JP2014129838A - Flexible pipe material, method for manufacturing the same and sound absorption pipe material made of flexible material - Google Patents

Flexible pipe material, method for manufacturing the same and sound absorption pipe material made of flexible material Download PDF

Info

Publication number
JP2014129838A
JP2014129838A JP2012287364A JP2012287364A JP2014129838A JP 2014129838 A JP2014129838 A JP 2014129838A JP 2012287364 A JP2012287364 A JP 2012287364A JP 2012287364 A JP2012287364 A JP 2012287364A JP 2014129838 A JP2014129838 A JP 2014129838A
Authority
JP
Japan
Prior art keywords
resin
belt
flexible tube
hard core
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012287364A
Other languages
Japanese (ja)
Other versions
JP2014129838A5 (en
Inventor
Akira Fujita
藤田  明
Hiroaki Fujita
博朗 藤田
Hideki Murase
秀樹 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Plastics Co Ltd
Original Assignee
Kuraray Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Plastics Co Ltd filed Critical Kuraray Plastics Co Ltd
Priority to JP2012287364A priority Critical patent/JP2014129838A/en
Publication of JP2014129838A publication Critical patent/JP2014129838A/en
Publication of JP2014129838A5 publication Critical patent/JP2014129838A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flexible pipe material which is excellent in flexibility and elasticity, is excellent also in dimension stability, has a light weight, has easy handleability, can be molded in a long size, can retain strength characteristics even into a long term outdoor use, further, does not generate toxic gas upon burning and is suitable for an inner pipe of sound absorbing pipe material and the like, to provide a method for manufacturing the flexible pipe material and, in addition, to provide a sound absorbing material which is made of the flexible pipe material and is excellent in sound absorbing characteristics.SOLUTION: A flexible pipe material comprises a resin hard ore material 4 and a belt-like body 1. The resin hard core material and the belt-like body are integrally melted. Therein, any of the following (1) to (3) is satisfied: (1) either of the resin hard core material 4 and the belt-like body 1 is spirally wound; (2) the resin hard core material is made of olefin type resin and/or polyester type resin; and (3) the belt-like body is non-woven fabric having the core part made of polyester resin and the sheath part is made of core sheath type fiber of a lower melting point resin than the polyester resin.

Description

本発明は、可撓性および伸縮性に優れるとともに、軽量で取扱いが容易でかつ長尺に成形可能なホースに関し、特に空調用のダクトとして好適に使用できる可撓性管材およびその製造方法に関するものである。   The present invention relates to a hose that is excellent in flexibility and stretchability, is lightweight, easy to handle, and can be formed into a long shape, and particularly relates to a flexible pipe material that can be suitably used as a duct for air conditioning and a method for manufacturing the same. It is.

従来、軟質塩化ビニル製のテープをラセン状に捲回しその側縁同士を接合して形成したホース壁の外面に硬質塩化ビニル製のラセン補強体を添着して構成したホースが、熱成形性に優れ製造コストが安い点から住宅用ダクトホースとして多く用いられていたが、ホース壁の肉厚を薄肉に形成することは技術的に限界があり、不使用時にコンパクトに収縮させて保管することは困難でかつ重量も相当重く取扱いが不便なものであった。また、近年の地球環境問題において、塩化ビニル樹脂の廃棄燃焼物が有毒ガスを発生させたりあるいは酸性雨の原因とされたり、塩化ビニル樹脂自体が発癌性物質視されたりして、その使用に制限が加えられる傾向にある。   Conventionally, a hose constructed by attaching a rigid reinforcement made of hard vinyl chloride to the outer surface of a hose wall formed by winding a soft vinyl chloride tape into a spiral shape and joining the side edges of each other is thermoforming. Although it was often used as a residential duct hose because of its excellent manufacturing cost, there is a technical limit to forming the wall thickness of the hose wall thin, and it is not possible to store it in a compact manner when not in use. It was difficult and heavy in weight, and was inconvenient to handle. Moreover, in recent global environmental problems, waste combustion products of vinyl chloride resin generate toxic gas or cause acid rain, or vinyl chloride resin itself is regarded as a carcinogenic substance, so its use is restricted. Tend to be added.

このような市場動向に対し、特許文献1では不織布層の少なくとも片面に積層してなる空気遮断層を有す不織布テープをラセン状に捲回し隣接する側縁同士を接合して形成されるラセン芯材が融着されたホースが提案されている。当該開示は、熱融着性に優れる一方で酸化劣化による脆化など長期の耐久(住宅用途50年以上)に問題のあるポリオレフィン系不織布を、少なくても片面にシートを複合し空気遮断層とすることで耐久性を向上したものであるが、近年住宅における静音ニーズが高まると共に、通気性(空気遮断層を有さない)の可撓性不織布管材を内管とし、その上部に吸音層を巻き付けて配置し最外層に空気遮断する可撓性吸音管材が求められており、空気遮断層がなくても熱融着性に優れ耐久性に不安のない材料が求められていた。   In response to such market trends, Patent Document 1 discloses a spiral core formed by winding a nonwoven fabric tape having an air blocking layer formed on at least one surface of a nonwoven fabric layer into a spiral shape and joining adjacent side edges. A hose with a fused material has been proposed. The disclosure discloses a polyolefin non-woven fabric that has excellent heat-fusibility but has problems with long-term durability such as embrittlement due to oxidative degradation (housing use for 50 years or more). However, in recent years, there has been a growing need for noise reduction in homes, and a flexible non-woven tube material with air permeability (without an air barrier layer) is used as an inner tube, and a sound absorbing layer is formed on the upper tube. There has been a demand for a flexible sound-absorbing tube material that is wound and arranged to block air from the outermost layer, and a material that is excellent in heat-fusability and has no fear of durability even without an air blocking layer has been demanded.

この問題に対し、特許文献2においてポリエステル系重合体を芯成分とし、該芯成分より融点が低いポリオレフィン系重合体を鞘成分とする芯鞘型複合長繊維不織布からなるフレキシブルダクト用テープ材が提案されているが、テープ材からフレキシブルダクトを製造する具体的な手段が開示されておらず、軽量で寸法安定性が良好で、かつ高強度のダクトを得る方法は見出されていないのが現状であった。   In response to this problem, Patent Document 2 proposes a flexible duct tape material comprising a core-sheath type composite continuous fiber non-woven fabric having a polyester polymer as a core component and a polyolefin polymer having a melting point lower than that of the core component as a sheath component. However, no specific means for producing a flexible duct from tape material has been disclosed, and no method has been found for obtaining a light weight, good dimensional stability, and a high-strength duct. Met.

特開平10−227379号公報(特許請求の範囲および図面)Japanese Patent Laid-Open No. 10-227379 (Claims and Drawings) 特開2004−144452号公報(特許請求の範囲および図面)Japanese Unexamined Patent Application Publication No. 2004-144442 (Claims and Drawings)

本発明の目的は、可撓性および伸縮性に優れるとともに寸法安定性にも優れ、軽量で取扱いが容易でかつ長尺に成形可能であり、屋外での長期間の使用によっても強度特性を保持することが可能で、さらには燃焼時には有毒ガスを発生させず、吸音管材等の内管用として好適な可撓性管材およびその製造方法を提供することにある。
さらに本発明の目的は、吸音特性に優れた吸音管材を提供することにある。
The object of the present invention is excellent in flexibility and stretchability and excellent in dimensional stability, lightweight, easy to handle and can be formed into a long shape, and retains strength characteristics even after long-term outdoor use. Further, it is an object of the present invention to provide a flexible pipe material suitable for an inner pipe such as a sound-absorbing pipe material and a method for producing the same, which does not generate toxic gas during combustion.
Another object of the present invention is to provide a sound-absorbing tube material excellent in sound-absorbing characteristics.

