JP2014131373A - Permanent magnet synchronous machine - Google Patents

Permanent magnet synchronous machine Download PDF

Info

Publication number
JP2014131373A
JP2014131373A JP2012286611A JP2012286611A JP2014131373A JP 2014131373 A JP2014131373 A JP 2014131373A JP 2012286611 A JP2012286611 A JP 2012286611A JP 2012286611 A JP2012286611 A JP 2012286611A JP 2014131373 A JP2014131373 A JP 2014131373A
Authority
JP
Japan
Prior art keywords
permanent magnet
synchronous machine
magnet synchronous
stator
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012286611A
Other languages
Japanese (ja)
Inventor
Akifumi Takahashi
暁史 高橋
Eri Maruyama
恵理 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2012286611A priority Critical patent/JP2014131373A/en
Publication of JP2014131373A publication Critical patent/JP2014131373A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to improve torque and efficiency in a permanent magnet synchronous machine to which a ferrite magnet is applied and a drive system using the machine.SOLUTION: A permanent magnet synchronous machine is a permanent magnet type motor comprising: a rotor having ferrite magnets arranged so as to configure a plurality of poles inside; and a stator arranged so as to have a predetermined gap between the stator and the rotator. The permanent magnet synchronous machine is configured so that a gap facing surface of each pole of the rotator has a shape having a salient to the side of the gap, a circumferential width of the salient is θp, and a part of the gap between the stator and the rotator in the θp is smaller than a part of the gap outside the θp; and is configured so that the electrical angle θp has relation of 80°<θp<135°.

Description

本発明は永久磁石同期機、およびこれを用いた駆動システムに関するものである。   The present invention relates to a permanent magnet synchronous machine and a drive system using the same.

永久磁石同期機では、回転子に永久磁石を埋設するInterior Permanent Magnet(以下、IPM)構造が広く採用されている。IPMでは、磁石トルクに加えリラクタンストルクの活用が可能となるが、さらなるトルク増大を図るためには回転子ギャップ対向面の磁石磁束発生区間を増加する、すなわち、磁石磁束による誘導起電力波形を台形波状にすることが有効となる。   In the permanent magnet synchronous machine, an interior permanent magnet (hereinafter, IPM) structure in which a permanent magnet is embedded in a rotor is widely adopted. In IPM, reluctance torque can be used in addition to magnet torque, but in order to further increase the torque, the magnetic flux generation section on the rotor gap facing surface is increased, that is, the induced electromotive force waveform due to the magnetic flux is trapezoidal. It is effective to make it wavy.

特許文献1では、磁束発生区間を増加できるように永久磁石を埋め込む収容孔が径方向内側に凸状である永久磁石埋め込み回転子を開示している。特許文献1によれば、誘導起電力波形を台形波状とし、磁束発生区間に合わせて120°通電制御を適用することで、トルクの増加を図ることができる。   Patent Document 1 discloses a permanent magnet embedded rotor in which a housing hole for embedding a permanent magnet is convex radially inward so that the magnetic flux generation section can be increased. According to Patent Document 1, the induced electromotive force waveform is trapezoidal, and the torque can be increased by applying 120 ° energization control in accordance with the magnetic flux generation section.

特許4666726号Japanese Patent No. 4666726

IPM構造の永久磁石同期機に埋設する永久磁石には安価でかつ安定調達が可能なフェライト磁石が採用され始めている。しかしながら、フェライト磁石の保持力はネオジウム磁石の約1/3であるため、磁石厚を増大し保持力の低下分をカバーする必要がある。ただし、これによって回転子のギャップ対向面の極間部分が磁束無発生区間となる。このため、特許文献1のような磁石配置を調整する方法では、磁石磁束発生区間を増加することができない。   For permanent magnets embedded in permanent magnet synchronous machines having an IPM structure, ferrite magnets that are inexpensive and can be stably procured have begun to be adopted. However, since the holding force of the ferrite magnet is about 1/3 that of the neodymium magnet, it is necessary to increase the magnet thickness and cover the decrease in holding force. However, as a result, the inter-pole portion of the rotor-facing gap-facing surface becomes a magnetic flux-free section. For this reason, in the method of adjusting the magnet arrangement as in Patent Document 1, the magnetic flux generation section cannot be increased.

