JP2012016189A - Permanent-magnet rotating electrical machine - Google Patents

Permanent-magnet rotating electrical machine Download PDF

Info

Publication number
JP2012016189A
JP2012016189A JP2010151273A JP2010151273A JP2012016189A JP 2012016189 A JP2012016189 A JP 2012016189A JP 2010151273 A JP2010151273 A JP 2010151273A JP 2010151273 A JP2010151273 A JP 2010151273A JP 2012016189 A JP2012016189 A JP 2012016189A
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
rotating electrical
electrical machine
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010151273A
Other languages
Japanese (ja)
Inventor
Hideyuki Yoshida
秀幸 吉田
Akihiro Watanabe
昭博 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010151273A priority Critical patent/JP2012016189A/en
Publication of JP2012016189A publication Critical patent/JP2012016189A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a permanent-magnet rotating electrical machine capable of decreasing a maximum value of a line voltage without decreasing a torque constant.SOLUTION: A protrusion part 31 protruding over a prescribed section in a circumferential direction is formed at magnetic poles 23A and 23B in an outer peripheral part of a rotor 20. Assuming that θ1 is a rotor magnetic pole open angle and θ2 is a protrusion part open angle centering around a magnetic pole center P, the protrusion part 31 is formed so as to satisfy (4/9)θ1<θ2<(2/3)θ1 in electrical degrees.

Description

本発明は、回転子コアの内部に永久磁石が埋め込まれた構造を有するIPM(Internal Permanent Magnet)型の永久磁石式回転電機に関する。   The present invention relates to an IPM (Internal Permanent Magnet) type permanent magnet rotating electric machine having a structure in which a permanent magnet is embedded in a rotor core.

IPM型の永久磁石式回転電機は、電動トルクが磁石磁束によるマグネットトルクの他に、回転子の周方向各部における磁気抵抗の差に起因するリラクタンストルクを利用できる利点を有している。この回転電機は、回転子の回転にともない固定子巻線に誘起電圧(逆起電圧)が発生するため、高速回転域において、この誘起電圧に起因する線間電圧が制御回路の耐電圧を越えないように設計がなされている。   The IPM type permanent magnet type rotating electrical machine has an advantage that the reluctance torque resulting from the difference in the magnetic resistance at each part in the circumferential direction of the rotor can be used as the electric torque in addition to the magnet torque due to the magnet magnetic flux. In this rotating electrical machine, an induced voltage (counterelectromotive voltage) is generated in the stator winding as the rotor rotates, so that the line voltage caused by this induced voltage exceeds the withstand voltage of the control circuit in the high-speed rotation range. It is designed not to be.

従来の回転電機では、永久磁石の磁石量やコイルの巻回数を低減したり、回転子コアを構成する積層鋼板の積層厚を低減することにより、線間電圧のピーク(最大値)を下げて制御回路の保護を図っていた。   In conventional rotating electrical machines, the peak (maximum value) of the line voltage is lowered by reducing the magnet amount of the permanent magnet and the number of turns of the coil, or by reducing the lamination thickness of the laminated steel plates constituting the rotor core. The control circuit was protected.

また、特許文献1に記載の発明では、有効磁極開角によって生じるコギングトルクを、有効凸部開角によって生じるコギングトルクで相殺するように、それぞれの開角を設定している。   In the invention described in Patent Document 1, each opening angle is set so that the cogging torque generated by the effective magnetic pole opening angle is canceled by the cogging torque generated by the effective convex portion opening angle.

特開2002−84693号公報JP 200284693 A

しかしながら、従来の線間電圧のピークを下げる手法では、永久磁石の磁石量やコイルの巻回数を低減したり、回転子コアを構成する積層鋼板の積層厚を低減することにより、同時にトルク定数(Kt=電動機トルク/相電流)も下げることとなっていた。即ち、従来は、線間電圧が制御回路の耐電圧を越えないようにトルク定数と誘起電圧のバランスをとる設計となっていた。   However, in the conventional method of reducing the peak of the line voltage, the torque constant (at the same time by reducing the magnet amount of the permanent magnet and the number of turns of the coil, or reducing the lamination thickness of the laminated steel plates constituting the rotor core) Kt = motor torque / phase current) was also to be reduced. In other words, conventionally, the torque constant and the induced voltage are balanced so that the line voltage does not exceed the withstand voltage of the control circuit.

また、特許文献1に記載の回転電機では、コギングトルクを低減させることはできても、誘起電圧を下げることは考慮されていないため、高速回転時には、線間電圧が制御回路の耐電圧を越える虞があった。   Further, in the rotating electrical machine described in Patent Document 1, although the cogging torque can be reduced, it is not considered to lower the induced voltage. Therefore, the line voltage exceeds the withstand voltage of the control circuit during high-speed rotation. There was a fear.

本発明は、前述した状況に鑑みてなされたものであり、その目的は、トルク定数を低下させずに、誘起電圧を下げることのできる永久磁石式回転電機を提供することにある。   The present invention has been made in view of the above-described situation, and an object of the present invention is to provide a permanent magnet type rotating electrical machine capable of lowering an induced voltage without reducing a torque constant.

上記目的を達成するために、請求項1に係る発明は、
複数の固定子磁極を有する固定子(例えば、後述する実施形態における固定子11)と、
回転子コア(例えば、後述する実施形態における回転子コア21)と、前記回転子コアの内部に配置されて磁極(例えば、後述する実施形態における第1磁極部23A、第2磁極部23B)を構成する複数の永久磁石部(例えば、後述する実施形態における永久磁石22a,22a、22b,22b)とを有し、前記固定子の径方向内側に所定の隙間を介して回転自在に対向配置された回転子(例えば、後述する実施形態における回転子20)と、を備える永久磁石式回転電機(例えば、後述する実施形態における回転電機10)であって、
前記回転子の外周部には、周方向の所定区間に亘って突出する凸部(例えば、後述する実施形態における凸部31)が各磁極に形成され、
前記凸部は、磁極中心を中心としてそれぞれ回転子磁極開角をθ1、凸部開角をθ2とすると、電気角で(4/9)θ1<θ2<(2/3)θ1を満たすように形成されることを特徴とする。
In order to achieve the above object, the invention according to claim 1
A stator having a plurality of stator magnetic poles (for example, a stator 11 in an embodiment described later);
A rotor core (for example, a rotor core 21 in an embodiment described later) and magnetic poles (for example, a first magnetic pole portion 23A and a second magnetic pole portion 23B in an embodiment described later) disposed inside the rotor core. And a plurality of permanent magnet portions (for example, permanent magnets 22a, 22a, 22b, and 22b in the embodiments described later), and are rotatably disposed opposite to each other via a predetermined gap on the radially inner side of the stator. A permanent magnet type rotating electrical machine (for example, a rotating electrical machine 10 in an embodiment to be described later) including a rotor (for example, a rotor 20 in an embodiment to be described later),
On the outer peripheral portion of the rotor, a convex portion (for example, a convex portion 31 in an embodiment described later) protruding over a predetermined section in the circumferential direction is formed on each magnetic pole,
The protrusions satisfy the electrical angle of (4/9) θ1 <θ2 <(2/3) θ1, where the rotor magnetic pole opening angle is θ1 and the protrusion opening angle is θ2, respectively. It is formed.

請求項2に係る発明は、請求項1の構成に加えて、
前記回転子の外周部には、前記凸部を周方向両側から挟む非凸部(例えば、後述する実施形態における非凸部41)が各磁極に形成され、
前記凸部と前記非凸部との境界部が、それぞれ前記回転子の外径側を凸とする1つの屈曲点(例えば、後述する実施形態における屈曲点50)を有することを特徴とする。
In addition to the configuration of claim 1, the invention according to claim 2
A non-convex portion (for example, a non-convex portion 41 in the embodiment described later) sandwiching the convex portion from both sides in the circumferential direction is formed on each magnetic pole on the outer peripheral portion of the rotor,
A boundary portion between the convex portion and the non-convex portion has one bending point (for example, a bending point 50 in an embodiment described later) that protrudes from the outer diameter side of the rotor.

請求項3に係る発明は、請求項1の構成に加えて、
前記回転子の外周部には、前記凸部を周方向両側から挟む非凸部(例えば、後述する実施形態における非凸部41)が各磁極に形成され、
前記凸部と前記非凸部との境界部が、それぞれ前記回転子の外径側を凸とする屈曲点(例えば、後述する実施形態における51)と、前記回転子の内径側を凸とする屈曲点(例えば、後述する実施形態における52)と、を有することを特徴とする。
In addition to the structure of claim 1, the invention according to claim 3
A non-convex portion (for example, a non-convex portion 41 in the embodiment described later) sandwiching the convex portion from both sides in the circumferential direction is formed on each magnetic pole on the outer peripheral portion of the rotor,
The boundary between the convex portion and the non-convex portion has a bending point (for example, 51 in an embodiment described later) that is convex on the outer diameter side of the rotor, and a convex portion on the inner diameter side of the rotor. And a bending point (for example, 52 in an embodiment described later).

