念があるが、リフレクタに衝突させて上流側へ跳ね返すようにすれば、そのような懸念が払拭されることになる。   That is, the fuel injected in the same direction as the flow of the exhaust gas smoothly rides the flow of the exhaust gas just by injecting the fuel obliquely downstream from the flow direction of the exhaust gas from the second fuel addition valve. Although there is a concern that efficient oxidation treatment cannot be expected due to the pre-oxidation catalyst being led to the pre-oxidation catalyst in a mist state without the evaporation and dispersion of the added fuel proceeding well, there is a risk of collision with the reflector. If you let it bounce back to the upstream side, that concern will be dispelled.

しかも、第二の燃料添加弁からの噴射燃料をリフレクタに衝突させて上流側へ跳ね返すようにした場合には、該リフレクタに衝突した時の衝撃により噴射燃料の一部の蒸発と分散を促すことも可能であり、上流側へ跳ね返されないままリフレクタの表面に残る燃料の蒸発も促すことが可能となる。   In addition, when the fuel injected from the second fuel addition valve collides with the reflector and is bounced upstream, it is possible to promote evaporation and dispersion of part of the injected fuel by the impact when the fuel collides with the reflector. It is also possible to promote evaporation of fuel remaining on the reflector surface without being bounced upstream.

上記した本発明の燃料添加装置によれば、下記の如き種々の優れた効果を奏し得る。   According to the fuel addition apparatus of the present invention described above, various excellent effects as described below can be obtained.

(I)本発明の請求項1に記載の発明によれば、アイドリング停車時を含む軽負荷時に第二の燃料添加弁によりプレ酸化触媒の上流側に燃料添加を実施し、その添加燃料をプレ酸化触媒で酸化反応させて排気ガスの温度を上昇させることができるので、斯かる排気昇温の際にポスト噴射を必要に応じて補助的に使用するだけで済んで該ポスト噴射の使用を大幅に低減することができ、これによりポスト噴射によるエンジンオイルの希釈を著しく抑制することができる。   (I) According to the invention described in claim 1 of the present invention, the fuel is added to the upstream side of the pre-oxidation catalyst by the second fuel addition valve at a light load including when idling is stopped, and the added fuel is Since the temperature of the exhaust gas can be raised by an oxidation reaction with an oxidation catalyst, it is only necessary to use post-injection supplementary as necessary when raising the temperature of the exhaust gas. Thus, dilution of engine oil due to post injection can be remarkably suppressed.

(II)本発明の請求項2に記載の発明によれば、第二の燃料添加弁からの燃料をリフレクタに衝突させて上流側へ跳ね返すことにより、燃料の蒸発と分散を著しく促進することができるので、排気温度の低い軽負荷時であっても、添加燃料をHCガスとして良好に分散した状態でプレ酸化触媒に導くことができ、添加燃料の大半がミストの状態でプレ酸化触媒に導かれてしまうような事態を未然に回避することができて、ポスト噴射と大差無い燃料添加を実現することができる。   (II) According to the invention described in claim 2 of the present invention, the fuel from the second fuel addition valve collides with the reflector and rebounds upstream, thereby remarkably promoting the evaporation and dispersion of the fuel. Therefore, even when the exhaust temperature is low and the load is light, the added fuel can be guided to the pre-oxidation catalyst in a well-dispersed state as HC gas, and most of the added fuel is guided to the pre-oxidation catalyst in the mist state. Such a situation can be avoided in advance, and fuel addition that is not much different from post-injection can be realized.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 本発明の別の形態例を示す概略図である。It is the schematic which shows another form example of this invention.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明を実施する形態の一例を示すもので、図1中における1はターボチャージャ2を装備したディーゼルエンジンを示しており、図示しないエアクリーナから導いた吸気3が吸気管4を通し前記ターボチャージャ2のコンプレッサ2aへと送られ、該コンプレッサ2aで加圧された吸気3’がインタクーラ(図示せず)へと送られて冷却され、吸気マニホールド(図示せず)を介しディーゼルエンジン1の各気筒に分配されるようにしてある。   FIG. 1 shows an example of an embodiment for carrying out the present invention. In FIG. 1, reference numeral 1 denotes a diesel engine equipped with a turbocharger 2, and intake air 3 led from an air cleaner (not shown) passes through an intake pipe 4. The intake air 3 ′ sent to the compressor 2 a of the turbocharger 2 and pressurized by the compressor 2 a is sent to an intercooler (not shown) to be cooled, and the diesel engine 1 is cooled via an intake manifold (not shown). It is distributed to each cylinder.