すなわち、本発明は、樹脂硬質芯材と帯状体とからなり、該樹脂硬質芯材と該帯状体とが融着一体化した可撓性管材であって、下記(1)〜(3)をいずれも満足することを特徴とする可撓性管材である。(1):樹脂硬質芯材および帯状体のいずれもがらせん状に捲回されてなる。(2):樹脂硬質芯材がオレフィン系樹脂および/またはポリエステル系樹脂からなる。(3):帯状体が、芯部がポリエステル樹脂で鞘部が前記ポリエステル樹脂よりも低融点の樹脂である芯鞘型繊維からなる不織布である。   That is, the present invention is a flexible tube material comprising a resin hard core material and a belt-like body, and the resin hard core material and the belt-like body are fused and integrated, and the following (1) to (3): Both are satisfactory flexible tube materials. (1): Both the resin hard core material and the belt-like body are spirally wound. (2): The resin hard core material is composed of an olefin resin and / or a polyester resin. (3): The belt-like body is a non-woven fabric made of core-sheath fibers in which the core part is a polyester resin and the sheath part is a resin having a melting point lower than that of the polyester resin.

本発明の別の形態は、帯状体が不織布とオレフィン系樹脂からなるフィルムとの積層体であって、該不織布の外側に該フィルムが位置する可撓性管材である。   Another embodiment of the present invention is a flexible tube material in which the band is a laminate of a nonwoven fabric and a film made of an olefin resin, and the film is positioned outside the nonwoven fabric.

また、本発明は可撓性管材の外側にさらに吸音材が積層された吸音管材や、前記吸音材の外側にさらに被覆空気遮蔽層が積層された吸音管材も包含する。   The present invention also includes a sound absorbing tube material in which a sound absorbing material is further laminated on the outside of the flexible tube material, and a sound absorbing tube material in which a covering air shielding layer is further laminated on the outside of the sound absorbing material.

更に本発明は、円筒状の管と該管表面に沿って該管長さ方向に対して傾斜して位置するスプリング状の回転棒とからなる製管機上で、該帯状体をらせん状に捲回させながら、帯状体と溶融押出しされた該樹脂硬質芯材とを接触させて、該樹脂硬質芯材と該帯状体とを融着一体化させる可撓性管材の製造方法であって、溶融押し出しされた樹脂硬質芯材を160℃〜190℃の温度で、該樹脂硬質芯材と該帯状体とを接触させて融着一体化させた後に、製管機上にて−10℃〜60℃の雰囲気下で冷却処理を行う可撓性管材の製造方法であり、好ましくは冷却処理時に−10℃〜60℃の気体を可撓性管材に吹き付けることを特徴とする可撓性管材の製造方法である。   Furthermore, the present invention provides a belt-like body that is spirally wound on a pipe-making machine comprising a cylindrical pipe and a spring-like rotary rod that is inclined with respect to the pipe length direction along the pipe surface. A method for producing a flexible tube material, in which a belt-shaped body and the resin-hard core material melt-extruded are brought into contact with each other while rotating, and the resin-hard core material and the belt-shaped body are fused and integrated. After the extruded resin hard core material is brought into contact with the resin hard core material at 160 ° C. to 190 ° C. and fused and integrated, it is −10 ° C. to 60 ° C. on a pipe making machine. A method for producing a flexible tube material, which is subjected to a cooling treatment in an atmosphere of ° C. Preferably, a gas having a temperature of -10 ° C to 60 ° C is blown onto the flexible tube material during the cooling treatment. Is the method.

本発明の可撓性管材や可撓性管材の製造方法を採用することにより、可撓性および伸縮性に優れるとともに可撓性管材内管側の管径等の寸法安定性にも優れ、さらに屋外の紫外線照射下や高温高湿下での使用時においても耐久性に優れた可撓性管材を提供することが可能となる。また吸音管材等のダクトの内管等として優れており、本発明の可撓性管材からなる吸音管材は優れた吸音特性を示す。   By adopting the flexible tube material and the method for producing the flexible tube of the present invention, it is excellent in flexibility and stretchability, and also excellent in dimensional stability such as the tube diameter on the inner tube side of the flexible tube material, It is possible to provide a flexible tube material that is excellent in durability even when used under outdoor ultraviolet irradiation or under high temperature and high humidity. Moreover, it is excellent as an inner tube of a duct such as a sound absorbing tube material, and the sound absorbing tube material made of the flexible tube material of the present invention exhibits excellent sound absorbing characteristics.

本発明の可撓性管材およびその製造方法を示す側面図である。It is a side view which shows the flexible pipe material of this invention, and its manufacturing method. 本発明の可撓性管材を内管とした可撓性吸音管材を示す一部断面を含む側面図である。It is a side view including the partial cross section which shows the flexible sound-absorbing tube material which used the flexible tube material of this invention as the inner tube. 本発明の可撓性管材における帯状体と樹脂硬質芯材との代表的な融着構造断面を示す側面図である。a:隣り合った帯状体が端部どうしも含めて重なっていないか、または隣り合った帯状体の端部どうしが接触した状態であって、隣り合った帯状体の端部間に樹脂硬質芯材が融着されて形成された構造の一例である。b:隣り合った帯状体の一部が重ねられた(積層した)後、少なくとも上側の帯状体の端部と下側の帯状体との積層部分に樹脂硬質芯材が融着されて形成された構造の一例である。c:隣り合った帯状体の一部が重ねられた(積層した)後、上側の帯状体と下側の帯状体との積層部分の間に少なくとも一部に樹脂硬質芯材が融着されて形成された構造の一例である。It is a side view which shows the typical melt | fusion structure cross section of the strip | belt-shaped body and resin hard core material in the flexible tube material of this invention. a: Adjacent belt-like bodies do not overlap including the end portions, or the end portions of the adjacent belt-like bodies are in contact with each other, and the resin hard core is located between the end portions of the adjacent belt-like bodies. It is an example of a structure formed by fusing materials. b: After a part of the adjacent belt-like bodies are overlapped (laminated), a resin hard core material is fused to at least a laminated portion of the upper belt-like body and the lower belt-like body. This is an example of the structure. c: After a part of the adjacent belt-like bodies are stacked (laminated), the resin hard core material is fused at least partially between the laminated portions of the upper belt-like body and the lower belt-like body. It is an example of the formed structure.

本発明の可撓性管材は、樹脂硬質芯材と帯状体とからなり、該樹脂硬質芯材と該帯状体とが融着一体化した可撓性管材であることが重要である。   It is important that the flexible tube material of the present invention is a flexible tube material which is composed of a resin hard core material and a belt-like body, and the resin hard core material and the belt-like body are fused and integrated.

まず、本発明の可撓性管材の構造と製造方法を図1によって説明する。   First, the structure and manufacturing method of the flexible tube of the present invention will be described with reference to FIG.

図1は、帯状体1が多数本の回転棒2が円筒上に均一に配されてなる製管機3によって一定のピッチで重なった状態か隣接する状態でラセン捲回され、樹脂硬質芯材4が、溶融状態でダイス5より押出され温調延伸ゾーン6を経て帯状体と同調してラセン捲回され、即座に空気冷却7されることで帯状体が樹脂硬質芯材と融着される、可撓性管材およびその製造方法を示すものである。尚、回転棒2根本の矢印は回転方向、帯状体1の矢印は送出と捲回方向を示すものである。   FIG. 1 shows a resin rigid core material in which a strip 1 is spirally wound by a pipe making machine 3 in which a large number of rotating rods 2 are uniformly arranged on a cylinder in a state where they are overlapped at a constant pitch or adjacent to each other. 4 is extruded from a die 5 in a molten state, spirally wound in synchronism with the strip through the temperature-controlled stretching zone 6, and immediately cooled with air 7 so that the strip is fused to the resin hard core. The flexible tube material and the manufacturing method thereof will be described. Note that the arrow at the root of the rotating rod 2 indicates the direction of rotation, and the arrow at the strip 1 indicates the direction of feeding and winding.