請求項4に係る発明は、請求項1〜3のいずれか1項の構成に加えて、
前記凸部の外周面は、前記回転子の回転軸心(例えば、後述する実施形態における回転軸心O)を中心とする円弧状に形成されることを特徴とする。
In addition to the structure of any one of Claims 1-3, the invention which concerns on Claim 4
The outer peripheral surface of the convex portion is formed in an arc shape centering on a rotation axis of the rotor (for example, a rotation axis O in an embodiment described later).

請求項5に係る発明は、請求項4の構成に加えて、
前記固定子の内周面は、前記凸部の外周面と相似形状を有することを特徴とする。
The invention according to claim 5 includes, in addition to the configuration of claim 4,
The inner peripheral surface of the stator has a similar shape to the outer peripheral surface of the convex portion.

請求項6に係る発明は、請求項1〜5のいずれか1項の構成に加えて、
前記回転子には、周方向に隣接する前記磁極間に磁束短絡防止部(例えば、後述する実施形態における溝部26)が形成されることを特徴とする。
In addition to the structure of any one of Claims 1-5, the invention which concerns on Claim 6 is
In the rotor, a magnetic flux short-circuit prevention portion (for example, a groove portion 26 in an embodiment described later) is formed between the magnetic poles adjacent in the circumferential direction.

請求項7に係る発明は、請求項6の構成に加えて、
前記磁束短絡防止部は、前記回転子の外周面から凹設される溝部(例えば、後述する実施形態における溝部26)であり、
前記溝部の最内径部は、前記永久磁石部の最外径部よりも径方向内側に位置することを特徴とする。
The invention according to claim 7 includes, in addition to the configuration of claim 6,
The magnetic flux short-circuit prevention part is a groove part (for example, a groove part 26 in an embodiment described later) recessed from the outer peripheral surface of the rotor,
The innermost diameter part of the groove part is located radially inward from the outermost diameter part of the permanent magnet part.

請求項8に係る発明は、請求項1〜7のいずれか1項の構成に加えて、
θ2=(5/9)θ1であることを特徴とする。
In addition to the structure of any one of Claims 1-7, the invention which concerns on Claim 8 is
θ2 = (5/9) θ1.

請求項9に係る発明は、請求項1〜8のいずれか1項の構成に加えて、
前記固定子の磁極数と前記回転子の磁極数との比率を3:2とすることを特徴とする。
In addition to the structure of any one of Claims 1-8, the invention which concerns on Claim 9 is
The ratio between the number of magnetic poles of the stator and the number of magnetic poles of the rotor is set to 3: 2.

上記目的を達成するために、請求項10に係る発明は、
複数の固定子磁極を有する固定子(例えば、後述する実施形態における固定子11)と、
回転子コア(例えば、後述する実施形態における回転子コア21)と、前記回転子コアの内部に配置されて磁極(例えば、後述する実施形態における第1磁極部23A、第2磁極部23B)を構成する複数の永久磁石部(例えば、後述する実施形態における永久磁石22a,22a、22b,22b)とを有し、前記固定子の径方向内側に所定の隙間を介して回転自在に対向配置された回転子(例えば、後述する実施形態における回転子20)と、を備える永久磁石式回転電機(例えば、後述する実施形態における回転電機10)であって、
前記回転子の外周部には、周方向の所定区間に亘って窪む凹部(例えば、後述する実施形態における非凸部41)が各磁極の周方向両側に形成され、
前記凹部は、前記回転子の磁極中心を基準に回転子磁極開角をθ1、前記回転子の磁極端部側から磁極中心側に向かう凹部開角をθ3とすると、電気角で(1/6)θ1<θ3<(5/18)θ1を満たすように形成されることを特徴とする。
In order to achieve the above object, the invention according to claim 10 provides:
A stator having a plurality of stator magnetic poles (for example, a stator 11 in an embodiment described later);
A rotor core (for example, a rotor core 21 in an embodiment described later) and magnetic poles (for example, a first magnetic pole portion 23A and a second magnetic pole portion 23B in an embodiment described later) disposed inside the rotor core. And a plurality of permanent magnet portions (for example, permanent magnets 22a, 22a, 22b, and 22b in the embodiments described later), and are rotatably disposed opposite to each other via a predetermined gap on the radially inner side of the stator. A permanent magnet type rotating electrical machine (for example, a rotating electrical machine 10 in an embodiment to be described later) including a rotor (for example, a rotor 20 in an embodiment to be described later),
On the outer peripheral portion of the rotor, concave portions (for example, non-convex portions 41 in the embodiments described later) that are recessed over a predetermined section in the circumferential direction are formed on both sides in the circumferential direction of each magnetic pole,
The recess has an electrical angle of (1/6) when the rotor magnetic pole opening angle is θ1 with respect to the magnetic pole center of the rotor and the recess opening angle from the rotor magnetic pole end side toward the magnetic pole center side is θ3. ) Θ1 <θ3 <(5/18) θ1 is formed.

請求項11に係る発明は、請求項10の構成に加えて、
前記回転子の外周部には、前記凹部に挟まれる非凹部(例えば、後述する実施形態における凸部31)が各磁極に形成され、
前記非凹部と前記凹部との境界部が、それぞれ前記回転子の外径側を凸とする1つの屈曲点(例えば、後述する実施形態における屈曲点50)を有することを特徴とする。
In addition to the structure of Claim 10, the invention according to Claim 11
A non-concave portion (for example, a convex portion 31 in an embodiment described later) sandwiched between the concave portions is formed on each magnetic pole on the outer peripheral portion of the rotor,
A boundary portion between the non-recessed portion and the recessed portion has one bending point (for example, a bending point 50 in an embodiment described later) that protrudes from the outer diameter side of the rotor.

請求項12に係る発明は、請求項10の構成に加えて、
前記回転子の外周部には、前記凹部に挟まれる非凹部(例えば、後述する実施形態における凸部31)が各磁極に形成され、
前記非凹部と前記凹部との境界部が、それぞれ前記回転子の外径側を凸とする屈曲点(例えば、後述する実施形態における51)と、前記回転子の内径側を凸とする屈曲点(例えば、後述する実施形態における52)と、を有することを特徴とする。
The invention according to claim 12 adds to the structure of claim 10,
A non-concave portion (for example, a convex portion 31 in an embodiment described later) sandwiched between the concave portions is formed on each magnetic pole on the outer peripheral portion of the rotor,
A bending point where the boundary between the non-recessed portion and the recessed portion is convex on the outer diameter side of the rotor (for example, 51 in an embodiment described later), and a bending point where the inner diameter side of the rotor is convex (For example, 52 in an embodiment described later).

請求項13に係る発明は、請求項11又は12の構成に加えて、
前記非凹部の外周面は、前記回転子の回転軸心(例えば、後述する実施形態における回転軸心O)を中心とする円弧状に形成されることを特徴とする。
In addition to the structure of Claim 11 or 12, the invention according to Claim 13
The outer peripheral surface of the non-recessed portion is formed in an arc shape centering on a rotation axis of the rotor (for example, a rotation axis O in an embodiment described later).

請求項14に係る発明は、請求項13の構成に加えて、
前記固定子の内周面は、前記非凹部の外周面より大径の円弧状に形成されることを特徴とする。
In addition to the structure of Claim 13, the invention according to Claim 14
The inner peripheral surface of the stator is formed in an arc shape having a larger diameter than the outer peripheral surface of the non-recessed portion.

請求項15に係る発明は、請求項10〜14のいずれか1項の構成に加えて、
前記回転子には、周方向に隣接する前記磁極間に磁束短絡防止部(例えば、後述する実施形態における溝部26)が形成されることを特徴とする。
In addition to the configuration of any one of claims 10 to 14, the invention according to claim 15 includes:
In the rotor, a magnetic flux short-circuit prevention portion (for example, a groove portion 26 in an embodiment described later) is formed between the magnetic poles adjacent in the circumferential direction.

請求項16に係る発明は、請求項15の構成に加えて、
前記磁束短絡防止部は、前記回転子の外周面から凹設される溝部(例えば、後述する実施形態における溝部26)であり、
前記溝部の最内径部は、前記永久磁石部の最外径部よりも径方向内側に位置することを特徴とする。
The invention according to claim 16 includes, in addition to the configuration of claim 15,
The magnetic flux short-circuit prevention part is a groove part (for example, a groove part 26 in an embodiment described later) recessed from the outer peripheral surface of the rotor,
The innermost diameter part of the groove part is located radially inward from the outermost diameter part of the permanent magnet part.

請求項17に係る発明は、請求項10〜16のいずれか1項の構成に加えて、
θ3=(2/9)θ1であることを特徴とする。
In addition to the structure of any one of Claims 10-16, the invention which concerns on Claim 17
θ3 = (2/9) θ1.