一方、このディーゼルエンジン1の各気筒から排出された排気ガス5は、排気マニホールド6を介し前記ターボチャージャ2のタービン2bへと送られ、該タービン2bを駆動した後にエキゾーストコネクタ7を介し排気管8へと送り出されるようになっている。   On the other hand, the exhaust gas 5 discharged from each cylinder of the diesel engine 1 is sent to the turbine 2b of the turbocharger 2 through the exhaust manifold 6, and after driving the turbine 2b, the exhaust pipe 8 through the exhaust connector 7. To be sent out.

ここで、エキゾーストコネクタ7と排気管8とを繋ぐ位置にプレ酸化触媒9が備えられており、該プレ酸化触媒9の下流側の排気管8には、該排気管8の内側から外側に向けて窪む噴霧ポケット10を介し燃料添加弁11(第一の燃料添加弁)が排気ガス5の流れ方向に対し斜め下流側へ燃料Fを噴射し得るよう装備されている。   Here, a pre-oxidation catalyst 9 is provided at a position connecting the exhaust connector 7 and the exhaust pipe 8, and the exhaust pipe 8 on the downstream side of the pre-oxidation catalyst 9 is directed from the inside to the outside of the exhaust pipe 8. A fuel addition valve 11 (first fuel addition valve) is equipped so as to be able to inject fuel F obliquely downstream with respect to the flow direction of the exhaust gas 5 through the spray pocket 10 which is recessed.

また、この燃料添加弁11より更に下流側の排気管8には、排気ガス5中のパティキュレートを捕集するパティキュレートフィルタ12が備えられており、その前段には、パティキュレートフィルタ12の強制再生に用いられる酸化触媒13が備えられている。   Further, the exhaust pipe 8 further downstream from the fuel addition valve 11 is provided with a particulate filter 12 that collects particulates in the exhaust gas 5. An oxidation catalyst 13 used for regeneration is provided.

そして、本形態例においては、以上に述べた既存の構成に加え、前記プレ酸化触媒9の上流側のエキゾーストコネクタ7内に、該エキゾーストコネクタ7の内側から外側に向けて窪む噴霧ポケット13を介し燃料添加弁14(第二の燃料添加弁)が排気ガス5の流れ方向に対し斜め下流側へ燃料Fを噴射し得るよう装備されているが、前記エキゾーストコネクタ7内には、前記燃料添加弁14からの噴射燃料Fを衝突させて上流側へ跳ね返すリフレクタ15が配設されており、結果的に前記燃料添加弁14からの噴射燃料Fが排気ガス5の流れに対向して噴射されるようになっている。   In this embodiment, in addition to the existing configuration described above, a spray pocket 13 that is recessed from the inside to the outside of the exhaust connector 7 is formed in the exhaust connector 7 on the upstream side of the pre-oxidation catalyst 9. The fuel addition valve 14 (second fuel addition valve) is provided so as to be able to inject the fuel F obliquely downstream with respect to the flow direction of the exhaust gas 5, but the fuel addition valve 14 is provided in the exhaust connector 7. A reflector 15 that collides the injected fuel F from the valve 14 and rebounds to the upstream side is disposed, and as a result, the injected fuel F from the fuel addition valve 14 is injected facing the flow of the exhaust gas 5. It is like that.

而して、このようにすれば、アイドリング停車時を含む軽負荷時に、排気温度が低すぎて酸化触媒13の活性が十分に高まらないためにパティキュレートフィルタ12の強制再生を実施できない場合であっても、タービン2b出口の未だ温度低下してない高温の排気ガス5に晒されたプレ酸化触媒9は活性状態となっているので、ここに燃料添加弁14により燃料添加を実施(必要に応じてエンジン側でのポスト噴射を補助的に使用)すれば、その添加燃料Fが前記プレ酸化触媒9で酸化反応することにより排気温度が上昇されてパティキュレートフィルタ12の強制再生を実施するための温度条件が整い、その結果としてポスト噴射の使用が大幅に低減されることになる。   Thus, in this case, the forced regeneration of the particulate filter 12 cannot be performed because the exhaust gas temperature is too low and the activity of the oxidation catalyst 13 does not sufficiently increase at light loads including when idling is stopped. However, since the pre-oxidation catalyst 9 exposed to the high-temperature exhaust gas 5 at the outlet of the turbine 2b that has not yet decreased in temperature is in an active state, fuel is added thereto by the fuel addition valve 14 (if necessary) If the post-injection on the engine side is used as an auxiliary), the added fuel F undergoes an oxidation reaction in the pre-oxidation catalyst 9 to raise the exhaust gas temperature and forcibly regenerate the particulate filter 12. The temperature conditions are in place, and as a result, the use of post injection is greatly reduced.

