JP2014130975A - Method of manufacturing substrate with multilayer reflection film, method of manufacturing reflective mask blank, and method of manufacturing reflective mask - Google Patents

Method of manufacturing substrate with multilayer reflection film, method of manufacturing reflective mask blank, and method of manufacturing reflective mask Download PDF

Info

Publication number
JP2014130975A
JP2014130975A JP2012289237A JP2012289237A JP2014130975A JP 2014130975 A JP2014130975 A JP 2014130975A JP 2012289237 A JP2012289237 A JP 2012289237A JP 2012289237 A JP2012289237 A JP 2012289237A JP 2014130975 A JP2014130975 A JP 2014130975A
Authority
JP
Japan
Prior art keywords
refractive index
index layer
film
substrate
multilayer reflective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012289237A
Other languages
Japanese (ja)
Other versions
JP6126847B2 (en
Inventor
Hirofumi Kosakai
弘文 小坂井
Kazuhiro Hamamoto
和宏 浜本
Osamu Maruyama
修 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2012289237A priority Critical patent/JP6126847B2/en
Publication of JP2014130975A publication Critical patent/JP2014130975A/en
Application granted granted Critical
Publication of JP6126847B2 publication Critical patent/JP6126847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a substrate with a multilayer reflection film which can satisfy three characteristics of high reflectance, high film thickness uniformity, and low surface roughness.SOLUTION: A multilayer reflection film is formed by laminating a plurality of periods of a lamination structure, where a high refractive index layer and a low refractive index layer are deposited in this order on a substrate, or a lamination structure, where a low refractive index layer and a high refractive index layer are laminated in this order, by using an ion beam sputtering method. The low refractive index layer is deposited by changing the deposition conditions so that, in the region of a low refractive index layer near the boundary to a high refractive index layer immediately above or below, the reflectance of multilayer reflective film is 65% or more than that of other regions, the in-plane variation of center wavelength is 0.04 nm or less, and the surface roughness of square mean root is 0.15 nm or less.

Description

本発明は、半導体装置製造等に使用される露光用マスクを製造するための原版である多層反射膜付き基板の製造方法、反射型マスクブランクの製造方法、及び反射型マスクの製造方法に関するものである。   The present invention relates to a method for manufacturing a substrate with a multilayer reflective film, a method for manufacturing a reflective mask blank, and a method for manufacturing a reflective mask, which are original plates for manufacturing an exposure mask used in semiconductor device manufacturing and the like. is there.

近年における超LSIデバイスの高密度化、高精度化の更なる要求に伴い、極紫外(ExtremeUltra Violet:以下、EUVと呼称する)光を用いた露光技術であるEUVリソグラフィが有望視されている。ここで、EUV光とは、軟X線領域又は真空紫外線領域の波長帯の光を指し、具体的には波長が0.2〜100nm程度の光のことである。このEUVリソグラフィにおいて用いられるマスクとしては、たとえば下記特許文献1に記載された露光用反射型マスクが提案されている。 With the further demand for higher density and higher precision of VLSI devices in recent years, EUV lithography, which is an exposure technique using extreme ultraviolet (hereinafter referred to as EUV) light, is promising. Here, EUV light refers to light in the wavelength band of the soft X-ray region or the vacuum ultraviolet region, and specifically refers to light having a wavelength of about 0.2 to 100 nm. As a mask used in this EUV lithography, for example, an exposure reflective mask described in Patent Document 1 below has been proposed.

このような反射型マスクは、基板上に露光光を反射する多層反射膜が形成され、該多層反射膜上に露光光を吸収する吸収体膜がパターン状に形成されたものである。露光機(パターン転写装置)に搭載された反射型マスクに入射した光は、吸収体膜のある部分では吸収され、吸収体膜のない部分では多層反射膜により反射された光像が反射光学系を通して半導体基板上に転写される。 In such a reflective mask, a multilayer reflective film that reflects exposure light is formed on a substrate, and an absorber film that absorbs exposure light is formed in a pattern on the multilayer reflective film. Light incident on a reflective mask mounted on an exposure machine (pattern transfer device) is absorbed in a part where the absorber film is present, and a light image reflected by the multilayer reflective film is reflected in a part where there is no absorber film. And transferred onto the semiconductor substrate.

このような反射型マスクを用いて半導体デバイスの高密度化、高精度化を達成するためには、反射型マスクにおける反射領域(多層反射膜の表面)が露光光であるEUV光に対して高反射率を備えることが必要とされる。
上記多層反射膜は、屈折率の異なる元素が周期的に積層された多層膜であり、一般的には、重元素又はその化合物の薄膜と、軽元素又はその化合物の薄膜とが交互に40〜60周期程度積層された多層膜が用いられる。例えば、波長13〜14nmのEUV光に対する多層反射膜としては、Mo膜とSi膜を交互に40周期程度積層したMo/Si周期積層膜が好ましく用いられる。
In order to achieve higher density and higher accuracy of semiconductor devices using such a reflective mask, the reflective region (surface of the multilayer reflective film) in the reflective mask is higher than the EUV light that is the exposure light. It is necessary to provide reflectivity.
The multilayer reflective film is a multilayer film in which elements having different refractive indexes are periodically laminated. Generally, a thin film of a heavy element or a compound thereof and a thin film of a light element or a compound thereof are alternately 40 to 40 A multilayer film laminated for about 60 cycles is used. For example, as a multilayer reflective film for EUV light having a wavelength of 13 to 14 nm, a Mo / Si periodic laminated film in which Mo films and Si films are alternately laminated for about 40 cycles is preferably used.

例えば、特許文献2には、Mo/Si周期積層膜からなる多層反射膜を、イオンビームスパッタリング法を用いて、基板の法線と基板に入射するスパッタ粒子とがなす角度を35度以上80度以下に保持して成膜することが記載されている。
また、特許文献3には、多層反射膜の高屈折率層である例えばSi層は、基板表面に対してスパッタ粒子が概ね垂直方向に入射するように成膜する直入射成膜で形成し、低屈折率層である例えばMo層は、基板の法線方向に対して40度以上80度以下の角度でスパッタ粒子が入射するように成膜する斜入射成膜で形成することが記載されている。
For example, in Patent Document 2, an angle formed between a normal line of a substrate and sputtered particles incident on the substrate is set to 35 degrees or more and 80 degrees by using an ion beam sputtering method for a multilayer reflective film made of a Mo / Si periodic laminated film. The following describes that the film is formed while being held.
Further, in Patent Document 3, for example, a Si layer, which is a high refractive index layer of a multilayer reflective film, is formed by direct incidence film formation so that sputtered particles are incident on the substrate surface in a substantially vertical direction. It is described that, for example, a Mo layer which is a low refractive index layer is formed by oblique incidence film formation in which sputtered particles are incident at an angle of 40 degrees to 80 degrees with respect to the normal direction of the substrate. Yes.

特開2002−122981号公報JP 2002-122981 A 特許第4858539号公報Japanese Patent No. 4858539 特開2009−272317号公報JP 2009-272317 A

しかしながら、上記特許文献2、特許文献3に開示されているような高反射率を得るための成膜条件で多層反射膜を形成した場合、多層反射膜の表面粗さが劣化するという問題が生じる。一方、主に直入射成膜により表面粗さを改善するような成膜条件で多層反射膜を形成した場合、基板の法線方向に近い角度でスパッタ粒子が入射するため、入射原子の法線方向の運動エネルギーが大きく、Si層とMo層間の拡散層が大きくなるので、多層反射膜の露光光反射率が低下するという問題が生じる。   However, when the multilayer reflective film is formed under the film forming conditions for obtaining a high reflectance as disclosed in Patent Document 2 and Patent Document 3, the problem arises that the surface roughness of the multilayer reflective film deteriorates. . On the other hand, when a multilayer reflective film is formed under film-forming conditions that improve surface roughness mainly by direct-incidence film formation, the sputtered particles are incident at an angle close to the normal direction of the substrate. Since the kinetic energy in the direction is large and the diffusion layer between the Si layer and the Mo layer becomes large, there arises a problem that the exposure light reflectance of the multilayer reflective film decreases.

近年、DRAM hp20nm以降の世代で使用される反射型マスクブランクの光学的な仕様として、反射率や、中心波長(CW)のばらつきに関する要求が年々厳しくなってきているが、欠陥品質においても、高感度欠陥検査装置を使用してマスクブランクの品質を保証することが求められている。しかし、多層反射膜の表面粗さが大きいとバックグラウンドノイズによる多数の擬似欠陥が検出されてしまい、高精度の欠陥検査ができないという問題がある。   In recent years, as optical specifications of reflective mask blanks used in generations after DRAM hp 20 nm, requirements regarding reflectance and variation in center wavelength (CW) have become stricter year by year. It is required to guarantee the quality of the mask blank using a sensitivity defect inspection apparatus. However, if the surface roughness of the multilayer reflective film is large, a large number of pseudo defects due to background noise are detected, and there is a problem that a highly accurate defect inspection cannot be performed.

従って、近年の反射型マスクブランクにおいては、高反射率であることだけでなく、中心波長のばらつきに影響する多層反射膜の膜厚の面内均一性や、多層反射膜が低表面粗さであることも求められている。しかし、従来の多層反射膜の成膜条件では、高反射率、高面内均一性、低表面粗さの特性をすべて満足させることが困難であった。   Therefore, in recent reflective mask blanks, not only is the reflectance high, but also the in-plane uniformity of the multilayer reflective film thickness that affects the variation in the center wavelength, and the multilayer reflective film has a low surface roughness. There is also a need to be. However, it has been difficult to satisfy all of the characteristics of high reflectivity, high in-plane uniformity, and low surface roughness under the conventional conditions for forming a multilayer reflective film.

そこで本発明の目的は、第一に、高反射率、高面内均一性、及び低表面粗さの3つの特性をすべて満足させることが可能な高品質の多層反射膜付き基板の製造方法を提供することであり、第二に、このような多層反射膜付き基板を用いた反射型マスクブランクの製造方法、及び反射型マスクの製造方法を提供することである。 Accordingly, an object of the present invention is, firstly, to provide a method for manufacturing a substrate with a high-quality multilayer reflective film that can satisfy all three characteristics of high reflectivity, high in-plane uniformity, and low surface roughness. Second, to provide a method for manufacturing a reflective mask blank using such a substrate with a multilayer reflective film, and a method for manufacturing a reflective mask.