そこで本発明の目的は、フェライト磁石を適用した永久磁石同期機およびこれを用いた駆動システムにおいて、トルク向上、効率向上を可能にすることである。   Therefore, an object of the present invention is to enable improvement in torque and efficiency in a permanent magnet synchronous machine to which a ferrite magnet is applied and a drive system using the same.

上記課題を達成するために本発明は、「固定子巻線を巻回したティースを有する固定子と、回転子鉄心からなる磁性体を有し、前記固定子と隙間を介して配置される回転子と、前記磁性体に配置した複数の磁石挿入孔と、前記複数の磁石挿入孔のそれぞれに埋設されたフェライト磁石と、を有する永久磁石同期機において、前記回転子は、前記複数の磁石挿入孔のそれぞれに対応する位置に前記固定子側へ凸となる凸部が形成されることにより、該凸部と前記ティースとの隙間が前記凸部以外の外周部と前記ティースとの隙間よりも小さくなるように構成され、前記凸部の周方向幅に対応する電気角をθpとすると、80°<θp<135°の関係となるよう構成すること」を特徴とする。   In order to achieve the above object, the present invention provides a "rotator having a stator having teeth around which a stator winding is wound and a magnetic body made of a rotor core, and being arranged through the stator and a gap. In a permanent magnet synchronous machine having a rotor, a plurality of magnet insertion holes arranged in the magnetic body, and a ferrite magnet embedded in each of the plurality of magnet insertion holes, the rotor includes the plurality of magnet insertions By forming a convex portion that protrudes toward the stator at a position corresponding to each of the holes, the gap between the convex portion and the teeth is larger than the gap between the outer peripheral portion other than the convex portions and the teeth. It is configured such that the relationship is 80 ° <θp <135 °, where θp is an electrical angle corresponding to the circumferential width of the convex portion ”.

本発明によれば永久磁石同期機のトルクおよび効率を向上させることが可能となる。   According to the present invention, it is possible to improve the torque and efficiency of the permanent magnet synchronous machine.

本発明の第1の実施例による永久磁石同期機の1極分の部分断面図1 is a partial sectional view of one pole of a permanent magnet synchronous machine according to a first embodiment of the present invention; 永久磁石によるギャップの磁束密度分布図Magnetic flux density distribution diagram of gap by permanent magnet 集中巻2極3スロット系列のティース配置図Teeth layout of concentrated winding 2-pole 3-slot series 本発明の第1の実施例における構成の説明図Explanatory drawing of the structure in 1st Example of this invention 本発明の第1の実施例における構成の説明図Explanatory drawing of the structure in 1st Example of this invention 本発明の第1の実施例における効果図Effect diagram in the first embodiment of the present invention 本発明の第3の実施例における周波数―鉄損特性の説明図Explanatory drawing of the frequency-iron loss characteristic in 3rd Example of this invention 4極6スロット三相モータの斜視図Perspective view of 4-pole 6-slot three-phase motor

以下、本発明の一実施例について図面を参照して説明する。以下の説明では、同一の構成要素には同一の記号を付してある。それらの名称および機能は同じであり、重複説明は避ける。また、以下の説明では内転型回転子を対象としているが、本発明の効果は内転型回転子に限定されるものではなく、同様の構成を有する外転型回転子にも適用可能である。   An embodiment of the present invention will be described below with reference to the drawings. In the following description, the same symbols are attached to the same components. Their names and functions are the same, and duplicate descriptions are avoided. Further, in the following description, the inner rotor is targeted, but the effect of the present invention is not limited to the inner rotor, and can be applied to an outer rotor having a similar configuration. is there.

図8は4極6スロット三相モータの斜視図であり、固定子9は固定子鉄心10とティース11に巻回された固定子巻線12とで構成され、回転子1は回転子鉄心からなる磁性体を有し、固定子9と隙間(ギャップ)を介して配置され、回転自在に保持される。回転子1は磁石挿入孔4を備えた回転子鉄心2と、4極(極対数p=2)を構成するよう配備された永久磁石3とで構成される。固定子巻線12は三相の巻線U、V、Wを順に周方向に配置することで構成され、直列に接続されたU相巻線12u1、12u2には、インバータから波高値I(このときの実行値をIrmsとする)の交流電流iuが供給される。V相、W相に関しても同様であるが、各相の電流位相は電気角で120°ずつずれている。   FIG. 8 is a perspective view of a 4-pole 6-slot three-phase motor. A stator 9 is composed of a stator core 10 and a stator winding 12 wound around a tooth 11, and the rotor 1 is formed from the rotor core. The magnetic body is provided, and is disposed through a gap (gap) with the stator 9 and is rotatably held. The rotor 1 is composed of a rotor core 2 having a magnet insertion hole 4 and a permanent magnet 3 arranged so as to constitute four poles (number of pole pairs p = 2). The stator winding 12 is configured by sequentially arranging three-phase windings U, V, and W in the circumferential direction. The U-phase windings 12u1 and 12u2 connected in series are connected to the peak value I (this from the inverter). AC current iu) is supplied. The same applies to the V phase and the W phase, but the current phase of each phase is shifted by 120 ° in electrical angle.