この際、燃料添加弁14から噴射される燃料Fは、リフレクタに衝突して上流側へ跳ね返され、ターボチャージャのタービン2b出口から吐出される排気ガス5の流れに対し対向流として混ざり、排気ガス5の流れに正面からぶつかることで蒸発と分散が著しく促進される結果、排気温度の低い軽負荷時であっても、添加燃料FをHCガスとして良好に分散した状態でプレ酸化触媒9に導くことが可能となり、添加燃料Fの大半がミストの状態でプレ酸化触媒9に導かれてしまうような事態が未然に回避される。   At this time, the fuel F injected from the fuel addition valve 14 collides with the reflector, rebounds upstream, and mixes as a counter flow with the flow of the exhaust gas 5 discharged from the turbine 2b outlet of the turbocharger. As a result of striking the flow of 5 from the front, evaporation and dispersion are remarkably promoted. As a result, even when the exhaust temperature is low and the load is light, the added fuel F is led to the pre-oxidation catalyst 9 in a state of being well dispersed as HC gas. This makes it possible to avoid a situation in which most of the added fuel F is led to the pre-oxidation catalyst 9 in a mist state.

即ち、燃料添加弁14から排気ガス5の流れ方向に対し斜め下流側に燃料Fを噴射するだけでは、排気ガス5の流れと同じ向きに噴射された燃料Fが円滑に排気ガス5の流れに乗って微細化や拡散が起こらないまま進んでしまい、添加燃料Fの蒸発と分散が良好に進まないままミストの状態でプレ酸化触媒9に導かれて効率の良い酸化処理が望めなくなる懸念があるが、リフレクタに衝突させて上流側へ跳ね返すようにすれば、そのような懸念が払拭されることになる。   That is, the fuel F injected in the same direction as the flow of the exhaust gas 5 smoothly flows into the flow of the exhaust gas 5 only by injecting the fuel F obliquely downstream from the flow direction of the exhaust gas 5 from the fuel addition valve 14. There is a concern that the process proceeds without miniaturization or diffusion, and the evaporation and dispersion of the added fuel F does not proceed well and is guided to the pre-oxidation catalyst 9 in a mist state, so that efficient oxidation treatment cannot be expected. However, if it is made to collide with a reflector and be bounced back to the upstream side, such a concern will be eliminated.

尚、前述のように、燃料添加弁14からの噴射燃料Fをリフレクタに衝突させて上流側へ跳ね返すようにすれば、該リフレクタに衝突した時の衝撃により噴射燃料Fの一部の蒸発と分散を促すことも可能であり、上流側へ跳ね返されないままリフレクタの表面に残る燃料Fの蒸発も促すことが可能となる。   As described above, if the injected fuel F from the fuel addition valve 14 collides with the reflector and rebounds to the upstream side, a part of the injected fuel F is evaporated and dispersed by the impact at the time of the collision with the reflector. It is also possible to promote the evaporation of the fuel F remaining on the surface of the reflector without being bounced upstream.

そして、このようなプレ酸化触媒9による排気昇温が実施された後、下流の酸化触媒13が昇温して活性状態となったら、前記プレ酸化触媒9の下流側に配置した燃料添加弁11からも燃料添加を実施し、その添加燃料Fを酸化触媒13で酸化反応させることによる反応熱で排気ガス5を昇温してパティキュレートフィルタ12へと導入し、その内部の捕集済みパティキュレートを燃焼除去してパティキュレートフィルタ12の再生化を図るようにすれば良い。   Then, after the temperature of the exhaust gas is increased by the pre-oxidation catalyst 9, when the downstream oxidation catalyst 13 is heated and becomes active, the fuel addition valve 11 disposed on the downstream side of the pre-oxidation catalyst 9. In addition, the fuel is added, and the exhaust gas 5 is heated by the reaction heat generated by oxidizing the added fuel F with the oxidation catalyst 13 and introduced into the particulate filter 12. The particulate filter 12 may be regenerated by burning off the catalyst.