請求項18に係る発明は、請求項10〜17のいずれか1項の構成に加えて、
前記固定子の磁極数と前記回転子の磁極数との比率を3:2とすることを特徴とする。
In addition to the structure of any one of Claims 10-17, the invention which concerns on Claim 18 is
The ratio between the number of magnetic poles of the stator and the number of magnetic poles of the rotor is set to 3: 2.

請求項1の発明によれば、回転子の外周部の形状を変更することで、トルク定数を低減させずに、線間電圧のピークを下げることができる。これにより制御回路の耐電圧に対しマージンを持つことができるため信頼性を向上させることができる。   According to the first aspect of the present invention, the peak of the line voltage can be lowered without changing the torque constant by changing the shape of the outer peripheral portion of the rotor. As a result, a margin can be provided for the withstand voltage of the control circuit, so that the reliability can be improved.

請求項2の発明によれば、1つの屈曲点とすることで、凸部と非凸部との一方に対し他方が傾斜状(テーパ状)に形成されることとなるので、線間電圧のピークがより平準化(平坦化)される。   According to the second aspect of the present invention, since one bending point is used, the other of the convex portion and the non-convex portion is formed in an inclined shape (tapered shape). The peak is leveled (flattened).

請求項3の発明によれば、2つの屈曲点とすることで、凸部と非凸部との一方に対し他方が段差状に形成されることとなるので、凸部と非凸部との外径変化を狭い範囲で大きくとることができ、外周形状の自由度が増える。   According to the invention of claim 3, by setting the two bending points, the other is formed in a stepped shape with respect to one of the convex portion and the non-convex portion. The change in the outer diameter can be made large in a narrow range, and the degree of freedom of the outer peripheral shape increases.

請求項4の発明によれば、凸部を円弧状とすることで回転子と固定子とをより近接して配置することが可能で、トルク定数の低下をより抑制することができる。   According to the fourth aspect of the present invention, it is possible to arrange the rotor and the stator closer to each other by forming the convex portion in an arc shape, and it is possible to further suppress the decrease in the torque constant.

請求項5の発明によれば、回転子と固定子をより近接配置することができる。   According to the invention of claim 5, the rotor and the stator can be arranged closer to each other.

請求項6の発明によれば、隣接する磁極間で磁束が回り、固定子への磁束量が低減するのを抑制することができる。   According to the sixth aspect of the present invention, it is possible to prevent the magnetic flux from turning between adjacent magnetic poles and reducing the amount of magnetic flux to the stator.

請求項7の発明によれば、永久磁石に作用する遠心力によって回転子コアに作用する応力が分散し、回転子強度の持続性が向上する。   According to invention of Claim 7, the stress which acts on a rotor core by the centrifugal force which acts on a permanent magnet disperse | distributes, and the sustainability of rotor strength improves.

請求項8の発明によれば、線間電圧のピークが最も平準化する。   According to the invention of claim 8, the peak of the line voltage is leveled most.

請求項10の発明によれば、回転子の外周部の形状を変更することで、トルク定数を低減させずに、線間電圧のピークを下げることができる。これにより制御回路の耐電圧に対しマージンを持つことができるため信頼性を向上させることができる。   According to the invention of claim 10, by changing the shape of the outer peripheral portion of the rotor, the peak of the line voltage can be lowered without reducing the torque constant. As a result, a margin can be provided for the withstand voltage of the control circuit, so that the reliability can be improved.

請求項11の発明によれば、1つの屈曲点とすることで、非凹部と凹部との一方に対し他方が傾斜状(テーパ状)に形成されることとなるので、線間電圧のピークがより平準化(平坦化)される。   According to the invention of claim 11, by setting one bending point, the other of the non-recessed portion and the recessed portion is formed in an inclined shape (tapered shape). More leveling (flattening) is performed.

請求項12の発明によれば、2つの屈曲点とすることで、非凹部と凹部との一方に対し他方が段差状に形成されることとなるので、非凹部と凹部との外径変化を狭い範囲で大きくとることができ、外周形状の自由度が増える。   According to the twelfth aspect of the present invention, since the two bending points are used, the other of the non-recessed portion and the recessed portion is formed in a stepped shape. It can be made large in a narrow range, and the degree of freedom of the outer peripheral shape increases.

請求項13の発明によれば、非凹部を円弧状とすることで回転子と固定子とをより近接して配置することが可能で、トルク定数の低下をより抑制することができる。   According to the thirteenth aspect of the present invention, the rotor and the stator can be arranged closer to each other by forming the non-recessed portion in an arc shape, and a decrease in torque constant can be further suppressed.

請求項14の発明によれば、回転子と固定子をより近接配置することができる。   According to the invention of claim 14, the rotor and the stator can be arranged closer to each other.

請求項15の発明によれば、隣接する磁極間で磁束が回り、固定子への磁束量が低減するのを抑制することができる。   According to the fifteenth aspect of the present invention, it is possible to prevent the magnetic flux from rotating between the adjacent magnetic poles and reducing the amount of magnetic flux to the stator.

請求項16の発明によれば、永久磁石に作用する遠心力によって回転子コアに作用する応力が分散し、回転子強度の持続性が向上する。   According to the invention of claim 16, the stress acting on the rotor core is dispersed by the centrifugal force acting on the permanent magnet, and the durability of the rotor strength is improved.

請求項17の発明によれば、線間電圧のピークが最も平準化する。   According to the invention of claim 17, the peak of the line voltage is leveled most.

本発明に係る第1実施形態の回転電機の正面図である。It is a front view of the rotary electric machine of 1st Embodiment which concerns on this invention. (a)第1実施形態の回転電機の要部拡大図であり、(b)は従来の回転電機の要部拡大図である。(A) It is a principal part enlarged view of the rotary electric machine of 1st Embodiment, (b) is a principal part enlarged view of the conventional rotary electric machine. 第1実施形態の回転電機と従来の回転電機における、電気角に対する誘起電圧、線間電圧、磁束密度の関係の解析値を示すグラフである。It is a graph which shows the analytical value of the relationship of the induced voltage with respect to an electrical angle, the line voltage, and magnetic flux density in the rotary electric machine of 1st Embodiment, and the conventional rotary electric machine. (a)は本実施形態の回転電機の各相の線間電圧の実測値を示すグラフであり、(b)は従来の回転電機の各相の線間電圧の実測値を示すグラフである。(A) is a graph which shows the actual value of the line voltage of each phase of the rotary electric machine of this embodiment, (b) is a graph which shows the actual value of the line voltage of each phase of the conventional rotary electric machine. 回転子コアの形状と線間電圧波形との関係を示す図である。It is a figure which shows the relationship between the shape of a rotor core, and a line voltage waveform. 第1実施形態の回転電機の形状を決める際のフローを説明するフロー図である。It is a flowchart explaining the flow at the time of determining the shape of the rotary electric machine of 1st Embodiment. 第2実施形態の回転電機の要部拡大図である。It is a principal part enlarged view of the rotary electric machine of 2nd Embodiment. 第2実施形態の回転電機における、電気角に対する誘起電圧と線間電圧の関係を示すグラフである。It is a graph which shows the relationship between the induced voltage with respect to the electrical angle, and the line voltage in the rotary electric machine of 2nd Embodiment. 第2実施形態の回転電機の形状を決める際のフローを説明するフロー図である。It is a flowchart explaining the flow at the time of determining the shape of the rotary electric machine of 2nd Embodiment.

以下、本発明の各実施形態を、添付図面に基づいて説明する。なお、図面は符号の向きに見るものとする。
<第1実施形態>
図1及び図2(a)に示すように、本実施形態の回転電機10は、例えば電気自動車のトラクションモータとして使用されるIPM型の永久磁石式回転電機であり、主に固定子11と回転子20とから構成されている。固定子11は、積層された電磁鋼板の内周側に複数のスロット14及びティース15が形成された固定子コア13と、スロット14に収容され回転磁界を発生させて回転子20を回転させる複数相(本実施形態では、U相、V相、W相の3相)の電機子巻線16と、を備え、複数の固定子磁極(本実施形態では18個)を構成する。本実施形態の回転電機10においては、ティース15の先端部が円弧状に形成され、電機子巻線16はティース15に突極集中巻きで巻装されている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.
<First Embodiment>
As shown in FIGS. 1 and 2A, the rotating electrical machine 10 of this embodiment is an IPM type permanent magnet rotating electrical machine used as a traction motor of an electric vehicle, for example, and mainly rotates with the stator 11. And a child 20. The stator 11 includes a stator core 13 having a plurality of slots 14 and teeth 15 formed on the inner peripheral side of the laminated electromagnetic steel plates, and a plurality of stators 11 accommodated in the slots 14 to generate a rotating magnetic field and rotate the rotor 20. And a plurality of stator magnetic poles (18 in the present embodiment). The armature winding 16 has three phases (in this embodiment, U-phase, V-phase, and W-phase). In the rotating electrical machine 10 of the present embodiment, the tip of the tooth 15 is formed in an arc shape, and the armature winding 16 is wound around the tooth 15 with salient pole concentrated winding.