本発明者は、上記課題を解決するため鋭意研究した結果、本発明を完成したものである。
すなわち、上記課題を解決するため、本発明は以下の構成を有する。
(構成1)
基板上に低屈折率層と高屈折率層とを交互に積層させた多層膜からなる露光光を反射する多層反射膜を備える多層反射膜付き基板の製造方法であって、前記多層反射膜は、前記基板上に、高屈折率層と低屈折率層をこの順に成膜した積層構造、若しくは、低屈折率層と高屈折率層をこの順に積層した積層構造を1周期として複数周期積層した構成のものであり、前記低屈折率層は、前記多層反射膜の反射率が65%以上、中心波長の面内ばらつきが0.04nm以下、表面粗さが二乗平均平方根粗さで0.15nm以下となるように、該低屈折率層の直下及び直上の前記高屈折率層との境界近傍領域ではそれ以外の領域とは、成膜条件を変更して成膜することを特徴とする多層反射膜付き基板の製造方法。
The present inventor has completed the present invention as a result of intensive studies to solve the above problems.
That is, in order to solve the above problems, the present invention has the following configuration.
(Configuration 1)
A method of manufacturing a substrate with a multilayer reflective film comprising a multilayer reflective film that reflects exposure light comprising a multilayer film in which low refractive index layers and high refractive index layers are alternately laminated on a substrate, wherein the multilayer reflective film comprises: A laminated structure in which a high refractive index layer and a low refractive index layer are formed in this order on the substrate, or a laminated structure in which a low refractive index layer and a high refractive index layer are laminated in this order are laminated in a plurality of periods. The low refractive index layer has a reflectance of 65% or more, an in-plane variation of the center wavelength of 0.04 nm or less, and a surface roughness of 0.15 nm in terms of root mean square roughness. A multilayer characterized in that the film is formed by changing the film formation conditions in the vicinity of the boundary with the high refractive index layer immediately below and immediately above the low refractive index layer, as described below. A method for manufacturing a substrate with a reflective film.

構成1のように、前記基板上に、高屈折率層と低屈折率層をこの順に成膜した積層構造、若しくは、低屈折率層と高屈折率層をこの順に積層した積層構造を1周期として複数周期積層して多層反射膜を形成する際、前記低屈折率層は、前記多層反射膜の反射率が65%以上、中心波長の面内ばらつきが0.04nm以下、表面粗さが二乗平均平方根粗さで0.15nm以下となるように、該低屈折率層の直下及び直上の前記高屈折率層との境界近傍領域ではそれ以外の領域とは、成膜条件を変更して成膜する。このように多層反射膜の表面状態に大きく左右する低屈折率層の成膜条件を、低屈折率層の直下及び直上の高屈折率層との境界近傍領域とそれ以外の領域において、高反射率及び高い膜厚の面内均一性を実現できる成膜条件と、前記境界近傍領域以外を、低表面粗さを実現できる成膜条件とを適用することで、形成される多層反射膜の高反射率、中心波長の低面内ばらつき、及び低表面粗さの3つの特性をそれぞれの最良値で両立させることができる。   As in Configuration 1, a single layer of a laminated structure in which a high refractive index layer and a low refractive index layer are formed in this order on the substrate, or a laminated structure in which a low refractive index layer and a high refractive index layer are laminated in this order. When the multilayer reflective film is formed by laminating a plurality of periods, the low refractive index layer has a reflectance of 65% or more, an in-plane variation of the center wavelength of 0.04 nm or less, and a surface roughness of square. In the region near the boundary with the high refractive index layer immediately below and just above the low refractive index layer, the average square root roughness is 0.15 nm or less. Film. In this way, the film formation conditions of the low-refractive index layer, which greatly depends on the surface state of the multilayer reflective film, are set to be highly reflective in the region near the boundary with the high-refractive index layer immediately below and immediately above the low-refractive index layer and other regions. By applying the film forming conditions that can realize the rate and high in-plane uniformity of the film thickness and the film forming conditions that can realize the low surface roughness other than the region near the boundary, The three characteristics of reflectivity, low in-plane variation of the center wavelength, and low surface roughness can be achieved at their respective best values.

(構成2)
前記多層反射膜は、イオンビームスパッタリング法を用いて成膜することを特徴とする構成1に記載の多層反射膜付き基板の製造方法。
本発明は、構成2にあるように、イオンビームスパッタリング法を用いて多層反射膜を成膜する場合に本発明の効果がより良く発揮されるので好適である。
(Configuration 2)
2. The method for manufacturing a substrate with a multilayer reflective film according to Configuration 1, wherein the multilayer reflective film is formed using an ion beam sputtering method.
The present invention is preferable since the effect of the present invention is more effectively exhibited when the multilayer reflective film is formed by using the ion beam sputtering method as in Configuration 2.

(構成3)
前記低屈折率層の成膜条件は、前記基板の主表面の法線に対するスパッタ粒子の入射角度であることを特徴とする構成1又は2に記載の多層反射膜付き基板の製造方法。
構成3のように、低屈折率層の成膜条件として、基板の主表面の法線に対するスパッタ粒子の入射角度を変更することにより、本発明の効果が好ましく得られる。
(Configuration 3)
3. The method for manufacturing a substrate with a multilayer reflective film according to Configuration 1 or 2, wherein the film formation condition of the low refractive index layer is an incident angle of sputtered particles with respect to a normal line of the main surface of the substrate.
As in the configuration 3, the effect of the present invention is preferably obtained by changing the incident angle of the sputtered particles with respect to the normal line of the main surface of the substrate as the film forming condition of the low refractive index layer.

(構成4)
前記低屈折率層は、該低屈折率層の直下及び直上の前記高屈折率層との境界近傍領域における前記基板の主表面の法線に対するスパッタ粒子の入射角度が、前記境界近傍領域以外における前記基板の主表面の法線に対するスパッタ粒子の入射角度よりも大きい成膜条件にてスパッタリング成膜することを特徴とする構成3に記載の多層反射膜付き基板の製造方法。
構成4のように、このように多層反射膜の表面状態に大きく左右する低屈折率層の成膜条件を、低屈折率層の直下及び直上の高屈折率層との境界近傍領域を、高反射率及び高い膜厚の面内均一性を実現できる成膜条件である基板の主表面の法線に対するスパッタ粒子の入射角度が比較的に大きい条件と、前記境界近傍領域以外を、低表面粗さを実現できる成膜条件である基板の主表面の法線に対するスパッタ粒子の入射角度が比較的小さい条件とを適用することで、形成される多層反射膜の高反射率、中心波長の低面内ばらつき、及び低表面粗さの3つの特性をそれぞれの最良値で両立させることができる。
(Configuration 4)
In the low refractive index layer, the incident angle of the sputtered particles with respect to the normal of the main surface of the substrate in the region near the boundary with the high refractive index layer immediately below and immediately above the low refractive index layer is other than in the region near the boundary. 4. The method for manufacturing a substrate with a multilayer reflective film according to Configuration 3, wherein sputtering film formation is performed under film formation conditions larger than an incident angle of sputtered particles with respect to a normal line of a main surface of the substrate.
As in Configuration 4, the film formation conditions of the low refractive index layer, which greatly depends on the surface state of the multilayer reflective film, are set in the region near the boundary with the high refractive index layer immediately below and immediately above the low refractive index layer. Low surface roughness except for the condition where the incident angle of the sputtered particles is relatively large with respect to the normal of the main surface of the substrate, which is a film forming condition that can realize reflectivity and in-plane uniformity with a high film thickness, and the region near the boundary. By applying the conditions under which the incident angle of the sputtered particles is relatively small with respect to the normal of the main surface of the substrate, which is a film forming condition that can realize a high degree of reflectance, the multilayer reflective film to be formed has a high reflectance and a low center wavelength The three characteristics of internal variation and low surface roughness can be made compatible at the respective best values.

(構成5)
前記低屈折率層の成膜時に、前記基板の主表面の法線に対するスパッタ粒子の入射角度を、前記低屈折率層の直下及び直上の前記低屈折率層との境界近傍領域では45度以上55度以下の範囲、それ以外の領域では20度以上40度以下の範囲とすることを特徴とする構成4に記載の多層反射膜付き基板の製造方法。
構成5にあるように、低屈折率層の成膜時に、基板の主表面の法線に対するスパッタ粒子の入射角度を、低屈折率層の直下及び直上の高屈折率層との境界近傍領域では45度以上55度以下の範囲、それ以外の領域では20度以上40度以下の範囲とすることにより、上記境界近傍領域では高反射率及び高い膜厚の面内均一性を実現できる成膜条件を、それ以外の領域では低表面粗さを実現できる成膜条件をそれぞれ適用して、形成される多層反射膜の高反射率、中心波長の低面内ばらつき、及び低表面粗さの3つの特性をそれぞれの最良値で両立させることができる。
(Configuration 5)
During the formation of the low refractive index layer, the incident angle of the sputtered particles with respect to the normal of the main surface of the substrate is 45 degrees or more in the region near the boundary with the low refractive index layer immediately below and immediately above the low refractive index layer. The method for producing a substrate with a multilayer reflective film according to Configuration 4, wherein the range is 55 ° or less, and the other region is 20 ° or more and 40 ° or less.
As in Configuration 5, when the low refractive index layer is formed, the incident angle of the sputtered particles with respect to the normal of the main surface of the substrate is set in the region near the boundary with the high refractive index layer immediately below and immediately above the low refractive index layer. Film forming conditions that can achieve high reflectivity and high in-plane uniformity in the region near the boundary by setting the range from 45 degrees to 55 degrees and in the other areas from 20 degrees to 40 degrees. In other areas, film formation conditions that can realize low surface roughness are applied, respectively, and the three types of reflection characteristics, that is, the high reflectance of the multilayer reflective film, the low in-plane variation of the center wavelength, and the low surface roughness. It is possible to achieve both characteristics at the best values.

(構成6)
前記高屈折率層との境界近傍領域は、2nm以下の領域であることを特徴とする構成1乃至5のいずれかに記載の多層反射膜付き基板の製造方法。
本発明の効果が好ましく得られるためには、構成6のように、高屈折率層との境界近傍領域は、2nm以下の領域であることが望ましい。
(Configuration 6)
6. The method for manufacturing a multilayer reflective film-coated substrate according to any one of Structures 1 to 5, wherein a region in the vicinity of the boundary with the high refractive index layer is a region of 2 nm or less.
In order to obtain the effect of the present invention preferably, it is desirable that the region in the vicinity of the boundary with the high refractive index layer is a region of 2 nm or less as in the configuration 6.