図1に本発明の第1の実施例による永久磁石同期機の1極分の部分断面図を示す。本実施例は、複数極を構成するよう配備された永久磁石で構成される内転型回転子1を有する永久磁石同期機に係るものである。回転子1は、径方向内側に凸となるように磁性体に形成された磁石挿入孔4を複数有し、それぞれの磁石挿入孔4には永久磁石3(図示していない)が埋設される。磁石挿入孔4及び永久磁石3は1極につき周方向に2ヶ所の屈曲点を有するとともに、それぞれの屈曲点を始端として磁化方向に対して垂直方向かつ極の端部側に向けて伸びるように構成している。本実施例では永久磁石3には、フェライト磁石のような保持力、残留磁束密度が比較的低い永久磁石を使用する。   FIG. 1 shows a partial sectional view of one pole of a permanent magnet synchronous machine according to a first embodiment of the present invention. The present embodiment relates to a permanent magnet synchronous machine having an adder-type rotor 1 composed of permanent magnets arranged to form a plurality of poles. The rotor 1 has a plurality of magnet insertion holes 4 formed in a magnetic body so as to protrude radially inward, and permanent magnets 3 (not shown) are embedded in the respective magnet insertion holes 4. . The magnet insertion hole 4 and the permanent magnet 3 have two bending points in the circumferential direction per pole, and extend from the respective bending points to the direction perpendicular to the magnetization direction and toward the end of the pole. It is composed. In this embodiment, the permanent magnet 3 is a permanent magnet having a relatively low holding force and residual magnetic flux density, such as a ferrite magnet.

永久磁石3は、3カ所以上の複数の屈曲点および直線部分を有するように構成しても良いし、U字形としてもよい。このような磁石形状とすることで、磁石磁束発生面の表面積を大きくするとともに、永久磁石3の径方向外周部の鉄心断面積が大きくなるのでリラクタンストルクを積極的に活用することが可能となる。また、永久磁石3は1極につき周方向に分割されることなく一体で構成しても良いし、複数個を周方向に分割して配置しても良い。また、軸方向に複数個を分割して構成しても良いし、分割することなく一体で構成しても良い。回転子鉄心2は軸方向に積み重ねた積層鋼板で構成しても良いし、圧粉磁心などで構成しても良いし、アモルファス金属などで構成しても良い。   The permanent magnet 3 may be configured to have a plurality of bending points and straight portions at three or more locations, or may be U-shaped. By adopting such a magnet shape, the surface area of the magnet magnetic flux generation surface is increased, and the cross-sectional area of the core of the permanent magnet 3 in the radial direction is increased, so that the reluctance torque can be actively utilized. . Further, the permanent magnet 3 may be integrally formed without being divided in the circumferential direction per pole, or a plurality of permanent magnets 3 may be arranged in the circumferential direction. Further, a plurality of parts may be divided in the axial direction, or may be formed integrally without being divided. The rotor core 2 may be composed of laminated steel plates stacked in the axial direction, may be composed of a dust core, or may be composed of amorphous metal.

