JP2014015848A - Exhaust emission control device of vehicle - Google Patents

Exhaust emission control device of vehicle Download PDF

Info

Publication number
JP2014015848A
JP2014015848A JP2012151734A JP2012151734A JP2014015848A JP 2014015848 A JP2014015848 A JP 2014015848A JP 2012151734 A JP2012151734 A JP 2012151734A JP 2012151734 A JP2012151734 A JP 2012151734A JP 2014015848 A JP2014015848 A JP 2014015848A
Authority
JP
Japan
Prior art keywords
exhaust
pipe
dpf
exhaust gas
oxidation catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012151734A
Other languages
Japanese (ja)
Inventor
嘉則 ▲高▼橋
Yoshinori Takahashi
Hiroyuki Kaminaga
浩行 神長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2012151734A priority Critical patent/JP2014015848A/en
Publication of JP2014015848A publication Critical patent/JP2014015848A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust emission control device of a vehicle which has low exhaust resistance, smoothly and readily treats exhaust, and prevents a catalyst from damaging or the like.SOLUTION: An exhaust emission control device of a vehicle includes: an exhaust pipe for allowing exhaust discharged from an internal combustion engine to flow; an oxidation catalyst in which unburnt components contained in the exhaust are subjected to an oxidation treatment; a particulate capturing filter provided downstream of the oxidation catalyst in the exhaust direction and for capturing particulates in the exhaust; a DPF container for housing the oxidation catalyst and the particulate capturing filter; an opening connection provided between the exhaust pipe and the DPF container and in which a cross-sectional area breaking on the vertical surface in the exhaust direction increases with the distance from the exhaust pipe to the DPF container; and a fin member provided inside the opening connection and in which a blade inclining in the exhaust direction stirs exhaust passing through the opening connection.

Description

本発明は、排気管路内にフィンを備えた、車両の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for a vehicle provided with fins in an exhaust pipe line.

車両の内燃機関には、排気を浄化する排気浄化装置が設けられている。例えばディーゼルエンジンでは、酸化触媒とDPF(Diesel Particulate filter)と尿素SCR(Selective Catalytic Reduction)システムの窒素酸化物(NOx)還元装置などを備えて、排気浄化装置が構成されている。   An internal combustion engine of a vehicle is provided with an exhaust purification device that purifies exhaust. For example, a diesel engine includes an exhaust gas purification device including an oxidation catalyst, a DPF (Diesel Particulate filter), a nitrogen oxide (NOx) reduction device of a urea SCR (Selective Catalytic Reduction) system, and the like.

酸化触媒は、排気に含まれる一酸化炭素や炭化水素等を酸化させ、二酸化炭素や水に変化させる。又、酸化触媒は、NOxであるNOを酸化させ、NO2(二酸化窒素)に変化させる。DPF(Diesel Particulate filter)は、微小な孔を多数有し、排気に含まれる煤分などの微粒子(PMとも呼ばれる)を捕捉する。DPFは、目詰まりを解消させるため、捕捉した微粒子を適宜燃焼させる再生処理を行う。   The oxidation catalyst oxidizes carbon monoxide, hydrocarbons and the like contained in the exhaust gas, and changes them into carbon dioxide and water. The oxidation catalyst oxidizes NO, which is NOx, and changes it to NO2 (nitrogen dioxide). A DPF (Diesel Particulate filter) has a large number of minute holes and captures fine particles (also called PM) such as soot contained in exhaust gas. In order to eliminate clogging, the DPF performs a regeneration process in which captured fine particles are combusted as appropriate.

DPFの再生処理は、DPFの上流側に配置されている酸化触媒に、例えば燃料成分を供給して行う。供給された燃料成分は、酸化触媒で酸化反応し、反応熱で排気を高温にする。高温になった排気がDPFに送られ、DPFに捕捉されている微粒子が加熱され燃焼する。   The regeneration process of the DPF is performed by supplying, for example, a fuel component to the oxidation catalyst disposed on the upstream side of the DPF. The supplied fuel component undergoes an oxidation reaction with an oxidation catalyst, and the exhaust gas is heated to a high temperature by reaction heat. The exhaust gas that has reached a high temperature is sent to the DPF, and the fine particles trapped in the DPF are heated and burned.

尿素SCRシステムの窒素酸化物(NOx)還元装置は、排気に尿素水を添加し、排気中に含まれるNOxをNOx還元触媒により還元して、窒素と水にする。尿素SCRシステムは、NOよりNO2の方が尿素水(アンモニア)で還元し易い。そこで、排気浄化装置は、排気に含まれるNOの多くを、酸化触媒でNO2に酸化させておく。   The nitrogen oxide (NOx) reduction device of the urea SCR system adds urea water to the exhaust gas, and reduces NOx contained in the exhaust gas with a NOx reduction catalyst to form nitrogen and water. In the urea SCR system, NO2 is easier to reduce with urea water (ammonia) than NO. Therefore, the exhaust purification device oxidizes most of NO contained in the exhaust to NO 2 with an oxidation catalyst.

通常、排気浄化装置において、エンジンから延びる排気管より、酸化触媒やDPFを備えたDPF処理装置の方が断面積が大きい。そのため、排気管とDPF処理装置との間に、断面積が徐々に拡大された開拡接続管を取り付けたり、触媒の前にパンチングメタルを設け、排気を分散させて触媒に導入させている。又、尿素SCRシステムの排気浄化装置においては、排気管中に噴霧された尿素水が排気中に拡散されるように排気管内にフィンを設けた発明が知られている。   Normally, in an exhaust purification device, a DPF processing device including an oxidation catalyst and a DPF has a larger cross-sectional area than an exhaust pipe extending from an engine. For this reason, an expansion connection pipe having a gradually increased cross-sectional area is attached between the exhaust pipe and the DPF processing apparatus, or a punching metal is provided in front of the catalyst, and the exhaust gas is dispersed and introduced into the catalyst. In addition, in the exhaust purification device of the urea SCR system, an invention is known in which fins are provided in the exhaust pipe so that urea water sprayed in the exhaust pipe is diffused into the exhaust.

特開2007−162487号公報JP 2007-162487 A

しかしながら、排気管内での排気流の速度が速くなると、排気が、排気管の太さからほとんど広がることなく開拡接続管の内部を通過し、DPF処理装置内に流入してしまうことがある。   However, when the speed of the exhaust flow in the exhaust pipe is increased, the exhaust gas may pass through the inside of the expanded connection pipe without almost expanding from the thickness of the exhaust pipe, and may flow into the DPF processing apparatus.

このように、排気が広がらずに酸化触媒に流入すると、触媒の一部に排気が集中し、DPFの再生時には、排気が集中した個所に多くの燃料成分が供給されてしまう。すると、燃料成分の酸化反応により触媒の一部が高温となって、触媒を傷めたり、一方、排気の流量が少ない個所では、十分に温度が上昇せず、排気の温度制御に不具合が生じるおそれがある。   Thus, if the exhaust gas flows into the oxidation catalyst without spreading, the exhaust gas concentrates on a part of the catalyst, and when the DPF is regenerated, many fuel components are supplied to the location where the exhaust gas is concentrated. Then, a part of the catalyst becomes hot due to the oxidation reaction of the fuel component, and the catalyst may be damaged. On the other hand, at a place where the flow rate of the exhaust gas is low, the temperature does not rise sufficiently, and the temperature control of the exhaust gas may cause a problem. There is.