本発明の可撓性管材を構成する帯状体1は、芯部がポリエステル樹脂からなり、鞘部がポリエステル樹脂よりも低融点の樹脂からなる芯鞘型繊維から構成される不織布であることが重要である。
不織布を構成する芯鞘型繊維において、鞘部がポリエステル樹脂よりも低融点の樹脂であることは、後述する樹脂硬質芯材との融着が容易である点や、可撓性管材を製造する際の製造条件の設定や制御が容易である点から重要である。
鞘部の樹脂については、ポリエステル樹脂よりも低融点である樹脂であればいずれの樹脂でも選択可能であるが、得られる可撓性管材の軽量性、強度特性を考慮すると、オレフィン系樹脂が好ましく、オレフィン系樹脂の中でも経済性や屋外等で使用時の紫外線耐久性や耐酸化特性などを考慮すると、ポリエチレン樹脂、ポリプロピレン樹脂が好ましい。
It is important that the strip 1 constituting the flexible tubular material of the present invention is a nonwoven fabric in which the core portion is made of a polyester resin and the sheath portion is made of a core-sheath fiber made of a resin having a melting point lower than that of the polyester resin. It is.
In the core-sheath type fiber constituting the nonwoven fabric, the fact that the sheath part is a resin having a melting point lower than that of the polyester resin is easy to fuse with the resin hard core material described later, and produces a flexible tube material. This is important because it is easy to set and control manufacturing conditions.
As the resin for the sheath, any resin can be selected as long as it has a melting point lower than that of the polyester resin. However, in view of the light weight and strength characteristics of the obtained flexible tubular material, an olefin resin is preferable. Of the olefin resins, polyethylene resin and polypropylene resin are preferable in consideration of economic efficiency, ultraviolet durability when used outdoors, and oxidation resistance.

また芯部がポリエステル樹脂からなることは、得られる可撓性管材や該可撓性管材からなる吸音管材等のダクト製品の強度特性を大きくするために重要である。ポリエステル樹脂はテレフタル酸、イソフタル酸、ナフタレン−2,6−ジカルボン酸、フタル酸、α,β−(4−カルボフェノキシ)エタン、4,4−ジカルボキシジフェニル、5−ナトリウムスルホイソフタル酸等の芳香族ジカルボン酸、アゼライン酸、アジピン酸、セバシン酸等の脂肪族ジカルボン酸またはこれらのエステル類、エチレングリコール、ジエチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、シクロヘキサン−1,4−ジメタノール、ポリエチレングリコール、ポリテトラメチレングリコール等のジオールからなる繊維形成性のポリエステルを挙げることができ、構成単位の80モル%以上がエチレンテレフタレート単位であることが好ましい。   Moreover, it is important for the core part to be made of a polyester resin in order to increase the strength characteristics of duct products such as the obtained flexible pipe material and the sound-absorbing pipe material made of the flexible pipe material. Polyester resins are fragrances such as terephthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, phthalic acid, α, β- (4-carbophenoxy) ethane, 4,4-dicarboxydiphenyl, 5-sodium sulfoisophthalic acid, etc. Aliphatic dicarboxylic acids such as aliphatic dicarboxylic acids, azelaic acid, adipic acid, sebacic acid or their esters, ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, Mention may be made of fiber-forming polyesters composed of diols such as neopentyl glycol, cyclohexane-1,4-dimethanol, polyethylene glycol and polytetramethylene glycol, and 80 mol% or more of the structural units are ethylene terephthalate units. Is preferred Yes.

そして芯部と鞘部との組み合わせという観点では、ポリエステル系樹脂を芯部とし低融点オレフィン重合体を鞘部とする芯鞘型複合繊維が、樹脂硬質芯材との融着が容易でかつ可撓性管材としての強度特性を保持し、さらには芯部と鞘部との耐剥離特性が良好である点で好ましい。   From the viewpoint of the combination of the core and the sheath, the core-sheath type composite fiber having the polyester resin as the core and the low melting point olefin polymer as the sheath is easy and possible to be fused with the resin hard core. It is preferable in terms of maintaining strength characteristics as a flexible tube material and having good peeling resistance between the core and the sheath.

不織布については、本発明の所望を満足するのであれば、あらゆる製法によって得られる不織布を選択することが可能であるが、可撓性管材とした際の重量特性、強度特性、さらには不織布を帯状体とする際の加工容易性や、該帯状体をらせん捲回する際の加工容易性、さらには経時的な酸化劣化を抑制することを考慮すると、スパンボンド法によって得られる長繊維不織布であることが好ましい。
不織布の目付は30g/m2〜120g/m2の範囲にあることが可撓性管材のらせんを均一的に達成することが容易となる点で好ましい。特に後述するように、製管機上で不織布からなる帯状体をらせん捲回させて可撓性管材を製造する場合には好ましい。
As for the non-woven fabric, it is possible to select a non-woven fabric obtained by any manufacturing method as long as the desire of the present invention is satisfied. Considering the ease of processing when forming a body, the ease of processing when spirally winding the strip, and further suppressing the oxidative deterioration over time, it is a long fiber nonwoven fabric obtained by the spunbond method It is preferable.
Basis weight of the nonwoven fabric is preferable in that it becomes easy it is to uniformly achieve a spiral of flexible tubing in a range of 30g / m 2 ~120g / m 2 . In particular, as will be described later, it is preferable when a flexible tubular material is produced by spirally winding a belt-shaped body made of a nonwoven fabric on a pipe making machine.

帯状体は前記したように不織布からなることが重要であるが、不織布単体から構成されていてもよく、不織布と他の構造物とから構成されていてもよい。好ましい一例としては、不織布とフィルムとの積層体によって帯状体が構成されていることが挙げられる。可撓性管材としての柔軟性を損なわない範囲で、可撓性管材に求められる特性、例えば強度特性や軽量特性に応じて、フィルムは樹脂製であっても、金属製であっても、あるいは樹脂製と金属製との積層フィルムであってもよいが、軽量性、柔軟性、強度特性を併せて要求される場合には、フィルムは樹脂製フィルムであることが好ましい。また、可撓性管材を屋外ダクトとして用いる場合等には、該樹脂製フィルムはオレフィン系樹脂からなることが好ましい。
さらにフィルムは不織布の両面に積層されていてもよく、片面に積層されていてもよいが、耐酸化性など空気遮蔽性や紫外線遮蔽性が求められる場合には、少なくとも不織布の外側にフィルムが積層されていることが好ましい。
フィルムの厚みは可撓性管材の機能を有するのであれば限定されるものではないが、可撓性管材としての柔軟性を重要視する場合には、厚みが100μm以下であることが好ましい。
As described above, it is important that the belt-like body is made of a non-woven fabric, but it may be made of a non-woven fabric alone, or may be made of a non-woven fabric and another structure. As a preferred example, a belt-like body is constituted by a laminate of a nonwoven fabric and a film. As long as the flexibility as a flexible tube is not impaired, the film may be made of resin, metal, or the like, depending on characteristics required for the flexible tube, such as strength characteristics and light weight characteristics. Although a laminated film made of resin and metal may be used, the film is preferably a resin film when lightness, flexibility, and strength characteristics are required. Moreover, when using a flexible pipe material as an outdoor duct etc., it is preferable that this resin film consists of olefin resin.
Furthermore, the film may be laminated on both sides of the nonwoven fabric, or may be laminated on one side, but when air shielding properties such as oxidation resistance and ultraviolet shielding properties are required, the film is laminated at least on the outside of the nonwoven fabric. It is preferable that
The thickness of the film is not limited as long as it has the function of a flexible tube material. However, when importance is attached to the flexibility as the flexible tube material, the thickness is preferably 100 μm or less.

本発明の可撓性管材を構成する樹脂硬質芯材は、オレフィン系樹脂またはポリエステル系樹脂からなることが、可撓性管材の強度特性、特に隣接する帯状体間の剥離強度を大きくする意味で重要である。
より具体的には、硬質ポリエステル樹脂、硬質オレフィン樹脂などが挙げられるが、樹脂溶融粘度が高く押出時の賦型性に優れる特性から、硬質オレフィン樹脂が好ましく用いられる。
The resin hard core material constituting the flexible tube material of the present invention is made of an olefin resin or a polyester resin in order to increase the strength characteristics of the flexible tube material, particularly the peel strength between adjacent strips. is important.
More specifically, a hard polyester resin, a hard olefin resin, and the like can be mentioned. A hard olefin resin is preferably used because of its high resin melt viscosity and excellent formability during extrusion.