回転子20は、略円筒状の回転子シャフト(図示せず)と、その外周側に設けられる回転子コア21と、複数の磁極部23とを備え、固定子11の径方向内側に所定の隙間を介して回転可能に配置されている。   The rotor 20 includes a substantially cylindrical rotor shaft (not shown), a rotor core 21 provided on the outer peripheral side thereof, and a plurality of magnetic pole portions 23, and a predetermined inner side in the radial direction of the stator 11. It arrange | positions so that rotation is possible through a clearance gap.

回転子コア21は、複数の電磁鋼板27…27が軸方向に積層されて構成されている。各電磁鋼板27…27は、その内部に孔部24を有するとともに、その外周部に回転子コア21の固定子対向面である外周面21a近傍に一対の埋め込み穴25,25が円周方向に複数形成された略円環形状を有する。   The rotor core 21 is configured by laminating a plurality of electromagnetic steel plates 27 to 27 in the axial direction. Each of the electromagnetic steel plates 27 ... 27 has a hole 24 therein, and a pair of embedded holes 25, 25 in the circumferential direction in the vicinity of the outer peripheral surface 21a that is the stator facing surface of the rotor core 21 in the outer peripheral portion thereof. A plurality of substantially annular shapes are formed.

回転子コア21の一対の埋め込み穴25,25は、一様幅を有するセンターリブ29で区画され、それぞれに永久磁石22a(22b)が配置される。磁化方向が同じ2つの永久磁石22a,22aにより第1磁極部23Aが構成され、永久磁石22a,22aと磁化方向が異なる2つの永久磁石22b,22bにより第2磁極部23Bが構成され、これら第1磁極部23Aと第2磁極部23Bとが周方向に交互に配列され、複数の回転子磁極(本実施形態では12個)が構成される。   The pair of embedded holes 25, 25 in the rotor core 21 are partitioned by a center rib 29 having a uniform width, and a permanent magnet 22a (22b) is disposed in each of them. The first magnetic pole portion 23A is constituted by two permanent magnets 22a and 22a having the same magnetization direction, and the second magnetic pole portion 23B is constituted by two permanent magnets 22b and 22b having different magnetization directions from the permanent magnets 22a and 22a. The one magnetic pole portion 23A and the second magnetic pole portion 23B are alternately arranged in the circumferential direction to constitute a plurality of rotor magnetic poles (12 in this embodiment).

各永久磁石22a(22b)は、同一形状で構成され、且つ、断面が略長方形状を有する。そして、各永久磁石22a(22b)は埋め込み穴25内に隙間なく、特に各永久磁石22a(22b)の外周側の側面全面が回転子コア21に接触するように装着される。   Each permanent magnet 22a (22b) has the same shape and has a substantially rectangular cross section. Each permanent magnet 22a (22b) is mounted so that there is no gap in the embedding hole 25, and in particular, the entire outer side surface of each permanent magnet 22a (22b) is in contact with the rotor core 21.

また、回転子コア21には、磁化方向が異なる第1磁極部23Aと第2磁極部23Bとを区画する溝部26が外周面21aから径方向内側に窪むように形成される。溝部26の最内径部(最深部)は、永久磁石22a(22b)の最外径部よりも径方向内側に位置する。溝部26の周方向中間部と回転子20の回転軸心Oを結ぶ溝部中心線Qが各磁極の終端(磁極端)をなし、磁極中心Pを中心として隣り合う溝部26の溝部中心線Q間が電気角で180°に相当する。溝部26は、永久磁石22a、22bの磁極からの交番磁束を遮断することにより、隣り合う磁極部23への磁束短絡を防ぐ磁束短絡抑制部として機能する。また、回転中の遠心力により永久磁石22a(22b)が回転子コア21に及ぼす応力を、最小肉厚部28と溝部26との2箇所で受けることができ、応力を分散して受けることとなる。   Further, the rotor core 21 is formed with a groove 26 that divides the first magnetic pole part 23A and the second magnetic pole part 23B having different magnetization directions so as to be recessed radially inward from the outer peripheral surface 21a. The innermost diameter part (deepest part) of the groove part 26 is located radially inward from the outermost diameter part of the permanent magnet 22a (22b). A groove center line Q connecting the circumferential intermediate portion of the groove 26 and the rotation axis O of the rotor 20 forms a terminal end (magnetic pole end) of each magnetic pole, and between the groove center lines Q of adjacent groove parts 26 around the magnetic pole center P. Corresponds to 180 ° in electrical angle. The groove portion 26 functions as a magnetic flux short-circuit suppressing portion that prevents a magnetic flux short-circuit to the adjacent magnetic pole portion 23 by blocking the alternating magnetic flux from the magnetic poles of the permanent magnets 22a and 22b. In addition, the stress exerted on the rotor core 21 by the permanent magnet 22a (22b) due to the centrifugal force during rotation can be received at two locations of the minimum thickness portion 28 and the groove portion 26, and the stress is distributed and received. Become.

また、各磁極部23A、23Bには、磁極中心Pから周方向両側の所定区間に亘って回転軸心Oを中心とする円弧形状の外周面を有する凸部31が形成され、凸部31の周方向両側から溝部26までの所定区間に亘ってテーパ状の外周面を有する非凸部41が形成され、凸部31と非凸部41との境界部にそれぞれ回転子20の外径側を凸とする1つの屈曲点50が形成される。   Each magnetic pole portion 23A, 23B is formed with a convex portion 31 having an arc-shaped outer peripheral surface centering on the rotation axis O from a magnetic pole center P to a predetermined interval on both sides in the circumferential direction. A non-convex portion 41 having a tapered outer peripheral surface is formed over a predetermined section from both sides in the circumferential direction to the groove portion 26, and the outer diameter side of the rotor 20 is provided at the boundary between the convex portion 31 and the non-convex portion 41. One bending point 50 that is convex is formed.

即ち、各磁極部23A、23Bの磁極中央部は凸部31をなし、磁極中央部を挟んで周方向両側の磁極端部は非凸部41をなしている。固定子11の内周面は、凸部31と相似形状を有し、凸部31との隙間は一定であり、固定子11の内周面と非凸部41との隙間は、屈曲点50から溝部26に近づくに従って大きくなっている。ここで、磁極中央部を基準に磁極端部を見ると、磁極端部は凹部となり、磁極中央部が非凹部となり、反対に、磁極端部を基準に磁極中央部を見ると、磁極中央部は凸部となり、磁極端部が非凸部となる。磁極中央部又は磁極端部のいずれを基準としてもよいが、以下の説明においては、磁極中央部を凸部31、磁極端部を非凸部41として説明する。   That is, the magnetic pole central part of each magnetic pole part 23A, 23B forms the convex part 31, and the magnetic pole end part on both sides in the circumferential direction sandwiching the magnetic pole central part forms the non-convex part 41. The inner peripheral surface of the stator 11 has a shape similar to the convex portion 31, the gap between the convex portion 31 is constant, and the gap between the inner peripheral surface of the stator 11 and the non-convex portion 41 is a bending point 50. As the groove portion 26 is approached, it increases. Here, when the magnetic pole end is viewed with respect to the magnetic pole center, the magnetic pole end becomes a concave portion, and the magnetic pole central portion becomes a non-recessed portion. Conversely, when the magnetic pole central portion is viewed with reference to the magnetic pole end, Becomes a convex part, and the magnetic pole end part becomes a non-convex part. Either the central part of the magnetic pole or the end part of the magnetic pole may be used as a reference, but in the following description, the central part of the magnetic pole is described as the convex part 31 and the magnetic pole end part is described as the non-convex part 41.

凸部31は、磁極中心Pを中心としてそれぞれ回転子磁極開角(溝部中心線Q間開角)をθ1、凸部開角(屈曲点50間開角)をθ2とすると、(4/9)θ1<θ2<(2/3)θ1を満たすように形成され、非凸部(凹部)開角(屈曲点50と溝部中心線Q間開角)をθ3とすると、電気角で(1/6)θ1<θ3<(5/18)θ1を満たすように形成される。より好ましくは、θ2=(5/9)θ1であり、θ3=(2/9)θ1である。なお、本実施形態では、θ1=180°、θ2=100°、θ3=40°に設定されている。   The convex portion 31 has a rotor magnetic pole opening angle (opening angle between groove centerlines Q) of θ1 and a convex portion opening angle (opening angle between bending points 50) of θ2 around the magnetic pole center P, respectively. ) Θ1 <θ2 <(2/3) formed so as to satisfy θ1, and when the non-convex (concave) opening angle (opening angle between the bending point 50 and the groove center line Q) is θ3, the electrical angle is (1 / 6) It is formed so as to satisfy θ1 <θ3 <(5/18) θ1. More preferably, θ2 = (5/9) θ1 and θ3 = (2/9) θ1. In the present embodiment, θ1 = 180 °, θ2 = 100 °, and θ3 = 40 ° are set.