又、酸化触媒を通過した排気が、酸化触媒の後方に設けられたDPFの一部に偏って流入することにより、DPFの一部の個所の目詰まりを早めたり、再生時にDPFの一部が高温になりDPFの劣化を早めてしまうおそれがある。   In addition, the exhaust gas that has passed through the oxidation catalyst flows in a partly part of the DPF provided behind the oxidation catalyst, so that the clogging of a part of the DPF is accelerated or a part of the DPF is regenerated. There is a possibility that the temperature of the DPF becomes high and the deterioration of the DPF is accelerated.

更に、パンチングメタルを設けて排気を広く分散させる場合、パンチングメタルの孔を小さくするなどして流通抵抗が大きくなる。そのため、車両の燃費を低下させるおそれがある。更に、排気管に設けられたフィンで尿素水を分散させる場合にも、排気浄化装置の流通抵抗を増加させ、車両の燃費を低下させるおそれがある。   Further, when the punching metal is provided to widely disperse the exhaust gas, the flow resistance is increased by reducing the holes of the punching metal. Therefore, there is a risk of reducing the fuel consumption of the vehicle. Furthermore, even when urea water is dispersed with fins provided in the exhaust pipe, there is a possibility that the flow resistance of the exhaust purification device is increased and the fuel consumption of the vehicle is lowered.

本発明は前記課題を解決し、流通抵抗が小さく、円滑に、かつ確実に排気を処理し、しかも、触媒に損傷等を生じさせることのない車両の排気浄化装置を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems, and to provide an exhaust emission control device for a vehicle that has low flow resistance, smoothly and reliably treats exhaust gas, and does not cause damage to the catalyst. .

本発明の車両の排気浄化装置は、次のように構成されている。内燃機関から排出された排気を流通させる排気管と、排気管内の排気に含まれる未燃成分を酸化処理する酸化触媒と、酸化触媒より排気方向の下流に設けられ、排気をろ過して微粒子を捕捉する微粒子捕捉フィルタと、排気管に連結し、酸化触媒及び微粒子捕捉フィルタを収容するDPF容器体と、排気管とDPF容器体との間に設けられ、排気方向に垂直な面で破断した断面の面積が、排気管からDPF容器体に進むに伴い増加する開拡接続部と、開拡接続部の内側に設けられ、排気方向に対して傾斜して設けられた羽根により、開拡接続部を通過する排気を撹拌させるフィン部材と、を備えて構成されている。   The vehicle exhaust gas purification apparatus of the present invention is configured as follows. An exhaust pipe that distributes the exhaust discharged from the internal combustion engine, an oxidation catalyst that oxidizes unburned components contained in the exhaust in the exhaust pipe, and a downstream of the oxidation catalyst in the exhaust direction. A fine particle capturing filter to be captured, a DPF container body connected to the exhaust pipe and containing the oxidation catalyst and the fine particle capturing filter, and a cross section broken between the exhaust pipe and the DPF container body and cut in a plane perpendicular to the exhaust direction. Of the widened connection portion that increases as it advances from the exhaust pipe to the DPF container body, and the blade that is provided inside the widened connection portion and inclined with respect to the exhaust direction. And a fin member that stirs the exhaust gas passing through.

本発明にかかる排気浄化装置によれば、エンジンからDPF容器体内に排気が均一な状態で流入する。これにより、部分的な目詰まりや温度分布にばらつきがなく、酸化触媒や微粒子捕捉フィルタ、更に窒素酸化物還元装置を十分に機能させることができ、かつ部分的な過熱による損傷を有効に防止できる。   According to the exhaust emission control device of the present invention, exhaust gas flows from the engine into the DPF container in a uniform state. As a result, there is no variation in partial clogging or temperature distribution, the oxidation catalyst, the particulate trapping filter, and the nitrogen oxide reduction device can function sufficiently, and damage due to partial overheating can be effectively prevented. .

本発明の一実施形態にかかる車両の排気浄化装置を示す分解斜視図。1 is an exploded perspective view showing an exhaust emission control device for a vehicle according to an embodiment of the present invention. 同排気浄化装置内での排気の流れを示す斜視透視図。The perspective perspective view which shows the flow of the exhaust_gas | exhaustion in the same exhaust gas purification apparatus. フィン部材を示す斜視図。The perspective view which shows a fin member. フィン部材を示す正面図。The front view which shows a fin member. フィン部材全体における羽根の占める面積割合と圧力損失と排気の流速分布の均一性との関係を示すグラフ。The graph which shows the relationship between the area ratio which the blade | wing occupies in the whole fin member, a pressure loss, and the uniformity of the flow velocity distribution of exhaust. 排気浄化装置を備えた内燃機関の全体を示す構成図。The block diagram which shows the whole internal combustion engine provided with the exhaust gas purification device.

本発明の一実施形態にかかる車両の排気浄化装置について説明する。図1は、排気浄化装置10の全体を示す分解斜視図であり、図2は、排気浄化装置10内での排気の流れを示す斜視透視図であり、図3は、フィン部材36を示す斜視図であり、図4は、フィン部材36を示す正面図であり、図5は、フィン部材36の全体面積における羽根44の占める面積割合と圧力損失と排気の流速分布の均一性との関係を示すグラフであり、図6は、排気浄化装置10を備えたエンジン50の全体を示す構成図である。   An exhaust emission control device for a vehicle according to an embodiment of the present invention will be described. FIG. 1 is an exploded perspective view showing the entire exhaust emission control device 10, FIG. 2 is a perspective view showing the flow of exhaust gas in the exhaust emission control device 10, and FIG. 3 is a perspective view showing the fin member 36. FIG. 4 is a front view showing the fin member 36, and FIG. 5 shows the relationship between the area ratio of the blades 44 in the entire area of the fin member 36, the pressure loss, and the uniformity of the flow velocity distribution of the exhaust gas. FIG. 6 is a configuration diagram showing the entire engine 50 including the exhaust purification device 10.

排気浄化装置10は、図1に示すように、エンジン50から延びている排気管26と、排気管26に接続されたDPF処理装置12と、DPF処理装置12に接続された尿素SCR(Selective Catalytic Reduction)と呼ばれるシステムのNOx浄化装置14とを備えて構成されている。   As shown in FIG. 1, the exhaust purification device 10 includes an exhaust pipe 26 extending from the engine 50, a DPF processing device 12 connected to the exhaust pipe 26, and a urea SCR (Selective Catalytic) connected to the DPF processing device 12. And a NOx purification device 14 of a system called “Reduction”.