回転子鉄心2の1極あたりのギャップ対向面は、前記ギャップ側に凸となるような形状とし、この凸部は図1に示すように電気角θpに対応する周方向幅を有する。つまり回転子1は、複数の磁石挿入孔4のそれぞれに対応する位置に固定子9の側(つまりティース11側)へ凸となる凸部が形成され、この凸部の周方向幅は電気角θpに対応する。この凸部により、該凸部とティース11との隙間は、凸部以外の外周部とティース11との隙間よりも小さくなるように構成される。そしてθpの区間におけるギャップ20がθp以外の区間におけるギャップ21よりも小さくなるよう構成するとともに、該θpを電気角で80°<θp<135°の関係となるよう構成する。   The gap facing surface per pole of the rotor core 2 is shaped to be convex toward the gap side, and this convex portion has a circumferential width corresponding to the electrical angle θp as shown in FIG. That is, the rotor 1 is formed with a convex portion that protrudes toward the stator 9 (that is, the teeth 11 side) at a position corresponding to each of the plurality of magnet insertion holes 4, and the circumferential width of the convex portion is an electrical angle. This corresponds to θp. By this convex portion, the gap between the convex portion and the tooth 11 is configured to be smaller than the gap between the outer peripheral portion other than the convex portion and the tooth 11. The gap 20 in the θp section is configured to be smaller than the gap 21 in the sections other than θp, and the θp is configured to have a relationship of 80 ° <θp <135 ° in electrical angle.

上記の構成によって、磁石磁束による誘導起電力の5次、7次成分を増加することができる、すなわち肉厚のフェライト磁石を適用した場合でも台形波状の誘導起電力波形が得られるので、トルク向上、効率向上を図ることができる。   With the above configuration, the fifth and seventh components of the induced electromotive force due to the magnetic flux can be increased, that is, even when a thick ferrite magnet is applied, a trapezoidal induced electromotive force waveform can be obtained, so that the torque is improved , Efficiency can be improved.

以下に、誘導起電力の5次、7次成分の理論式を導出し、このような効果が得られる原理を説明する。
まず、永久磁石3によるギャップの磁束密度分布Bpm(xr)は図2のようになる。ここで、xrは回転子外周部の周方向位置(電気角、deg.)である。このとき、Bpm(xr)の空間ν次成分は次式で表される。
Below, the theoretical formulas of the fifth and seventh order components of the induced electromotive force are derived, and the principle of obtaining such effects will be described.
First, the magnetic flux density distribution Bpm (xr) of the gap by the permanent magnet 3 is as shown in FIG. Here, xr is the circumferential position (electrical angle, deg.) Of the rotor outer periphery. At this time, the spatial ν-order component of Bpm (xr) is expressed by the following equation.

回転子が角速度ω1で回転しているとき、固定子座標xsと回転子座標xrとの関係は
なので、固定子座標系から見た永久磁石3によるギャップの磁束密度分布Bpm(xs)は以下となる。
When the rotor is rotating at the angular velocity ω1, the relationship between the stator coordinates xs and the rotor coordinates xr is
Therefore, the magnetic flux density distribution Bpm (xs) of the gap by the permanent magnet 3 viewed from the stator coordinate system is as follows.

式(3)において、永久磁石3によるギャップ磁束密度分布の空間次数νと、時間次数μは同等となるため、両者ともμで表している。
次に、集中巻2極3スロット系列を対象とする場合、一相コイルに鎖交する磁束量の時間μ次成分Φc、μは、図3に示すように−θt/2 〜θt/2の積分区間から求められる。なお、θtは図3に示すようにティース11に対応する電気角である。
ここで、l:コア軸長
In the expression (3), the spatial order ν of the gap magnetic flux density distribution by the permanent magnet 3 and the time order μ are equal, and both are expressed by μ.
Next, in the case of a concentrated winding 2-pole 3-slot series, the time μ-order component Φc, μ of the magnetic flux amount interlinked with the one-phase coil is −θt / 2 to θt / 2 as shown in FIG. It is obtained from the integration interval. Note that θt is an electrical angle corresponding to the teeth 11 as shown in FIG.
Where l: core shaft length

したがって、磁石磁束による誘導起電力波形μ次成分uc、μは次式となる。
ここで、Nc:1コイルターン数
Therefore, the induced electromotive force waveform μ order component uc, μ due to the magnetic flux is expressed by the following equation.
Where Nc: number of coil turns

以上より、基本波成分に対するμ次成分の振幅比kμは次式となる。
From the above, the amplitude ratio kμ of the μ-order component with respect to the fundamental wave component is expressed by the following equation.

