JP2008267690A - Fireproof or fire-retardant heat insulating resin duct - Google Patents

Fireproof or fire-retardant heat insulating resin duct Download PDF

Info

Publication number
JP2008267690A
JP2008267690A JP2007111170A JP2007111170A JP2008267690A JP 2008267690 A JP2008267690 A JP 2008267690A JP 2007111170 A JP2007111170 A JP 2007111170A JP 2007111170 A JP2007111170 A JP 2007111170A JP 2008267690 A JP2008267690 A JP 2008267690A
Authority
JP
Japan
Prior art keywords
retardant
flame
duct
heat
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007111170A
Other languages
Japanese (ja)
Other versions
JP4934848B2 (en
Inventor
Toru Yoshikawa
徹 吉川
Kenji Hiramatsu
憲二 平松
Katsuyuki Tsumadori
勝行 妻鳥
Hideki Murase
秀樹 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Plastics Co Ltd
Original Assignee
Kuraray Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Plastics Co Ltd filed Critical Kuraray Plastics Co Ltd
Priority to JP2007111170A priority Critical patent/JP4934848B2/en
Publication of JP2008267690A publication Critical patent/JP2008267690A/en
Application granted granted Critical
Publication of JP4934848B2 publication Critical patent/JP4934848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fireproof or fire-retardant duct without the problems of a conventional fireproof duct used in homes and buildings having a metal pipe surrounded by nonorganic fibers represented by glass fibers covered by a heat insulating material, which is heavy and has problems in workability and pressure loss. <P>SOLUTION: In a flexible duct for air conditioning that is fireproof or fire-retardant having an inner pipe including a wall-thickness part made of a non-woven fabric and a ring-like or spiral core material made of a thermoplastic hard resin, a heat insulating layer laminated thereon, and an airtight layer laminated further thereon, a resin foamed layer subjected to a fire-retardant treatment as the heat insulating layer, or a thermoplastic fiber layer subjected to a fire-retardant treatment is used. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、建造物の冷暖房用エアーダクトや換気ダクトに好適に使用される、フレキシブル性に富み、施工性が良好で、燃焼時に断熱層の崩れが少なく、難燃性または不燃性に優れ、更に圧力損失の少ない断熱樹脂ダクトに関する。   The present invention is preferably used for air ducts and ventilation ducts for air conditioning and ventilation in buildings, is highly flexible, has good workability, has little collapse of the heat insulating layer during combustion, and has excellent flame retardancy or incombustibility. Furthermore, it is related with the heat insulation resin duct with little pressure loss.

従来から、換気ダクトとして難燃性または不燃性の断熱ダクトが一般に用いられており、その構成としては、薄鋼板を螺旋状に巻くことにより形成した内管の外側に断熱層および不燃性の表面材を積層したものが知られている。この不燃または難燃性断熱ダクトには、断熱層としてガラス繊維やロックウール等の無機繊維からなる繊維層が用いられ、また内管として亜鉛鋼板やステンレススチール鋼板が一般に使われている(特許文献1および2)。   Conventionally, a flame-retardant or non-flammable heat insulating duct has been generally used as a ventilation duct, and the structure thereof includes a heat insulating layer and a non-flammable surface outside the inner tube formed by spirally winding a thin steel plate. A laminate of materials is known. In this incombustible or incombustible heat insulating duct, a fiber layer made of inorganic fibers such as glass fiber or rock wool is used as a heat insulating layer, and a galvanized steel plate or a stainless steel steel plate is generally used as an inner pipe (Patent Literature). 1 and 2).

しかしながら、ガラス繊維やロックウールはカット時に繊維切断片が飛散し、安全衛生上問題が有り、さらに薄鋼板は現場でのカットが難しく、さらにダクト内面の凹凸が大きい為に圧力損失が大きいと言う問題点も有している。さらに、不燃性または難燃性のダクトとして、樹脂製のダクトが考えられるが、一般に樹脂製のダクトは、燃焼条件下で熱により容易に断熱層の形状が崩れるという問題点を有している。燃焼条件下で熱により容易に断熱層形状が崩壊する場合には、火災時に崩壊による落下事故の発生とダクト脱落により、ダクト周辺部材への燃焼を促進するという問題点が生じる。   However, when fiberglass or rock wool is cut, fiber cut pieces are scattered, which is problematic for safety and hygiene. Furthermore, thin steel sheets are difficult to cut on site, and because the irregularities on the inner surface of the duct are large, the pressure loss is large. There are also problems. Furthermore, resin-made ducts can be considered as non-combustible or flame-retardant ducts, but resin-made ducts generally have a problem that the shape of the heat insulating layer easily collapses due to heat under combustion conditions. . When the shape of the heat-insulating layer easily collapses due to heat under combustion conditions, there is a problem that combustion to the peripheral members of the duct is promoted due to the occurrence of a fall accident due to the collapse and the falling off of the duct during a fire.

特開平09−243155号JP 09-243155 A 特開2001−343146号JP 2001-343146 A

本発明の目的は、グラスウール、金属板が用いられていないことにより現場での作業が可能で、かつ安全性、施工性、システムの省エネ化を実現でき、圧力損失が少なく、不燃性または難燃性に優れた、住宅・ビル用空調ダクトとして極めて有用な不燃ダクトを提供することにある。さらに、ダクトの燃焼条件下においても容易に断熱層の形状が崩壊しない樹脂性のダクトを提供することにある。   The object of the present invention is that glass wool and metal plates are not used, and work on site is possible, and safety, workability, energy saving of the system can be realized, pressure loss is small, nonflammability or flame retardancy The object is to provide an incombustible duct that is extremely useful as an air conditioning duct for houses and buildings. Another object of the present invention is to provide a resinous duct in which the shape of the heat insulating layer does not easily collapse even under the combustion condition of the duct.

本発明の上記目的は、不織布からなる肉部と熱可塑性硬質樹脂からなるリング状または螺旋状の芯材からなる内管、その上に断熱層が積層され、さらにその上に気密層が積層されている空調用フレキシブルダクトにおいて、該断熱層として、難燃処理された樹脂発泡層または難燃処理された熱可塑性繊維層が用いられていることを特徴とする不燃性または難燃性の断熱樹脂ダクトにより達成される。   The object of the present invention is to laminate a heat-insulating layer on an inner tube made of a ring-shaped or spiral core material made of a non-woven fabric and a thermoplastic hard resin, and further, an airtight layer is laminated thereon. A non-flammable or flame-retardant heat-insulating resin characterized in that a flame-retardant treated resin foam layer or a flame-retardant treated thermoplastic fiber layer is used as the heat-insulating layer in the air-conditioning flexible duct Achieved by ducts.