排気浄化装置10は、図6に示すように、排気管26を介して車両のエンジン50に連結されている。以下、排気浄化装置10について、排気管26内の排気の流通方向E(図3参照)を基準にして、上流側下流側、あるいは前方後方という。   As shown in FIG. 6, the exhaust purification device 10 is connected to an engine 50 of the vehicle via an exhaust pipe 26. Hereinafter, the exhaust emission control device 10 is referred to as upstream-downstream side or front-rear side with reference to the flow direction E of exhaust gas in the exhaust pipe 26 (see FIG. 3).

図6に示すエンジン50は、ディーゼルエンジンで、車両に搭載されている。エンジン50は、エンジン50の排気口51に接続されている排気管26と、過給器(ターボチャージャ)52と、燃料噴射装置54と、インタークーラ56と、吸気管28と、排気浄化装置10と、制御装置62などを備えている。   An engine 50 shown in FIG. 6 is a diesel engine and is mounted on a vehicle. The engine 50 includes an exhaust pipe 26 connected to an exhaust port 51 of the engine 50, a supercharger (turbocharger) 52, a fuel injection device 54, an intercooler 56, an intake pipe 28, and the exhaust purification device 10. And a control device 62 and the like.

過給器52には、エンジン50からの排気管26とエアクリーナ58からの吸気管28とが接続している。過給器52は、排気管26からの排気で、排気タービンを回転させ、エアクリーナ58を介して吸引した外気を、圧縮タービンの回転で加圧する。過給器52で加圧された外気は、インタークーラ56を通して冷却され、吸気口53からエンジン50の燃焼室内に送り込まれる。   An exhaust pipe 26 from the engine 50 and an intake pipe 28 from the air cleaner 58 are connected to the supercharger 52. The supercharger 52 rotates the exhaust turbine with the exhaust from the exhaust pipe 26 and pressurizes the outside air sucked through the air cleaner 58 by the rotation of the compression turbine. The outside air pressurized by the supercharger 52 is cooled through the intercooler 56 and sent from the intake port 53 into the combustion chamber of the engine 50.

エンジン50から排出された排気は、過給器52で排気タービンを回転させた後、排気管26を通って排気浄化装置10に送られ、浄化される。尚、エンジン50は、ディーゼルエンジンに限るものではなく、また過給器52を設けない自然吸気式のエンジンでもよい。   The exhaust gas discharged from the engine 50 is rotated by the supercharger 52 and then sent to the exhaust gas purification device 10 through the exhaust pipe 26 and purified. The engine 50 is not limited to a diesel engine, and may be a naturally aspirated engine in which the supercharger 52 is not provided.

排気浄化装置10は、上流側に過給器52からの排気管26が接続し、下流側に排出口60が連通している。DPF処理装置12の内部には、酸化触媒16と、微粒子捕捉フィルタとしてのDPF18とが、排気の流通方向Eに沿って設けられている。   In the exhaust purification apparatus 10, the exhaust pipe 26 from the supercharger 52 is connected to the upstream side, and the exhaust port 60 is in communication with the downstream side. Inside the DPF processing device 12, an oxidation catalyst 16 and a DPF 18 as a particulate trapping filter are provided along the exhaust flow direction E.

酸化触媒16は、排気中に含まれる一酸化炭素や炭化水素やNOxなどを酸化させ、これらを二酸化炭素や水や二酸化窒素に変化させる。DPF18は、酸化触媒16の下流に設けられている。DPF18は、酸化触媒16とほぼ同一の径で、微細な孔部が形成されたセラミック材などからなり、酸化触媒16で処理された排気を濾過し、排気中に含まれるPM(Particulate Matter)と呼ばれる微粒子成分(主に、煤分)を捕捉する。   The oxidation catalyst 16 oxidizes carbon monoxide, hydrocarbons, NOx and the like contained in the exhaust gas, and changes them into carbon dioxide, water, and nitrogen dioxide. The DPF 18 is provided downstream of the oxidation catalyst 16. The DPF 18 is made of a ceramic material having substantially the same diameter as the oxidation catalyst 16 and formed with fine pores. The DPF 18 filters exhaust gas treated by the oxidation catalyst 16, and includes PM (Particulate Matter) contained in the exhaust gas. Captures the fine particle components (mainly apportioned).

NOx浄化装置14は、尿素水噴射機構と、NOx還元触媒22と、アンモニア分解触媒24とを備えている。尿素水噴射機構は、尿素水噴射弁30と、尿素水を貯蔵する貯蔵タンクと、尿素水を送りだす送出ポンプと、ポンプ駆動機構(いずれも不図示)などとを備えている。尿素水噴射弁30は、DPF処理装置12とNOx還元触媒22の間に設けられている。尿素水噴射弁30は、尿素水噴射機構の送出ポンプの駆動により、排気管26内に尿素水を噴出する。   The NOx purification device 14 includes a urea water injection mechanism, a NOx reduction catalyst 22, and an ammonia decomposition catalyst 24. The urea water injection mechanism includes a urea water injection valve 30, a storage tank that stores urea water, a delivery pump that sends out urea water, a pump drive mechanism (all not shown), and the like. The urea water injection valve 30 is provided between the DPF processing device 12 and the NOx reduction catalyst 22. The urea water injection valve 30 ejects urea water into the exhaust pipe 26 by driving a delivery pump of the urea water injection mechanism.

NOx還元触媒22とアンモニア分解触媒24とは、同一の容器体38内に収納されている。NOx還元触媒22は、選択的還元触媒であり、尿素水から転じたアンモニアを還元剤として、NOxを選択的に還元して、人体に無害な窒素と水に変化させる。アンモニア分解触媒24は、NOx還元触媒22をスリップしたアンモニアを酸化・分解し、窒素と水等に変化させる。   The NOx reduction catalyst 22 and the ammonia decomposition catalyst 24 are accommodated in the same container body 38. The NOx reduction catalyst 22 is a selective reduction catalyst, and selectively reduces NOx using ammonia converted from urea water as a reducing agent to change it into nitrogen and water that are harmless to the human body. The ammonia decomposition catalyst 24 oxidizes and decomposes the ammonia slipped by the NOx reduction catalyst 22 to change it into nitrogen and water.

又、DPF処理装置12は、排気管26と、開拡接続部としての開拡接続管20で接続されている。開拡接続管20は、漏斗状で、内径が、排気管26の口径と同一の径の流入口32からDPF処理装置12の流入口に接続する流出口34までほぼ直線的に拡大している。   In addition, the DPF processing device 12 is connected to the exhaust pipe 26 through an expanded connection pipe 20 as an expanded connection section. The open-spread connecting pipe 20 has a funnel shape, and its inner diameter expands almost linearly from an inlet 32 having the same diameter as the outlet pipe 26 to an outlet 34 connected to the inlet of the DPF processing device 12. .