ここで、各磁極部23A、23Bの外周面が回転軸心Oを中心とする円弧形状のみで形成された図2(b)に示す回転子を従来の回転電機とすると、図3に示すように、本実施形態のU相磁束密度が従来のU相磁束密度に比べて電気角で90°及び270°近傍で磁束変化率が高くなっており、これに伴って本実施形態のU相誘起電圧が従来のU相誘起電圧より90°及び270°近傍で低く平坦になっており、さらにU相とV相の相誘起電圧の差(U相誘起電圧−V相誘起電圧)である本実施形態のU−V線間電圧が従来のU−V線間電圧よりピークが低く平坦になっている。   Here, assuming that the rotor shown in FIG. 2B in which the outer peripheral surfaces of the magnetic pole portions 23A and 23B are formed only by an arc shape centered on the rotation axis O is a conventional rotating electric machine, as shown in FIG. In addition, the U-phase magnetic flux density of the present embodiment is higher than the conventional U-phase magnetic flux density in the vicinity of 90 ° and 270 ° in electrical angle, and accordingly, the U-phase induction of the present embodiment is increased. This embodiment is flat and low in the vicinity of 90 ° and 270 ° from the conventional U-phase induced voltage, and is the difference between the U-phase and V-phase induced voltages (U-phase induced voltage-V-phase induced voltage). The U-V line voltage of the embodiment has a lower peak than the conventional U-V line voltage and is flat.

これは磁極中央部が凸部31をなし、磁極端部が非凸部41をなしているので、図5に示すように、永久磁石永久磁石22a(22b)の磁石磁束を固定子11の内周面に近い凸部31に集中させることができ、固定子11への磁束進入を凸部31で急激化できるためと考えられる。固定子11への磁束進入を急激化させることにより、磁束密度変動によって発生する誘起電圧において1次基本周波数に加え、3次周波数成分、5次周波数成分を調整する効果があり、トルク定数を低下させることなく(1)式から導かれる各相誘起電圧を調整したものである。そして、各相誘起電圧を調整することにより各相誘起電圧の差である線間電圧のピークを低下させ、線間電圧波形の振幅を抑制できる。   This is because the central portion of the magnetic pole forms the convex portion 31 and the magnetic pole end portion forms the non-convex portion 41, so that the magnet magnetic flux of the permanent magnet permanent magnet 22a (22b) is absorbed in the stator 11 as shown in FIG. This is because the convex portion 31 close to the peripheral surface can be concentrated, and the magnetic flux approaching the stator 11 can be accelerated by the convex portion 31. By abruptly entering the magnetic flux into the stator 11, there is an effect of adjusting the tertiary frequency component and the fifth frequency component in addition to the primary fundamental frequency in the induced voltage generated by the magnetic flux density fluctuation, and the torque constant is lowered. Each phase induced voltage derived from the equation (1) is adjusted without any adjustment. And the peak of the line voltage which is the difference of each phase induced voltage is reduced by adjusting each phase induced voltage, and the amplitude of a line voltage waveform can be suppressed.

[式1]
V=n・d/dt・Φ・sinωt (1)
V:誘起電圧、n:コイル巻数、Φ:磁束密度、ω:角速度、t:時間
[Formula 1]
V = n · d / dt · Φ · sinωt (1)
V: induced voltage, n: number of coil turns, Φ: magnetic flux density, ω: angular velocity, t: time

なお、図3は、U相のみを表示したがV相及びW相も同じ傾向を示す。図4(a)に示す本実施形態のU−V線間電圧、V−W線間電圧、W−U線間電圧、いずれも図4(b)に示す従来の回転電機のU−V線間電圧、V−W線間電圧、W−U線間電圧に比べて、ピークが低く平坦になっており、従来の回転電機では線間電圧のピークが制御回路の耐電圧を越えているのに対し、本実施形態の回転電機10では線間電圧のピークが制御回路の耐電圧より小さい値を示している。   3 shows only the U phase, the V phase and the W phase show the same tendency. The U-V line voltage, V-W line voltage, and W-U line voltage of this embodiment shown in FIG. 4A are all the U-V line of the conventional rotating electrical machine shown in FIG. 4B. Compared to the line voltage, the V-W line voltage, and the W-U line voltage, the peak is low and flat. In conventional rotating electrical machines, the line voltage peak exceeds the withstand voltage of the control circuit. On the other hand, in the rotating electrical machine 10 of this embodiment, the peak of the line voltage shows a value smaller than the withstand voltage of the control circuit.

次に、本実施形態の回転電機10の形状を決める際の手順について図6を参照して説明する。
先ず、車両の搭載位置、スペースの関係から回転電機10の外径を決定する(ステップS11)。続いて、車両の要求トルクにより磁石位置を決定する(ステップS12)。永久磁石22a(22b)は、回転子コア21の外周側に配置するほどより多くのトルクを出力することができる。次に、最大回転数時の応力により最小肉厚部28の肉厚t(図2(a)参照)を決定する(ステップS13)。そして、凸部31が(4/9)θ1<θ2<(2/3)θ1を満たすように屈曲点50を決定する(ステップS14)。
Next, a procedure for determining the shape of the rotating electrical machine 10 of the present embodiment will be described with reference to FIG.
First, the outer diameter of the rotating electrical machine 10 is determined from the relationship between the mounting position of the vehicle and the space (step S11). Subsequently, the magnet position is determined based on the required torque of the vehicle (step S12). The permanent magnet 22a (22b) can output more torque as it is arranged on the outer peripheral side of the rotor core 21. Next, the wall thickness t (see FIG. 2A) of the minimum wall portion 28 is determined by the stress at the maximum rotation speed (step S13). Then, the bending point 50 is determined so that the convex portion 31 satisfies (4/9) θ1 <θ2 <(2/3) θ1 (step S14).

以上、説明したように本実施形態の回転電機10は、回転子20の外周部には、周方向の所定区間に亘って突出する凸部31が各磁極部23A、23Bに形成され、凸部31は、磁極中心Pを中心としてそれぞれ回転子磁極開角をθ1、凸部開角をθ2とすると、電気角で(4/9)θ1<θ2<(2/3)θ1を満たすように形成されるので、固定子11への磁束進入を凸部31で急激化でき、トルク定数を低下させずに各相誘起電圧を調整することができる。そして、各相誘起電圧を調整することにより各相誘起電圧の差である線間電圧のピークを低下させることができる。従って、制御回路の耐電圧に対しマージンを持つことができるため信頼性を向上させることができる。あるいは、制御回路の耐電圧以下に収まる範囲で、モータ定数を向上させ高性能な回転電機とすることができる。   As described above, in the rotating electrical machine 10 according to the present embodiment, the outer peripheral portion of the rotor 20 is formed with the convex portions 31 that protrude over the predetermined section in the circumferential direction at the magnetic pole portions 23A and 23B. 31 is formed so that the rotor magnetic pole opening angle is θ1 and the convex portion opening angle is θ2 around the magnetic pole center P, and the electrical angle satisfies (4/9) θ1 <θ2 <(2/3) θ1. As a result, the magnetic flux intrusion into the stator 11 can be made abrupt at the convex portion 31, and each phase induced voltage can be adjusted without lowering the torque constant. And the peak of the line voltage which is the difference of each phase induced voltage can be reduced by adjusting each phase induced voltage. Therefore, since a margin can be provided for the withstand voltage of the control circuit, the reliability can be improved. Alternatively, the motor constant can be improved and a high-performance rotating electrical machine can be obtained within a range that is less than or equal to the withstand voltage of the control circuit.

また、このように、各磁極部23A、23Bの外周部の形状を変更するだけで、線間電圧のピークを下げることができるので、磁石の形状を限定しない。特に、永久磁石22a(22b)を矩形状とすることで、成形型をそのまま使用できたり、切削など機械加工を施すにしても削り代を少なくでき、低コストで製造できる。また、成形材であれば成形表面ほど高硬度であるため遠心力が作用しても磁石割れ等の虞を低減でき、磁石強度及び回転子コア強度に有利で信頼性が向上する。また、回転電機10の性能やサイズによらず永久磁石22a(22b)を流用することができる。特に近年では、貴重な希土類材料を使用した永久磁石を製造するにあたり、材料の大量確保にコスト面で有利であり、製造面では大掛かりで特殊な専用設備が必要だがその設備償却に大きく貢献する。   Moreover, since the peak of the line voltage can be lowered only by changing the shape of the outer peripheral portion of each magnetic pole portion 23A, 23B, the shape of the magnet is not limited. In particular, by forming the permanent magnet 22a (22b) into a rectangular shape, the molding die can be used as it is, or even if machining such as cutting can be performed, the machining allowance can be reduced, and manufacturing can be performed at low cost. Further, since the molding material has a higher hardness as the molding surface, the possibility of magnet cracking can be reduced even when centrifugal force is applied, and the magnet strength and the rotor core strength are advantageous and the reliability is improved. Further, the permanent magnet 22a (22b) can be used regardless of the performance and size of the rotating electrical machine 10. Particularly in recent years, when manufacturing permanent magnets using precious rare earth materials, it is advantageous in terms of cost to secure a large amount of materials, and in terms of manufacturing, special dedicated equipment is required, but it greatly contributes to depreciation of the equipment.