そして樹脂硬質芯材、帯状体のいずれもがらせん状に捲回されていることが、得られる可撓性管材の軽量性や柔軟性を保持する意味で重要である。帯状体の長手方向と可撓性管材の長さ方向とのなす角度は30°〜85°であることが可撓性管材の生産性を確保し、さらに可撓性管材の柔軟性を確保する上で好ましい。   And it is important in the meaning which keeps the lightweight property and softness | flexibility of the flexible tube material obtained that both the resin hard core material and a strip | belt-shaped body are wound helically. The angle formed by the longitudinal direction of the strip and the length direction of the flexible tube material is 30 ° to 85 ° to ensure the productivity of the flexible tube material and further ensure the flexibility of the flexible tube material. Preferred above.

帯状体の幅は可撓性管材の内径によって異なるものの、例えば可撓性管材の内径が100mmの場合には、10mm〜30mmであることが可撓性管材の生産性を確保し、かつ可撓性管材の柔軟性や強度特性の均一化が容易となる点等で好ましい。
さらに可撓性管材における帯状体と帯状体とのピッチ(間隔)についても可撓性管材の内径によっても異なるものの、例えば可撓性管材の内径が100mmの場合には、10mm〜30mmであることが、形状保持性、可撓性、生産安定性の観点から好ましく用いられる。
Although the width of the belt-like body varies depending on the inner diameter of the flexible tube material, for example, when the inner diameter of the flexible tube material is 100 mm, 10 mm to 30 mm ensures the productivity of the flexible tube material and is flexible. It is preferable in terms of facilitating the uniformity of the flexibility and strength characteristics of the tube.
Furthermore, although the pitch (interval) between the strips in the flexible tube material also varies depending on the inner diameter of the flexible tube member, for example, when the inner diameter of the flexible tube member is 100 mm, it is 10 mm to 30 mm. However, it is preferably used from the viewpoint of shape retention, flexibility, and production stability.

本発明の可撓性管材における、樹脂硬質芯材と帯状体との融着部分については、可撓性管材が所望の特性を有する限りは特に限定されるものではない。しかしながら、該融着部分の可撓性管材の長さ方向の断面構造において、図3のa、b、またはcに示す構造を有することが、融着部分が強度的に十分であって、かつ得られる可撓性管材が柔軟性を得るためには好ましい。
図3のaは、隣り合った帯状体が端部どうしも含めて重なっていないか、または隣り合った帯状体の端部どうしが接触した状態であって、隣り合った帯状体の端部間に樹脂硬質芯材が融着されて形成された構造である。樹脂硬質芯材は、隣り合った帯状体のいずれとも融着していることが強度特性の点から好ましい。
また、図3のbは、隣り合った帯状体の一部が重ねられた(積層した)後、少なくとも上側の帯状体の端部と下側の帯状体との積層部分に樹脂硬質芯材が融着されて形成された構造である。該硬質樹脂芯材は、上側の帯状体と下側の帯状体とにまたがって融着された状態であることが強度特性の点から好ましい。
さらに、図3のcは、隣り合った帯状体の一部が重ねられた(積層した)後、上側の帯状体と下側の帯状体との積層部分の間に少なくとも一部に樹脂硬質芯材が融着されて形成された構造である。
In the flexible tubular material of the present invention, the fused portion between the resin hard core material and the strip is not particularly limited as long as the flexible tubular material has desired characteristics. However, in the cross-sectional structure in the longitudinal direction of the flexible tube material of the fusion part, having the structure shown in a, b, or c of FIG. 3 is sufficient in strength of the fusion part, and The obtained flexible tube is preferable for obtaining flexibility.
FIG. 3a shows a state in which the adjacent strips do not overlap each other including the end portions or the ends of the adjacent strips are in contact with each other between the end portions of the adjacent strips. It is a structure formed by fusing a resin hard core material. It is preferable from the viewpoint of strength characteristics that the resin hard core material is fused to any of the adjacent strips.
FIG. 3b shows that after a part of adjacent strips are stacked (stacked), a resin hard core material is formed at least on the layered portion of the end of the upper strip and the lower strip. It is a structure formed by fusing. It is preferable from the viewpoint of strength characteristics that the hard resin core material is in a state of being fused across the upper band and the lower band.
Further, FIG. 3c shows that after a part of adjacent strips are stacked (stacked), a resin hard core is at least partially between the stacked portions of the upper strip and the lower strip. It is a structure formed by fusing materials.

本発明の可撓性管材は所望の特性を満足する限りにおいては、その製造方法は限定されないが、好ましい製造方法の一形態として、図1を用いて説明する。円筒状の管と該管表面に沿って該管長さ方向に対して傾斜して位置するスプリング状の回転棒とからなる製管機上で、該帯状体をらせん状に捲回させながら、帯状体と溶融押出しされた該樹脂硬質芯材とを接触させて、該樹脂硬質芯材と該帯状体とを融着一体化させる方法を採用することが好ましく、図1を用いて説明する。   As long as the flexible tube material of the present invention satisfies the desired characteristics, its manufacturing method is not limited, but it will be described with reference to FIG. 1 as one form of a preferable manufacturing method. On a pipe making machine consisting of a cylindrical tube and a spring-like rotating rod that is inclined with respect to the tube length direction along the tube surface, the belt-like body is spirally wound, It is preferable to employ a method of bringing the resin hard core material into contact with the melt-extruded resin hard core material and fusing and integrating the resin hard core material and the belt-shaped body, which will be described with reference to FIG.

本発明の可撓性管材を製造するために用いられる製管機3は、例えば表面を平滑に仕上げた密着巻きスプリングが回転棒2として円筒13上に均等に多数本配されたものであり、回転棒2は遊星ギアなどによって個々に回転するものである。この製管機が帯状体をらせん巻回する仕組みとは、棒状回転体の回転方向に対し帯状体が直交して巻き付く一般特性を応用したものであり、円筒13上にて回転棒2の根本と先端の間でネジり、均等に配列することにで、個々の回転棒の回転方向に対する直交力が、円筒13上をらせん状にフィードする力に変換されるものである。   The pipe making machine 3 used for manufacturing the flexible pipe material of the present invention is, for example, a large number of tightly wound springs having a smooth surface finished as a rotating rod 2 on a cylinder 13. The rotating rod 2 is individually rotated by a planetary gear or the like. The mechanism in which the pipe-making machine spirally winds the belt-like body is an application of the general characteristic that the belt-like body winds perpendicularly to the rotation direction of the rod-like rotating body. By twisting between the root and the tip and arranging them evenly, the orthogonal force with respect to the rotational direction of each rotating rod is converted into a force that spirally feeds on the cylinder 13.

該硬質樹脂芯材
これら例示した硬質樹脂芯材は、一般的に200℃〜260℃の樹脂温度で押出機より溶融吐出されるものであるが、フィルム類を介さず不織布材質である帯状体を融着すること考慮した場合、210℃を超える温度では低融点の重合体からなる鞘部を完全溶融して芯材内に吸収され融着特性を損なわれため好ましくない。本発明においては、温調延伸ゾーン6を設けその距離の調整で樹脂表面温度150℃〜210℃とし帯状体と同調捲回による融着と製管機上の環境温度-5℃〜45℃(作業できる環境)において即座に空気冷却7することで強固な融着を得ることができる。
These hard resin core materials These exemplified hard resin core materials are generally melted and discharged from an extruder at a resin temperature of 200 ° C. to 260 ° C. In consideration of fusing, a temperature exceeding 210 ° C. is not preferable because a sheath made of a polymer having a low melting point is completely melted and absorbed in the core material and the fusing property is impaired. In the present invention, the temperature control stretching zone 6 is provided, and the resin surface temperature is adjusted to 150 ° C. to 210 ° C. by adjusting the distance, and the ambient temperature on the pipe making machine is -5 ° C. to 45 ° C. A strong fusion can be obtained by immediately air-cooling 7 in a work environment.