開拡接続管20の内部には、図1に示すようにフィン部材36が取り付けられている。フィン部材36は、開拡接続管20の流入口32の近傍に取り付けられている。フィン部材36は、図3、図4に示すように、外枠体40と、円筒状の基台42と、基台42の周囲に取り付けられた羽根44とを含んでいる。   As shown in FIG. 1, a fin member 36 is attached to the inside of the spread connection pipe 20. The fin member 36 is attached in the vicinity of the inlet 32 of the spread-out connecting pipe 20. As shown in FIGS. 3 and 4, the fin member 36 includes an outer frame body 40, a cylindrical base 42, and a blade 44 attached around the base 42.

外枠体40は、扁平な環状体で、開拡接続管20の、フィン部材36を取り付ける取付位置の外形と同等の外形を有している。基台42は、円筒状で、外枠体40の中心部分に、外枠体40とほぼ同軸に取り付けられている。   The outer frame body 40 is a flat annular body, and has an outer shape equivalent to the outer shape of the attachment position of the spread expansion connecting pipe 20 to which the fin member 36 is attached. The base 42 has a cylindrical shape, and is attached to the center portion of the outer frame body 40 substantially coaxially with the outer frame body 40.

羽根44は、外枠体40と基台42との間に8枚均等な位置に設けられている。羽根44は、排気方向Eに対して、湾曲して設けられている。羽根44は、排気方向Eに沿って排気がフィン部材36を通過すると、フィン部材36の中心軸Aを中心として、その周囲に排気が回転するように設けられている。図2に、排気管26から排気浄化装置12にかけての排気の流れの状態を示す。   Eight blades 44 are provided at equal positions between the outer frame body 40 and the base 42. The blades 44 are curved with respect to the exhaust direction E. The blades 44 are provided such that when the exhaust gas passes through the fin member 36 along the exhaust direction E, the exhaust gas rotates around the central axis A of the fin member 36. FIG. 2 shows the state of the exhaust flow from the exhaust pipe 26 to the exhaust purification device 12.

具体的には、羽根44は、図3に示すように、排気方向Eの上流側、つまりエンジン50側の端縁は、排気管26の中心軸Aと略平行な方向に向きが設定されている。そして、羽根44は上流側の端縁から徐々に湾曲し、フィン部材36から排気が流出する側の端縁では向きが、所定の角度に設定されている。更に、図4に示すように羽根44は、フィン部材36を中心軸Aに沿った方向から見たときの、フィン部材36全体の面積に対する面積割合が、約40%となっている。   Specifically, as shown in FIG. 3, the blade 44 has an upstream end in the exhaust direction E, that is, an end on the engine 50 side, oriented in a direction substantially parallel to the central axis A of the exhaust pipe 26. Yes. The blades 44 are gradually curved from the upstream edge, and the direction is set at a predetermined angle at the edge on the side where the exhaust gas flows out from the fin member 36. Further, as shown in FIG. 4, the blade 44 has an area ratio of about 40% with respect to the entire area of the fin member 36 when the fin member 36 is viewed from the direction along the central axis A.

制御装置62は、各種センサと接続し、燃料噴射装置54その他を作動させエンジン50を駆動させる。又、制御装置62は、排気中のNOxを処理するため、尿素水噴射弁30から、所定量の尿素水を排気管26内に噴射する。   The control device 62 is connected to various sensors and operates the fuel injection device 54 and others to drive the engine 50. Further, the control device 62 injects a predetermined amount of urea water into the exhaust pipe 26 from the urea water injection valve 30 in order to process NOx in the exhaust gas.

更に、制御装置62は、例えば、排気浄化装置10における圧力損失を排気浄化装置10の前後に設けられたセンサ等から検出し、排気浄化装置10の圧力損失が所定値を越えたと判断すると、DPF18の再生処理を行う。制御装置62は、再生処理を決定すると、車両の走行やアイドリングに要する燃料より多くの燃料を燃料噴射装置54に噴射させる。余分に噴射された燃料は、酸化触媒16で酸化反応され、排気温度を上昇させる。制御装置62は、排気の温度を、DPF18に堆積した煤分が燃焼する温度まで上昇させ、その排気でPM(煤の微粒子)を燃焼させてDPF18の再生を行う。   Further, for example, when the control device 62 detects a pressure loss in the exhaust purification device 10 from sensors or the like provided before and after the exhaust purification device 10 and determines that the pressure loss of the exhaust purification device 10 exceeds a predetermined value, the DPF 18 Perform the playback process. When the control device 62 determines the regeneration process, the control device 62 causes the fuel injection device 54 to inject more fuel than the fuel required for vehicle travel and idling. The excessively injected fuel is oxidized by the oxidation catalyst 16 to raise the exhaust gas temperature. The control device 62 raises the temperature of the exhaust gas to a temperature at which soot accumulated in the DPF 18 burns, and burns PM (soot particulates) in the exhaust to regenerate the DPF 18.

次に、排気浄化装置10の作用、効果について説明する。エンジン50から排出された排気は、排気管26に流入し、過給器52を通過して、排気浄化装置10に流入する。排気は、排気管26から開拡接続管20を介してDPF処理装置12に流入する。   Next, the operation and effect of the exhaust emission control device 10 will be described. Exhaust gas discharged from the engine 50 flows into the exhaust pipe 26, passes through the supercharger 52, and flows into the exhaust purification device 10. Exhaust gas flows from the exhaust pipe 26 into the DPF processing device 12 through the spread connecting pipe 20.

DPF処理装置12に流入した排気は、酸化触媒16で、排気中に含まれる未燃成分が酸化処理される。そして排気は、DPF18で濾過され、排気中に含まれる炭素成分などからなる微粒子が捕捉されてDPF処理装置12からNOx還元触媒装置14に流入する。   Exhaust gas flowing into the DPF treatment device 12 is oxidized by an oxidation catalyst 16 in the unburned components contained in the exhaust gas. Then, the exhaust gas is filtered by the DPF 18, fine particles including carbon components contained in the exhaust gas are captured, and flow into the NOx reduction catalyst device 14 from the DPF processing device 12.

排気が、NOx還元触媒装置14に流入すると、排気中に尿素水噴射弁30から尿素水が噴射される。尿素水の尿素は、アンモニアに転じ、NOx還元触媒22で、排気中に含まれるNOxを還元し、窒素と水に変化させる。更に、NOx還元触媒22をスリップしたアンモニアは、アンモニア分解触媒24で、酸化・分解され、窒素と水に変化する。このようにして、エンジン50からの排気は、浄化され排出口60から大気に排出される。   When the exhaust gas flows into the NOx reduction catalyst device 14, urea water is injected from the urea water injection valve 30 into the exhaust gas. The urea water urea turns into ammonia, and the NOx reduction catalyst 22 reduces the NOx contained in the exhaust gas to change it into nitrogen and water. Further, the ammonia slipped on the NOx reduction catalyst 22 is oxidized and decomposed by the ammonia decomposition catalyst 24 and changed into nitrogen and water. In this way, the exhaust from the engine 50 is purified and exhausted from the exhaust port 60 to the atmosphere.