(構成7)
構成1乃至6のいずれかに記載の製造方法により得られる多層反射膜付き基板における前記多層反射膜上に、露光光を吸収する吸収体膜を形成することを特徴とする反射型マスクブランクの製造方法。
本発明により得られる高反射率、中心波長の低面内ばらつき、及び低表面粗さの3つの特性を満足する多層反射膜付き基板を用いて反射型マスクブランクを製造することにより、高感度欠陥検査装置を使用した欠陥検査によりマスクブランクの品質を保証することが可能な高反射率の反射型マスクブランクが得られる。
(Configuration 7)
Manufacturing of a reflective mask blank, characterized in that an absorber film that absorbs exposure light is formed on the multilayer reflective film in the multilayer reflective film-coated substrate obtained by the manufacturing method according to any one of Structures 1 to 6. Method.
By manufacturing a reflective mask blank using a substrate with a multilayer reflective film that satisfies the three characteristics of high reflectivity, low in-plane variation of the center wavelength, and low surface roughness obtained by the present invention, high sensitivity defects A reflective mask blank having a high reflectance capable of assuring the quality of the mask blank can be obtained by defect inspection using an inspection apparatus.

(構成8)
構成7に記載の製造方法により得られる反射型マスクブランクにおける前記吸収体膜をパターニングすることを特徴とする反射型マスクの製造方法。
高品質を保証することが可能な本発明の反射型マスクブランクを用いて反射型マスクを製造することにより、欠陥の少ない高品質の反射型マスクが得られる。
(Configuration 8)
A method for manufacturing a reflective mask, comprising: patterning the absorber film in a reflective mask blank obtained by the manufacturing method according to Configuration 7.
By manufacturing a reflective mask using the reflective mask blank of the present invention capable of guaranteeing high quality, a high quality reflective mask with few defects can be obtained.

本発明によれば、高反射率、中心波長の低面内ばらつき、及び低表面粗さの3つの特性をすべて満足させ、これらの特性をそれぞれの最良値で両立させることが可能な高品質の多層反射膜付き基板を得ることができる。
また、本発明によれば、このような多層反射膜付き基板を用いることにより、高感度欠陥検査装置を使用した欠陥検査によりマスクブランクの品質を保証することが可能な高反射率の反射型マスクブランクが得られる。
さらに、このような本発明の反射型マスクブランクを用いて反射型マスクを製造することにより、欠陥の少ない高品質の反射型マスクが得られる。
According to the present invention, all of the three characteristics of high reflectivity, low in-plane variation of the center wavelength, and low surface roughness are satisfied, and these characteristics are compatible with each other at the best value. A substrate with a multilayer reflective film can be obtained.
Further, according to the present invention, by using such a substrate with a multilayer reflective film, a reflective mask having a high reflectance that can guarantee the quality of a mask blank by defect inspection using a high-sensitivity defect inspection apparatus. A blank is obtained.
Furthermore, by manufacturing a reflective mask using such a reflective mask blank of the present invention, a high-quality reflective mask with few defects can be obtained.

多層反射膜付き基板の層構成を示す断面図である。It is sectional drawing which shows the layer structure of a board | substrate with a multilayer reflective film. 反射型マスクブランクの層構成を示す断面図である。It is sectional drawing which shows the layer structure of a reflection type mask blank. 反射型マスクの層構成を示す断面図である。It is sectional drawing which shows the layer structure of a reflection type mask. 多層反射膜付き基板の詳細な層構成を示す断面図である。It is sectional drawing which shows the detailed layer structure of a board | substrate with a multilayer reflective film. イオンビームスパッタリング装置の構成を示す模式図である。It is a schematic diagram which shows the structure of an ion beam sputtering apparatus.

以下、本発明を実施の形態により詳細に説明する。
[多層反射膜付き基板]
まず、本発明に係る多層反射膜付き基板について説明する。
図1は、本発明に係る多層反射膜付き基板の層構成を示す断面図であり、基板1の上に、露光光であるEUV光を反射する多層反射膜2を備えた構造の多層反射膜付き基板10を示す。
上記基板1は、EUV露光用の場合、露光時の熱によるパターンの歪みを防止するため、0±1.0×10−7/℃の範囲内、より好ましくは0±0.3×10−7/℃の範囲内の低熱膨張係数を有するものが好ましく用いられ、この範囲の低熱膨張係数を有する素材としては、例えば、SiO−TiO系ガラス、多成分系ガラスセラミックス等を用いることが出来る。
Hereinafter, the present invention will be described in detail by embodiments.
[Substrate with multilayer reflective film]
First, the multilayer reflective film-coated substrate according to the present invention will be described.
FIG. 1 is a cross-sectional view showing a layer structure of a substrate with a multilayer reflective film according to the present invention. The multilayer reflective film has a multilayer reflective film 2 that reflects EUV light as exposure light on the substrate 1. The attached substrate 10 is shown.
In the case of EUV exposure, the substrate 1 is in the range of 0 ± 1.0 × 10 −7 / ° C., more preferably 0 ± 0.3 × 10 in order to prevent pattern distortion due to heat during exposure. Those having a low thermal expansion coefficient in the range of 7 / ° C. are preferably used, and as a material having a low thermal expansion coefficient in this range, for example, SiO 2 —TiO 2 glass, multicomponent glass ceramics, or the like is used. I can do it.

上記基板1の転写パターンが形成される側の主表面は、少なくともパターン転写精度、位置精度を得る観点から高平坦度となるように表面加工されている。例えば、EUV露光用の場合、基板の転写パターンが形成される側の主表面142mm×142mmの領域において、平坦度が0.1μm以下であることが好ましく、特に好ましくは0.05μm以下である。また、転写パターンが形成される側と反対側の主表面は、露光装置にセットする時に静電チャックされる面であって、142mm×142mmの領域において、平坦度が1μm以下、好ましくは0.5μm以下である。
また、EUV露光用の場合、基板1として要求される表面平滑度は、基板の転写パターンが形成される側の主表面の表面粗さが、二乗平均平方根粗さ(RMS)で0.2nm以下であることが好ましい。
The main surface of the substrate 1 on which the transfer pattern is formed is subjected to surface processing so as to have high flatness from the viewpoint of obtaining at least pattern transfer accuracy and position accuracy. For example, in the case of EUV exposure, the flatness is preferably 0.1 μm or less, particularly preferably 0.05 μm or less, in the region of the main surface 142 mm × 142 mm on the side where the transfer pattern of the substrate is formed. The main surface opposite to the side on which the transfer pattern is formed is a surface that is electrostatically chucked when being set in the exposure apparatus, and has a flatness of 1 μm or less, preferably 0.8 mm in a 142 mm × 142 mm region. 5 μm or less.
In the case of EUV exposure, the surface smoothness required for the substrate 1 is such that the surface roughness of the main surface on the side where the transfer pattern of the substrate is formed is 0.2 nm or less in terms of root mean square roughness (RMS). It is preferable that

上記多層反射膜2は、屈折率の異なる元素が周期的に積層された多層膜であり、一般的には、低屈折率材料である重元素又はその化合物の薄膜(低屈折率層)と、高屈折率材料である軽元素又はその化合物の薄膜(高屈折率層)とが交互に40〜60周期程度積層された多層膜が用いられる。多層膜は、基板側から高屈折率層と低屈折率層をこの順に積層した積層構造を1周期として複数周期積層しても良いし、基板側から低屈折率層と高屈折率層をこの順に積層した積層構造を1周期として複数周期積層しても良い。低屈折率材料としては、Mo、Ru、Rh、Ptから選ばれる元素やこれらの合金が用いられ、高屈折率材料としては、Si又はSi化合物が用いられる。例えば、波長13〜14nmのEUV光に対する多層反射膜としては、好ましくは、Mo膜とSi膜を交互に40〜60周期程度積層したMo/Si周期積層膜が好ましく用いられる。 The multilayer reflective film 2 is a multilayer film in which elements having different refractive indexes are periodically laminated, and generally, a thin film (low refractive index layer) of a heavy element or a compound thereof, which is a low refractive index material, A multilayer film in which thin films (high refractive index layers) of light elements which are high refractive index materials or compounds thereof are alternately stacked for about 40 to 60 cycles is used. The multilayer film may be formed by laminating a plurality of periods with a laminated structure in which a high refractive index layer and a low refractive index layer are laminated in this order from the substrate side. A plurality of layers may be stacked with a stacked structure sequentially stacked as one cycle. As the low refractive index material, an element selected from Mo, Ru, Rh, and Pt or an alloy thereof is used, and as the high refractive index material, Si or a Si compound is used. For example, as the multilayer reflective film for EUV light having a wavelength of 13 to 14 nm, a Mo / Si periodic laminated film in which Mo films and Si films are alternately laminated for about 40 to 60 periods is preferably used.

上記多層反射膜2は、イオンビームスパッタリング法により、各層を成膜することにより形成できる。本発明は、イオンビームスパッタリング法を用いて多層反射膜を成膜する場合に本発明の効果がより良く発揮されるので好適である。上述したMo/Si周期多層膜の場合、例えばイオンビームスパッタリング法により、まずSiターゲットを用いて厚さ数nm程度のSi膜を成膜し、その後Moターゲットを用いて厚さ数nm程度のMo膜を成膜し、これを一周期として、40〜60周期積層した後、最後に、Si膜を成膜する。   The multilayer reflective film 2 can be formed by depositing each layer by ion beam sputtering. The present invention is suitable because the effects of the present invention are more effectively exhibited when a multilayer reflective film is formed using an ion beam sputtering method. In the case of the above-described Mo / Si periodic multilayer film, for example, by an ion beam sputtering method, a Si film having a thickness of about several nanometers is first formed using a Si target, and then a Mo film having a thickness of about several nanometers is formed using a Mo target. A film is formed, and this is set as one period, and after 40 to 60 periods are stacked, finally, a Si film is formed.