即座な空気冷却7とは、管内面を保持した状態である製管機上において管内収縮を制御しながら硬質樹脂芯材を固めることを目的とし、圧力損失に繋がる可撓性管材内面の凸凹を減少させ、融着強力を発揮させることから、本発明の可撓性管材を得るためには非常に好ましい工程である。   Immediate air cooling 7 is intended to harden the hard resin core material while controlling the shrinkage in the pipe on the pipe making machine holding the pipe inner surface, and the unevenness of the inner surface of the flexible pipe material that leads to pressure loss. It is a very preferable process for obtaining the flexible tube material of the present invention because it reduces and exerts the fusion strength.

空気冷却については上記の目的を達成するのであれば、特に限定されるものではないが、可撓性管材に空気を吹きつけることによって冷却する方法を採用することが、可撓性管材の冷却を効率的に行うことが可能となる点から好ましく用いられる。
空気冷却に使用する際の空気については、窒素等の不活性ガスであってもよいが、経済面からは空気を使用することが好ましい。空気冷却の際の空気温度については、製造時の雰囲気温度(気温)や、硬質樹脂芯材の融着温度によっても異なるものの、5℃〜20℃であることが融着時の強力発現を容易とする点で好ましく、10℃〜15℃であることがより好ましい。
また空気冷却時の空気流量については管材の外径や硬質樹脂芯材の融着温度によって異なるが、1分あたり2〜50mの流量とすることが得られる管材の強度ばらつきや管材内面の凹凸を少なくする点で好ましく、6〜18mの流量とすることがさらに好ましい。
さらには空気冷却の時間については、20秒以上であることが管材内面の凹凸を少なくする点で好ましい。
The air cooling is not particularly limited as long as the above object is achieved, but adopting a method of cooling the air by blowing air onto the flexible tube can reduce the cooling of the flexible tube. It is preferably used because it can be performed efficiently.
The air used for air cooling may be an inert gas such as nitrogen, but it is preferable to use air from the economical aspect. Although the air temperature during air cooling varies depending on the atmospheric temperature (air temperature) at the time of manufacture and the fusion temperature of the hard resin core material, 5 to 20 ° C. facilitates strong expression at the time of fusion. It is preferable at the point made to, and it is more preferable that it is 10 to 15 degreeC.
The air flow rate during air cooling varies depending on the outer diameter of the tube material and the fusion temperature of the hard resin core material, but the strength variation of the tube material that can be obtained at a flow rate of 2 to 50 m 3 per minute and irregularities on the inner surface of the tube material Is preferable, and a flow rate of 6 to 18 m 3 is more preferable.
Furthermore, the air cooling time is preferably 20 seconds or longer from the viewpoint of reducing irregularities on the inner surface of the tube material.

なお、製管機上で空気冷却を行うことによって、管材内面の凹凸を少なくすることが可能となる観点からすると、空気冷却7終了後においても製管機上で冷却されていることが好ましい。
ここでいう製管機上での冷却とはいわゆる室温雰囲気における自然冷却であってもよい。また製管機上を管材が移動をしながらの冷却であってもよい。
空気冷却終了後の製管機上での冷却時間は空気冷却時間と同等以上であることが、管材内面の凹凸を少なくすることが容易となる点で好ましい。
In addition, from the viewpoint that the unevenness of the inner surface of the pipe material can be reduced by performing air cooling on the pipe making machine, it is preferable that the air is cooled on the pipe making machine even after the air cooling 7 is finished.
The cooling on the pipe making machine here may be natural cooling in a so-called room temperature atmosphere. Further, the cooling may be performed while the pipe material moves on the pipe making machine.
The cooling time on the pipe making machine after the end of air cooling is preferably equal to or longer than the air cooling time because it is easy to reduce unevenness on the inner surface of the pipe material.

本発明の可撓管材は、前述した工程と材質によって成型されたものであり、可撓性および伸縮性に優れるとともに、軽量で取扱いが容易でかつ長尺に成形可能であり、その材質特性から、使用にあっては揮発性油分を含まず、燃焼時には有毒ガスを発生させず、酸化劣化による脆化など長期耐久性がある空調用途に好適な可撓性管材である。   The flexible tube material of the present invention is formed by the above-described process and material, is excellent in flexibility and stretchability, is lightweight, easy to handle, and can be formed into a long shape. In use, it is a flexible tube material suitable for air conditioning applications that does not contain volatile oil, does not generate toxic gas during combustion, and has long-term durability such as embrittlement due to oxidative degradation.

次に図2を用いて、本発明の吸音管材を説明する。   Next, the sound absorbing pipe material of the present invention will be described with reference to FIG.

本発明の吸音管材は、図2に示すように、本発明の可撓性管材を内管とし、該可撓性管材の外側に吸音材9が積層されていることを特徴とする。
吸音材9は、吸音性および柔軟性を有する材料であれば特に限定されるものではないが、汎用性、吸水性や吸湿性の低さ、経時的な形状・強度安定性、断熱性能などからポリエステル繊維からなる構造体やポリウレタン樹脂からなる発泡体などが好適である。
As shown in FIG. 2, the sound absorbing tube material of the present invention is characterized in that the flexible tube material of the present invention is used as an inner tube, and a sound absorbing material 9 is laminated on the outside of the flexible tube material.
The sound-absorbing material 9 is not particularly limited as long as it is a material having sound-absorbing properties and flexibility. However, from the viewpoint of versatility, low water absorption and hygroscopic properties, shape / strength stability over time, heat insulation performance, etc. A structure made of polyester fiber, a foam made of polyurethane resin, and the like are suitable.

本発明の吸音管材は、耐熱性を重視する場合には、吸音材9の外側にさらに被覆空気遮断層10が積層されていることが好ましい。被覆空気遮断層10は、可撓性管材としての柔軟性を損なわない範囲である100μmまでの厚さの、あらゆる樹脂フィルム、金属フィルム、樹脂と金属の積層フィルム、が考えられるが、揮発性油分を含まず、燃焼時には有毒ガスを発生させない、被覆空気遮断層の構造としてチューブ加工し易いこと、等を考慮すると低分子量のポリエチレン樹脂フィルムであることが最適である。   In the sound absorbing tube material of the present invention, when importance is attached to heat resistance, it is preferable that a covering air blocking layer 10 is further laminated outside the sound absorbing material 9. The covering air blocking layer 10 may be any resin film, metal film, and resin-metal laminated film having a thickness of up to 100 μm which does not impair the flexibility as a flexible tube material. It is optimal to use a low molecular weight polyethylene resin film in consideration of the fact that it does not contain toxic gases during combustion, and that it is easy to process a tube as a structure of a coated air barrier layer.

本発明の吸音管材の製造方法としては、前記の積層構造が得られるのであれば限定されないものの、内管である可撓性管材の外周に吸音材9を巻き付け、さらに最外周に被覆空気遮断層10を設ける方法を採用することが生産設備の簡素化・経済性の観点から好ましい。   The method for producing the sound-absorbing tube material of the present invention is not limited as long as the above laminated structure can be obtained. It is preferable to adopt the method of providing 10 from the viewpoint of simplification of production facilities and economy.

内管である可撓性管材への吸音材の巻き付け形態は、特に限定されるものではなくラセン捲回および寿司巻きなどであってもよいが、吸音材積層時の生産性を考慮すると、寿司巻き構造であることが好ましい。   The winding form of the sound absorbing material around the flexible pipe material that is the inner tube is not particularly limited, and may be spiral winding, sushi winding, or the like. A winding structure is preferred.

本発明は、可撓性吸音管材の吸音材および被覆空気遮断層を制限するものではなく、通気性可撓管材である内管のみに関し、その効率的な製造方法を提案するものである。   The present invention does not limit the sound-absorbing material and the covering air blocking layer of the flexible sound-absorbing tube material, but proposes an efficient manufacturing method only for the inner tube that is a breathable flexible tube material.

次に実施例を示し、本発明の代表的な具体例を示すが、本発明は以下の実施例に限定されるものではない。   Examples Next, typical examples of the present invention will be shown, but the present invention is not limited to the following examples.