排気浄化装置10は、フィン部材36を備えた開拡接続管20で、排気管26とDPF処理装置12とを連結している。したがって、排気がDPF処理装置12に流入する際、羽根44からの旋回作用を受け、図2の点線に示す流通経路のように、排気管26から開拡接続管20内に流入する排気が撹拌される。   The exhaust gas purification device 10 is an expanded connection pipe 20 having a fin member 36, and connects the exhaust pipe 26 and the DPF processing device 12. Therefore, when the exhaust gas flows into the DPF processing apparatus 12, the exhaust gas that receives the swirling action from the blades 44 and that flows into the widening connection pipe 20 from the exhaust pipe 26 as a flow path indicated by a dotted line in FIG. Is done.

フィン部材36が、開拡接続管20の流入口32の近傍、つまり開拡接続管20の排気上流側に設けられているため、排気は、図2に示すように、流速が速い段階でフィン部材36の羽根44から旋回作用を受ける。これにより、排気は、フィン部材36により十分に撹拌され、流速の均一化が図られる。   Since the fin member 36 is provided in the vicinity of the inlet 32 of the spread connecting pipe 20, that is, on the exhaust upstream side of the spread connecting pipe 20, as shown in FIG. A swirling action is received from the blades 44 of the member 36. As a result, the exhaust gas is sufficiently agitated by the fin member 36, and the flow velocity is made uniform.

そして、排気は、開拡接続管20の広がりとともに、開拡接続管20内を徐々に拡散しながら、均等にDPF処理装置12の酸化触媒16内に流入する。このように排気が、酸化触媒16の流入側端面に沿ってほぼ均等な量で、酸化触媒16に流入するので、酸化触媒16では、流入面に沿って均等に排気の酸化反応が行われる。   Then, the exhaust gas flows into the oxidation catalyst 16 of the DPF processing device 12 evenly while gradually spreading in the widened connection pipe 20 along with the spread of the widened connection pipe 20. As described above, the exhaust gas flows into the oxidation catalyst 16 in an approximately equal amount along the inflow side end surface of the oxidation catalyst 16, so that the oxidation reaction of the exhaust gas is performed uniformly along the inflow surface in the oxidation catalyst 16.

又、これにより、酸化触媒16の後方に設けられたDPF18にも、排気の流通方向に垂直な断面に沿って均等な量の排気が流入する。したがって、排気に含まれる微粒子がDPF18に、排気の流通方向に垂直な断面に沿ってほぼ均等に捕捉される。そのため、DPF18は、部分的な目詰まりを発生させることがなく、DPF18の使用可能時間、つまり次の再生処理までの時間間隔を長くできる。   As a result, an equal amount of exhaust gas also flows into the DPF 18 provided behind the oxidation catalyst 16 along a cross section perpendicular to the flow direction of the exhaust gas. Therefore, the fine particles contained in the exhaust are captured almost uniformly by the DPF 18 along a cross section perpendicular to the exhaust flow direction. Therefore, the DPF 18 does not cause partial clogging, and the usable time of the DPF 18, that is, the time interval until the next regeneration process can be increased.

そして、DPF18で捕捉された微粒子が所定量に達して、制御装置62が、センサ等の値に基づきDPF18の再生処理を行うと決定すると、制御装置62は、車両の走行、あるいはアイドリングに要する燃料より多くの燃料を燃料噴射装置54から噴射させる。余分に噴射された燃料は、エンジン50のシリンダ内で燃焼されず、未燃成分として排気とともに排気管26に排出される。   When the particulate matter captured by the DPF 18 reaches a predetermined amount and the control device 62 determines that the regeneration process of the DPF 18 is performed based on the value of the sensor or the like, the control device 62 determines the fuel required for running or idling the vehicle. More fuel is injected from the fuel injector 54. The excessively injected fuel is not burned in the cylinder of the engine 50 and is discharged to the exhaust pipe 26 together with the exhaust gas as an unburned component.

未燃成分を余分に含む排気は、前述したように、酸化触媒16に、流入面に沿って略均等に流入するので、排気に含まれる未燃成分が酸化触媒16で均等に処理される。これにより、酸化触媒16に部分的に高濃度の未燃燃料成分が流入することがなく、酸化触媒16における反応温度を、排気の流通方向の垂直面内で均等にできる。   As described above, the exhaust gas containing excess unburned components flows into the oxidation catalyst 16 substantially evenly along the inflow surface, so that the unburned components contained in the exhaust gas are evenly processed by the oxidation catalyst 16. As a result, the high-concentration unburned fuel component does not partially flow into the oxidation catalyst 16, and the reaction temperature in the oxidation catalyst 16 can be made uniform in the vertical plane in the exhaust flow direction.

そして、酸化触媒16での酸化反応で温度が上昇した排気は、DPF18内に流入する。排気は、場所による温度差がほとんどなく、ほぼ同一の温度であるため、DPF18は、排気の流通方向に垂直な断面に沿って均等に温度が上昇する。これにより、DPF18では、DPF18が捕捉した微粒子成分をほぼ均等に燃焼させることができる。   Then, the exhaust gas whose temperature has increased due to the oxidation reaction at the oxidation catalyst 16 flows into the DPF 18. Since the exhaust gas has almost the same temperature difference depending on the place and has almost the same temperature, the temperature of the DPF 18 rises evenly along a cross section perpendicular to the flow direction of the exhaust gas. Thereby, in the DPF 18, the particulate component captured by the DPF 18 can be burned almost uniformly.

更に、DPF18には、排気の流通方向に垂直な断面に沿って微粒子成分が均等に捕捉されており、そこに、排気の流通方向に垂直な断面に沿って均等な温度の排気が流入することにより、微粒子成分が均等に燃焼温度まで上昇する。したがって、DPF18は、捕捉した微粒子成分を安定した状態で、確実に、効率よく燃焼させることができる。   Furthermore, particulate components are uniformly captured in the DPF 18 along a cross section perpendicular to the flow direction of the exhaust, and exhaust gas having a uniform temperature flows along the cross section perpendicular to the flow direction of the exhaust. As a result, the fine particle component rises uniformly to the combustion temperature. Therefore, the DPF 18 can reliably and efficiently burn the captured fine particle component in a stable state.

又、フィン部材36は、中央に基台42を備え、これにより空間が設けられることにより、排気管26や開拡接続管20に大きな流通抵抗が発生せず、排気管26からの排気をDPF処理装置12に円滑に流入させ、燃費の悪化を防止できる。又、排気浄化装置10は、排気管26と開拡接続管20とが、同一の直線状に配置されていないため、排気が基台42の側面に斜め方向から当接し、これにより排気の流路が変更し、基台42の拡散作用により排気の流量や温度を、断面に沿ってより均等にできる。   Further, the fin member 36 includes a base 42 in the center, thereby providing a space, so that a large flow resistance does not occur in the exhaust pipe 26 and the widening connection pipe 20, and the exhaust from the exhaust pipe 26 is DPF. It is possible to smoothly flow into the processing device 12 and prevent deterioration of fuel consumption. Further, in the exhaust purification device 10, since the exhaust pipe 26 and the spread-out connecting pipe 20 are not arranged in the same straight line, the exhaust abuts against the side surface of the base 42 from an oblique direction, thereby the exhaust flow. The path is changed, and the flow rate and temperature of the exhaust gas can be made more uniform along the cross section by the diffusion action of the base 42.