上記本発明において、内管の肉部として不織布が用いられるが、この不織布として、難燃処理が施された不織布が好ましく、また気密層が、金属箔をラミネートしたガラス繊維織物または難燃樹脂フィルムである場合が好ましく、また断熱層に付与されている難燃剤がホウ酸系の難燃剤である場合が好ましく、また内管を構成する不織布にホウ酸系の難燃剤が含浸されている場合が好ましく、さらに芯材を構成する熱可塑性硬質樹脂に、水酸化アルミニウムあるいは水酸化マグネシウムが練り込まれている場合が好ましい。
さらに、本発明において、芯材に用いられている難燃剤が水酸化アルミニウムあるいは水酸化マグネシウムであり、断熱層に用いられている難燃剤がホウ酸系の難燃剤である場合がより好適な場合として挙げられる。
In the present invention, a non-woven fabric is used as the meat part of the inner tube. As the non-woven fabric, a non-woven fabric subjected to a flame retardant treatment is preferable, and a glass fiber woven fabric or a flame retardant resin film in which an airtight layer is laminated with a metal foil. It is preferable that the flame retardant applied to the heat insulating layer is a boric acid flame retardant, and the nonwoven fabric constituting the inner tube may be impregnated with a boric acid flame retardant. Preferably, aluminum hydroxide or magnesium hydroxide is further kneaded into the thermoplastic hard resin constituting the core material.
Further, in the present invention, it is more preferable that the flame retardant used in the core material is aluminum hydroxide or magnesium hydroxide, and the flame retardant used in the heat insulating layer is a boric acid flame retardant. As mentioned.

従来の空調用不燃ダクトには、断熱材にグラスウール、芯材に金属芯を使っている物が一般的であり、このものは不燃性には優れるが、ダクトカット時のグラスウールの飛散による安全衛生上の問題があり、金属芯材の切断のし難さから現場での施工性にかけ、金属芯材を使用したことによりダクト内部の凹凸が大きいため圧力損失に劣るものであった。また、金属は樹脂よりも重量が高いため、金属芯材を用いたダクトは樹脂製のダクトより重量があり、施工性に劣るものであった。   Conventional non-combustible ducts for air conditioning generally use glass wool as a heat insulating material and a metal core as a core, which is excellent in non-combustibility, but is hygienic due to scattering of glass wool when the duct is cut. Due to the above problems, the metal core material was difficult to cut and was subjected to on-site workability. By using the metal core material, the irregularities inside the duct were large, resulting in poor pressure loss. Moreover, since the metal is heavier than the resin, the duct using the metal core material is heavier than the resin duct and is inferior in workability.

本発明により、住宅・ビル等の空調不燃または難燃用ダクトとして、施工性、圧力損失性、安全衛生優れる樹脂ダクトを提供することができる。本発明のダクトは、戸建住宅、集合住宅、ビルの空調ダクト等の分野での活躍が見込まれる。   According to the present invention, a resin duct excellent in workability, pressure loss property, and safety and health can be provided as an air-conditioning incombustible or incombustible duct for a house or building. The duct of the present invention is expected to play an active role in fields such as detached houses, apartment houses, and air conditioning ducts for buildings.

次に、本発明を図面により説明する。
図1は、本発明の不燃性または難燃性の断熱樹脂ダクトの一例を示す側面図であり、不燃性または難燃性の断熱樹脂ダクトは、不織布からなる肉部3と硬質樹脂からなる螺旋状の芯材4が溶融接着あるいは接着剤による接着によって一体化された内管と、その外部を被う断熱層1および気密層2からなっている。
Next, the present invention will be described with reference to the drawings.
FIG. 1 is a side view showing an example of the incombustible or flame-retardant heat-insulating resin duct of the present invention. The incombustible or flame-retardant heat-insulating resin duct is a spiral part made of a non-flammable meat part 3 and a hard resin. An inner tube in which a core material 4 is integrated by fusion bonding or bonding with an adhesive, and a heat insulating layer 1 and an airtight layer 2 covering the outside.

この内管を構成する不織布としては、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート等の繊維形成性の熱可塑性樹脂から得られる合成繊維から形成されているのが芯材との溶融接着性、リサイクル性の点で好ましい。特に、柔軟性、汎用性、加工性の点からポリプロピレンとポリエチレンの混合紡糸繊維あるいは複合紡糸繊維であって繊維表面にポリエチレンが存在している繊維からなる不織布またはポリエチレン繊維とポリプロピレン繊維との混合物からなる不織布、ポリエチレンテレフタレートとポリエチレンの混合紡糸繊維あるいは複合紡糸繊維であって繊維表面にポリエチレンが存在している繊維からなる不織布またはポリエチレン繊維とポリエチレンテレフタレート繊維との混合物からなる不織布がダクト成形性の点で最適である。この場合、低融点ポリマーあるいは低融点ポリマー繊維が熱バインダー成分として働き、不織布の形状固定、さらには芯材との熱融着性をもたらす。特に、上記したポリエチレン成分を低融点成分として用いた複合紡糸繊維あるいは混合紡糸繊維のように、低融点ポリマーと高融点ポリマーからなり、低融点ポリマーが繊維表面に存在している繊維を熱バインダー繊維として用いるのも好適な例である。この場合には、繊維表面に存在する低融点ポリマーが溶けて芯材と接着することとなる。   The nonwoven fabric constituting this inner tube is made of synthetic fibers obtained from fiber-forming thermoplastic resins such as polypropylene, polyethylene, polyethylene terephthalate, etc., in terms of melt adhesion to the core material and recyclability. preferable. In particular, from the viewpoint of flexibility, versatility, and processability, it is a mixed spun fiber or a composite spun fiber of polypropylene and polyethylene, and a non-woven fabric composed of fibers in which polyethylene is present on the fiber surface or a mixture of polyethylene fiber and polypropylene fiber. A non-woven fabric, a non-woven fabric made of a mixed spun fiber of polyethylene terephthalate and polyethylene, or a composite spun fiber having polyethylene on the fiber surface, or a non-woven fabric made of a mixture of polyethylene fiber and polyethylene terephthalate fiber has duct formability. Is the best. In this case, the low-melting point polymer or the low-melting point polymer fiber works as a thermal binder component, and brings about the fixing of the shape of the nonwoven fabric and further the heat-fusibility with the core material. In particular, a fiber having a low melting point polymer and a high melting point polymer, such as a composite spun fiber or a mixed spun fiber using the above-described polyethylene component as a low melting point component, is a thermal binder fiber. It is also a suitable example to use as. In this case, the low melting point polymer existing on the fiber surface melts and adheres to the core material.

不織布を構成する繊維として、ガラス繊維やロックウール等の無機繊維を使用することも可能であるが、無機繊維は切断時に繊維切断片が空気中に飛散することから作業環境の悪化を招き、好ましいとは言えない。さらに作業時や設置後に大きな衝撃が加えられた場合に、上記無機繊維の繊維片が場合によってはダクト内に侵入し、ダクト内の気体に混入することもあることから好ましいとは言えない。   It is also possible to use inorganic fibers such as glass fibers and rock wool as the fibers constituting the nonwoven fabric, but inorganic fibers are preferable because the fiber cut pieces are scattered in the air at the time of cutting, resulting in a worse working environment. It can not be said. Further, when a large impact is applied during work or after installation, the fiber pieces of the inorganic fibers may enter the duct depending on the case and may be mixed into the gas in the duct, which is not preferable.