また、永久磁石22a(22b)の外周側の側面は、全面が回転子コア21に接触するため磁気抵抗なく磁石磁束を回転子外周面21aに伝えることができ、高価な希土類材料を使用した永久磁石のポテンシャルを最大限に生かすことができる。   Further, since the entire side surface of the permanent magnet 22a (22b) is in contact with the rotor core 21, the magnetic flux can be transmitted to the rotor outer surface 21a without magnetic resistance, and a permanent material using an expensive rare earth material is used. The potential of the magnet can be fully utilized.

また、各磁極部23A、23B間には溝部26が設けられているので、回転子コア21は遠心力が作用した永久磁石22a(22b)の角が埋め込み穴25の隅近傍に接触し遠心力を受けるため、曲げモーメントアームが小さくでき、さらに最小肉厚部28と溝部26との2箇所で応力を受けることができ、1箇所で応力集中が発生するのを抑制することができる。   In addition, since the groove portion 26 is provided between the magnetic pole portions 23A and 23B, the rotor core 21 contacts the corner of the embedded hole 25 near the corner of the permanent magnet 22a (22b) to which the centrifugal force has acted. Therefore, the bending moment arm can be made small, and further, stress can be received at two locations of the minimum thickness portion 28 and the groove portion 26, and the occurrence of stress concentration at one location can be suppressed.

また、突極集中巻きの回転電機に適用することで、回転子コア21から軸方向にはみ出す巻線を小さくでき回転電機を小型化することができる。さらに、トルクリップル低減の効果もあり、回転電機を低騒音化することができる。   Further, by applying to the salient pole concentrated winding electric machine, the winding protruding from the rotor core 21 in the axial direction can be reduced, and the rotating electric machine can be downsized. Furthermore, there is an effect of reducing torque ripple, and the rotating electrical machine can be reduced in noise.

また、回転電機10は、IPM型の回転電機なので、遠心力が作用した場合でも永久磁石22a(22b)の保持が容易であり、高回転にも対応することができる。   Moreover, since the rotary electric machine 10 is an IPM type rotary electric machine, even when a centrifugal force is applied, the permanent magnet 22a (22b) can be easily held and can cope with high rotation.

<第2実施形態>
次に、本発明の第2実施形態の回転電機について図7を参照して説明する。
本実施形態の各磁極部23A、23Bには、磁極中心Pから周方向両側の所定区間に亘って回転軸心Oを中心とする円弧形状の外周面を有する凸部31が形成され、凸部31の周方向両側から溝部26までの所定区間に亘って凸部31の円弧形状より小径の円弧形状の外周面を有する非凸部42が形成され、凸部31と非凸部42との境界部にそれぞれ回転子20の外径側を凸とする第1屈曲点51と、回転子20の内径側を凸とする第2屈曲点52とが形成される。第1屈曲点51と第2屈曲点52とはテーパ面53で連結される。
<Second Embodiment>
Next, a rotating electrical machine according to a second embodiment of the present invention will be described with reference to FIG.
Each magnetic pole part 23A, 23B of the present embodiment is formed with a convex part 31 having an arc-shaped outer peripheral surface centering on the rotational axis O from a magnetic pole center P to a predetermined interval on both sides in the circumferential direction. A non-convex portion 42 having an outer peripheral surface having an arc shape smaller in diameter than the arc shape of the convex portion 31 is formed over a predetermined section from both circumferential sides of the groove 31 to the groove portion 26, and the boundary between the convex portion 31 and the non-convex portion 42 A first bending point 51 that protrudes from the outer diameter side of the rotor 20 and a second bending point 52 that protrudes from the inner diameter side of the rotor 20 are formed in each part. The first bending point 51 and the second bending point 52 are connected by a tapered surface 53.

即ち、各磁極部23A、23Bの磁極中央部は凸部31をなし、磁極中央部を挟んで周方向両側の磁極端部は非凸部42をなしており、固定子11の内周面と凸部31との隙間は一定であり、テーパ面53で磁極中央部側から溝部26側に近づくに従って急激に大きくなり、固定子11の内周面と非凸部42との隙間は、固定子11の内周面と凸部31との隙間より大きな隙間で一定となっている。本実施形態でも、磁極中央部を凸部31、磁極端部を非凸部41として説明するが、磁極中央部を基準に磁極端部を凹部として、磁極中央部を非凹部としてもよい。   That is, the magnetic pole central part of each magnetic pole part 23A, 23B forms the convex part 31, the magnetic pole end part on both sides in the circumferential direction across the magnetic pole central part forms a non-convex part 42, and the inner peripheral surface of the stator 11 The gap with the convex portion 31 is constant, and the gap between the inner peripheral surface of the stator 11 and the non-convex portion 42 is increased as the taper surface 53 approaches the groove portion 26 side from the magnetic pole central portion side. 11 is constant in a gap larger than the gap between the inner peripheral surface 11 and the convex portion 31. In the present embodiment, the magnetic pole center portion is described as the convex portion 31 and the magnetic pole end portion is described as the non-convex portion 41. However, the magnetic pole end portion may be defined as a concave portion and the magnetic pole central portion may be defined as a non-recessed portion.

凸部31は、磁極中心Pを中心としてそれぞれ回転子磁極開角(溝部中心線Q間開角)をθ1、凸部開角(第1屈曲点51間開角)をθ2とすると、(4/9)θ1<θ2<(2/3)θ1を満たすように形成され、非凸部(凹部)開角(第1屈曲点51と溝部中心線Q間開角)をθ3とすると、電気角で(1/6)θ1<θ3<(5/18)θ1を満たすように形成される。より好ましくは、θ2=(5/9)θ1であり、θ3=(2/9)θ1である。第1屈曲点51と回転子20の回転軸心Oを結ぶ第1直線R1と、第2屈曲点52と回転子20の回転軸心Oを結ぶ第2直線R2とは、電気角で1°以上離れている。   The convex portion 31 has a rotor magnetic pole opening angle (opening angle between the groove center lines Q) as θ1 and a convex opening angle (opening angle between the first bending points 51) as θ2, respectively. / 9) θ1 <θ2 <(2/3) θ1 is formed so as to satisfy θ1, and the non-convex part (concave part) opening angle (the opening angle between the first bending point 51 and the groove part center line Q) is θ3. (1/6) θ1 <θ3 <(5/18) θ1 is satisfied. More preferably, θ2 = (5/9) θ1 and θ3 = (2/9) θ1. The first straight line R1 connecting the first bending point 51 and the rotational axis O of the rotor 20 and the second straight line R2 connecting the second bending point 52 and the rotational axis O of the rotor 20 are 1 ° in electrical angle. It's far away.

図8は、第2実施形態におけるU相誘起電圧とU−V線間電圧を示すものであるが、図3に示した従来の回転電機と比べて、電気角で120°及び300°近傍でU−V線間電圧のピークが低く平坦になっていることがわかる。   FIG. 8 shows the U-phase induced voltage and the U-V line voltage in the second embodiment. Compared to the conventional rotating electrical machine shown in FIG. 3, the electrical angle is around 120 ° and 300 °. It can be seen that the peak of the U-V line voltage is low and flat.

次に、本実施形態の回転電機10の形状を決める際の手順について図9を参照して説明する。
先ず、車両の搭載位置、スペースの関係から回転電機10の外径を決定する(ステップS21)。続いて、車両の要求トルクにより磁石位置を決定する(ステップS22)。永久磁石22a(22b)は、回転子コア21の外周側に配置するほどより多くのトルクを出力することができる。次に、最大回転数時の応力により最小肉厚部28の肉厚tを決定する(ステップS23)。そして、凸部31が(4/9)θ1<θ2<(2/3)θ1を満たすように第1屈曲点51を決定する(ステップS24)。続いて、第1屈曲点52より電気角で1°以上で第2屈曲点52を決定する(ステップS25)。
Next, a procedure for determining the shape of the rotating electrical machine 10 of the present embodiment will be described with reference to FIG.
First, the outer diameter of the rotating electrical machine 10 is determined from the relationship between the mounting position of the vehicle and the space (step S21). Subsequently, the magnet position is determined based on the required torque of the vehicle (step S22). The permanent magnet 22a (22b) can output more torque as it is arranged on the outer peripheral side of the rotor core 21. Next, the thickness t of the minimum thickness portion 28 is determined based on the stress at the maximum rotation speed (step S23). Then, the first bending point 51 is determined so that the convex portion 31 satisfies (4/9) θ1 <θ2 <(2/3) θ1 (step S24). Subsequently, the second bending point 52 is determined at an electrical angle of 1 ° or more from the first bending point 52 (step S25).