DPF処理装置12を通過した排気には、尿素水噴射弁30から尿素水が噴射され、尿素水が混入される。尿素水が混入された排気は、NOx還元触媒22に流入する。尿素水の尿素は、アンモニアに転じる。排気は、DPF処理装置12により適切に処理され、排気温度やNOxも想定値の範囲内に設定されている。   The urea water is injected from the urea water injection valve 30 into the exhaust gas that has passed through the DPF processing device 12 and mixed with the urea water. The exhaust gas mixed with urea water flows into the NOx reduction catalyst 22. Urea of urea water turns into ammonia. The exhaust gas is appropriately processed by the DPF processing device 12, and the exhaust gas temperature and NOx are also set within the range of assumed values.

したがって、NOx還元触媒22において、尿素が添加された排気は、排気中に含まれるNOxとアンモニアとが反応し、窒素と水に変化し、人体に有害なNOxが無害化される。酸化触媒16での触媒反応により、排気中に含まれる多くの一酸化窒素が二酸化窒素に酸化されるので、NOx還元触媒22において、NOxを効率よく窒素と水に変化できる。NOx還元触媒22をスリップしたアンモニアは、アンモニア分解触媒24で酸化・分解され、窒素と水等に変化する。   Therefore, in the NOx reduction catalyst 22, the exhaust gas to which urea is added reacts with NOx and ammonia contained in the exhaust gas, and changes into nitrogen and water, thereby detoxifying NOx harmful to the human body. Since a large amount of nitric oxide contained in the exhaust gas is oxidized into nitrogen dioxide by the catalytic reaction in the oxidation catalyst 16, NOx can be efficiently converted into nitrogen and water in the NOx reduction catalyst 22. Ammonia slipped on the NOx reduction catalyst 22 is oxidized and decomposed by the ammonia decomposition catalyst 24 and changed into nitrogen, water, and the like.

尿素水噴射弁30から排気に対して適切な量の尿素水が噴射されることから、尿素水の噴射量に過不足が少なく、NOx還元触媒22において処理されずに残るNOxや、NOx還元触媒22で消費されずにスリップするアンモニアの量も低減できる。   Since an appropriate amount of urea water is injected from the urea water injection valve 30 to the exhaust gas, there is little excess or deficiency in the injection amount of urea water, and NOx remaining without being processed in the NOx reduction catalyst 22 or NOx reduction catalyst The amount of ammonia slipping without being consumed at 22 can also be reduced.

図5に、フィン部材36全体に対する羽根44の面積割合とフィン部材36の流通抵抗と排気の流速分布の均一指数UI(UI:Uniformity Index:γ)(以下「UI」とする)の関係についての実験結果を示す。図5の横軸は、排気の流通方向から見たときのフィン部材36の全体の面積に対する羽根44の占める面積割合を%で示し、左縦軸は、酸化触媒16における排気のUIを示し、右縦軸は、フィン部材36の流通抵抗を示す。   FIG. 5 shows the relationship between the area ratio of the blades 44 to the entire fin member 36, the flow resistance of the fin member 36, and the uniform index UI (UI: Uniformity Index: γ) (hereinafter referred to as “UI”) of the flow velocity distribution of the exhaust. Experimental results are shown. The horizontal axis of FIG. 5 shows the area ratio of the blades 44 to the total area of the fin member 36 as viewed from the exhaust flow direction in%, the left vertical axis shows the UI of the exhaust in the oxidation catalyst 16, The right vertical axis represents the flow resistance of the fin member 36.

排気のUI(γ)は次の式で求められる。

Figure 2014015848
The exhaust UI (γ) is obtained by the following equation.
Figure 2014015848

Sは、測定個所(酸化触媒16の前面)の開口面積、Siは各測定点での面積、vaは平均流速値、viは測定点の流速である。排気のUIは、1が理論上、完全に流速分布が均一な状態であり、このとき、流量も開口面に対して均一な状態となる。   S is the opening area of the measurement location (front surface of the oxidation catalyst 16), Si is the area at each measurement point, va is the average flow velocity value, and vi is the flow velocity at the measurement point. The exhaust UI is theoretically 1 in which the flow velocity distribution is completely uniform, and at this time, the flow rate is also uniform with respect to the opening surface.

実験は、次の条件で行った。フィン部材36は、外枠体40の外径が77mm、基台42の径が30mm、外枠体40の奥行幅が20mmで、8枚の羽根44が外枠体40と基台42との間に設けられている。フィン部材36の全体の面積の羽根44の面積割合は、フィン部材36の中心軸に対する羽根44の角度を異ならせることで変更させた。尚、フィン部材36の全体の面積は、外枠体40の内側の全面積である。   The experiment was performed under the following conditions. The fin member 36 has an outer diameter of the outer frame 40 of 77 mm, a diameter of the base 42 of 30 mm, a depth of the outer frame 40 of 20 mm, and eight blades 44 between the outer frame 40 and the base 42. It is provided in between. The area ratio of the blades 44 of the entire area of the fin member 36 was changed by changing the angle of the blades 44 with respect to the central axis of the fin member 36. The entire area of the fin member 36 is the entire area inside the outer frame body 40.

図5のグラフによれば、フィン部材36の全体の面積の羽根44の占める面積割合が25%以下となると、排気のUIが大きく低下することがわかる。又、フィン部材36の全体の面積の羽根44の占める面積割合が45%以上となると、流通抵抗が増大し、かつ排気のUIが低下することがわかる。   According to the graph of FIG. 5, it can be seen that when the area ratio of the entire area of the fin member 36 occupied by the blades 44 is 25% or less, the UI of the exhaust gas greatly decreases. Further, it can be seen that when the area ratio of the entire area of the fin member 36 occupied by the blades 44 is 45% or more, the flow resistance increases and the UI of the exhaust gas decreases.

これにより、フィン部材36における全体の面積の羽根44の占める面積割合が約25%から約45%の間であると、フィン部材36において流通抵抗とUIの双方共に良好な結果が得られることがわかる。   As a result, when the area ratio of the entire area of the fin member 36 occupied by the blades 44 is between about 25% and about 45%, both the flow resistance and the UI can be excellent in the fin member 36. Recognize.

以上説明したように、本実施形態の車両の排気浄化装置10によれば、排気管26からDPF処理装置12の酸化触媒16に、むらなく、均等に排気が流入する。排気が、酸化触媒16に均等に流入するため、酸化触媒16での反応が均等に行われ、一部が高温になることがなく、触媒の耐久性を向上できる。酸化触媒16において必要とされる最大処理能力の値を低くできるので、酸化触媒16を小型化できる。   As described above, according to the vehicle exhaust purification device 10 of the present embodiment, the exhaust gas flows evenly and uniformly from the exhaust pipe 26 to the oxidation catalyst 16 of the DPF processing device 12. Since the exhaust gas uniformly flows into the oxidation catalyst 16, the reaction in the oxidation catalyst 16 is performed uniformly, and a part of the exhaust gas does not reach a high temperature, and the durability of the catalyst can be improved. Since the value of the maximum processing capacity required for the oxidation catalyst 16 can be lowered, the oxidation catalyst 16 can be reduced in size.