ここで、本発明の上記多層反射膜2の成膜方法として好ましく用いられるイオンビームスパッタリング法について説明する。
図5は、イオンビームスパッタリング装置の構成を示す模式図である。
図5に示されるイオンビームスパッタリング装置50は、イオンビーム発生装置51、ターゲットホルダー53、基板ステージ58等を備えている。上記ターゲットホルダー53には、2種類のスパッタリングターゲット54と55が取付けられており、本発明においては、その一方が高屈折率材料ターゲット(例えばSiターゲット)、もう一方が低屈折率材料ターゲット(Moターゲット)である。ターゲットホルダー53の回転により、高屈折材料ターゲットと低屈折率材料ターゲットのうちの一方のターゲットが基板1の被成膜面に向けられる。また、上記基板1は上記基板ステージ58上に静電チャックや機械的に基板を保持する機械チャックによって固定され、駆動装置によって所定方向に回転される。
Here, an ion beam sputtering method that is preferably used as a method for forming the multilayer reflective film 2 of the present invention will be described.
FIG. 5 is a schematic diagram showing a configuration of an ion beam sputtering apparatus.
An ion beam sputtering apparatus 50 shown in FIG. 5 includes an ion beam generator 51, a target holder 53, a substrate stage 58, and the like. Two kinds of sputtering targets 54 and 55 are attached to the target holder 53. In the present invention, one of them is a high refractive index material target (for example, Si target), and the other is a low refractive index material target (Mo). Target). By rotation of the target holder 53, one of the high refractive material target and the low refractive index material target is directed to the film formation surface of the substrate 1. The substrate 1 is fixed on the substrate stage 58 by an electrostatic chuck or a mechanical chuck that mechanically holds the substrate, and is rotated in a predetermined direction by a driving device.

このような構成のイオンビームスパッタリング装置50において、イオンビーム発生装置51から発せられたイオンビーム52がスパッタリングターゲット54(あるいは55)に入射することにより発生するスパッタ粒子56の入射角度θ(詳しくは基板1の主表面の法線57に対するスパッタ粒子の入射角度)が所定の角度となるように、上記スパッタリングターゲット54(あるいは55)の位置を調節し、基板1を回転させながら、イオンビームスパッタリングすることによって多層反射膜2を成膜する。   In the ion beam sputtering apparatus 50 having such a configuration, the incident angle θ (specifically, the substrate) of the sputtered particles 56 generated when the ion beam 52 emitted from the ion beam generating apparatus 51 enters the sputtering target 54 (or 55). The position of the sputtering target 54 (or 55) is adjusted so that the incident angle of the sputtered particles with respect to the normal 57 of the main surface 1 is a predetermined angle, and the ion beam sputtering is performed while rotating the substrate 1. Thus, the multilayer reflective film 2 is formed.

本発明は、上記構成1にあるように、基板上に低屈折率層と高屈折率層とを交互に積層させた多層膜からなる露光光を反射する多層反射膜を備える多層反射膜付き基板の製造方法であって、前記多層反射膜は、前記基板上に、高屈折率層と低屈折率層をこの順に成膜した積層構造、若しくは、低屈折率層と高屈折率層をこの順に積層した積層構造を1周期として複数周期積層した構成のものであり、前記低屈折率層は、前記多層反射膜の反射率が65%以上、中心波長(CW:Centroid Wavelength)の面内ばらつきが0.04nm以下、表面粗さが二乗平均平方根粗さで0.15nm以下となるように、前記低屈折率層の直下及び直上の前記高屈折率層との境界近傍領域ではそれ以外の領域とは、成膜条件を変更して成膜することを特徴としている。
好ましくは、多層反射膜の反射率が66%以上、中心波長のばらつきが0.03nm以下、表面粗さが二乗平均平方根粗さで0.14nm以下となるように、低屈折率層を、該低屈折率層の直下及び直上の前記高屈折率層との境界近傍領域ではそれ以外の領域とは成膜条件を変更して成膜することが望ましい。
The present invention provides a substrate with a multilayer reflective film comprising a multilayer reflective film that reflects exposure light comprising a multilayer film in which a low refractive index layer and a high refractive index layer are alternately laminated on the substrate, as in Configuration 1 above. The multilayer reflective film has a laminated structure in which a high refractive index layer and a low refractive index layer are formed in this order on the substrate, or a low refractive index layer and a high refractive index layer in this order. The low-refractive index layer has a reflectivity of 65% or more and an in-plane variation of the center wavelength (CW: Centroid Wavelength). Other regions in the vicinity of the boundary with the high refractive index layer immediately below and just above the low refractive index layer so that the surface roughness is 0.15 nm or less in terms of root mean square roughness of 0.04 nm or less. Is characterized by changing the film forming conditions to form a film.
Preferably, the low refractive index layer is formed so that the reflectance of the multilayer reflective film is 66% or more, the variation in center wavelength is 0.03 nm or less, and the surface roughness is 0.14 nm or less in terms of root mean square roughness. It is desirable to form a film by changing the film forming conditions in the region near the boundary with the high refractive index layer immediately below and immediately above the low refractive index layer.

図4は、多層反射膜付き基板の詳細な層構成を示す断面図である。
図4に示すように、本発明に係る多層反射膜付き基板10は、基板1上に、高屈折率層21と低屈折率層22とを交互に積層させた多層反射膜2を備えている。
FIG. 4 is a cross-sectional view showing a detailed layer structure of a substrate with a multilayer reflective film.
As shown in FIG. 4, a substrate 10 with a multilayer reflective film according to the present invention includes a multilayer reflective film 2 in which high refractive index layers 21 and low refractive index layers 22 are alternately laminated on a substrate 1. .

本発明において特徴的なのは、上記各低屈折率層22は、低屈折率層22の直下及び直上の高屈折率層21との境界近傍領域22aではそれ以外の領域とは成膜条件を変更して成膜することである。
ここで、低屈折率層の成膜条件としては、前記基板1の主表面の法線に対するスパッタ粒子の入射角度θを選択することが好適である。低屈折率層の成膜条件として、基板の主表面の法線に対するスパッタ粒子の入射角度θを変更することにより、本発明の効果が好ましく発揮される。
A characteristic of the present invention is that each of the low refractive index layers 22 changes the film formation conditions in the region 22a near the boundary with the high refractive index layer 21 immediately below and immediately above the low refractive index layer 22 from the other regions. To form a film.
Here, as the film forming condition of the low refractive index layer, it is preferable to select the incident angle θ of the sputtered particles with respect to the normal line of the main surface of the substrate 1. By changing the incident angle θ of the sputtered particles with respect to the normal of the main surface of the substrate as the film forming condition of the low refractive index layer, the effect of the present invention is preferably exhibited.

具体的には、各低屈折率層22の成膜時に、基板1の主表面の法線に対するスパッタ粒子の入射角度θを、低屈折率層22の直下及び直上の高屈折率層21との境界近傍領域22aでは45度以上55度以下の範囲とすることが好適である。好ましくは47度以上53度以下、特に好ましくは(49度以上51度以下)であり、最も好ましくは50度である。スパッタ粒子の入射角度が45度未満であると低屈折率層と高屈折率層との界面に形成される拡散層が大きくなり多層反射膜の反射率が低下し、また、低屈折率層の膜厚面内分布が悪化するので好ましくなく、55度を超えると低屈折率層の膜厚面内分布が悪化し、また、成膜レートがより低下するので好ましくないからである。
また、モリブデン層22の境界近傍領域22a以外の領域ではスパッタ粒子の入射角度θを20度〜40度の範囲とすることが好適である。特に好ましくは、25度以上35度以下の範囲であり、最も好ましくは30度である。スパッタ粒子の入射角度が20度未満であると低屈折率層の表面粗さが大きくなり、また、低屈折率層の膜厚面内分布が悪化するので好ましくなく、40度を超えると低屈折率層の表面粗さが大きくなり、また、高屈折率層の膜厚面内分布が悪化するので好ましくないからである。
Specifically, at the time of forming each low refractive index layer 22, the incident angle θ of the sputtered particles with respect to the normal of the main surface of the substrate 1 is set to be different from that of the high refractive index layer 21 directly below and immediately above the low refractive index layer 22. In the boundary vicinity region 22a, a range of 45 degrees or more and 55 degrees or less is preferable. It is preferably 47 ° or more and 53 ° or less, particularly preferably (49 ° or more and 51 ° or less), and most preferably 50 °. When the incident angle of the sputtered particles is less than 45 degrees, the diffusion layer formed at the interface between the low refractive index layer and the high refractive index layer becomes large and the reflectance of the multilayer reflective film decreases. This is because the in-plane distribution of the film thickness is deteriorated, which is not preferable, and when it exceeds 55 degrees, the in-plane distribution of the film thickness of the low refractive index layer is deteriorated and the film formation rate is further decreased.
Moreover, it is preferable that the incident angle θ of the sputtered particles is in the range of 20 degrees to 40 degrees in the region other than the boundary vicinity region 22 a of the molybdenum layer 22. Especially preferably, it is the range of 25 degree | times or more and 35 degrees or less, Most preferably, it is 30 degree | times. If the incident angle of the sputtered particles is less than 20 degrees, the surface roughness of the low refractive index layer becomes large and the in-plane distribution of the film thickness of the low refractive index layer deteriorates. This is because the surface roughness of the refractive index layer increases and the in-plane distribution of the film thickness of the high refractive index layer deteriorates, which is not preferable.

以上のように、各低屈折率層22の成膜時に、基板1の主表面の法線に対するスパッタ粒子の入射角度θを、低屈折率層22の直下及び直上の高屈折率層21との境界近傍領域22aでは45度以上55度以下の範囲、それ以外の領域では20度以上40度以下の範囲とすることにより、上記境界近傍領域22aでは高反射率及び高い膜厚の面内均一性を実現できる成膜条件を、それ以外の領域では低表面粗さを実現できる成膜条件をそれぞれ適用して、形成される多層反射膜の高反射率、中心波長の低面内ばらつき、及び低表面粗さの3つの特性を満足させ、これら3つの特性をそれぞれの最良値で両立させることができる。   As described above, when each low refractive index layer 22 is formed, the incident angle θ of the sputtered particles with respect to the normal of the main surface of the substrate 1 is set to be equal to that of the high refractive index layer 21 directly below and immediately above the low refractive index layer 22. By setting the range in the vicinity of the boundary area 22a to 45 degrees or more and 55 degrees or less, and in the other areas in the range of 20 degrees or more and 40 degrees or less, the boundary vicinity area 22a has a high reflectivity and high in-plane uniformity. The film formation conditions that can realize the low reflectivity and the film formation conditions that can realize the low surface roughness in the other regions are applied, respectively. The three characteristics of surface roughness can be satisfied, and these three characteristics can be made compatible with each other at their best values.