不織布の目付けとしては、30〜200g/mのものが良く、更には70〜120g/mのものが好適である。また不織布の通気量としては、フラジール法での測定結果で30〜120cc/cm/secの範囲のものが消音性や圧力損失性能の点で好ましい。不織布としては、スパンボンド不織布、メルトブローン不織布、湿式不織布、水絡不織布、ニードルパンチ不織布等のいずれでも良いが、特にスパンボンド不織布が強度及び圧力損失が低いことから好ましい。構成する繊維の太さとしては、1〜5dtexの範囲が、ダクト成形性の点で好ましい。 The basis weight of the nonwoven fabric may include the 30 to 200 g / m 2, and more are preferred those 70~120g / m 2. In addition, the air permeability of the nonwoven fabric is preferably in the range of 30 to 120 cc / cm 2 / sec as measured by the Frazier method from the viewpoint of noise reduction and pressure loss performance. The nonwoven fabric may be any of spunbonded nonwoven fabric, melt blown nonwoven fabric, wet nonwoven fabric, water-impregnated nonwoven fabric, needle punched nonwoven fabric, and the like, and spunbonded nonwoven fabric is particularly preferable because of low strength and pressure loss. The thickness of the constituent fibers is preferably in the range of 1 to 5 dtex from the viewpoint of duct formability.

内管を構成する不織布には、ホウ酸系や、リン系、あるいはハロゲン系の難燃剤が、不織布cm当たり固形分で0.000001g〜0.001g固着されているのが好ましい。なかでもホウ酸系の難燃剤が加熱時のガラス層形成による形状保持性の点で特に好ましい。ホウ酸系難燃剤の好適な具体例として、ファイアレスB(株式会社トラストライフ製)が挙げられる。難燃剤の配合量が0.000001gより少ないと、ダクトとして要求される不燃性または難燃性が達成され難い。また、0.001gを超えると、ダクト成形の安定性に欠けると共に、薬剤のコストが高くなる。この難燃薬剤の配合量は、更に好適には0.000005g〜0.0008gである。難燃剤は、通常、不織布の段階で付与される。 It is preferable that boric acid-based, phosphorus-based, or halogen-based flame retardant is fixed to the non-woven fabric constituting the inner tube in a solid content of 0.000001 g to 0.001 g per cm 2 of the non-woven fabric. Of these, boric acid-based flame retardants are particularly preferred from the viewpoint of shape retention due to glass layer formation during heating. A specific example of the boric acid flame retardant is Fireless B (manufactured by Trust Life Co., Ltd.). When the blending amount of the flame retardant is less than 0.000001 g, it is difficult to achieve non-flammability or flame retardancy required as a duct. On the other hand, if it exceeds 0.001 g, the stability of the duct molding is lacking and the cost of the drug increases. The blending amount of the flame retardant is more preferably 0.000005 g to 0.0008 g. The flame retardant is usually applied at the nonwoven fabric stage.

次に芯材を構成する樹脂としては、ポリプロピレン、ポリエチレン等のポリオレフィン系樹脂、ポリエチレンテレフタレートで代表されるポリエステル系樹脂、ナイロン6で代表されるポリアミド系樹脂、アクリル、ポリスチレン等のビニル系樹脂等の熱可塑性樹脂が挙げられ、なかでも炭素原子と水素原子、またはこれらの原子と酸素原子から構成された硬質の熱可塑性樹脂が好適であり、代表的にはポリエチレン、ポリエステル、ポリプロピレン、ポリスチレンなどが挙げられる。特に硬度、耐候性、汎用性などの点からポリプロピレン、ポリエチレン、エチレン−プロピレン共重合体が好適であり、さらに、ポリプロピレンが最適である。   Next, as the resin constituting the core material, polyolefin resins such as polypropylene and polyethylene, polyester resins represented by polyethylene terephthalate, polyamide resins represented by nylon 6, vinyl resins such as acrylic and polystyrene, etc. A thermoplastic resin is exemplified, and among them, a rigid thermoplastic resin composed of carbon atoms and hydrogen atoms, or these atoms and oxygen atoms is preferable, and typically, polyethylene, polyester, polypropylene, polystyrene and the like are listed. It is done. In particular, polypropylene, polyethylene, and ethylene-propylene copolymer are preferable from the viewpoint of hardness, weather resistance, versatility, and polypropylene is most preferable.

硬質樹脂としては、硬度Rスケール(JIS K7202 Rスケール ロックウェル硬さ)70〜130の範囲のものが好適に用いられる。
芯材は、これら樹脂を断面積が5〜15mmとなる太さで溶融押し出し、それをリング状または螺旋状に旋回して内管を形成する。内管の直径(内径)として、50〜300mmの範囲が好ましい。リング状または螺旋状に内管を形成する際の、隣り合う芯材との間隔としては5〜10mmの範囲が好ましい。特に本発明において、芯材を螺旋状に旋回したものが好ましい。また、芯材の横断面形状として、添付の図に示すような、底部がフラットな土台の上に土台より巾の狭い上部が乗せられているような2段構造のような形状が、不織布との接着性、さらに螺旋形状が潰れ難いことから好ましい。
As the hard resin, those having a hardness R scale (JIS K7202 R scale Rockwell hardness) in the range of 70 to 130 are preferably used.
The core material is formed by melting and extruding these resins with a cross-sectional area of 5 to 15 mm 2 and turning them in a ring shape or a spiral shape to form an inner tube. The diameter (inner diameter) of the inner tube is preferably in the range of 50 to 300 mm. When the inner tube is formed in a ring shape or a spiral shape, the distance between adjacent core members is preferably in the range of 5 to 10 mm. In particular, in the present invention, it is preferable to spiral the core material. Also, as the cross-sectional shape of the core material, as shown in the attached figure, a shape like a two-stage structure in which an upper part having a narrower width than the base is placed on a base with a flat bottom is This is preferable because the adhesiveness and the helical shape are not easily crushed.