以上、説明したように本実施形態の回転電機10は、凸部31と非凸部41との境界部が、回転子20の外径側を凸とする第1屈曲点51と、回転子20の内径側を凸とする第2屈曲点52と、を有する場合であっても第1実施形態と同様に、トルク定数を低下させずに各相誘起電圧を調整することができる。そして、各相誘起電圧を調整することにより各相誘起電圧の差である線間電圧のピークを低下させることができる。従って、制御回路の耐電圧に対しマージンを持つことができるため信頼性を向上させることができる。あるいは、制御回路の耐電圧以下に収まる範囲で、モータ定数を向上させ高性能な回転電機とすることができる。   As described above, in the rotating electrical machine 10 according to the present embodiment, the boundary between the convex portion 31 and the non-convex portion 41 has the first bending point 51 in which the outer diameter side of the rotor 20 is convex, and the rotor 20. Even if it has the 2nd bending point 52 which makes the inner diameter side convex, similarly to the first embodiment, each phase induced voltage can be adjusted without reducing the torque constant. And the peak of the line voltage which is the difference of each phase induced voltage can be reduced by adjusting each phase induced voltage. Therefore, since a margin can be provided for the withstand voltage of the control circuit, the reliability can be improved. Alternatively, the motor constant can be improved and a high-performance rotating electrical machine can be obtained within a range that is less than or equal to the withstand voltage of the control circuit.

なお、第1実施形態と比べると、ピーク近傍で線間電圧が上下動しており、非凸部41は円弧形状よりもテーパ形状の方が好ましいといえる。これは、テーパ形状の方が磁束の流れが滑らかになり、波形のピークがより平坦になるからである。回路保護の観点では、より線間電圧が平坦の方がピークを抑えられるので有利となる。   Compared with the first embodiment, the line voltage moves up and down in the vicinity of the peak, and it can be said that the non-convex portion 41 is preferably tapered rather than arcuate. This is because the taper shape makes the flow of magnetic flux smoother and the waveform peak becomes flatter. From the viewpoint of circuit protection, it is more advantageous that the line voltage is flatter because the peak can be suppressed.

尚、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良等が可能である。   In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably.

10 回転電機
11 固定子
16 電機子巻線
20 回転子
21 回転子コア
21a 回転子コアの外周面
22a 永久磁石(永久磁石部)
22b 永久磁石(永久磁石部)
23 磁極部
23A 第1磁極部
23B 第2磁極部
26 溝部(磁束短絡防止部)
50 屈曲点
51 第1屈曲点
52 第2屈曲点
31 凸部(非凹部)
41 非凸部(凹部)
θ1 回転子磁極開角
θ2 凸部開角
θ3 非凸部開角(凹部開角)
O 回転軸心
P 磁極中心
DESCRIPTION OF SYMBOLS 10 Rotating electrical machine 11 Stator 16 Armature winding 20 Rotor 21 Rotor core 21a Outer peripheral surface 22a of rotor core Permanent magnet (permanent magnet part)
22b Permanent magnet (permanent magnet part)
23 magnetic pole part 23A first magnetic pole part 23B second magnetic pole part 26 groove part (magnetic flux short-circuit prevention part)
50 Bending Point 51 First Bending Point 52 Second Bending Point 31 Convex (non-concave)
41 Non-convex part (concave part)
θ1 Rotor magnetic pole opening angle θ2 Convex part opening angle θ3 Non-convex part opening angle (concave part opening angle)
O Rotational axis P Magnetic pole center

Claims (18)

複数の固定子磁極を有する固定子と、
回転子コアと、前記回転子コアの内部に配置されて磁極を構成する複数の永久磁石部とを有し、前記固定子の径方向内側に所定の隙間を介して回転自在に対向配置された回転子と、を備える永久磁石式回転電機であって、
前記回転子の外周部には、周方向の所定区間に亘って突出する凸部が各磁極に形成され、
前記凸部は、磁極中心を中心としてそれぞれ回転子磁極開角をθ1、凸部開角をθ2とすると、電気角で(4/9)θ1<θ2<(2/3)θ1を満たすように形成されることを特徴とする永久磁石式回転電機。
A stator having a plurality of stator poles;
It has a rotor core and a plurality of permanent magnet portions that are arranged inside the rotor core and constitute magnetic poles, and are arranged to face each other through a predetermined gap in a radial direction inside the stator. A permanent magnet rotating electrical machine comprising a rotor,
On the outer peripheral portion of the rotor, a convex portion protruding over a predetermined section in the circumferential direction is formed on each magnetic pole,
The protrusions satisfy the electrical angle of (4/9) θ1 <θ2 <(2/3) θ1, where the rotor magnetic pole opening angle is θ1 and the protrusion opening angle is θ2, respectively. A permanent magnet type rotating electrical machine characterized by being formed.
前記回転子の外周部には、前記凸部を周方向両側から挟む非凸部が各磁極に形成され、
前記凸部と前記非凸部との境界部が、それぞれ前記回転子の外径側を凸とする1つの屈曲点を有することを特徴とする請求項1に記載の永久磁石式回転電機。
A non-convex portion that sandwiches the convex portion from both sides in the circumferential direction is formed on each magnetic pole on the outer peripheral portion of the rotor,
2. The permanent magnet type rotating electrical machine according to claim 1, wherein a boundary portion between the convex portion and the non-convex portion has one bending point that is convex toward the outer diameter side of the rotor.
前記回転子の外周部には、前記凸部を周方向両側から挟む非凸部が各磁極に形成され、
前記凸部と前記非凸部との境界部が、それぞれ前記回転子の外径側を凸とする屈曲点と、前記回転子の内径側を凸とする屈曲点と、を有することを特徴とする請求項1に記載の永久磁石式回転電機。
A non-convex portion that sandwiches the convex portion from both sides in the circumferential direction is formed on each magnetic pole on the outer peripheral portion of the rotor,
The boundary between the convex portion and the non-convex portion has a bending point that is convex on the outer diameter side of the rotor and a bending point that is convex on the inner diameter side of the rotor, respectively. The permanent magnet type rotating electric machine according to claim 1.
前記凸部の外周面は、前記回転子の回転軸心を中心とする円弧状に形成されることを特徴とする請求項1〜3のいずれか1項に記載の永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to any one of claims 1 to 3, wherein an outer peripheral surface of the convex portion is formed in an arc shape centering on a rotation axis of the rotor. 前記固定子の内周面は、前記凸部の外周面と相似形状を有することを特徴とする請求項4に記載の永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to claim 4, wherein an inner peripheral surface of the stator has a shape similar to an outer peripheral surface of the convex portion. 前記回転子には、周方向に隣接する前記磁極間に磁束短絡防止部が形成されることを特徴とする請求項1〜5のいずれか1項に記載の永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to any one of claims 1 to 5, wherein a magnetic flux short-circuit prevention portion is formed between the magnetic poles adjacent to each other in the circumferential direction of the rotor. 前記磁束短絡防止部は、前記回転子の外周面から凹設される溝部であり、
前記溝部の最内径部は、前記永久磁石部の最外径部よりも径方向内側に位置することを特徴とする請求項6に記載の永久磁石式回転電機。
The magnetic flux short-circuit prevention portion is a groove portion that is recessed from the outer peripheral surface of the rotor,
The permanent magnet type rotating electrical machine according to claim 6, wherein the innermost diameter portion of the groove portion is located radially inside the outermost diameter portion of the permanent magnet portion.
θ2=(5/9)θ1であることを特徴とする請求項1〜7のいずれか1項に記載の永久磁石式回転電機。   The permanent magnet type rotating electric machine according to claim 1, wherein θ2 = (5/9) θ1. 前記固定子の磁極数と前記回転子の磁極数との比率を3:2とすることを特徴とする請求項1〜8のいずれか1項に記載の永久磁石式回転電機。   The permanent magnet rotating electrical machine according to any one of claims 1 to 8, wherein a ratio of the number of magnetic poles of the stator to the number of magnetic poles of the rotor is 3: 2. 複数の固定子磁極を有する固定子と、
回転子コアと、前記回転子コアの内部に配置されて磁極を構成する複数の永久磁石部とを有し、前記固定子の径方向内側に所定の隙間を介して回転自在に対向配置された回転子と、を備える永久磁石式回転電機であって、
前記回転子の外周部には、周方向の所定区間に亘って窪む凹部が各磁極の周方向両側に形成され、
前記凹部は、前記回転子の磁極中心を基準に回転子磁極開角をθ1、前記回転子の磁極端部側から磁極中心側に向かう凹部開角をθ3とすると、電気角で(1/6)θ1<θ3<(5/18)θ1を満たすように形成されることを特徴とする永久磁石式回転電機。
A stator having a plurality of stator poles;
It has a rotor core and a plurality of permanent magnet portions that are arranged inside the rotor core and constitute magnetic poles, and are arranged to face each other through a predetermined gap in a radial direction inside the stator. A permanent magnet rotating electrical machine comprising a rotor,
On the outer periphery of the rotor, recesses that are recessed over a predetermined section in the circumferential direction are formed on both sides in the circumferential direction of each magnetic pole,
The recess has an electrical angle of (1/6) when the rotor magnetic pole opening angle is θ1 with respect to the magnetic pole center of the rotor and the recess opening angle from the rotor magnetic pole end side toward the magnetic pole center side is θ3. ) A permanent magnet type rotating electrical machine formed so as to satisfy θ1 <θ3 <(5/18) θ1.
前記回転子の外周部には、前記凹部に挟まれる非凹部が各磁極に形成され、
前記非凹部と前記凹部との境界部が、それぞれ前記回転子の外径側を凸とする1つの屈曲点を有することを特徴とする請求項10に記載の永久磁石式回転電機。
On the outer periphery of the rotor, non-recesses sandwiched between the recesses are formed in each magnetic pole,
11. The permanent magnet type rotating electrical machine according to claim 10, wherein a boundary portion between the non-recessed portion and the recessed portion has one bending point that protrudes from the outer diameter side of the rotor.
前記回転子の外周部には、前記凹部に挟まれる非凹部が各磁極に形成され、
前記非凹部と前記凹部との境界部が、それぞれ前記回転子の外径側を凸とする屈曲点と、前記回転子の内径側を凸とする屈曲点と、を有することを特徴とする請求項10に記載の永久磁石式回転電機。
On the outer periphery of the rotor, non-recesses sandwiched between the recesses are formed in each magnetic pole,
The boundary between the non-recessed portion and the recessed portion has a bending point that protrudes on the outer diameter side of the rotor and a bending point that protrudes on the inner diameter side of the rotor, respectively. Item 11. The permanent magnet type rotating electrical machine according to Item 10.
前記非凹部の外周面は、前記回転子の回転軸心を中心とする円弧状に形成されることを特徴とする請求項11又は12に記載の永久磁石式回転電機。   13. The permanent magnet type rotating electric machine according to claim 11, wherein an outer peripheral surface of the non-recess is formed in an arc shape centering on a rotation axis of the rotor. 前記固定子の内周面は、前記非凹部の外周面より大径の円弧状に形成されることを特徴とする請求項13に記載の永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to claim 13, wherein an inner peripheral surface of the stator is formed in an arc shape having a larger diameter than an outer peripheral surface of the non-recessed portion. 前記回転子には、周方向に隣接する前記磁極間に磁束短絡防止部が形成されることを特徴とする請求項10〜14のいずれか1項に記載の永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to any one of claims 10 to 14, wherein a magnetic flux short-circuit prevention portion is formed between the magnetic poles adjacent to each other in the circumferential direction of the rotor. 前記磁束短絡防止部は、前記回転子の外周面から凹設される溝部であり、
前記溝部の最内径部は、前記永久磁石部の最外径部よりも径方向内側に位置することを特徴とする請求項15に記載の永久磁石式回転電機。
The magnetic flux short-circuit prevention portion is a groove portion that is recessed from the outer peripheral surface of the rotor,
The permanent magnet type rotating electrical machine according to claim 15, wherein the innermost diameter portion of the groove portion is located radially inside the outermost diameter portion of the permanent magnet portion.
θ3=(2/9)θ1であることを特徴とする請求項10〜16のいずれか1項に記載の永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to any one of claims 10 to 16, wherein θ3 = (2/9) θ1. 前記固定子の磁極数と前記回転子の磁極数との比率を3:2とすることを特徴とする請求項10〜17のいずれか1項に記載の永久磁石式回転電機。   The permanent magnet rotating electrical machine according to any one of claims 10 to 17, wherein a ratio of the number of magnetic poles of the stator to the number of magnetic poles of the rotor is 3: 2.
JP2010151273A 2010-07-01 2010-07-01 Permanent-magnet rotating electrical machine Pending JP2012016189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010151273A JP2012016189A (en) 2010-07-01 2010-07-01 Permanent-magnet rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010151273A JP2012016189A (en) 2010-07-01 2010-07-01 Permanent-magnet rotating electrical machine