各低屈折率層22における高屈折率層21との境界近傍領域22aは、本発明の効果が好ましく得られるためには、2nm以下の領域であることが望ましい。2nmよりも大きい(厚い)と低屈折率層の斜入射成膜による拡散層が必要以上に厚くなり、低屈折率層の表面粗さ低減効果が低くなるので好ましくないからである。 In each low refractive index layer 22, the boundary vicinity region 22a with the high refractive index layer 21 is desirably a region of 2 nm or less in order to obtain the effect of the present invention. If the thickness is larger than 2 nm (thick), the diffusion layer formed by oblique incidence film formation of the low refractive index layer becomes unnecessarily thick, and the effect of reducing the surface roughness of the low refractive index layer becomes low, which is not preferable.

一方、上記高屈折率層21の成膜は、層全体にわたって、基板1の主表面の法線に対するスパッタ粒子の入射角度θを25度以上35度以下の範囲とすることが好ましく、最も好ましくは30度程度であり、最も良好な膜厚面内分布と低表面粗さを実現できる。   On the other hand, in forming the high refractive index layer 21, the incident angle θ of the sputtered particles with respect to the normal of the main surface of the substrate 1 is preferably in the range of 25 degrees to 35 degrees, and most preferably over the entire layer. It is about 30 degrees, and the best film thickness in-plane distribution and low surface roughness can be realized.

以上説明したように、基板1上に、高屈折率層21と低屈折率層22をこの順に成膜したものを1周期として複数周期積層して多層反射膜2を形成する際、低屈折率層22は、該低屈折率層の直下及び直上の高屈折率層21との境界近傍領域22aではそれ以外の領域とは成膜条件、好ましくは基板に入射するスパッタ粒子の入射角度を変更して成膜することにより、成膜条件によって膜の特性が異なる低屈折率層については、高反射率及び高い膜厚の面内均一性を実現できる成膜条件と、低表面粗さを実現できる成膜条件とを適用し、形成される多層反射膜の高反射率、中心波長の低面内ばらつき、及び低表面粗さの3つの特性をそれぞれの最良値で満足させることができる。   As described above, when the multilayer reflective film 2 is formed by laminating a plurality of periods in which the high refractive index layer 21 and the low refractive index layer 22 are formed in this order on the substrate 1 as a period, the low refractive index 2 The layer 22 changes the film formation condition, preferably the incident angle of the sputtered particles incident on the substrate, in the region 22a near the boundary with the high refractive index layer 21 immediately below and immediately above the low refractive index layer. For low refractive index layers whose film characteristics vary depending on the film formation conditions, film formation conditions that can achieve high reflectivity and high in-plane uniformity of the film thickness and low surface roughness can be realized. By applying the film forming conditions, it is possible to satisfy each of the best values of the three characteristics of the formed multilayer reflective film: high reflectivity, low in-plane variation of the center wavelength, and low surface roughness.

[反射型マスクブランク]
また、本発明は、上述の本発明の製造方法により製造した多層反射膜付き基板を用いる反射型マスクブランクの製造方法についても提供する。
図2は、反射型マスクブランクの層構成を示す断面図であり、基板1上に、EUV光を反射する多層反射膜2、保護膜(キャッピング層)3及びEUV光を吸収するパターン形成用の吸収体膜4が形成されている反射型マスクブランク20を示す。なお、図示していないが、基板1の多層反射膜等が形成されている側とは反対側に裏面導電膜を設けることができる。
なお、上記基板1上に多層反射膜を形成した状態の多層反射膜付き基板については上述したとおりであり、ここでは説明を省略する。
[Reflective mask blank]
The present invention also provides a method for manufacturing a reflective mask blank using a substrate with a multilayer reflective film manufactured by the above-described manufacturing method of the present invention.
FIG. 2 is a cross-sectional view showing the layer structure of the reflective mask blank. On the substrate 1, a multilayer reflective film 2 that reflects EUV light, a protective film (capping layer) 3 and a pattern for absorbing EUV light are formed. The reflective mask blank 20 in which the absorber film 4 is formed is shown. Although not shown, a back conductive film can be provided on the side of the substrate 1 opposite to the side where the multilayer reflective film or the like is formed.
The substrate with the multilayer reflective film in the state where the multilayer reflective film is formed on the substrate 1 is as described above, and the description thereof is omitted here.

通常、上記吸収体膜4のパターニング或いはパターン修正の際に多層反射膜2を保護する目的で、多層反射膜2と吸収体膜4との間に上記保護膜3やバッファ膜を設ける。保護膜3の材料としては、ケイ素のほか、ルテニウムや、ルテニウムにニオブ、ジルコニウム、ロジウムのうち1以上の元素を含有するルテニウム化合物が用いられ、バッファ膜の材料としては、主にクロム系材料が用いられる。
このような保護膜3やバッファ膜は、マグネトロンスパッタリングなどのスパッタ法で形成するのが好ましい。
なお、本発明においては、多層反射膜2の上に上記保護膜3を形成した状態のものも多層反射膜付き基板に含むものとする。保護膜3が形成された多層反射膜付き基板においては、反射率が62%以上、中心波長の面内ばらつきが0.04nm以下、表面粗さが二乗平均平方根粗さで0.15nm以下が好ましく、特に好ましくは、反射率が63%以上、中心波長のばらつきが0.03nm以下、表面粗さが二乗平均平方根粗さで0.13nm以下が望ましい。
Usually, the protective film 3 and the buffer film are provided between the multilayer reflective film 2 and the absorber film 4 for the purpose of protecting the multilayer reflective film 2 during patterning or pattern correction of the absorber film 4. As a material for the protective film 3, in addition to silicon, ruthenium or a ruthenium compound containing one or more elements of niobium, zirconium, and rhodium in ruthenium is used. As a material for the buffer film, a chromium-based material is mainly used. Used.
The protective film 3 and the buffer film are preferably formed by a sputtering method such as magnetron sputtering.
In the present invention, the substrate having the multilayer reflective film includes the protective film 3 formed on the multilayer reflective film 2. In the substrate with a multilayer reflective film on which the protective film 3 is formed, it is preferable that the reflectance is 62% or more, the in-plane variation of the center wavelength is 0.04 nm or less, and the surface roughness is root mean square roughness 0.15 nm or less. Particularly preferably, the reflectance is 63% or more, the variation in the center wavelength is 0.03 nm or less, and the surface roughness is 0.13 nm or less in terms of root mean square roughness.

上記吸収体膜4は、露光光である例えばEUV光を吸収する機能を有するもので、例えばタンタル(Ta)単体又はTaを主成分とする材料を好ましく用いることができる。Taを主成分とする材料は、通常、Taの合金である。このような吸収体膜の結晶状態は、平滑性、平坦性の点から、アモルファス状又は微結晶の構造を有しているものが好ましい。
Taを主成分とする材料としては、TaとBを含む材料、TaとNを含む材料、TaとBを含み、更にOとNの少なくとも何れかを含む材料、TaとSiを含む材料、TaとSiとNを含む材料、TaとGeを含む材料、TaとGeとNを含む材料、等を用いることが出来る。TaにBやSi、Ge等を加えることにより、アモルファス状の材料が容易に得られ、平滑性を向上させることができる。また、TaにNやOを加えれば、酸化に対する耐性が向上するため、経時的な安定性を向上させることが出来るという効果が得られる。
The absorber film 4 has a function of absorbing exposure light such as EUV light. For example, tantalum (Ta) alone or a material mainly composed of Ta can be preferably used. The material mainly composed of Ta is usually an alloy of Ta. Such an absorber film preferably has an amorphous or microcrystalline structure in terms of smoothness and flatness.
As a material having Ta as a main component, a material containing Ta and B, a material containing Ta and N, a material containing Ta and B and further containing at least one of O and N, a material containing Ta and Si, Ta A material containing Si and N, a material containing Ta and Ge, a material containing Ta, Ge and N can be used. By adding B, Si, Ge or the like to Ta, an amorphous material can be easily obtained and the smoothness can be improved. Further, when N or O is added to Ta, resistance to oxidation is improved, so that an effect that stability with time can be improved is obtained.

この中でも特に好ましい材料として、例えば、TaとBを含む材料(組成比Ta/Bが8.5/1.5〜7.5/2.5の範囲である)、TaとBとNを含む材料(Nが5〜30原子%であり、残りの成分を100とした時、Bが10〜30原子%)が挙げられる。これらの材料の場合、容易に微結晶或いはアモルファス構造を得ることが出来、良好な平滑性と平坦性が得られる。
このようなTa単体又はTaを主成分とする吸収体膜は、マグネトロンスパッタリングなどのスパッタ法で形成するのが好ましい。例えば、TaBN膜の場合、タンタルとホウ素を含むターゲットを用い、窒素を添加したアルゴンガスを用いたスパッタリング法で成膜することができる。
Among these, as a particularly preferable material, for example, a material containing Ta and B (composition ratio Ta / B is in the range of 8.5 / 1.5 to 7.5 / 2.5), Ta, B and N are included. Materials (N is 5 to 30 atomic%, and B is 10 to 30 atomic% when the remaining components are 100). In the case of these materials, a microcrystalline or amorphous structure can be easily obtained, and good smoothness and flatness can be obtained.
Such an absorber film containing Ta alone or Ta as a main component is preferably formed by a sputtering method such as magnetron sputtering. For example, in the case of a TaBN film, a target containing tantalum and boron can be used and a film can be formed by a sputtering method using an argon gas to which nitrogen is added.

吸収体膜として、Taを主成分とする材料以外では、例えば、WN、TiN、Ti等の材料が挙げられる。
吸収体膜4の膜厚は、露光光である例えばEUV光が十分に吸収できる厚みであれば良いが、通常30〜100nm程度である。なお、吸収体膜4は、材料や組成の異なる複数層の積層構造(例えばTaBN膜とTaBO膜の積層膜)としてもよい。
As the absorber film, materials other than materials mainly composed of Ta include materials such as WN, TiN, and Ti.
The thickness of the absorber film 4 may be a thickness that can sufficiently absorb, for example, EUV light as exposure light, but is usually about 30 to 100 nm. The absorber film 4 may have a laminated structure of a plurality of layers having different materials and compositions (for example, a laminated film of a TaBN film and a TaBO film).