実施例1
高密度ポリエチレン(HDPE)よりなる樹脂硬質芯材を吐出口樹脂温度215℃で溶融押出し、30cmの温調延伸ゾーンを経て約180℃の樹脂温度状態とし、表面が平滑な密着したスプリングによる同方向で同一回転をする回転棒が円筒上に約5°捻られて均等に8本配され、その対角線上の回転棒外側の距離が108mmである製管機に、ポリエステル樹脂が芯部であって、芯部のポリエステル樹脂よりも融点が低い低融点ポリオレフィンが鞘部である芯鞘型複合繊維からなる目付70g/m2のスパンボンド不織布を幅30mmで裁断した帯状体を製管機上にラセン捲回し、第1周と第2周の帯状体端部が突き合わされた(すなわち、第1週の帯状体端部と第2周の帯状体端部との距離が0mmである)状態において、前述の約180℃となったHDPEからなる溶融樹脂硬質芯材を帯状体の突き合わせ部に跨がる状態で同調させて捲回し、さらに即座に20℃の噴出空気を12m/分の流量で製管機上にてラセン進行する帯状体と樹脂硬質芯材との溶融物に30秒間接触させて該溶融物を冷却させて、内径105mmΦ、ピッチ30mm、カマボコ型芯材の幅×高さが7mm×4mmの空気遮断層を有さない実施例1の可撓性管材を得た。
Example 1
Resin hard core material made of high-density polyethylene (HDPE) is melt-extruded at a discharge port resin temperature of 215 ° C., passed through a temperature-controlled stretch zone of 30 cm, brought to a resin temperature state of about 180 ° C., and in the same direction by a spring with a smooth surface In the pipe making machine in which the rotating rods rotating in the same direction are twisted approximately 5 ° on the cylinder and are evenly arranged, and the distance outside the rotating rod on the diagonal is 108 mm, the polyester resin is the core part. A strip formed by cutting a spunbonded nonwoven fabric having a basis weight of 70 g / m 2 made of a core-sheath type composite fiber whose sheath is a low-melting polyolefin having a melting point lower than that of the polyester resin of the core part to a width of 30 mm is formed on the pipe making machine. In the state in which the belt-like body end portions of the first and second circumferences are brought into contact with each other (that is, the distance between the belt-like body end portion of the first week and the belt-like body end portion of the second week is 0 mm), About 180 ℃ The molten resin hard core material consisting of HDPE was wound in a synchronized manner across the abutting part of the belt-like body, and immediately, 20 ° C. air was blown at a flow rate of 12 m 3 / min on the pipe making machine. Contact with the melt of the spiral belt and the resin hard core for 30 seconds to cool the melt, air shutoff with an inner diameter of 105 mmΦ, a pitch of 30 mm, and a width-height of 7 mm x 4 mm A flexible tube of Example 1 having no layer was obtained.

実施例2
高密度ポリエチレン(HDPE)よりなる樹脂硬質芯材を215℃で帯状体の突き合わせ部に跨がる状態で同調させること、および噴出空気での冷却時間が10秒であること以外は実施例1と同様にして、内径100mmΦ、ピッチ30mm、カマボコ型芯材の幅×高さが7mm×4mmの空気遮断層を有さない実施例2の可撓性管材を得た。
Example 2
Example 1 except that the resin hard core made of high-density polyethylene (HDPE) is synchronized at 215 ° C. in a state of straddling the butt portion of the strip and that the cooling time with the blown air is 10 seconds. In the same manner, a flexible tube material of Example 2 having an air blocking layer having an inner diameter of 100 mmΦ, a pitch of 30 mm, and a width-height of 7 mm × 4 mm was obtained.

実施例3
ポリエステル樹脂が芯部で、芯部のポリエステル樹脂よりも融点が低い低融点ポリオレフィンが鞘部である芯鞘型複合繊維からなる目付70g/m2のスパンボンド不織布に厚さ30μmの低密度ポリエチレンシートを積層させて幅30mmで裁断し、該低密度ポリエチレンシートを外側として製管機上にらせん捲回させる以外は実施例1と同様にして、内径105mmΦ、ピッチ30mm、カマボコ型芯材の幅×高さが7mm×4mmの空気遮断層を有する実施例3の可撓性管材を得た。
Example 3
A low-density polyethylene sheet having a thickness of 30 μm and a spunbonded nonwoven fabric having a basis weight of 70 g / m 2 made of a core-sheath type composite fiber in which a polyester resin is a core and a low-melting polyolefin having a lower melting point than the polyester resin of the core is a sheath Are cut in a width of 30 mm and spirally wound on a pipe making machine with the low-density polyethylene sheet as the outside, in the same manner as in Example 1, with an inner diameter of 105 mmΦ, a pitch of 30 mm, and the width of the kamaboko-type core material × A flexible tube material of Example 3 having an air barrier layer with a height of 7 mm × 4 mm was obtained.

比較例1
ポリプロピレン(PP)よりなる樹脂硬質芯材を吐出口樹脂温度225℃で溶融押出し、30cmの温調延伸ゾーンを経て約200℃の樹脂温度状態とすること、ポリプロピレン繊維からなる目付70g/m2のスパンボンド不織布を幅30mmで裁断し帯状体とすること、および該樹脂硬質芯材を樹脂温度200℃で帯状体と同調させること以外は実施例1と同様にして、内径103mmΦ、ピッチ30mm、カマボコ型芯材の幅×高さが7mm×4mmの空気遮断層を有さない比較例1の可撓性管材を得た。
Comparative Example 1
A resin hard core material made of polypropylene (PP) is melt-extruded at a discharge port resin temperature of 225 ° C., and is adjusted to a resin temperature state of about 200 ° C. through a temperature-controlled stretching zone of 30 cm, with a basis weight of 70 g / m 2 made of polypropylene fiber. Except that the spunbonded nonwoven fabric is cut into a band-like body with a width of 30 mm, and the resin hard core is synchronized with the band-like body at a resin temperature of 200 ° C., the same as in Example 1, the inner diameter is 103 mmΦ, the pitch is 30 mm, A flexible tube material of Comparative Example 1 having no air blocking layer having a width x height of 7 mm x 4 mm was obtained.

上記した、実施例1、実施例2、実施例3、比較例1における樹脂硬質芯材と隣接する帯状体の融着複合強度を測定すべく、可撓性管材を幅25mmで長さ方向に120mm裁断し、速度100mm/分の状態で引っ張り、その芯材融着部破壊強度を測定した。結果を表1に示す。   In order to measure the fusion composite strength of the belt-shaped body adjacent to the resin hard core material in Example 1, Example 2, Example 3 and Comparative Example 1 described above, the flexible tube material is 25 mm wide in the length direction. The core material was cut at 120 mm and pulled at a speed of 100 mm / min, and the core material fused portion fracture strength was measured. The results are shown in Table 1.

Figure 2014129838
Figure 2014129838

本発明に基づいて作成された実施例1〜実施例3の可撓性管材は、芯材融着部破壊強度において比較例1の可撓性管材よりも優れ、とくに実施例1および実施例3の可撓性管材は比較例1の可撓性管材の2倍の強度特性を示した。実施例のいずれの可撓性管材とも管材として充分な構造強度を有することが証明された。   The flexible tube materials of Examples 1 to 3 made based on the present invention are superior to the flexible tube material of Comparative Example 1 in terms of core material fusion bond fracture strength, and in particular, Examples 1 and 3 The flexible tube material showed twice the strength characteristics of the flexible tube material of Comparative Example 1. It has been proved that any of the flexible tubular materials of the examples has sufficient structural strength as a tubular material.