Publications (1)

Publication Number Publication Date
JP2012016189A true JP2012016189A (en) 2012-01-19

Family

ID=45601958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010151273A Pending JP2012016189A (en) 2010-07-01 2010-07-01 Permanent-magnet rotating electrical machine

Country Status (1)

Country Link
JP (1) JP2012016189A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093852A (en) * 2012-11-02 2014-05-19 Kubota Corp Permanent magnet type synchronization motor
JP2014131373A (en) * 2012-12-28 2014-07-10 Hitachi Appliances Inc Permanent magnet synchronous machine
JP2017147903A (en) * 2016-02-19 2017-08-24 株式会社豊田自動織機 Permanent magnet type rotary electric machine
CN111869060A (en) * 2018-03-30 2020-10-30 株式会社牧田 Electric tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343861A (en) * 2003-05-14 2004-12-02 Matsushita Electric Ind Co Ltd Permanent magnet synchronous motor
JP2005354798A (en) * 2004-06-10 2005-12-22 Fujitsu General Ltd Electric motor
JP2007074898A (en) * 2006-12-15 2007-03-22 Hitachi Ltd Permanent magnet type rotary electric machine and compressor using same
JP2008245384A (en) * 2007-03-27 2008-10-09 Hitachi Ltd Permanent magnet type rotary electric machine, and compressor using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343861A (en) * 2003-05-14 2004-12-02 Matsushita Electric Ind Co Ltd Permanent magnet synchronous motor
JP2005354798A (en) * 2004-06-10 2005-12-22 Fujitsu General Ltd Electric motor
JP2007074898A (en) * 2006-12-15 2007-03-22 Hitachi Ltd Permanent magnet type rotary electric machine and compressor using same
JP2008245384A (en) * 2007-03-27 2008-10-09 Hitachi Ltd Permanent magnet type rotary electric machine, and compressor using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093852A (en) * 2012-11-02 2014-05-19 Kubota Corp Permanent magnet type synchronization motor
JP2014131373A (en) * 2012-12-28 2014-07-10 Hitachi Appliances Inc Permanent magnet synchronous machine
JP2017147903A (en) * 2016-02-19 2017-08-24 株式会社豊田自動織機 Permanent magnet type rotary electric machine
CN111869060A (en) * 2018-03-30 2020-10-30 株式会社牧田 Electric tool
US20210091640A1 (en) * 2018-03-30 2021-03-25 Makita Corporation Electric power tool
US11646639B2 (en) * 2018-03-30 2023-05-09 Makita Corporation Electric power tool

Similar Documents

Publication Publication Date Title
CN106953440B (en) Rotating electric machine and method for manufacturing rotor core
JP6422595B2 (en) Electric motor and air conditioner
US9490673B2 (en) Rotor of magnet-assisted reluctance motor and brushless motor
JP5659031B2 (en) Permanent magnet rotating electric machine
JP5935615B2 (en) Rotating electrical machine rotor
JP6385715B2 (en) Rotating electric machine
JP6385588B2 (en) Rotor and rotating electric machine
JP5725202B2 (en) Electric motor
JP2015204715A (en) Rotor for rotary electric machine
JP2006121765A (en) Reluctance rotary electric machine
JP2000333389A (en) Permanent magnet motor
WO2014162804A1 (en) Rotating electrical machine with embedded permanent magnet
JP6748852B2 (en) Brushless motor
WO2012008012A1 (en) Permanent magnet rotating electric machine
JP2018198534A (en) Rotary electric machine
JP2012016189A (en) Permanent-magnet rotating electrical machine
JP6507956B2 (en) Permanent magnet type rotating electric machine
JP4080273B2 (en) Permanent magnet embedded motor
JP2012023876A (en) Permanent magnet rotary electric machine
EP3499686A2 (en) Switched reluctance electric machine including pole flux barriers
JP6357859B2 (en) Permanent magnet embedded rotary electric machine
WO2016024325A1 (en) Dynamo-electric machine
JP2014039399A (en) Rotor for magnet-assisted type reluctance motor and brushless motor
JP5879848B2 (en) Rotor for interior magnet type rotary electric machine
JP2024007285A (en) Embedded magnet type rotor and rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140624