EUV光を露光光に適用する反射型マスクの場合においても、パターン検査を行う時の検査光は、波長193nm、257nm等のEUV光に比べて長波長の光が用いられる場合が多い。長波長の検査光に対応するためには、吸収体膜の表面反射を低減させる必要がある。この場合、吸収体膜を、基板側から、主としてEUV光を吸収する機能を有する吸収体層と、主として検査光に対する表面反射を低減する機能を有する低反射層とを積層した構成にするとよい。低反射層としては、吸収体層がTaを主成分とする材料の場合、TaやTaBにOを含有した材料が好適である。
また、上記反射型マスクブランクは、吸収体膜に所定の転写パターンを形成するためのレジスト膜が形成された状態であっても構わない。
Even in the case of a reflective mask that applies EUV light to exposure light, the inspection light used for pattern inspection is often light having a longer wavelength than EUV light having a wavelength of 193 nm, 257 nm, or the like. In order to deal with long-wavelength inspection light, it is necessary to reduce the surface reflection of the absorber film. In this case, the absorber film may have a structure in which an absorber layer mainly having a function of absorbing EUV light and a low reflection layer mainly having a function of reducing surface reflection with respect to inspection light are laminated from the substrate side. As the low reflection layer, when the absorber layer is a material mainly composed of Ta, a material containing O in Ta or TaB is suitable.
The reflective mask blank may be in a state where a resist film for forming a predetermined transfer pattern is formed on the absorber film.

本発明によれば、上述の本発明により得られる高反射率、高い膜厚の面内均一性、及び低表面粗さの3つの特性を満足する多層反射膜付き基板を用いて反射型マスクブランクを製造することにより、高感度欠陥検査装置を使用した欠陥検査によりマスクブランクの品質を保証することが可能な高反射率の反射型マスクブランクが得られる。 According to the present invention, a reflective mask blank using a substrate with a multilayer reflective film that satisfies the three characteristics of high reflectivity, high in-plane uniformity, and low surface roughness obtained by the present invention described above. Thus, a reflective mask blank having a high reflectance capable of guaranteeing the quality of the mask blank by defect inspection using a high-sensitivity defect inspection apparatus is obtained.

[反射型マスク]
また、本発明は、上記構成の反射型マスクブランクを用いる反射型マスクの製造方法についても提供する。
図3は反射型マスクの層構成を示す断面図であり、図2の反射型マスクブランク20における吸収体膜4がパターニングされた吸収体膜パターン4aを備える反射型マスク30を示す。
反射型マスクブランクにおける転写パターンとなる上記吸収体膜4をパターニングする方法は、高精細のパターニングを行うことができるフォトリソグラフィー法が最も好適である。
[Reflective mask]
The present invention also provides a method for manufacturing a reflective mask using the reflective mask blank having the above-described configuration.
FIG. 3 is a cross-sectional view showing a layer structure of the reflective mask, and shows a reflective mask 30 including an absorber film pattern 4a in which the absorber film 4 in the reflective mask blank 20 of FIG. 2 is patterned.
As a method for patterning the absorber film 4 serving as a transfer pattern in the reflective mask blank, a photolithography method capable of performing high-definition patterning is most preferable.

上述の高品質を保証することが可能な本発明の反射型マスクブランクを用いて反射型マスクを製造することにより、特にEUV露光によるパターン転写時に欠陥の少ない高品質の反射型マスクが得られる。 By manufacturing a reflective mask using the reflective mask blank of the present invention that can guarantee the above-described high quality, a high-quality reflective mask with few defects can be obtained, particularly during pattern transfer by EUV exposure.

以下、実施例により、本発明の実施の形態を更に具体的に説明する。
(実施例1)
使用する基板は、SiO−TiO系のガラス基板(6インチ角、厚さが6.35mm)である。
そして、このガラス基板の端面を面取加工、及び研削加工、更に酸化セリウム砥粒を含む研磨液で粗研磨処理を終えたガラス基板を両面研磨装置のキャリアにセットし、研磨液にコロイダルシリカ砥粒を含むアルカリ水溶液を用い、所定の研磨条件で精密研磨を行った。精密研磨終了後、ガラス基板に対し洗浄処理を行った。
以上のようにして、EUV反射型マスクブランク用ガラス基板を作製した。この得られたガラス基板の主表面の表面粗さは、二乗平均平方根粗さ(RMS)で、0.150nm以下と良好であった。また、平坦度は、測定領域142mm×142mmで50nm以下と良好であった。
Hereinafter, the embodiment of the present invention will be described more specifically with reference to examples.
Example 1
The substrate to be used is a SiO 2 —TiO 2 glass substrate (6 inch square, thickness 6.35 mm).
Then, the end surface of the glass substrate is chamfered and ground, and the glass substrate that has been subjected to rough polishing with a polishing liquid containing cerium oxide abrasive grains is set on the carrier of a double-side polishing apparatus, and the colloidal silica abrasive is used as the polishing liquid. Using an alkaline aqueous solution containing grains, precise polishing was performed under predetermined polishing conditions. After precision polishing, the glass substrate was washed.
As described above, an EUV reflective mask blank glass substrate was produced. The surface roughness of the main surface of the obtained glass substrate was as good as 0.150 nm or less in terms of root mean square roughness (RMS). Further, the flatness was as good as 50 nm or less in a measurement area of 142 mm × 142 mm.

次に、上記反射型マスクブランク用ガラス基板上に、以下のようにして多層反射膜を形成した。基板上に形成される多層反射膜は、13〜14nmの露光光波長帯域に適した多層反射膜とするために、Mo膜/Si膜周期多層反射膜を採用した。
即ち、多層反射膜は、MoターゲットとSiターゲットを使用し、イオンビームスパッタリングにより基板上に交互に積層して形成した。
Next, a multilayer reflective film was formed on the reflective mask blank glass substrate as follows. As the multilayer reflective film formed on the substrate, a Mo film / Si film periodic multilayer reflective film was employed in order to obtain a multilayer reflective film suitable for an exposure light wavelength band of 13 to 14 nm.
That is, the multilayer reflective film was formed by alternately stacking on the substrate by ion beam sputtering using a Mo target and a Si target.

まず、前述の基板主表面に対するスパッタ粒子の入射角度が30度となるようにSiターゲット角度を調節して、Si膜を4.0nm成膜した。
続いて、前述のスパッタ粒子の入射角度を変えながら次の3段階でMo膜を成膜した。まず1段階目は入射角度が50度となるようにMoターゲット角度を調節して1nmを成膜し、2段階目は入射角度が30度となるようにMoターゲット角度を調節して1nmを成膜し、3段階目は入射角度が50度となるようにMoターゲット角度を調節して1nmを成膜して、全厚3.0nmのMo膜を成膜した。
First, the Si target angle was adjusted so that the incident angle of sputtered particles with respect to the substrate main surface was 30 degrees, and a Si film was formed to 4.0 nm.
Subsequently, a Mo film was formed in the following three stages while changing the incident angle of the sputtered particles. First, in the first stage, the Mo target angle is adjusted so that the incident angle is 50 degrees, and 1 nm is formed. In the second stage, the Mo target angle is adjusted so that the incident angle is 30 degrees, and 1 nm is formed. In the third stage, the Mo target angle was adjusted so that the incident angle was 50 degrees, and 1 nm was formed to form a Mo film having a total thickness of 3.0 nm.

以上のようにSi膜を4.0nm、Mo膜を3.0nm成膜し、これを一周期とし、上記と同様に入射角度を設定して40周期積層した後、入射角度30度でSi膜を4.2nm成膜した。
この多層反射膜に対し、13.5nmのEUV光を入射角6.0度で反射率を測定したところ、反射率は66%であった。
また、多層反射膜表面の中心波長(CW)の面内ばらつきを測定した結果、0.03nmであった。なお、中心波長(CW)の面内ばらつきは、132mm×132mmの測定領域内の面内等間隔に81ポイントの反射率スペクトルの測定を行い、その反射率スペクトルの中心波長(CW)の最大値と最小値の差(MAX-MIN)を算出し求めた。測定は、EUV露光計測装置を用いて測定した(後述の保護膜を備えた多層反射膜付き基板も、同様の測定方法にて中心波長(CW)のばらつきを測定した。)。
また、この多層反射膜表面の表面粗さは、二乗平均平方根粗さ(RMS)で、0.130nmと良好であった。
As described above, the Si film is formed to 4.0 nm and the Mo film is formed to 3.0 nm, and this is set as one period. After the incidence angle is set in the same manner as described above and 40 periods are stacked, the Si film is formed at an incident angle of 30 degrees. Was deposited to 4.2 nm.
When the reflectivity of this multilayer reflective film was measured with 13.5 nm EUV light at an incident angle of 6.0 degrees, the reflectivity was 66%.
Moreover, it was 0.03 nm as a result of measuring the in-plane dispersion | variation in the center wavelength (CW) of the multilayer reflective film surface. The in-plane variation of the center wavelength (CW) is obtained by measuring 81 points of the reflectance spectrum at equal intervals in the measurement area of 132 mm × 132 mm, and the maximum value of the center wavelength (CW) of the reflectance spectrum. And the minimum difference (MAX-MIN) was calculated. The measurement was performed using an EUV exposure measuring apparatus (a substrate with a multilayer reflective film provided with a protective film described later was also measured for variations in center wavelength (CW) by the same measurement method).
The surface roughness of the multilayer reflective film surface was as good as 0.130 nm in terms of root mean square roughness (RMS).

次に、上記多層反射膜上に、RuNbからなる保護膜(膜厚2.5nm)をDCマグネトロンスパッタリング法によって成膜した。
この保護膜表面に対し、13.5nmのEUV光を入射角6.0度で反射率を測定したところ、反射率は63%であった。
以上のようにして、保護膜を備えた多層反射膜付き基板を作製した。
Next, a protective film (thickness 2.5 nm) made of RuNb was formed on the multilayer reflective film by a DC magnetron sputtering method.
When the reflectance of this protective film surface was measured with 13.5 nm EUV light at an incident angle of 6.0 degrees, the reflectance was 63%.
As described above, a multilayer reflective film-coated substrate provided with a protective film was produced.