以上に述べた通り、上記形態例によれば、アイドリング停車時を含む軽負荷時に燃料添加弁14によりプレ酸化触媒9の上流側に燃料添加を実施し、その添加燃料Fをプレ酸化触媒9で酸化反応させて排気ガス5の温度を上昇させることができるので、斯かる排気昇温の際にポスト噴射を必要に応じて補助的に使用するだけで済んで該ポスト噴射の使用を大幅に低減することができ、これによりポスト噴射によるエンジンオイルの希釈を著しく抑制することができる。   As described above, according to the above embodiment, fuel is added to the upstream side of the pre-oxidation catalyst 9 by the fuel addition valve 14 at a light load including when idling is stopped, and the added fuel F is supplied by the pre-oxidation catalyst 9. Since the temperature of the exhaust gas 5 can be raised by an oxidation reaction, it is only necessary to supplementarily use post-injection as necessary when raising the temperature of the exhaust gas, and the use of the post-injection is greatly reduced. Thus, dilution of engine oil due to post-injection can be remarkably suppressed.

また、特に本形態例においては、燃料添加弁14からの燃料Fをリフレクタに衝突させて上流側へ跳ね返すことにより、燃料Fの蒸発と分散を著しく促進することができるので、排気温度の低い軽負荷時であっても、添加燃料FをHCガスとして良好に分散した状態でプレ酸化触媒9に導くことができ、添加燃料Fの大半がミストの状態でプレ酸化触媒9に導かれてしまうような事態を未然に回避することができて、ポスト噴射と大差無い燃料添加を実現することができる。   Particularly in this embodiment, the fuel F from the fuel addition valve 14 collides with the reflector and bounces back to the upstream side, so that the evaporation and dispersion of the fuel F can be remarkably promoted. Even during loading, the added fuel F can be led to the pre-oxidation catalyst 9 in a well-distributed state as HC gas, so that most of the added fuel F is led to the pre-oxidation catalyst 9 in a mist state. This makes it possible to avoid such a situation and to realize fuel addition that is not much different from post-injection.

図2は本発明の別の形態例を示すもので、燃料添加弁14からの燃料Fをリフレクタに衝突させて上流側へ跳ね返す替わりに、燃料添加弁14から排気ガス5の流れの上流側に向けて燃料Fを噴射するようにした例を示しており、このようにした場合には、リフレクタに衝突させた時の衝撃により噴射燃料Fの一部の蒸発と分散を促すような作用効果を得られなくなるが、ターボチャージャのタービン2b出口から吐出される排気ガス5の流れに対し対向流として噴射燃料Fを混ぜて該噴射燃料Fの蒸発と分散を著しく促進できるという点では図1の形態例と同様である。   FIG. 2 shows another embodiment of the present invention. Instead of causing the fuel F from the fuel addition valve 14 to collide with the reflector and bounce it upstream, the fuel addition valve 14 moves upstream of the flow of the exhaust gas 5. In this example, the fuel F is injected toward the reflector, and in this case, the effect of promoting the evaporation and dispersion of a part of the injected fuel F due to the impact when colliding with the reflector is shown. Although not obtained, the embodiment shown in FIG. 1 is capable of remarkably promoting evaporation and dispersion of the injected fuel F by mixing the injected fuel F as a counter flow with the flow of the exhaust gas 5 discharged from the turbine 2b outlet of the turbocharger. Similar to the example.

尚、本発明の燃料添加装置は、上述の形態例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the fuel addition apparatus of this invention is not limited only to the above-mentioned example, Of course, various changes can be added within the range which does not deviate from the summary of this invention.

1 ディーゼルエンジン(エンジン)
2 ターボチャージャ
2b タービン
5 排気ガス
8 排気管
9 プレ酸化触媒
11 燃料添加弁(第一の燃料添加弁)
14 燃料添加弁(第二の燃料添加弁)
15 リフレクタ
F 燃料
1 Diesel engine (engine)
2 Turbocharger 2b Turbine 5 Exhaust gas 8 Exhaust pipe 9 Pre-oxidation catalyst 11 Fuel addition valve (first fuel addition valve)
14 Fuel addition valve (second fuel addition valve)
15 Reflector F Fuel

Claims (2)