酸化触媒16からDPF18の内部に排気が均等に流入するので、排気中の微粒子成分がDPF18により、DPF18の断面に沿って均等に捕捉される。このように、微粒子が均等に捕捉されるので、DPF18の一部で早期に目詰まりが発生してしまうことがなく、DPF18の再生処理の間隔を延長できる。再生時に、DPF18の一部において、微粒子成分が多量に燃焼することがないので、温度上昇が均一となり、DPF18の耐久性を向上できる。   Since the exhaust gas uniformly flows from the oxidation catalyst 16 into the DPF 18, the particulate component in the exhaust gas is captured by the DPF 18 evenly along the cross section of the DPF 18. In this way, since the fine particles are evenly captured, clogging does not occur at an early stage in a part of the DPF 18, and the interval of the regeneration process of the DPF 18 can be extended. During regeneration, a large amount of the particulate component does not burn in a part of the DPF 18, so that the temperature rise becomes uniform and the durability of the DPF 18 can be improved.

DPF処理装置12で、排気が適切に浄化されることから、NOx還元触媒装置14においても、適切にNOxの還元が行われ、NOxの大気ヘの放出を極力低減でき、また、尿素水の無駄な消費も抑制できる。フィン部材36の全体の面積の羽根44の占める面積割合を、約25%から約45%の間としたので、フィン部材36における流通抵抗が小さく、車両の燃費を良好にでき、しかも、排気のUIを良好にでき、排気を確実に処理することができる。フィン部材36を、開拡接続管20の排気方向に沿った中間点より上流側に設けたので、フィン部材36による流速の均一化をより効果的に実現することができる。基台42が排気の流通方向に対して傾斜して設けられていることから、流通抵抗をそれ程大きくすることなく、流速の均一化を促進させることができる。   Since the exhaust gas is appropriately purified by the DPF treatment device 12, the NOx reduction catalyst device 14 can also appropriately reduce NOx, reduce the release of NOx to the atmosphere as much as possible, and waste of urea water. Unnecessary consumption can be suppressed. Since the area ratio of the blades 44 to the entire area of the fin member 36 is between about 25% and about 45%, the flow resistance in the fin member 36 is small, the fuel consumption of the vehicle can be improved, and the exhaust The UI can be improved, and exhaust can be reliably processed. Since the fin member 36 is provided on the upstream side of the intermediate point along the exhaust direction of the spread connecting pipe 20, the uniform flow velocity by the fin member 36 can be more effectively realized. Since the base 42 is provided to be inclined with respect to the flow direction of the exhaust gas, it is possible to promote the uniform flow velocity without increasing the flow resistance so much.

尚、本発明の排気浄化装置は、前記実施形態に限るものではない。例えば、フィン部材36は、開拡接続管20の任意の位置に設けてもよい。又、フィン部材36の羽根44の形状、枚数、角度は、前記実施形態の形状に限定されるものではない。   The exhaust emission control device of the present invention is not limited to the above embodiment. For example, the fin member 36 may be provided at an arbitrary position of the spread connecting pipe 20. Further, the shape, the number, and the angle of the blades 44 of the fin member 36 are not limited to the shape of the above-described embodiment.

又、フィン部材36の中央に設置した基台42の外方に羽根44を設けたが、フィン部材は、基台42の内部に羽根を設け、基台42と外枠体40との間は、基台42を支持する支持片等を設け、羽根を設けない構成でもよい。このフィン部材の場合は、中心部分から外方に排気が広がり、排気を容易に拡散できる。更に、フィン部材36の中央に基台42を設定せず、羽根44をフィン部材36の中心から配置させてもよい。本発明にかかるNOx還元処理方法は、前記例に限らず他の処理方法であってもよい。   In addition, although the blades 44 are provided outside the base 42 installed in the center of the fin member 36, the fin members are provided with blades inside the base 42, and the space between the base 42 and the outer frame body 40 is between. Further, a configuration in which a support piece or the like for supporting the base 42 is provided and no blade is provided may be employed. In the case of this fin member, the exhaust spreads outward from the central portion, and the exhaust can be easily diffused. Further, the blades 44 may be arranged from the center of the fin member 36 without setting the base 42 at the center of the fin member 36. The NOx reduction treatment method according to the present invention is not limited to the above example, and may be another treatment method.

以上、本発明の実施形態を説明したが、前記実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although embodiment of this invention was described, the said embodiment is shown as an example and is not intending limiting the range of invention. The novel embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

本発明は、車両の排気浄化装置に用いられる。   The present invention is used in an exhaust emission control device for a vehicle.

10…排気浄化装置、12…DPF処理装置、14…NOx還元触媒装置、18…DPF、20…開拡接続管、22…NOx還元触媒、24…アンモニア分解触媒、26…排気管、28…吸気管、30…尿素水噴射弁、32…流入口、34…流出口、36…フィン部材、38…容器体、40…外枠体、42…基台、44…羽根、50…エンジン、60…排出口、62…制御装置、A…中心軸、E…排気方向。   DESCRIPTION OF SYMBOLS 10 ... Exhaust gas purification apparatus, 12 ... DPF processing apparatus, 14 ... NOx reduction catalyst apparatus, 18 ... DPF, 20 ... Opening expansion pipe, 22 ... NOx reduction catalyst, 24 ... Ammonia decomposition catalyst, 26 ... Exhaust pipe, 28 ... Intake Pipe, 30 ... Urea water injection valve, 32 ... Inlet, 34 ... Outlet, 36 ... Fin member, 38 ... Container body, 40 ... Outer frame body, 42 ... Base, 44 ... Blade, 50 ... Engine, 60 ... Discharge port, 62 ... control device, A ... center axis, E ... exhaust direction.