得られた多層反射膜付き基板について中心波長(CW)の面内ばらつきを測定した結果、多層反射膜表面の測定結果と変わらず0.03nmであった。
また、この得られた多層反射膜付き基板の主表面の表面粗さは、多層反射膜表面の測定結果と変わらず二乗平均平方根粗さ(RMS)で、0.13nmと良好であった。
また、この多層反射膜付き基板の欠陥検査を、EUV光を検査光とした欠陥検査機を用いて行った。132mm×132mmの欠陥検査領域内において、1ラインスキャンした時の信号強度を検出し、バックグランドレベル(BGL)を求めた。その結果、BGLは800と良好であった。従って、欠陥検査における疑似欠陥を低減できるので、良好な欠陥検査を行うことができる。
以上のように、本発明の実施例によれば、EUV光反射率、中心波長の面内ばらつき、表面粗さ、BGLのいずれにおいても良好な結果が得られ、高反射率、中心波長の低面内ばらつき、低表面粗さの3つの特性をそれぞれの最良値で両立させることができる。
As a result of measuring the in-plane variation of the center wavelength (CW) for the obtained substrate with a multilayer reflective film, it was 0.03 nm, which was the same as the measurement result on the surface of the multilayer reflective film.
Further, the surface roughness of the main surface of the obtained multilayer reflective film-coated substrate was as good as 0.13 nm in root mean square roughness (RMS), which was the same as the measurement result of the multilayer reflective film surface.
Moreover, the defect inspection of this multilayer reflective film-coated substrate was performed using a defect inspection machine using EUV light as inspection light. In the 132 mm × 132 mm defect inspection area, the signal intensity when one line scan was detected was detected, and the background level (BGL) was obtained. As a result, BGL was as good as 800. Therefore, since the pseudo defects in the defect inspection can be reduced, a good defect inspection can be performed.
As described above, according to the embodiment of the present invention, good results are obtained in any of EUV light reflectance, in-plane variation of the central wavelength, surface roughness, and BGL, and high reflectance and low central wavelength are obtained. Three characteristics of in-plane variation and low surface roughness can be achieved at the best values.

(比較例1)
実施例1において、各Si膜を入射角度30度で成膜し、各Mo膜についても、途中で入射角度を変更せずに30度(一定)で成膜したこと以外は、実施例1と同様にして多層反射膜付き基板を作製した。
上記保護膜を付けていない状態の多層反射膜に対し、13.5nmのEUV光を入射角6.0度で反射率を測定したところ、反射率は64%であった。また、保護膜を付けた状態の保護膜表面に対し、13.5nmのEUV光を入射角6.0度で反射率を測定したところ、反射率は60%であった。
(Comparative Example 1)
In Example 1, each Si film was formed at an incident angle of 30 degrees, and each Mo film was also formed at 30 degrees (constant) without changing the incident angle in the middle. Similarly, a substrate with a multilayer reflective film was produced.
When the reflectance of the multilayer reflective film without the protective film was measured with 13.5 nm EUV light at an incident angle of 6.0 degrees, the reflectance was 64%. Moreover, when the reflectance was measured with respect to the surface of the protective film with the protective film attached thereto at an incident angle of 6.0 degrees with 13.5 nm EUV light, the reflectance was 60%.

多層反射膜表面、および多層反射膜付き基板について中心波長(CW)のばらつきを実施例1と同様にして測定した結果、多層反射膜表面、および保護膜を付けた状態の多層反射膜付き基板表面ともに0.05nmであった。
また、多層反射膜表面、および多層反射膜付き基板の主表面の表面粗さは、二乗平均平方根粗さ(RMS)で、0.120nmと良好であった。
また、この多層反射膜付き基板の欠陥検査を、実施例1と同様にEUV光を検査光とした欠陥検査機を用いて行った。その結果、バックグランドレベル(BGL)は600と良好であった。
以上のように、本比較例によれば、表面粗さ、BGLの結果は良好であるものの、EUV光反射率が低く、中心波長の面内ばらつきが大きいという結果が得られ、高反射率、中心波長の低面内ばらつき、低表面粗さの3つの特性をそれぞれの最良値で両立させることができない。
As a result of measuring variations in the center wavelength (CW) for the multilayer reflective film surface and the substrate with the multilayer reflective film in the same manner as in Example 1, the surface of the multilayer reflective film and the substrate surface with the multilayer reflective film with the protective film attached Both were 0.05 nm.
Further, the surface roughness of the multilayer reflective film surface and the main surface of the substrate with the multilayer reflective film was as good as 0.120 nm in terms of root mean square roughness (RMS).
Moreover, the defect inspection of this multilayer reflective film-coated substrate was performed using a defect inspection machine using EUV light as inspection light in the same manner as in Example 1. As a result, the background level (BGL) was as good as 600.
As described above, according to this comparative example, although the results of surface roughness and BGL are good, the results of low EUV light reflectivity and large in-plane variation of the center wavelength are obtained, and high reflectivity, The three characteristics of low center surface wavelength variation and low surface roughness cannot be achieved at their best values.

(比較例2)
実施例1において、各Si膜を入射角度30度で成膜し、各Mo膜についても、途中で入射角度を変更せずに50度(一定)で成膜したこと以外は、実施例1と同様にして多層反射膜付き基板を作製した。
上記保護膜を付けていない状態の多層反射膜に対し、13.5nmのEUV光を入射角6.0度で反射率を測定したところ、反射率は66%であった。また、保護膜を付けた状態の保護膜表面に対し、13.5nmのEUV光を入射角6.0度で反射率を測定したところ、反射率は64%であった。
(Comparative Example 2)
In Example 1, each Si film was formed at an incident angle of 30 degrees, and each Mo film was also formed at 50 degrees (constant) without changing the incident angle in the middle. Similarly, a substrate with a multilayer reflective film was produced.
When the reflectance of the multilayer reflective film without the protective film was measured with 13.5 nm EUV light at an incident angle of 6.0 degrees, the reflectance was 66%. Further, when the reflectance was measured with respect to the surface of the protective film with the protective film attached thereto at an incident angle of 6.0 degrees with 13.5 nm EUV light, the reflectance was 64%.

多層反射膜表面、および多層反射膜付き基板について中心波長(CW)のばらつきを実施例1と同様にして測定した結果、多層反射膜表面、および保護膜を付けた状態の多層反射膜付き基板表面ともに0.02nmであった。
また、多層反射膜表面、および多層反射膜付き基板の主表面の表面粗さは、二乗平均平方根粗さ(RMS)で、0.170nmと大きかった。
また、この多層反射膜付き基板の欠陥検査を、実施例1と同様にEUV光を検査光とした欠陥検査機を用いて行った結果、バックグランドレベル(BGL)は1200と大きかった。よって、多数の擬似欠陥が検出されてしまい、良好な欠陥検査を行うことができない。
以上のように、本比較例においても、EUV光反射率、中心波長のばらつきの結果は良好であったものの、表面粗さ、BGLが大きく、多数の擬似欠陥が検出され、良好な欠陥検査を行えないという結果が得られ、高反射率、中心波長の低面内ばらつき、低表面粗さの3つの特性をそれぞれの最良値で両立させることができない。
As a result of measuring variations in the center wavelength (CW) for the multilayer reflective film surface and the substrate with the multilayer reflective film in the same manner as in Example 1, the surface of the multilayer reflective film and the substrate surface with the multilayer reflective film with the protective film attached Both were 0.02 nm.
The surface roughness of the multilayer reflective film surface and the main surface of the substrate with the multilayer reflective film was as large as 0.170 nm in terms of root mean square roughness (RMS).
Moreover, as a result of performing defect inspection of this multilayer reflective film-coated substrate using a defect inspection machine using EUV light as inspection light in the same manner as in Example 1, the background level (BGL) was as large as 1200. Therefore, a large number of pseudo defects are detected, and good defect inspection cannot be performed.
As described above, even in this comparative example, although the results of variations in EUV light reflectance and center wavelength were good, the surface roughness and BGL were large, and a large number of pseudo defects were detected. As a result, the three characteristics of high reflectivity, center wavelength in-plane variation, and low surface roughness cannot be achieved at the respective best values.

(実施例2)
上記実施例1で作製した多層反射膜付き基板の保護膜上に、吸収体膜として、TaBN膜(膜厚56nm)とTaBO膜(膜厚14nm)の積層膜をDCマグネトロンスパッタリング法によって成膜した。
こうして、反射型マスクブランクを作製した。
(Example 2)
A laminated film of a TaBN film (film thickness of 56 nm) and a TaBO film (film thickness of 14 nm) was formed as an absorber film on the protective film of the substrate with a multilayer reflective film prepared in Example 1 by DC magnetron sputtering. .
Thus, a reflective mask blank was produced.

次に、この反射型マスクブランクを用いて、半導体デザインルールにおけるDRAM hp20nm世代のパターンを有するEUV露光用反射型マスクを以下のように作製した。
まず、上記反射型マスクブランク上に電子線描画用レジスト膜を形成し、電子線描画機を使用して所定のパターン描画を行い、描画後、現像によりレジストパターンを形成した。
次に、このレジストパターンをマスクとして、フッ素系ガス(CFガス)によりTaBO膜を、塩素系ガス(Clガス)によりTaBN膜をドライエッチングし、吸収体膜に転写パターンを形成した。
さらに、吸収体膜パターン上に残ったレジストパターンを熱硫酸で除去し、反射型マスクを得た。
Next, using this reflective mask blank, a reflective mask for EUV exposure having a pattern of DRAM hp 20 nm generation in the semiconductor design rule was produced as follows.
First, a resist film for electron beam drawing was formed on the reflective mask blank, a predetermined pattern was drawn using an electron beam drawing machine, and after drawing, a resist pattern was formed by development.
Next, using this resist pattern as a mask, the TaBO film was dry-etched with fluorine-based gas (CF 4 gas), and the TaBN film was dry-etched with chlorine-based gas (Cl 2 gas) to form a transfer pattern on the absorber film.
Further, the resist pattern remaining on the absorber film pattern was removed with hot sulfuric acid to obtain a reflective mask.

得られた反射型マスクの最終確認検査を行ったところ、半導体デザインルールにおけるDRAM hp20nm世代のパターンを設計通りに形成できていることが確認できた。
次に、得られた本実施例の反射型マスクを用いて、半導体基板上へのEUV光によるパターン転写を行うと、半導体デザインルールDRAM hp20nm世代の半導体装置を製造することができる。
When the final confirmation inspection of the obtained reflective mask was performed, it was confirmed that the DRAM hp 20 nm generation pattern in the semiconductor design rule was formed as designed.
Next, when pattern transfer by EUV light is performed on a semiconductor substrate using the obtained reflective mask of this embodiment, a semiconductor device of the semiconductor design rule DRAM hp 20 nm generation can be manufactured.