さらに、螺旋状またはリング状の芯材において、太い芯材と細い芯材が交互に存在している(すなわち螺旋状の場合には太い芯材と細い芯材を用い、図1に示すように、太い芯材と細い芯材が交互に存在する)ようにするのが断熱層と芯材の設置面積を増やすことによりダクト難燃性・不燃性を効果的に高めることができる点で好ましい。太い芯材と細い芯材の太さ比としては、断面積比で2:1〜4:1の範囲が好ましい。また、太い芯材を15〜30mm間隔で投入することが好ましく、太い芯材と細い芯材はこの15〜30mmの間隔を70〜55:30〜45で分割する位置に投入されているのが、低圧力損失性の点で好ましい。この間隔を保つことにより、ダクト曲げ時に内管不織布がダクト内部に折れ曲がる量を補正し、曲げ時の圧力損失の大幅な低下を防ぐことが可能となる。   Furthermore, in the spiral or ring-shaped core material, thick core materials and thin core materials exist alternately (that is, in the case of a spiral shape, a thick core material and a thin core material are used, as shown in FIG. It is preferable that the thick core material and the thin core material are alternately present) in that the flame retardancy and incombustibility of the duct can be effectively increased by increasing the installation area of the heat insulating layer and the core material. The thickness ratio between the thick core material and the thin core material is preferably in the range of 2: 1 to 4: 1 in terms of the cross-sectional area ratio. Moreover, it is preferable to throw a thick core material at intervals of 15 to 30 mm, and the thick core material and the thin core material are thrown into positions at which the space of 15 to 30 mm is divided at 70 to 55:30 to 45. From the viewpoint of low pressure loss. By maintaining this interval, it is possible to correct the amount by which the inner tube nonwoven fabric bends inside the duct when the duct is bent, and to prevent a significant drop in pressure loss during bending.

本発明において芯材に使用される難燃剤としては、ペンタブロモジフェニルエーテル、オクタブロモジフェニルエーテル、デカブロモジフェニルエーテル、テトラブロモビスフェノールA、ヘキサブロモシクロドデカン等の臭素系化合物、トリフェニルホスフェートで代表されるリン酸エステル、赤リン等のリン系化合物、塩素化パラフィン、ポリ塩化ビフェニル等の塩素系化合物 、三酸化アンチモン、五酸化アンチモン等のアンチモン化合物、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物等が使用可能であり、加工性、価格および難燃効果、さらには燃焼条件下で芯材形状が崩れ難いこと等から水酸化アルミニウムおよび水酸化マグネシウムが好適に使用される。   Examples of the flame retardant used in the core material in the present invention include bromine compounds such as pentabromodiphenyl ether, octabromodiphenyl ether, decabromodiphenyl ether, tetrabromobisphenol A, hexabromocyclododecane, and phosphoric acid typified by triphenyl phosphate. Phosphorus compounds such as esters and red phosphorus, chlorine compounds such as chlorinated paraffin and polychlorinated biphenyl, antimony compounds such as antimony trioxide and antimony pentoxide, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, etc. Aluminum hydroxide and magnesium hydroxide are preferably used because they can be used, workability, cost and flame retardancy, and the core material shape does not easily collapse under combustion conditions.

芯材を構成する熱可塑性樹脂の重量に対して難燃剤が5〜80重量%の割合で芯材構成樹脂に練り込まれているのが好ましい。この配合量が5重量%より少ないと、ダクトに要求される不燃性が達成しづらくなる。逆に80重量%を超えると、ダクト成形の安定性に欠けることとなる。より好ましくは10〜50重量%の範囲である。上記難燃剤の中でも、特に水酸化アルミニウムと水酸化マグネシウムが火災時に吸熱反応を起こしながら分解し、火災の延焼を防ぐことができ、芯材形状を保つことができる点で好ましい。   It is preferable that the flame retardant is kneaded into the core-constituting resin at a ratio of 5 to 80% by weight with respect to the weight of the thermoplastic resin constituting the core. If the blending amount is less than 5% by weight, it is difficult to achieve the nonflammability required for the duct. On the other hand, if it exceeds 80% by weight, the stability of duct molding will be lacking. More preferably, it is the range of 10-50 weight%. Among the above flame retardants, aluminum hydroxide and magnesium hydroxide are particularly preferable in that they can decompose while causing an endothermic reaction in a fire, prevent the spread of fire, and maintain the core material shape.

内管の外側を被う断熱層は、内管内を流れる気体の熱が外部に奪われたり、あるいは外部の熱が内管内に伝わらないようにするためのもので、同断熱層には、ポリウレタンフォームやポリエチレン発泡体等の熱可塑性樹脂発泡層、ポリエチレン繊維やポリエステル繊維からなるフェルト等の熱可塑性繊維層が用いられる。従来のダクトでは、ガラス繊維またはロックウールからなる無機繊維層が断熱層として用いられているが、これらの無機繊維層の場合には、ダクトを切断する際に無機繊維が切断され、繊維層から脱離した繊維切断片が空気中に飛散し、作業環境等を悪化させたり、ダクト内を流れる空気中に混入して環境悪化を招くこととなるが、本発明の熱可塑性樹脂からなる発泡層または繊維層の場合には、そのような作業環境悪化を招かない。発泡層または繊維層の厚みとしては、5〜20mmが最適である。発泡層の場合には、発泡倍率30〜60倍のものが最適である。   The heat insulation layer that covers the outside of the inner pipe is intended to prevent the heat of the gas flowing inside the inner pipe from being taken away to the outside, or to prevent external heat from being transferred to the inner pipe. A thermoplastic resin foam layer such as foam or polyethylene foam, or a thermoplastic fiber layer such as felt made of polyethylene fiber or polyester fiber is used. In a conventional duct, an inorganic fiber layer made of glass fiber or rock wool is used as a heat insulating layer. In the case of these inorganic fiber layers, the inorganic fiber is cut when the duct is cut, and the fiber layer Foamed layer made of the thermoplastic resin of the present invention, in which the detached fiber cut pieces are scattered in the air and deteriorate the working environment or the like, or are mixed into the air flowing in the duct and deteriorate the environment. Or in the case of a fiber layer, such work environment deterioration is not caused. The thickness of the foam layer or fiber layer is optimally 5 to 20 mm. In the case of a foam layer, a foam layer with an expansion ratio of 30 to 60 times is optimal.

発泡層を構成する熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリウレタン、ポリスチレン、ポリエチレンテレフタレート等の熱可塑性樹脂が好適に使用可能であるが、なかでもポリウレタンおよびポリエチレンがダクト施工性、環境負荷などの点から特に好適である。   As the thermoplastic resin constituting the foam layer, thermoplastic resins such as polyethylene, polypropylene, polyurethane, polystyrene, and polyethylene terephthalate can be suitably used. Among them, polyurethane and polyethylene are particularly suitable for duct workability and environmental load. Are particularly preferred.