可撓性管材の内径に関し、実施例1および実施例3は計画した内径である105mmΦとなる一方で、実施例2は製管機上における樹脂硬質芯材の冷却が充分でなく、樹脂硬質芯材と不織布帯状体が接合融着された後、製管機を越え開放状態においても、樹脂硬質芯材の冷却結晶化が進み樹脂硬質芯材下部での内径が100mmΦとなった。また、比較例1は充分な冷却条件であったが樹脂硬質芯材であるPPの温度と収縮性によって内径が103mmΦとなった。
実施例2と比較例1では可撓性管材の内径が実施例1および実施例3の可撓性管材よりも小さくなっただけでなく、内径収縮によって管内が凸凹状態であることが確認された。管内に凹凸状態が存在することは、塵芥の堆積や圧力損失の観点からは可撓性管材として好ましくない要素である。一方実施例1および実施例3の可撓性管材の管内には凹凸状態は殆ど存在していないことが確認された。
Regarding the inner diameter of the flexible tube, Example 1 and Example 3 have a planned inner diameter of 105 mmΦ, while Example 2 is insufficient in cooling the resin hard core material on the pipe making machine, and the resin hard core. After the material and the non-woven fabric band were joined and fused, the resin hard core material was cooled and crystallized in the open state beyond the pipe making machine, and the inner diameter at the lower part of the resin hard core material became 100 mmΦ. Moreover, although the comparative example 1 was sufficient cooling conditions, internal diameter became 103 mm (PHI) by the temperature and shrinkage | contraction property of PP which is a resin hard core material.
In Example 2 and Comparative Example 1, it was confirmed that not only the inner diameter of the flexible tube material was smaller than the flexible tube materials of Example 1 and Example 3, but also the inside of the tube was uneven due to the inner diameter contraction. . The presence of unevenness in the tube is an undesirable element as a flexible tube from the viewpoint of dust accumulation and pressure loss. On the other hand, it was confirmed that almost no unevenness was present in the tubes of the flexible tube materials of Example 1 and Example 3.

実施例1、実施例2、実施例3、比較例1の可撓性管材を試料とし、耐久促進試験としてサンシャインウエザーメータによる供試時間での状態差を比較した。結果を表2に示す。   The flexible pipe materials of Example 1, Example 2, Example 3, and Comparative Example 1 were used as samples, and the difference in state at the test time using a sunshine weather meter was compared as a durability promotion test. The results are shown in Table 2.

Figure 2014129838
Figure 2014129838

実施例1〜3は500時間後であっても可撓性管材の形態を保っていたが、比較例1では300時間で不織布の脆化が確認され、500時間では可撓性管材の形態が崩壊するに至った。 In Examples 1 to 3, the shape of the flexible tube was maintained even after 500 hours, but in Comparative Example 1, the nonwoven fabric was embrittled in 300 hours, and in 500 hours, the shape of the flexible tube was It came to collapse.

実施例1、実施例2の可撓性管材を内管として、厚さ10mmの連続気泡ウレタン発泡体を吸音材として内管上に巻き付け、最外層を空気遮断層として厚さ100μmの低密度ポリエチレンチューブを吸音材に密着するように被覆して、3種の吸音試験体3mを作成し、音源として一方の端部より500Hz、80dbを発信し、3m先の(もう一方の)端部において音圧を測定し、3種の可撓性管材による減衰差を測定した。結果を表3に示す。   Low density polyethylene having a thickness of 100 μm with the flexible tube material of Example 1 and Example 2 wound around the inner tube as a sound-absorbing material using an open cell urethane foam having a thickness of 10 mm as the inner tube, and the outermost layer as an air blocking layer. The tube is covered so as to be in close contact with the sound absorbing material, and three types of sound absorbing test bodies 3m are prepared. As a sound source, 500 Hz and 80 db are transmitted from one end, and sound is generated at the end (the other) 3 m ahead. The pressure was measured and the attenuation difference by three types of flexible pipe materials was measured. The results are shown in Table 3.

Figure 2014129838
Figure 2014129838

本発明に基づいて作成された実施例1、実施例2は、いずれも35db音圧が減衰していることが確認され、吸音性能に優れていることが証明された。   In each of Examples 1 and 2 prepared based on the present invention, it was confirmed that the 35 db sound pressure was attenuated, and it was proved that the sound absorption performance was excellent.

本発明は、樹脂硬質芯材と帯状体とからなり、該樹脂硬質芯材と該帯状体とが融着一体化した可撓性管材であって、(1)樹脂硬質芯材および帯状体のいずれもがらせん状に捲回されてなり、(2)樹脂硬質芯材がオレフィン系樹脂および/またはポリエステル系樹脂からなり、(3)帯状体が、芯部がポリエステル樹脂で鞘部が前記ポリエステル樹脂よりも低融点の樹脂である芯鞘型繊維からなる不織布である、可撓性管材であるが、本発明により、長期耐久性があり、可撓性および伸縮性に優れるとともに、柔軟軽量で取扱いが容易であり、かつ長尺に成形可能であり、揮発性油分を含まず、強度特性に優れ、燃焼時には有毒ガスを発生させない可撓性管材を提供することが可能である。さらには、該管の外層に吸音材を配置し最外層に空気遮断を設けることで可撓性吸音管材を提供することも可能となる。
可撓性管材、吸音管材ともに、より具体的には例えば住宅用のダクトホース用として有用である。
The present invention is a flexible tube material comprising a resin hard core material and a belt-like body, and the resin hard core material and the belt-like body are fused and integrated. (2) The resin hard core material is made of an olefin resin and / or a polyester resin, and (3) the band-shaped body is a polyester resin and the sheath is the polyester. It is a flexible tube material that is a non-woven fabric made of core-sheath fiber that is a resin having a lower melting point than resin, but according to the present invention, it has long-term durability, excellent flexibility and stretchability, and is soft and lightweight. It is possible to provide a flexible tube material that is easy to handle and can be formed into a long shape, does not contain volatile oil, has excellent strength characteristics, and does not generate toxic gas during combustion. Furthermore, it is possible to provide a flexible sound-absorbing tube material by disposing a sound-absorbing material in the outer layer of the tube and providing an air barrier in the outermost layer.
More specifically, both the flexible tube material and the sound absorbing tube material are useful, for example, for a duct hose for a house.

1 帯状体
2 回転棒
3 製管機
4 樹脂硬質芯材
5 ダイス
6 温調延伸ゾーン
7 空気冷却
8 通気性可撓管材
9 吸音材
10 被覆空気遮断層
DESCRIPTION OF SYMBOLS 1 Strip | belt-shaped body 2 Rotating rod 3 Pipe making machine 4 Resin hard core material 5 Dice 6 Temperature control extension zone 7 Air cooling 8 Breathable flexible tube material 9 Sound absorbing material 10 Covering air interruption layer

Claims (6)