1 基板
2 多層反射膜
21 Si膜
22 Mo膜
3 保護膜
4 吸収体膜
10 多層反射膜付き基板
20 反射型マスクブランク
30 反射型マスク
50 イオンビームスパッタリング装置
51 イオンビーム発生装置
54,55 スパッタリングターゲット
DESCRIPTION OF SYMBOLS 1 Substrate 2 Multilayer reflective film 21 Si film 22 Mo film 3 Protective film 4 Absorber film 10 Multilayer reflective film-coated substrate 20 Reflective mask blank 30 Reflective mask 50 Ion beam sputtering apparatus 51 Ion beam generators 54 and 55 Sputtering target

Claims (8)

基板上に低屈折率層と高屈折率層とを交互に積層させた多層膜からなる露光光を反射する多層反射膜を備える多層反射膜付き基板の製造方法であって、
前記多層反射膜は、前記基板上に、高屈折率層と低屈折率層をこの順に成膜した積層構造、若しくは、低屈折率層と高屈折率層をこの順に積層した積層構造を1周期として複数周期積層した構成のものであり、
前記低屈折率層は、前記多層反射膜の反射率が65%以上、中心波長の面内ばらつきが0.04nm以下、表面粗さが二乗平均平方根粗さで0.15nm以下となるように、該低屈折率層の直下及び直上の前記高屈折率層との境界近傍領域ではそれ以外の領域とは、成膜条件を変更して成膜することを特徴とする多層反射膜付き基板の製造方法。
A method for producing a substrate with a multilayer reflective film comprising a multilayer reflective film that reflects exposure light comprising a multilayer film in which a low refractive index layer and a high refractive index layer are alternately laminated on a substrate,
The multi-layer reflective film has one cycle of a laminated structure in which a high refractive index layer and a low refractive index layer are formed in this order on the substrate, or a laminated structure in which a low refractive index layer and a high refractive index layer are laminated in this order. As a structure in which a plurality of periods are stacked,
The low refractive index layer has a reflectance of the multilayer reflective film of 65% or more, an in-plane variation of the center wavelength of 0.04 nm or less, and a surface roughness of root mean square roughness of 0.15 nm or less. Production of a substrate with a multilayer reflective film, characterized in that the film is formed by changing the film formation conditions in the area near the boundary with the high refractive index layer immediately below and immediately above the low refractive index layer Method.
前記多層反射膜は、イオンビームスパッタリング法を用いて成膜することを特徴とする請求項1に記載の多層反射膜付き基板の製造方法。   The method for manufacturing a substrate with a multilayer reflective film according to claim 1, wherein the multilayer reflective film is formed using an ion beam sputtering method. 前記低屈折率層の成膜条件は、前記基板の主表面の法線に対するスパッタ粒子の入射角度であることを特徴とする請求項1又は2に記載の多層反射膜付き基板の製造方法。   3. The method for manufacturing a substrate with a multilayer reflective film according to claim 1, wherein the film forming condition of the low refractive index layer is an incident angle of sputtered particles with respect to a normal of the main surface of the substrate. 前記低屈折率層は、該低屈折率層の直下及び直上の前記高屈折率層との境界近傍領域における前記基板の主表面の法線に対するスパッタ粒子の入射角度が、前記境界近傍領域以外における前記基板の主表面の法線に対するスパッタ粒子の入射角度よりも大きい成膜条件にてスパッタリング成膜することを特徴とする請求項3に記載の多層反射膜付き基板の製造方法。   In the low refractive index layer, the incident angle of the sputtered particles with respect to the normal of the main surface of the substrate in the region near the boundary with the high refractive index layer immediately below and immediately above the low refractive index layer is other than in the region near the boundary. 4. The method for manufacturing a substrate with a multilayer reflective film according to claim 3, wherein sputtering film formation is performed under film formation conditions larger than an incident angle of sputtered particles with respect to a normal line of the main surface of the substrate. 前記低屈折率層の成膜時に、前記基板の主表面の法線に対するスパッタ粒子の入射角度を、前記低屈折率層の直下及び直上の前記高屈折率層との境界近傍領域では45度以上55度以下の範囲、それ以外の領域では20度以上40度以下の範囲とすることを特徴とする請求項4に記載の多層反射膜付き基板の製造方法。   When forming the low refractive index layer, the incident angle of the sputtered particles with respect to the normal of the main surface of the substrate is 45 degrees or more in the region near the boundary with the high refractive index layer immediately below and immediately above the low refractive index layer. The method for producing a substrate with a multilayer reflective film according to claim 4, wherein the range is 55 ° or less, and in the other region, the range is 20 ° or more and 40 ° or less. 前記高屈折率層との境界近傍領域は、2nm以下の領域であることを特徴とする請求項1乃至5のいずれかに記載の多層反射膜付き基板の製造方法。   6. The method for manufacturing a substrate with a multilayer reflective film according to claim 1, wherein a region in the vicinity of the boundary with the high refractive index layer is a region of 2 nm or less. 請求項1乃至6のいずれかに記載の製造方法により得られる多層反射膜付き基板における前記多層反射膜上に、露光光を吸収する吸収体膜を形成することを特徴とする反射型マスクブランクの製造方法。   A reflective mask blank comprising an absorber film that absorbs exposure light on the multilayer reflective film in the substrate with the multilayer reflective film obtained by the manufacturing method according to claim 1. Production method. 請求項7に記載の製造方法により得られる反射型マスクブランクにおける前記吸収体膜をパターニングすることを特徴とする反射型マスクの製造方法。

A method for manufacturing a reflective mask, comprising patterning the absorber film in a reflective mask blank obtained by the manufacturing method according to claim 7.

JP2012289237A 2012-12-29 2012-12-29 Method for manufacturing substrate with multilayer reflective film, method for manufacturing reflective mask blank, and method for manufacturing reflective mask Active JP6126847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012289237A JP6126847B2 (en) 2012-12-29 2012-12-29 Method for manufacturing substrate with multilayer reflective film, method for manufacturing reflective mask blank, and method for manufacturing reflective mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012289237A JP6126847B2 (en) 2012-12-29 2012-12-29 Method for manufacturing substrate with multilayer reflective film, method for manufacturing reflective mask blank, and method for manufacturing reflective mask

Publications (2)

Publication Number Publication Date
JP2014130975A true JP2014130975A (en) 2014-07-10
JP6126847B2 JP6126847B2 (en) 2017-05-10

Family

ID=51409106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012289237A Active JP6126847B2 (en) 2012-12-29 2012-12-29 Method for manufacturing substrate with multilayer reflective film, method for manufacturing reflective mask blank, and method for manufacturing reflective mask

Country Status (1)

Country Link
JP (1) JP6126847B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016139675A (en) * 2015-01-27 2016-08-04 旭硝子株式会社 Method of manufacturing reflection mask blank for euv lithography, and method of manufacturing substrate with reflection layer for mask blank

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002323599A (en) * 2001-04-27 2002-11-08 Nikon Corp Method of manufacturing multilayer film reflecting mirror and exposure device
JP2007198782A (en) * 2006-01-24 2007-08-09 Nikon Corp Multilayer-film reflecting mirror and exposure system
JP2009272317A (en) * 2008-04-30 2009-11-19 Hoya Corp Method for manufacturing substrate with multilayer reflection film, method for manufacturing reflection type mask blank and method for manufacturing reflection type mask
JP2010135732A (en) * 2008-08-01 2010-06-17 Asahi Glass Co Ltd Substrate for euv mask blanks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002323599A (en) * 2001-04-27 2002-11-08 Nikon Corp Method of manufacturing multilayer film reflecting mirror and exposure device
JP2007198782A (en) * 2006-01-24 2007-08-09 Nikon Corp Multilayer-film reflecting mirror and exposure system
JP2009272317A (en) * 2008-04-30 2009-11-19 Hoya Corp Method for manufacturing substrate with multilayer reflection film, method for manufacturing reflection type mask blank and method for manufacturing reflection type mask
JP2010135732A (en) * 2008-08-01 2010-06-17 Asahi Glass Co Ltd Substrate for euv mask blanks

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016139675A (en) * 2015-01-27 2016-08-04 旭硝子株式会社 Method of manufacturing reflection mask blank for euv lithography, and method of manufacturing substrate with reflection layer for mask blank

Also Published As

Publication number Publication date
JP6126847B2 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
JP6470176B2 (en) Multilayer reflective film-coated substrate, reflective mask blank for EUV lithography, reflective mask for EUV lithography, method for manufacturing the same, and method for manufacturing a semiconductor device
JP6408790B2 (en) REFLECTIVE MASK BLANK, REFLECTIVE MASK, MANUFACTURING METHOD THEREOF, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
JP6060636B2 (en) Reflective mask blank for EUV lithography and reflective mask for EUV lithography
JP6422873B2 (en) Multilayer reflective film-coated substrate, reflective mask blank for EUV lithography, reflective mask for EUV lithography, method for manufacturing the same, and method for manufacturing a semiconductor device
US8709685B2 (en) Reflective mask blank and method of manufacturing a reflective mask
JP6287099B2 (en) Reflective mask blank for EUV lithography
JP5638769B2 (en) Method for manufacturing reflective mask blank and method for manufacturing reflective mask
KR102133165B1 (en) Reflective mask blank for euv lithography and process for its production, as well as substrate with reflective layer for such mask blank and process for its production
JP6377361B2 (en) SUBSTRATE WITH MULTILAYER REFLECTIVE FILM AND METHOD FOR MANUFACTURING THE SAME, METHOD FOR PRODUCING REFLECTIVE MASK BLANK, METHOD FOR PRODUCING REFLECTIVE MASK, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
JP2009510711A (en) Method for forming multilayer film of mask blank for EUV lithography, and method for manufacturing mask blank for EUV lithography
JP6604134B2 (en) Reflective mask blank for EUV lithography and method for manufacturing the same, and substrate with a reflective layer for the mask blank and method for manufacturing the same
US20140234756A1 (en) Reflective mask blank for euv lithography, and reflective layer-coated substrate for euv lithography
KR20220150290A (en) Reflective mask blank and reflective mask, and method for manufacturing a semiconductor device
JP2014130977A (en) Method of manufacturing substrate with multilayer reflection film, method of manufacturing reflective mask blank, and method of manufacturing reflective mask
JP6126847B2 (en) Method for manufacturing substrate with multilayer reflective film, method for manufacturing reflective mask blank, and method for manufacturing reflective mask
JP5333016B2 (en) Reflective mask blank for EUV lithography
JP2014130976A (en) Method of manufacturing substrate with multilayer reflection film, method of manufacturing reflective mask blank, and method of manufacturing reflective mask
WO2022249863A1 (en) Mask blank, reflective mask, and method for producing semiconductor device
WO2023074770A1 (en) Multilayer reflective film-attached substrate, reflective mask blank, reflective mask, and method for producing semiconductor device
JP2009252788A (en) Reflective mask blank for euv lithography
WO2012114980A1 (en) Reflective mask blank for euv lithography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170410

R150 Certificate of patent or registration of utility model

Ref document number: 6126847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250