また、繊維層を用いる場合には、不織布、織物、編物等が挙げられ、なかでもスパンボンド不織布、メルトブローン不織布、湿式不織布、水絡不織布、ニードルパンチ不織布、樹脂接着不織布等の不織布層が好ましく、特にニードルパンチ不織布が好ましい。繊維層を構成する熱可塑性樹脂としては、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリエチレンテレフタレートで代表されるポリエステル系樹脂等が挙げられ、特にポリエステル系樹脂が重量、コスト、ダクト加工性の点で好ましい。構成する繊維の太さとしては、0.1〜20dtexの範囲のものが良く、更には0.5〜8dtexの範囲が好適であり、ダクト加工性の点で好ましい。   In addition, when using a fiber layer, non-woven fabrics, woven fabrics, knitted fabrics and the like are mentioned, and among them, non-woven fabric layers such as spunbonded non-woven fabrics, melt blown non-woven fabrics, wet non-woven fabrics, water-impregnated non-woven fabrics, needle punched non-woven fabrics, and resin-bonded non-woven fabrics are preferable. A needle punch nonwoven fabric is particularly preferable. Examples of the thermoplastic resin constituting the fiber layer include polyolefin resins such as polyethylene and polypropylene, polyester resins represented by polyethylene terephthalate, and the like, and polyester resins are particularly preferable in terms of weight, cost, and ductability. . The thickness of the constituent fibers is preferably in the range of 0.1 to 20 dtex, more preferably in the range of 0.5 to 8 dtex, and is preferable in terms of duct workability.

本発明では、このような断熱層、すなわち発泡層または繊維層に難燃処理が行われていることが必須であり、用いられる難燃剤としては、ホウ酸系難燃剤、リン系難燃剤、ハロゲン系難燃剤等が挙げられ、特にホウ酸系難燃剤が人体への安全性、環境負荷の点で好適に用いられる。
ホウ酸系難燃剤の具体例としては、ホウ酸ナトリウム、ホウ酸カルシウム、ホウ酸亜鉛等の化合物が挙げられ、これらホウ酸系化合物のなかでも特に、ホウ酸ナトリウムが良好な難燃性をもたらす。
In the present invention, it is essential that such a heat insulating layer, that is, a foamed layer or a fiber layer, is subjected to a flame retardant treatment. Examples of the flame retardant used include boric acid flame retardants, phosphorus flame retardants, halogens. In particular, boric acid flame retardants are preferably used in terms of safety to human bodies and environmental burden.
Specific examples of the boric acid flame retardant include compounds such as sodium borate, calcium borate, and zinc borate. Among these boric acid compounds, sodium borate particularly provides good flame retardancy. .

断熱層cm当たりの難燃剤の付着量は固形分で0.001〜0.2gの範囲が好ましい。付与量が0.001gより少ないと、ダクトの不燃性が満足できない。また、0.2gを超えると、ダクト成形の安定性に欠けると共に、難燃剤付着によりダクトの可撓性が失われてしまう。更に好適には0.005g〜0.05gの範囲である。 The adhesion amount of the flame retardant per cm 2 of the heat insulating layer is preferably in the range of 0.001 to 0.2 g in terms of solid content. If the applied amount is less than 0.001 g, the nonflammability of the duct cannot be satisfied. On the other hand, if it exceeds 0.2 g, the duct forming stability is lacking and the flexibility of the duct is lost due to adhesion of the flame retardant. More preferably, it is in the range of 0.005 g to 0.05 g.

本発明において、断熱層の一部として、無機系断熱材であるグラスウール、セラミックウール、ロックウールを使用することも可能である。しかしながら、このような無機系断熱材の使用量が増加すると、ダクトを切断する際に、これら無機系繊維の切断片が空気中に飛散し、作業環境を悪化させることから、出来ればそのような無機系繊維を一切用いない方が好ましい。   In the present invention, as a part of the heat insulating layer, it is also possible to use glass wool, ceramic wool, rock wool, which are inorganic heat insulating materials. However, when the amount of use of such an inorganic heat insulating material increases, when cutting the duct, the cut pieces of these inorganic fibers are scattered in the air, and the working environment is deteriorated. It is preferable not to use any inorganic fiber.

また、断熱層に含浸させる難燃薬剤としては、ホウ酸系難燃剤を使用することが燃焼条件下で断熱層形状を長時間保つことが可能であることから、さらに環境負荷の観点から望ましい。ここで、ホウ酸系難燃剤の好適な具体例としては、トラストライフ製ホウ酸ナトリウム水溶液(商品名:ファイアレスB)が挙げられる。この難燃剤を用いた場合には、燃焼条件下でも断熱層形状が特に崩れ難いという特長が得られる。   As the flame retardant agent impregnated in the heat insulating layer, it is desirable to use a boric acid flame retardant from the viewpoint of environmental load because the shape of the heat insulating layer can be maintained for a long time under combustion conditions. Here, as a suitable specific example of the boric acid flame retardant, an aqueous sodium borate solution (trade name: Fireless B) manufactured by Trust Life may be mentioned. When this flame retardant is used, the feature that the shape of the heat insulating layer is not particularly broken even under combustion conditions can be obtained.

上記したように、芯材に使用される難燃剤としては、水酸化アルミニウムまたは水酸化マグネシウムが好ましく、これらは火災時に吸熱反応を起こしながら分解し、火災の延焼を防ぐことができ、また、断熱層に付与される難燃剤としてはホウ酸系難燃剤が好ましいのであるが、このホウ素系難燃剤は火災時に発泡ガラス層を形成し、断熱層の形状を保持し、崩壊による2次災害を防ぐことができる。したがって、芯材に用いられている水酸化アルミニウムまたは水酸化マグネシウムと断熱層に付与されているホウ素系難燃剤の組み合わせにより、本発明のダクトは、吸熱反応効果のある芯材と形状保持効果のある断熱層を合わせたことにより、火災の延焼を他の難燃剤を用いた場合と比べて効果的に防ぐことができる。   As described above, the flame retardant used in the core material is preferably aluminum hydroxide or magnesium hydroxide, which decomposes while causing an endothermic reaction in the event of a fire, and can prevent the spread of fire. As the flame retardant imparted to the layer, a boric acid flame retardant is preferable, but this boron flame retardant forms a foam glass layer in the event of a fire, maintains the shape of the heat insulating layer, and prevents secondary disasters due to collapse. be able to. Therefore, due to the combination of aluminum hydroxide or magnesium hydroxide used for the core material and the boron-based flame retardant applied to the heat insulating layer, the duct of the present invention has an endothermic reaction effect core material and shape retention effect. By combining a certain heat-insulating layer, it is possible to effectively prevent the spread of fire compared to the case where other flame retardants are used.

また、水酸化アルミニウムまたは水酸化マグネシウムを使用する際には、黒もしくはグレー顔料をポリプロピレン等の熱可塑性樹脂と水酸化アルミニウムまたは水酸化マグネシウムに対して1〜5重量%程度添加すると、経時変化による色の変化を抑えることができる。ダクトとして、経時変化による色の変化を抑えることは、外観の点で好ましい。   In addition, when using aluminum hydroxide or magnesium hydroxide, if black or gray pigment is added about 1 to 5% by weight with respect to a thermoplastic resin such as polypropylene and aluminum hydroxide or magnesium hydroxide, it will change over time. Color change can be suppressed. As a duct, it is preferable in terms of appearance to suppress a change in color due to a change with time.