樹脂硬質芯材と帯状体とからなり、該樹脂硬質芯材と該帯状体とが融着一体化した可撓性管材であって、下記(1)〜(3)をいずれも満足することを特徴とする可撓性管材。
(1):樹脂硬質芯材および帯状体のいずれもがらせん状に捲回されてなる。
(2):樹脂硬質芯材がオレフィン系樹脂および/またはポリエステル系樹脂からなる。
(3):帯状体が、芯部がポリエステル樹脂で鞘部が前記ポリエステル樹脂よりも低融点の樹脂である芯鞘型繊維からなる不織布である。
It is a flexible tube material comprising a resin hard core material and a belt-like body, and the resin hard core material and the belt-like body are fused and integrated, and satisfies all of the following (1) to (3). Flexible tube material characterized.
(1): Both the resin hard core material and the belt-like body are spirally wound.
(2): The resin hard core material is composed of an olefin resin and / or a polyester resin.
(3): The belt-like body is a non-woven fabric made of core-sheath fibers in which the core part is a polyester resin and the sheath part is a resin having a melting point lower than that of the polyester resin.
帯状体が不織布とオレフィン系樹脂からなるフィルムとの積層体であって、該不織布の外側に該フィルムが位置することを特徴とする請求項1に記載の可撓性管材。   The flexible tubular material according to claim 1, wherein the belt-like body is a laminate of a nonwoven fabric and a film made of an olefin resin, and the film is located outside the nonwoven fabric. 請求項1または2記載の可撓性管材の外側にさらに吸音材が積層された吸音管材。   A sound absorbing tube material in which a sound absorbing material is further laminated on the outside of the flexible tube material according to claim 1. 吸音材の外側にさらに被覆空気遮蔽層が積層された請求項3記載の吸音管材。   The sound-absorbing tube material according to claim 3, wherein a covering air shielding layer is further laminated outside the sound-absorbing material. 円筒状の管と該管表面に沿って該管長さ方向に対して傾斜して位置するスプリング状の回転棒とからなる製管機上で、該帯状体をらせん状に捲回させながら、帯状体と溶融押出しされた該樹脂硬質芯材とを接触させて、該樹脂硬質芯材と該帯状体とを融着一体化させる可撓性管材の製造方法であって、溶融押し出しされた樹脂硬質芯材を160℃〜190℃の温度で、該樹脂硬質芯材と該帯状体とを接触させて融着一体化させた後に、製管機上にて−10℃〜60℃の雰囲気下で冷却処理を行う請求項1または2記載の可撓性管材の製造方法。   On a pipe making machine consisting of a cylindrical tube and a spring-like rotating rod that is inclined with respect to the tube length direction along the tube surface, the belt-like body is spirally wound, A flexible tube material manufacturing method in which a body and a melt-extruded resin hard core material are brought into contact with each other to fuse and integrate the resin hard core material and the belt-like body, wherein the resin hard core is melt extruded After the core material is brought into contact with the resin hard core material at a temperature of 160 ° C. to 190 ° C. and fused and integrated with each other, the tube is machined at −10 ° C. to 60 ° C. in an atmosphere. The manufacturing method of the flexible tube material of Claim 1 or 2 which performs a cooling process. 該冷却処理時に−10℃〜60℃の気体を可撓性管材に吹き付けることを特徴とする請求項5記載の可撓性管材の製造方法。   The method for producing a flexible tube material according to claim 5, wherein a gas of -10 ° C to 60 ° C is blown onto the flexible tube material during the cooling treatment.
JP2012287364A 2012-12-28 2012-12-28 Flexible pipe material, method for manufacturing the same and sound absorption pipe material made of flexible material Pending JP2014129838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012287364A JP2014129838A (en) 2012-12-28 2012-12-28 Flexible pipe material, method for manufacturing the same and sound absorption pipe material made of flexible material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012287364A JP2014129838A (en) 2012-12-28 2012-12-28 Flexible pipe material, method for manufacturing the same and sound absorption pipe material made of flexible material

Publications (2)

Publication Number Publication Date
JP2014129838A true JP2014129838A (en) 2014-07-10
JP2014129838A5 JP2014129838A5 (en) 2015-08-06

Family

ID=51408391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012287364A Pending JP2014129838A (en) 2012-12-28 2012-12-28 Flexible pipe material, method for manufacturing the same and sound absorption pipe material made of flexible material

Country Status (1)

Country Link
JP (1) JP2014129838A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059610A (en) * 2013-09-19 2015-03-30 タイガースポリマー株式会社 Synthetic resin hose
CN112873929A (en) * 2020-12-31 2021-06-01 顾地科技股份有限公司 Large-caliber high-ring-stiffness material-saving Krah pipe and manufacturing method thereof
US11568845B1 (en) 2018-08-20 2023-01-31 Board of Regents for the Oklahoma Agricultural & Mechanical Colleges Method of designing an acoustic liner
JP7458233B2 (en) 2020-04-13 2024-03-29 株式会社ブリヂストン composite pipe

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5273979A (en) * 1975-12-17 1977-06-21 Toshitaka Hashimo Molding axis used for continuous manufacturing device for small sized plastic tubes
JPS6053231B2 (en) * 1977-12-23 1985-11-25 日本バイリ−ン株式会社 Fluid-permeable flexible pipe and method for manufacturing the same
JPH03275215A (en) * 1990-03-26 1991-12-05 Mitsubishi Plastics Ind Ltd Manufacture of corrugated pipe
JPH0460292A (en) * 1990-06-28 1992-02-26 Sekisui Chem Co Ltd Manufacture of fiber reinforced resin pipe
JP2000028083A (en) * 1998-05-06 2000-01-25 Kuraray Plast Co Ltd Compressive duct
JP2004144452A (en) * 2002-10-28 2004-05-20 Unitika Ltd Tape material for flexible duct, and tape for flexible duct comprising it
JP2008267690A (en) * 2007-04-20 2008-11-06 Kuraray Plast Co Ltd Fireproof or fire-retardant heat insulating resin duct
JP2008281276A (en) * 2007-05-10 2008-11-20 Fujimori Sangyo Kk Air conditioning duct, or component for air conditioning duct

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5273979A (en) * 1975-12-17 1977-06-21 Toshitaka Hashimo Molding axis used for continuous manufacturing device for small sized plastic tubes
JPS6053231B2 (en) * 1977-12-23 1985-11-25 日本バイリ−ン株式会社 Fluid-permeable flexible pipe and method for manufacturing the same
JPH03275215A (en) * 1990-03-26 1991-12-05 Mitsubishi Plastics Ind Ltd Manufacture of corrugated pipe
JPH0460292A (en) * 1990-06-28 1992-02-26 Sekisui Chem Co Ltd Manufacture of fiber reinforced resin pipe
JP2000028083A (en) * 1998-05-06 2000-01-25 Kuraray Plast Co Ltd Compressive duct
JP2004144452A (en) * 2002-10-28 2004-05-20 Unitika Ltd Tape material for flexible duct, and tape for flexible duct comprising it
JP2008267690A (en) * 2007-04-20 2008-11-06 Kuraray Plast Co Ltd Fireproof or fire-retardant heat insulating resin duct
JP2008281276A (en) * 2007-05-10 2008-11-20 Fujimori Sangyo Kk Air conditioning duct, or component for air conditioning duct

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059610A (en) * 2013-09-19 2015-03-30 タイガースポリマー株式会社 Synthetic resin hose
US11568845B1 (en) 2018-08-20 2023-01-31 Board of Regents for the Oklahoma Agricultural & Mechanical Colleges Method of designing an acoustic liner
JP7458233B2 (en) 2020-04-13 2024-03-29 株式会社ブリヂストン composite pipe
CN112873929A (en) * 2020-12-31 2021-06-01 顾地科技股份有限公司 Large-caliber high-ring-stiffness material-saving Krah pipe and manufacturing method thereof
CN112873929B (en) * 2020-12-31 2023-10-31 顾地科技股份有限公司 Large-caliber high-ring-rigidity material-saving clara pipe and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5592078B2 (en) Insulated hose and method for manufacturing the same
JP2014129838A (en) Flexible pipe material, method for manufacturing the same and sound absorption pipe material made of flexible material
CN1080369C (en) Heat insulating noise reducing duct
US8808482B2 (en) Portable manufacturing method for manufacturing flexible insulated duct
JP2007205503A (en) Thermal insulated double-walled pipe
US20080138553A1 (en) Multi-layer tubes or conduits and manufacturing methods therefor
US6179009B1 (en) Heat-insulating and noise reducing duct
KR20130094518A (en) Exhaust ventilation air supply
JP2008062533A (en) Manufacturing method of heat-insulating duct hose
JPH1190972A (en) Manufacture of heat insulation hose
JP5743309B2 (en) Flexible duct
JP2008292024A (en) Noncombustible heat insulating duct
JP2008096073A (en) Duct hose
JP2000028083A (en) Compressive duct
JP2013059235A (en) Spiral complex
JP5449220B2 (en) Insulation pipe cover
EP2100067B1 (en) Duct element for air handling systems
EP1998119A1 (en) Silencer for ventilation ducts
JP6177082B2 (en) Flexible hose
JP6177066B2 (en) Synthetic resin hose
CN110733168A (en) composite glass fiber tube and preparation method thereof
KR102350619B1 (en) A Cover for Outdoor Machine of Air-conditioner and Manufacturing method thereof
JPH09166278A (en) Heat insulated duct
JP5525461B2 (en) Flexible silencer duct
JP6552911B2 (en) Insulated hose for blowing air

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150617

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161129