ターボチャージャのタービン出口に備えたプレ酸化触媒の下流側に第一の燃料添加弁を設け、該第一の燃料添加弁とエンジン側でのポスト噴射との少なくとも何れか一方の手段により燃料添加を行い得るようにした燃料添加装置であって、前記プレ酸化触媒の上流側に第二の燃料添加弁を設け、該第二の燃料添加弁によっても燃料添加を行い得るように構成したことを特徴とする燃料添加装置。   A first fuel addition valve is provided downstream of the pre-oxidation catalyst provided at the turbine outlet of the turbocharger, and fuel is added by at least one of the first fuel addition valve and post injection on the engine side. A fuel addition device configured to be able to be performed, wherein a second fuel addition valve is provided on the upstream side of the pre-oxidation catalyst, and the fuel addition can be performed also by the second fuel addition valve. A fuel addition device. 第二の燃料添加弁を排気ガスの流れ方向に対し斜め下流側へ燃料を噴射し得るように配置すると共に、前記第二の燃料添加弁からの噴射燃料を衝突させて上流側へ跳ね返すリフレクタを前記第二の燃料添加弁とプレ酸化触媒との間に設けたことを特徴とする燃料添加装置。   A second fuel addition valve is arranged so that fuel can be injected obliquely downstream with respect to the flow direction of the exhaust gas, and a reflector that collides the injected fuel from the second fuel addition valve and bounces upstream is provided. A fuel addition apparatus provided between the second fuel addition valve and the pre-oxidation catalyst.
JP2013003060A 2013-01-11 2013-01-11 Fuel addition device Pending JP2014134157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013003060A JP2014134157A (en) 2013-01-11 2013-01-11 Fuel addition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013003060A JP2014134157A (en) 2013-01-11 2013-01-11 Fuel addition device

Publications (1)

Publication Number Publication Date
JP2014134157A true JP2014134157A (en) 2014-07-24

Family

ID=51412612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013003060A Pending JP2014134157A (en) 2013-01-11 2013-01-11 Fuel addition device

Country Status (1)

Country Link
JP (1) JP2014134157A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017115829A (en) * 2015-12-25 2017-06-29 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
WO2019207334A1 (en) * 2018-04-27 2019-10-31 日産自動車株式会社 Method of controlling temperature of exhaust purification device of internal combustion engine, and internal combustion engine control device
US11015508B2 (en) 2016-10-26 2021-05-25 Scania Cv Ab Exhaust additive dosing system comprising an exhaust additive distribution device and an exhaust additive metering device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017115829A (en) * 2015-12-25 2017-06-29 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
US11015508B2 (en) 2016-10-26 2021-05-25 Scania Cv Ab Exhaust additive dosing system comprising an exhaust additive distribution device and an exhaust additive metering device
WO2019207334A1 (en) * 2018-04-27 2019-10-31 日産自動車株式会社 Method of controlling temperature of exhaust purification device of internal combustion engine, and internal combustion engine control device
JPWO2019207334A1 (en) * 2018-04-27 2021-04-08 日産自動車株式会社 Temperature control method for exhaust gas purification device of internal combustion engine and control device for internal combustion engine
US11300065B2 (en) 2018-04-27 2022-04-12 Nissan Motor Co., Ltd. Method of controlling temperature of exhaust purification device of internal combustion engine, and internal combustion engine control device

Similar Documents

Publication Publication Date Title
US8151558B2 (en) Exhaust system implementing SCR and EGR
WO2014057820A1 (en) Exhaust gas purification system and exhaust gas purification method
JP4450257B2 (en) Exhaust purification device
KR20060043351A (en) Exhaust purifier
JP4807338B2 (en) Diesel engine control device
JP5763294B2 (en) Exhaust purification equipment
JP4784761B2 (en) Exhaust purification device
JP2009019556A (en) Exhaust emission control device
JP2014134157A (en) Fuel addition device
JP2007132202A (en) Exhaust gas temperature rise device
JP2010043564A (en) Exhaust emission control device
JP2014015848A (en) Exhaust emission control device of vehicle
GB2564833A (en) An after treatment system, engine assembly and associated methods
JP2020037902A (en) Exhaust emission control device for internal combustion engine
CN112424459B (en) Exhaust structure of vehicle-mounted engine
JP5066458B2 (en) Particulate filter regeneration method
JP2008057337A (en) Exhaust emission control device
JP2003155915A (en) Exhaust emission control device
JP2006161629A (en) Exhaust emission control device
JP5266105B2 (en) Desulfurization equipment
US20110047992A1 (en) Partial coating of platinum group metals on filter for increased soot mass limit and reduced costs
JP5085393B2 (en) Exhaust purification device
JP2006037857A (en) Exhaust emission control device
GB2566350A (en) An after treatment system, engine assembly and associated methods
JP2007120346A (en) Exhaust emission control device