本発明における不燃性または難燃性の断熱樹脂ダクトには、上記断熱層の上を気密層で覆われる。気密層は、断熱層が直接外部に露出せずに、ダクト表面を被うためのものであり、外気が断熱層に侵入することを防ぐ他に、ダクトを熱から防ぐ役割も担っている。気密層としては、アルミ蒸着層を最表面層とした熱可塑性樹脂フィルム、アルミ箔、ステンレス箔、銅箔、亜鉛箔、錫箔、銀箔等の金属箔、これらの金属箔と熱可塑性樹脂フィルムの積層体、これら金属箔とガラス繊維織物の貼り合わせ(ラミネート)、これら金属箔と熱可塑性樹脂フィルムの積層体にさらにガラス繊維織物を貼り付けたもの、フッ素樹脂で代表される耐熱性樹脂をコートしたガラス繊維織物、塩化ビニルシート等で代表される難燃性樹脂フィルムシートが使用されるが、コスト、軽量性よりアルミ蒸着熱可塑性樹脂フィルム、特にアルミ蒸着ポリエチレンテレフタレートシート、塩化ビニル樹脂フィルム、アルミ箔ラミネートガラス繊維織物、フッ素樹脂ラミネートガラス繊維織物が好適であり、さらに耐熱性、不燃性を考慮した際、アルミ箔ラミネートガラス繊維織物が最適である。アルミ箔の厚さは0.01〜0.05mm、アルミ箔重量は40〜55g/m、アルミ純度は90.0〜99.9%、ガラス繊維織物は、太さが0.10〜0.15mm、重さが75〜90g/m、織密度が10〜20×10〜20/1インチ角(糸太さが400〜800dtex)、平織りタイプであり、アルミ箔とガラス繊維織物の接着剤には、不燃性アクリル系エマルジョン樹脂が接着性、不燃性、難燃性の点で好適に使用される。 In the incombustible or flame-retardant heat insulating resin duct in the present invention, the heat insulating layer is covered with an airtight layer. The airtight layer covers the duct surface without directly exposing the heat insulating layer to the outside. In addition to preventing the outside air from entering the heat insulating layer, the airtight layer also plays a role of preventing the duct from heat. As an airtight layer, a thermoplastic resin film having an aluminum vapor deposition layer as the outermost surface layer, a metal foil such as an aluminum foil, a stainless steel foil, a copper foil, a zinc foil, a tin foil, and a silver foil, and a lamination of these metal foil and a thermoplastic resin film Body, laminating these metal foil and glass fiber fabric, laminating these metal foil and thermoplastic resin film, and further laminating glass fiber fabric, and coating with heat resistant resin represented by fluororesin Flame retardant resin film sheets represented by glass fiber fabrics, vinyl chloride sheets, etc. are used, but aluminum vapor-deposited thermoplastic resin films, especially aluminum vapor-deposited polyethylene terephthalate sheets, vinyl chloride resin films, aluminum foils are used because of cost and light weight. Laminated glass fiber woven fabric and fluororesin laminated glass fiber woven fabric are suitable, as well as heat resistance and nonflammability. Upon consideration, aluminum foil laminated glass fiber fabric is optimum. The thickness of the aluminum foil is 0.01 to 0.05 mm, the aluminum foil weight is 40 to 55 g / m 2 , the aluminum purity is 90.0 to 99.9%, and the glass fiber fabric has a thickness of 0.10 to 0 .15 mm, weight 75-90 g / m 2 , weave density 10-20 × 10-20 / 1 inch square (thread thickness 400-800 dtex), plain weave type, adhesion of aluminum foil and glass fiber fabric As the agent, a nonflammable acrylic emulsion resin is preferably used in terms of adhesiveness, nonflammability, and flame retardancy.

不燃性または難燃性の断熱樹脂ダクトの製造方法としては、例えば、まず不織布からなる肉部を、管成形機の回転軸上に巻き付け、硬質樹脂からなる螺旋状の芯材を溶融押出して、該不織布からなる管状肉部に溶融接着させて内管を形成する。
そして、内管の表面に断熱層をダクト長手方向に対し直線状に被覆する。また、不燃性または難燃性の断熱樹脂ダクト内管の芯材間隔と同じ幅にスリットした断熱層を内管製造と同時にダクト外部に巻き付けて断熱層を形成する方法も挙げられる。内管と断熱層とは、接着されていても、あるいは金具、針金等により一体化されていても良い。さらに、その表面に存在させる気密層は、内管の表面に断熱層を被覆した後に、その表面を覆うように、気密層を重ねて固定する方法、あるいは、予め、断熱層と気密層を接着一体化しておき、その一体化した状態で内管の表面を被う方法のいずれでもよい。そして、気密層と断熱層は、接着剤により、あるいは熱融着により、さらには、金具や針金等の方法で一体化されていても良い。
As a method for producing an incombustible or flame-retardant heat-insulating resin duct, for example, a meat part made of a nonwoven fabric is first wound around a rotating shaft of a tube forming machine, and a spiral core material made of a hard resin is melt extruded. An inner tube is formed by melt-bonding to a tubular meat portion made of the nonwoven fabric.
And the heat insulation layer is coat | covered linearly with respect to the duct longitudinal direction on the surface of an inner pipe. Moreover, the method of forming a heat insulation layer by winding the heat insulation layer slit to the same width as the core material space | interval of the incombustible or flame-retardant heat insulation resin duct inner pipe at the same time as inner pipe manufacture is formed. The inner tube and the heat insulating layer may be bonded, or may be integrated by a metal fitting, a wire or the like. Furthermore, the airtight layer to be present on the surface is coated with a heat insulating layer on the surface of the inner tube, and then the airtight layer is overlaid and fixed so as to cover the surface, or the heat insulating layer and the airtight layer are bonded in advance. Any method of previously integrating and covering the surface of the inner tube in the integrated state may be used. The hermetic layer and the heat insulating layer may be integrated by an adhesive or heat fusion, and further by a method such as a metal fitting or a wire.

さらに、本発明において、断熱層は、内管の表面に部分的に設けても良いが、ダクトのほぼ全体に断熱層が形成されている場合の方が、空調システムの熱効率が良くなり、コスト的に有利となり、ダクトの内部の結露を有効に防ぐことができることから好ましい。   Further, in the present invention, the heat insulating layer may be partially provided on the surface of the inner tube, but the heat efficiency of the air conditioning system is improved and the cost is improved when the heat insulating layer is formed on almost the entire duct. This is preferable because it is advantageous and can effectively prevent condensation inside the duct.

このようにして得られた本発明の不燃性または難燃性の樹脂ダクトは、不燃性、低圧力損失性、消音性、断熱性および可撓性に優れることから、例えば、一般住宅、集合住宅、ビル、店舗、倉庫、乗物、船舶などで空調のためにエアーを搬送するダクトとして使用される。主に使用されるダクトサイズとしては、一般住宅では直径50〜100mmであり、集合住宅もしくはビル空調においては直径150mm以上のものが使用される。   The non-flammable or flame-retardant resin duct of the present invention thus obtained is excellent in non-flammability, low pressure loss, silence, heat insulation and flexibility. It is used as a duct for conveying air for air conditioning in buildings, stores, warehouses, vehicles, ships and the like. The duct size mainly used is a diameter of 50 to 100 mm in a general house, and one having a diameter of 150 mm or more is used in an apartment house or a building air conditioner.