集中巻では、ティース11の電気角θtは最大で120°なので、このときのθpとkμの関係を求めると図4のようになる。図4において、フェライト磁石を適用した永久磁石同期機では磁石を肉厚にする必要性があることから、θpは160°よりも小さくなる場合が多い。   In the concentrated winding, since the electrical angle θt of the teeth 11 is 120 ° at the maximum, the relationship between θp and kμ at this time is obtained as shown in FIG. In FIG. 4, in a permanent magnet synchronous machine to which a ferrite magnet is applied, it is necessary to make the magnet thick, so that θp is often smaller than 160 °.

式(6)より、5次成分、7次成分の理論上の最大値はそれぞれ0.200、0.143であるので、この平均値0.171に対して、5次成分と7次成分の和が上回るような構成とすることで、誘導起電力波形を台形波状に近づけることが可能となる。このためには、図4より、θpを電気角で80°<θp<135°とするのが好適であることがわかる。前記以外のθpを採用した場合においても、5次、7次成分の和を大きくすることは可能であるが、例えば、θp=30°の場合は式(6)より明らかなように、基本波成分が著しく低下するため不適と言える。   From the equation (6), the theoretical maximum values of the fifth-order component and the seventh-order component are 0.200 and 0.143, respectively. By adopting a configuration in which the sum exceeds, the induced electromotive force waveform can be approximated to a trapezoidal waveform. For this purpose, it can be seen from FIG. 4 that θp is preferably 80 ° <θp <135 ° in electrical angle. Even when θp other than the above is adopted, it is possible to increase the sum of the fifth and seventh order components. However, for example, when θp = 30 °, the fundamental wave is clear as is clear from Equation (6). It can be said that it is unsuitable because the components are significantly reduced.

なお、図4はθt=120°の場合を示しているが、θt=90°の場合においても、図5に示すようにほぼ同等の傾向を示しており、80°<θp<135°とするのが好適であることがわかる。ただし、θtを小さくすると基本波成分が低下するため、θtは90°<θt<120°の範囲とし、120°に近いほうが望ましい。すなわち、固定子9のティース11の周方向幅に対応する電気角θtは、θp<θtであり、かつ、90°<θt<120°の関係となるように構成するものである。また、本実施例ではそれぞれの複数の磁石挿入孔4の周方向幅に対応する電気角をθmとすると、θp<θmの関係となるように構成するものである。   FIG. 4 shows the case of θt = 120 °. However, even when θt = 90 °, the tendency is almost the same as shown in FIG. 5, and 80 ° <θp <135 °. It turns out that it is suitable. However, if θt is reduced, the fundamental wave component is reduced. Therefore, θt should be in the range of 90 ° <θt <120 °, and is preferably closer to 120 °. That is, the electrical angle θt corresponding to the circumferential width of the teeth 11 of the stator 9 is configured such that θp <θt and 90 ° <θt <120 °. In this embodiment, when the electrical angle corresponding to the circumferential width of each of the plurality of magnet insertion holes 4 is θm, the relationship θp <θm is established.

図6に本発明を適用した場合のθp=123°における誘導起電力波形と、適用しない場合のθp=69°における波形とを示す。図6より、θp=123°とすることで、台形波状の誘導起電力波形を生成できることがわかる。これにより、肉厚のフェライト磁石を適用した場合でもトルク向上、効率向上を図ることができる。   FIG. 6 shows an induced electromotive force waveform at θp = 123 ° when the present invention is applied and a waveform at θp = 69 ° when not applied. From FIG. 6, it can be seen that a trapezoidal induced electromotive force waveform can be generated by setting θp = 123 °. Thereby, even when a thick ferrite magnet is applied, torque and efficiency can be improved.

なお、本実施例では集中巻2極3スロット系を対象としたが、集中巻4極3スロット系などの分数スロットに対しても、式(6)に示すsin第2項の値が異なるだけで、80°<θp<135°とすることで、同様にして台形波状の誘導起電力波形を生成できる。また、分布巻に対しても、式(6)に示すsin第2項の値が異なるだけで、80°<θp<135°とすることで同様にして台形波状の誘導起電力波形を生成できる。   In this embodiment, the concentrated winding 2-pole 3-slot system is targeted, but the value of the sin second term shown in the equation (6) is different even for fractional slots such as the concentrated winding 4-pole 3-slot system. Thus, by setting 80 ° <θp <135 °, a trapezoidal induced electromotive force waveform can be generated in the same manner. In addition, a trapezoidal induced electromotive force waveform can be generated in the same manner by setting 80 ° <θp <135 ° for the distributed winding only by changing the value of the sin second term shown in Equation (6). .