Claims (5)

内燃機関に接続され、前記内燃機関から排出された排気を流通させる排気管と、
前記排気管内の前記排気に含まれる未燃成分を酸化処理する酸化触媒と、
前記酸化触媒より排気方向の下流に設けられ、前記排気をろ過し、前記排気に含まれる微粒子を捕捉する微粒子捕捉フィルタと、
前記排気管に連結し、前記酸化触媒及び前記微粒子捕捉フィルタを収容するDPF容器体と、
前記排気管と前記DPF容器体との間に設けられ、前記排気方向に垂直な面で破断した断面の面積が、前記排気管から前記DPF容器体に進むに伴い増加する開拡接続部と、
前記開拡接続部の内側に設けられ、前記排気方向に対して傾斜して設けられた羽根により、前記開拡接続部を通過する前記排気を撹拌させるフィン部材と、
を備えたことを特徴とする車両の排気浄化装置。
An exhaust pipe connected to the internal combustion engine for circulating the exhaust discharged from the internal combustion engine;
An oxidation catalyst for oxidizing unburned components contained in the exhaust in the exhaust pipe;
A particulate trapping filter that is provided downstream of the oxidation catalyst in the exhaust direction, filters the exhaust, and traps particulates contained in the exhaust;
A DPF container coupled to the exhaust pipe and containing the oxidation catalyst and the particulate trapping filter;
An open connection part provided between the exhaust pipe and the DPF container body, and an area of a cross-section broken at a plane perpendicular to the exhaust direction increases from the exhaust pipe to the DPF container body;
A fin member that is provided on the inner side of the spread connection portion and stirs the exhaust gas that passes through the spread connection portion by means of blades that are inclined with respect to the exhaust direction;
An exhaust emission control device for a vehicle, comprising:
前記微粒子捕捉フィルタより排気方向の下流に、前記排気中に尿素水を供給して、前記排気に含まれるNOxを選択的に還元するSCR還元装置を、更に具備したことを特徴とする請求項1に記載の車両の排気浄化装置。   2. The SCR reduction device according to claim 1, further comprising an SCR reduction device that supplies urea water into the exhaust gas downstream of the particulate trapping filter to selectively reduce NOx contained in the exhaust gas. An exhaust emission control device for a vehicle as described in 1. 前記羽根は、連続して湾曲しており、かつ、排気方向に垂直な前記フィン部材の全体の面積に占める前記羽根の面積の割合が、25%以上で、かつ45%以下であることを特徴とする請求項1又2に記載の車両の排気浄化装置。   The blades are continuously curved and the ratio of the area of the blades to the entire area of the fin member perpendicular to the exhaust direction is 25% or more and 45% or less. The exhaust emission control device for a vehicle according to claim 1 or 2. 前記フィン部材は、外枠体と、前記外枠体の内側に設けられた基台と、前記外枠体と前記基台との間に設けられた羽根とを備え、前記開拡接続部の排気方向に沿った中間点より上流側に設けられていることを特徴とする請求項1〜3のいずれか1項に記載の車両の排気浄化装置。   The fin member includes an outer frame body, a base provided on the inner side of the outer frame body, and a blade provided between the outer frame body and the base. The exhaust purification device for a vehicle according to any one of claims 1 to 3, wherein the exhaust purification device for a vehicle according to any one of claims 1 to 3, wherein the exhaust purification device is provided upstream of an intermediate point along the exhaust direction. 前記排気管は、前記開拡接続管と、前記排気管の中心線と前記開拡接続管の中心線とが平行以外の位置関係で連結され、前記フィン部材は、前記開拡接続管に、前記開拡接続管の中心線と中心を平行にして取り付けられていることを特徴とする請求項4に記載の車両の排気浄化装置。   The exhaust pipe is connected in a positional relationship other than parallel with the spread connection pipe, the center line of the exhaust pipe and the center line of the spread connection pipe, and the fin member is connected to the spread connection pipe, 5. The exhaust emission control device for a vehicle according to claim 4, wherein the center line and the center of the spread-out connecting pipe are attached in parallel.
JP2012151734A 2012-07-05 2012-07-05 Exhaust emission control device of vehicle Pending JP2014015848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012151734A JP2014015848A (en) 2012-07-05 2012-07-05 Exhaust emission control device of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012151734A JP2014015848A (en) 2012-07-05 2012-07-05 Exhaust emission control device of vehicle

Publications (1)

Publication Number Publication Date
JP2014015848A true JP2014015848A (en) 2014-01-30

Family

ID=50110763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012151734A Pending JP2014015848A (en) 2012-07-05 2012-07-05 Exhaust emission control device of vehicle

Country Status (1)

Country Link
JP (1) JP2014015848A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088588A1 (en) * 2014-12-04 2016-06-09 フタバ産業株式会社 Exhaust gas purification device
CN108194177A (en) * 2017-12-31 2018-06-22 无锡威孚力达催化净化器有限责任公司 For the axial-flow type rotating vane mixing arrangement of vent gas treatment
CN108397261A (en) * 2018-04-27 2018-08-14 无锡伟博汽车科技有限公司 A kind of grain catcher that can improve regeneration efficiency
WO2020145101A1 (en) * 2019-01-10 2020-07-16 いすゞ自動車株式会社 Mixing member, exhaust purifying device, and vehicle
CN111946428A (en) * 2020-07-14 2020-11-17 江苏大学 DPF (diesel particulate filter) offline regeneration temperature control system and control method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088588A1 (en) * 2014-12-04 2016-06-09 フタバ産業株式会社 Exhaust gas purification device
JP2016109007A (en) * 2014-12-04 2016-06-20 フタバ産業株式会社 Exhaust emission control device
CN108194177A (en) * 2017-12-31 2018-06-22 无锡威孚力达催化净化器有限责任公司 For the axial-flow type rotating vane mixing arrangement of vent gas treatment
CN108397261A (en) * 2018-04-27 2018-08-14 无锡伟博汽车科技有限公司 A kind of grain catcher that can improve regeneration efficiency
WO2020145101A1 (en) * 2019-01-10 2020-07-16 いすゞ自動車株式会社 Mixing member, exhaust purifying device, and vehicle
CN113286935A (en) * 2019-01-10 2021-08-20 五十铃自动车株式会社 Hybrid component, exhaust gas purification device, and vehicle
CN111946428A (en) * 2020-07-14 2020-11-17 江苏大学 DPF (diesel particulate filter) offline regeneration temperature control system and control method

Similar Documents

Publication Publication Date Title
US8151558B2 (en) Exhaust system implementing SCR and EGR
JP4450257B2 (en) Exhaust purification device
KR101509689B1 (en) System for purifying exhaust gas and exhaust system having the same
BRPI0703361B8 (en) exhaust gas after-treatment system
WO2011090190A1 (en) Exhaust purification device and exhaust purification method for diesel engine
JP4784761B2 (en) Exhaust purification device
JP2014015848A (en) Exhaust emission control device of vehicle
JP2011012563A (en) Exhaust gas purification system
JP2011111945A (en) Exhaust emission control device
JP2013002367A (en) Exhaust emission control device
JP2008144644A (en) Exhaust emission control device for internal combustion engine
CN108060961B (en) Reducing agent spray and exhaust flow guide and deflector
JP2008128046A (en) Exhaust gas purification device
US20070178025A1 (en) Exhaust treatment system
JP2012102684A (en) Exhaust emission control device for engine
JP3545712B2 (en) Exhaust gas purification device
JP2009144636A (en) Exhaust emission control device
JP5041168B2 (en) Exhaust purification device
US10247070B2 (en) System and methods for reducing SOx gases in aftertreatment systems
CN109386356A (en) The aforementioned asymmetric catalyst cone that whirlpool for waste gas stream induces
JP2014134157A (en) Fuel addition device
CN112424459B (en) Exhaust structure of vehicle-mounted engine
JP4844766B2 (en) Exhaust purification device
JP2007205308A (en) Exhaust emission control method and exhaust emission control system
JP7354976B2 (en) Internal combustion engine exhaust purification system