なお、本発明の不燃性または難燃性の断熱樹脂ダクトは、上記したように、不織布からなる肉部と芯材からなる内管と断熱層及び気密層を必須の構成要件とするが、これ以外の層が、内管内に、あるいはこれら管や層の中間に、さらには気密層の表面に存在していても良い。   In addition, as described above, the incombustible or flame-retardant heat-insulating resin duct according to the present invention has a meat part made of nonwoven fabric, an inner tube made of a core material, a heat-insulating layer, and an air-tight layer as essential constituent requirements. Other layers may be present in the inner tube, in the middle of these tubes and layers, and on the surface of the hermetic layer.

以下、本発明をより具体的かつ詳細に説明にするために以下に実施例を示す。実施例中、%は特にことわりがない限り、重量に基づく値である。   EXAMPLES Examples will be shown below to explain the present invention more specifically and in detail. In Examples,% is a value based on weight unless otherwise specified.

実施例1
肉部となる不織布(1){目付量が100g/mであり、構成繊維は、ポリプロピレンとポリエチレンが芯鞘構造になっており、ポリエチレンが鞘成分を構成している繊度3dtexのポリプロピレン−ポリエチレンからなる芯鞘型複合繊維からなるスパンボンド不織布で、溶融紡糸時に、直接鞘成分を熱融着させて繊維間を結合して製造された不織布(製品名:Haibon品番:6590シンワ製)とホウ酸系難燃剤(トラストライフ製)を0.0008g/cm(固形分)の量で固着}を、管成形機の回転軸上に巻き付け、螺旋状芯材となる熱可塑性硬質樹脂芯材(2){水酸化マグネシウム50重量%配合ポリプロピレン(カルプ工業製)}を、その上部から螺旋状に巻き付けて、熱融着させ、内径100mmの図2に示すような内管とした。
Example 1
Nonwoven fabric (1) to be a meat part {The basis weight is 100 g / m 2 , and the constituent fibers are polypropylene-polyethylene having a core-sheath structure of polypropylene and polyethylene, and having a fineness of 3 dtex in which polyethylene constitutes a sheath component A non-woven fabric (product name: Haibon product number: 6590 made by Shinwa) and hoe, which are made of a spunbonded nonwoven fabric made of core-sheath type composite fibers made by directly fusing the sheath components together at the time of melt spinning An acid flame retardant (manufactured by Trust Life) in an amount of 0.0008 g / cm 2 (solid content) is wrapped around the rotating shaft of a tube molding machine to form a thermoplastic hard resin core material (spiral core material) 2) {Mixene hydroxide 50 wt% blended polypropylene (manufactured by Calp Kogyo Co., Ltd.)} is spirally wound from the top and heat-sealed, as shown in FIG. And an inner tube such.

なお、芯材として太さの異なる2種の芯材を用いた。すなわち、太い方の芯材は、断面積が15mm、細い方の芯材は断面積が5mmで、断面形状は、共に底部が平らな土台の上に、巾の細い上部が乗せられているような2段構造のような形状を有している。そして、太い芯材と細い芯材が交互に存在しており、太い芯材を25mm間隔で投入し、細い芯材はこの25mmの間隔を60:40で分割する位置に投入されている。 Two types of core materials having different thicknesses were used as the core material. That is, the thicker core material has a cross-sectional area of 15 mm 2 , the thinner core material has a cross-sectional area of 5 mm 2 , and the cross-sectional shape is such that the bottom is flat on the base and the narrow upper part is placed. It has a shape like a two-stage structure. The thick core material and the thin core material are alternately present, and the thick core material is input at intervals of 25 mm, and the thin core material is input at a position where the 25 mm interval is divided at 60:40.

その外部に断熱層となる、厚さ10mm、密度22.0g/mの難燃剤付与ポリウレタンフォーム(3){ウレタンフォーム(アキレス製)にホウ酸系難燃剤(トラストライフ製)を0.05g/cm(固形分)含浸加工にて固着}と気密シートとなるアルミ箔ラミネートガラス織物(4){アルミ箔厚さ0.02mm、アルミ箔重量54.2g/m、アルミ純度99.9%、ガラス織物厚さ0.12mm、ガラス織物重量86g/m、ガラス織物の織密度16本×15本/1インチ四方(1本の太さ:674dtex)、ガラス織物とアルミ箔の接着剤として不燃性アクリル系エマルジョン樹脂を使用(和光断熱材製)}を気密層として被覆して図1に示すようなダクトとした。 A flame retardant-added polyurethane foam (3) having a thickness of 10 mm and a density of 22.0 g / m 2 that is a heat insulating layer on the outside, 0.05 g of a boric acid flame retardant (manufactured by Trust Life) on urethane foam (manufactured by Achilles) / cm 2 (solid content) becomes fixed at impregnation} and airtight sheet aluminum foil laminated glass fabric (4) {aluminum foil thickness 0.02 mm, aluminum foil weight 54.2 g / m 2, an aluminum purity of 99.9 %, Glass fabric thickness 0.12 mm, glass fabric weight 86 g / m 2 , glass fabric weave density 16 × 15/1 inch square (one thickness: 674 dtex), glass fabric and aluminum foil adhesive As a duct as shown in FIG. 1, a non-flammable acrylic emulsion resin is used (made by Wako heat insulating material)} as an airtight layer.

実施例2
上記実施例1において、内管を構成する不織布として、ホウ酸系難燃剤を付与していない不織布を使用する以外は実施例1と同一の方法によりダクトを製造した。
Example 2
In the said Example 1, the duct was manufactured by the same method as Example 1 except using the nonwoven fabric which has not provided the boric-acid type flame retardant as a nonwoven fabric which comprises an inner tube | pipe.

実施例3
上記実施例1において、気密層として、フッ素樹脂コーティングガラス繊維シート{フジエース(品番:FG−4300 藤森工業製)}を使用する以外は実施例1と同一の方法によりダクトを製造した。
Example 3
In the said Example 1, the duct was manufactured by the same method as Example 1 except using a fluororesin coating glass fiber sheet {Fujiace (product number: FG-4300 Fujimori Kogyo make)} as an airtight layer.

実施例4
上記実施例1において、芯材として、水酸化マグネシウムを配合していないポリプロピレン樹脂を用いる以外は実施例1と同一の方法にダクトを製造した。
Example 4
In the said Example 1, the duct was manufactured by the same method as Example 1 except using the polypropylene resin which does not mix | blend magnesium hydroxide as a core material.