本実施例では、80°<θp<135°とすることで高調波5次、7次成分を含む台形波状の誘導起電力波形を生成できる。この5次、7次成分の影響により、インバータから永久磁石同期機に通電される電流波形にも高調波5次、7次成分が発生するため、120°通電制御のみならず、150°通電や180°通電制御においても、トルク向上、効率向上を図ることができる。   In this embodiment, a trapezoidal induced electromotive force waveform including fifth and seventh harmonic components can be generated by setting 80 ° <θp <135 °. Due to the influence of the fifth and seventh components, harmonic fifth and seventh components are also generated in the current waveform supplied from the inverter to the permanent magnet synchronous machine. Even in the 180 ° energization control, torque and efficiency can be improved.

ただし、電流波形の5次、7次成分の大きさはd、q軸インダクタンスの比、いわゆる突極比の影響により、誘導起電力波形の5次、7次成分の大きさよりも小さくなるため、誘導起電力波形と相似の電流波形を生成することが困難な場合がある。このような場合には、インバータから通電する電流波形を永久磁石同期機の誘導起電力波形に近似した波形とすること、または該近似波形を生成可能な電圧パルスパターンを印加することでトルク向上、効率向上を図ることができる。   However, the magnitude of the fifth and seventh order components of the current waveform is smaller than the magnitude of the fifth and seventh order components of the induced electromotive force waveform due to the influence of the ratio of d and q axis inductance, so-called salient pole ratio. It may be difficult to generate a current waveform similar to the induced electromotive force waveform. In such a case, the current waveform energized from the inverter is a waveform that approximates the induced electromotive force waveform of the permanent magnet synchronous machine, or the torque is improved by applying a voltage pulse pattern that can generate the approximate waveform, Efficiency can be improved.

本実施例では、誘導起電力波形を台形波状に歪ませるとともに、電流波形も台形波状に歪ませるような構成としている。このような場合、トルク向上、効率向上を図れる反面、電流高調波成分によって磁束の高調波成分が発生し、これが鉄損の高調波成分を増加させる。   In this embodiment, the induced electromotive force waveform is distorted in a trapezoidal waveform, and the current waveform is also distorted in a trapezoidal waveform. In such a case, although torque improvement and efficiency improvement can be achieved, a harmonic component of magnetic flux is generated by a current harmonic component, and this increases a harmonic component of iron loss.

図7は電磁鋼板35A300グレードの1.0T時における周波数−鉄損特性であるが、300Hzをクニック点として、それ以上の周波数では鉄損が急激に増加することがわかる。したがって、本実施例では永久磁石同期機の固定子巻線12に通電する電流の基本波周波数を300Hz以下とすることで鉄損の増加傾向が小さい範囲で使用することが可能となる。   FIG. 7 shows the frequency-iron loss characteristics at 1.0 T of the electrical steel sheet 35A300 grade. It can be seen that the iron loss increases rapidly at frequencies higher than 300 Hz as a knick point. Therefore, in this embodiment, the fundamental wave frequency of the current flowing through the stator winding 12 of the permanent magnet synchronous machine is set to 300 Hz or less, so that the iron loss can be used within a small range.

1…回転子、2…回転子鉄心、3…永久磁石、4…磁石挿入孔、9…固定子、10…固定子鉄心、11…ティース、12…固定子巻線12、20…θp区間のギャップ、21…θp以外の区間のギャップ。 DESCRIPTION OF SYMBOLS 1 ... Rotor, 2 ... Rotor core, 3 ... Permanent magnet, 4 ... Magnet insertion hole, 9 ... Stator, 10 ... Stator iron core, 11 ... Teeth, 12 ... Stator winding 12, 20 ... θp section Gap, 21... Gap other than θp.

Claims (5)

固定子巻線を巻回したティースを有する固定子と、
回転子鉄心からなる磁性体を有し、前記固定子と隙間を介して配置される回転子と、
前記磁性体に配置した複数の磁石挿入孔と、
前記複数の磁石挿入孔のそれぞれに埋設されたフェライト磁石と、を有する永久磁石同期機において、
前記回転子は、前記複数の磁石挿入孔のそれぞれに対応する位置に前記固定子側へ凸となる凸部が形成されることにより、該凸部と前記ティースとの隙間が前記凸部以外の外周部と前記ティースとの隙間よりも小さくなるように構成され、
前記凸部の周方向幅に対応する電気角をθpとすると、80°<θp<135°の関係となるよう構成することを特徴とする永久磁石同期機。
A stator having teeth around which a stator winding is wound;
A rotor having a magnetic body composed of a rotor core, and a rotor disposed via a gap with the stator;
A plurality of magnet insertion holes arranged in the magnetic body;
In a permanent magnet synchronous machine having a ferrite magnet embedded in each of the plurality of magnet insertion holes,
The rotor is formed with a convex portion that protrudes toward the stator at a position corresponding to each of the plurality of magnet insertion holes, so that a gap between the convex portion and the teeth is other than the convex portion. It is configured to be smaller than the gap between the outer peripheral portion and the teeth,
A permanent magnet synchronous machine configured to satisfy a relationship of 80 ° <θp <135 °, where θp is an electrical angle corresponding to a circumferential width of the convex portion.
請求項1に記載の永久磁石同期機において、
インバータから前記永久磁石同期機に通電する電流波形は前記永久磁石同期機の誘導起電力波形に近似した波形であること、又は該近似波形を生成可能な電圧パルスパターンが印加されることを特徴とする永久磁石同期機。
In the permanent magnet synchronous machine according to claim 1,
The current waveform that is passed from the inverter to the permanent magnet synchronous machine is a waveform that approximates the induced electromotive force waveform of the permanent magnet synchronous machine, or a voltage pulse pattern that can generate the approximate waveform is applied. Permanent magnet synchronous machine.
請求項1に記載の永久磁石同期機において、
前記それぞれの複数の磁石挿入孔の周方向幅に対応する電気角をθmとすると、θp<θmの関係となるように構成することを特徴とする永久磁石同期機。
In the permanent magnet synchronous machine according to claim 1,
A permanent magnet synchronous machine configured to have a relation of θp <θm, where θm is an electrical angle corresponding to a circumferential width of each of the plurality of magnet insertion holes.
請求項1〜3の何れかに記載の永久磁石同期機において、
前記固定子の前記ティースの周方向幅に対応する電気角をθtとすると、θp<θtであり、かつ、90°<θt<120°の関係となるように構成することを特徴とする永久磁石同期機。
In the permanent magnet synchronous machine according to any one of claims 1 to 3,
Permanent magnet, wherein the electrical angle corresponding to the circumferential width of the teeth of the stator is θt, and θp <θt and 90 ° <θt <120 °. Synchronous machine.
請求項1〜3の何れかに記載の永久磁石同期機において、
前記永久磁石同期機の前記固定子巻線に通電する電流の基本波周波数を300Hz以下とすることを特徴とする永久磁石同期機。
In the permanent magnet synchronous machine according to any one of claims 1 to 3,
A permanent magnet synchronous machine characterized in that a fundamental wave frequency of a current applied to the stator winding of the permanent magnet synchronous machine is 300 Hz or less.
JP2012286611A 2012-12-28 2012-12-28 Permanent magnet synchronous machine Pending JP2014131373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012286611A JP2014131373A (en) 2012-12-28 2012-12-28 Permanent magnet synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012286611A JP2014131373A (en) 2012-12-28 2012-12-28 Permanent magnet synchronous machine

Publications (1)

Publication Number Publication Date
JP2014131373A true JP2014131373A (en) 2014-07-10

Family

ID=51409282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012286611A Pending JP2014131373A (en) 2012-12-28 2012-12-28 Permanent magnet synchronous machine

Country Status (1)

Country Link
JP (1) JP2014131373A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018008372A1 (en) * 2016-07-05 2018-01-11 日立オートモティブシステムズ株式会社 6-line 3-phase motor, inverter apparatus, and motor system
CN111953168A (en) * 2019-05-17 2020-11-17 Tdk株式会社 Motor device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05236688A (en) * 1992-02-25 1993-09-10 Toshiba Corp Permanent magnet type motor
JPH11146584A (en) * 1997-09-08 1999-05-28 Matsushita Electric Ind Co Ltd Synchronous motor with permanent magnet
JP2005354798A (en) * 2004-06-10 2005-12-22 Fujitsu General Ltd Electric motor
JP2006006067A (en) * 2004-06-18 2006-01-05 Nidec Shibaura Corp Brushless dc motor driving apparatus
JP2007074898A (en) * 2006-12-15 2007-03-22 Hitachi Ltd Permanent magnet type rotary electric machine and compressor using same
JP2008072854A (en) * 2006-09-15 2008-03-27 Hitachi Industrial Equipment Systems Co Ltd Multi-phase claw pole-type motor
JP4666726B2 (en) * 2000-06-12 2011-04-06 アイチエレック株式会社 Permanent magnet motor rotor
JP2012016189A (en) * 2010-07-01 2012-01-19 Honda Motor Co Ltd Permanent-magnet rotating electrical machine
JP2012135100A (en) * 2010-12-21 2012-07-12 Hitachi Ltd Synchronous motor control device and control method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05236688A (en) * 1992-02-25 1993-09-10 Toshiba Corp Permanent magnet type motor
JPH11146584A (en) * 1997-09-08 1999-05-28 Matsushita Electric Ind Co Ltd Synchronous motor with permanent magnet
JP4666726B2 (en) * 2000-06-12 2011-04-06 アイチエレック株式会社 Permanent magnet motor rotor
JP2005354798A (en) * 2004-06-10 2005-12-22 Fujitsu General Ltd Electric motor
JP2006006067A (en) * 2004-06-18 2006-01-05 Nidec Shibaura Corp Brushless dc motor driving apparatus
JP2008072854A (en) * 2006-09-15 2008-03-27 Hitachi Industrial Equipment Systems Co Ltd Multi-phase claw pole-type motor
JP2007074898A (en) * 2006-12-15 2007-03-22 Hitachi Ltd Permanent magnet type rotary electric machine and compressor using same
JP2012016189A (en) * 2010-07-01 2012-01-19 Honda Motor Co Ltd Permanent-magnet rotating electrical machine
JP2012135100A (en) * 2010-12-21 2012-07-12 Hitachi Ltd Synchronous motor control device and control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018008372A1 (en) * 2016-07-05 2018-01-11 日立オートモティブシステムズ株式会社 6-line 3-phase motor, inverter apparatus, and motor system
JPWO2018008372A1 (en) * 2016-07-05 2019-02-21 日立オートモティブシステムズ株式会社 6-wire three-phase motor, inverter device and motor system
CN109451783A (en) * 2016-07-05 2019-03-08 日立汽车系统株式会社 6 line, 3 phase motor, inverter and motor system
US10868488B2 (en) 2016-07-05 2020-12-15 Hitachi Automotive Systems, Ltd. Six-wire three-phase motor, inverter device, and motor system
CN109451783B (en) * 2016-07-05 2022-03-11 日立安斯泰莫株式会社 6-wire 3-phase motor, inverter device, and motor system
CN111953168A (en) * 2019-05-17 2020-11-17 Tdk株式会社 Motor device

Similar Documents

Publication Publication Date Title
JP4926107B2 (en) Rotating electric machine
JP6332011B2 (en) Axial gap type rotating electrical machine
JP6002617B2 (en) Permanent magnet synchronous machine
US20100026128A1 (en) Interior permanent magnet motor including rotor with unequal poles
US7482724B2 (en) Ipm electric rotating machine
JP2011211860A (en) Rotary electric machine
JP2002315242A (en) Permanent magnet type rotary electric machine, power generation system utilizing the same and drive system
JP6303311B2 (en) Synchronous reluctance motor
US20130106226A1 (en) Electric rotating machine
JP2012217249A (en) Rotor and permanent magnet motor
JP2012257433A (en) Permanent magnet type rotary electrical machinery
JP2017169280A (en) Rotary electric machine
JP5419991B2 (en) Permanent magnet synchronous motor
WO2018051938A1 (en) Rotating electrical machine
JP5985119B1 (en) Permanent magnet rotating electric machine
WO2017171037A1 (en) Rotor and method for designing rotor
JP2017055560A (en) Permanent magnet type rotary electric machine
JP2010233308A (en) Synchronous motor
JP2017204961A (en) Dynamo-electric machine
JP2009027849A (en) Permanent magnet type rotary electric machine
JP2014131373A (en) Permanent magnet synchronous machine
JP2004215495A (en) Exciter, field unit, and synchronous machine using same
JP6589703B2 (en) Rotating electric machine
JP5337382B2 (en) Permanent magnet synchronous motor
JP2007288838A (en) Embedded magnet type motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170131