実施例5
上記実施例1において、気密層として、アルミ蒸着ポリエチレンテレフタレートフィルム(アルミ蒸着層厚み400Å、フィルム厚さ110μm)を用いる以外は実施例1と同一の方法によりダクトを製造した。
Example 5
In Example 1 above, a duct was manufactured in the same manner as in Example 1 except that an aluminum vapor-deposited polyethylene terephthalate film (aluminum vapor-deposited layer thickness 400 mm, film thickness 110 μm) was used as the airtight layer.

比較例1
上記実施例1において、断熱層となるウレタンフォームに、ホウ酸系難燃剤を付与しない以外は実施例1と同一の方法によりダクトを製造した。
Comparative Example 1
In the said Example 1, the duct was manufactured by the same method as Example 1 except not giving a boric-acid type flame retardant to the urethane foam used as a heat insulation layer.

比較例2
上記実施例1において、芯材として、ステンレス製の芯材を用い、不織布の上から螺旋状に巻き付けて、接着剤を用いて接着させ、さらに断熱層及び気密層として、アルミ箔貼り合わせガラス繊維織物をグラスウール層に貼り合わせたもの{マグウールAG2425(マグ製)、厚さ25mm、密度24kg/m}を使用する以外は実施例1と同一の方法によりダクトを製造した。
Comparative Example 2
In Example 1 above, as the core material, a stainless steel core material is used, spirally wound from above the non-woven fabric, and bonded using an adhesive, and further, an aluminum foil laminated glass fiber as a heat insulating layer and an airtight layer. A duct was manufactured in the same manner as in Example 1, except that a fabric was bonded to a glass wool layer {Magwool AG2425 (Mag), thickness 25 mm, density 24 kg / m 3 }.

実施例6
上記実施例1において、断熱層に用いる難燃剤として、ハロゲン系難燃剤と三酸化アンチモン{(製品名)STOX−W−16 日本精鉱株式会社製}を使用し、その固形分付着量を0.05g/cmとする以外は実施例1と同様にしてダクトを製造した。
Example 6
In the said Example 1, as a flame retardant used for a heat insulation layer, a halogenated flame retardant and antimony trioxide {(product name) STOX-W-16 made by Nippon Seiko Co., Ltd.} are used, and the solid content adhesion amount is 0. A duct was manufactured in the same manner as in Example 1 except that the amount was 0.05 g / cm 2 .

上記の実施例1〜6及び比較例1〜3で得られたそれぞれのダクトから、10cm長のダクトを切り出し、それらを広げ、10cm×10cmの試験片を作製し、800℃の熱源で非接触加熱しながら、試験片上部にスパーク(着火元)を設置した。加熱時間は20分間とし、その間の発熱量を測定した。試験片が着火した時は、着火までに要した時間と消火までに要した時間を測定した。また、20分間加熱後の断熱層の様子を観察した。その測定結果を表1に示す。   From each of the ducts obtained in Examples 1 to 6 and Comparative Examples 1 to 3, 10 cm long ducts were cut out, spread out, 10 cm × 10 cm test pieces were prepared, and contacted with a heat source at 800 ° C. While heating, a spark (ignition source) was placed on the top of the test piece. The heating time was 20 minutes, and the amount of heat generated during that time was measured. When the test piece ignited, the time required for ignition and the time required for extinction were measured. Moreover, the state of the heat insulation layer after heating for 20 minutes was observed. The measurement results are shown in Table 1.

Figure 2008267690
Figure 2008267690

上記の実施例1〜6、比較例1〜3で得られたダクトを施工現場にてカットし、カット性の容易さ、施工性を調べた。また、ダクトを直管状態に整地し、風量発生器を用いてダクト内部に風を通し、測定管の差圧を測定し管摩擦抵抗係数を算出した。測定結果を表2に示す   The ducts obtained in Examples 1 to 6 and Comparative Examples 1 to 3 were cut at the construction site, and the ease of cutability and workability were examined. Also, the duct was leveled in a straight pipe state, air was passed through the duct using an air flow generator, the differential pressure of the measuring pipe was measured, and the pipe frictional resistance coefficient was calculated. Table 2 shows the measurement results.

Figure 2008267690
Figure 2008267690

表1はダクトより10cm×10cmの試験片を作製し、発熱性試験機(コーンカロリーメーター)を用いて800℃の熱源で試料を加熱した時の、発熱量、着火までに要した時間を調べた結果である。試験片の上には、スパーク(点火源)が設置されており、加熱中に試験片から可燃性ガスが発生すれば、試験片が着火する仕組みとなっている。   Table 1 shows a 10 cm x 10 cm test piece prepared from the duct, and the amount of heat generated and the time required for ignition when the sample was heated with a heat source of 800 ° C using a heat generation tester (cone calorimeter) were examined. It is a result. A spark (ignition source) is installed on the test piece. If a combustible gas is generated from the test piece during heating, the test piece is ignited.

実施例1〜6および比較例3〜4は試験片が着火せず、発熱量も8.0MJ/mより低い値となり、国土交通省認定の不燃認定試験にクリアすることを示している(発熱量が8.0MJ/m以上で不燃認定試験にNGとなる)。しかし、比較例1は断熱層であるウレタンフォームに難燃処理がされていないため断熱層から着火し、不燃認定試験にクリアしないことを表しており、また実施例6は、着火せずかつ発熱量が8.0MJ/m以下であり、不燃認定試験にはクリアするが、20分過熱後の断熱層がわずかに崩れており、必ずしも満足できるものでないことを示している。 Examples 1 to 6 and Comparative Examples 3 to 4 indicate that the test piece did not ignite and the calorific value was lower than 8.0 MJ / m 2 , which cleared the incombustibility certification test approved by the Ministry of Land, Infrastructure, Transport and Tourism ( (If the calorific value is 8.0 MJ / m 2 or more, it becomes NG in the non-flammability certification test). However, Comparative Example 1 indicates that the urethane foam, which is a heat insulating layer, is not flame retardant, so that it ignites from the heat insulating layer and does not pass the non-flammability certification test, and Example 6 does not ignite and generates heat. Although the amount is 8.0 MJ / m 2 or less and clears the nonflammability certification test, the heat insulating layer after 20 minutes of overheating is slightly broken, indicating that it is not always satisfactory.

不燃性または難燃性の断熱樹脂ダクトとしては、断熱層にホウ酸系の難燃剤を用いた断熱材を使用することが効果的であることを表している。ホウ酸系薬剤は加熱時にガラス層を形成し、このガラス層の形成が過熱後の断熱層の形状を保持する。また、芯材に添加されている水酸化マグネシウムは過熱時に吸熱反応を起こす。本発明の不燃性または難燃性の断熱樹脂ダクトは、断熱層のガラス層の形成と、芯材の吸熱反応との連鎖反応によりダクトの燃焼を効果的に抑制することができる。   As a nonflammable or flame-retardant heat insulating resin duct, it is effective to use a heat insulating material using a boric acid flame retardant for the heat insulating layer. The boric acid chemical forms a glass layer when heated, and the formation of the glass layer maintains the shape of the heat insulating layer after overheating. Moreover, the magnesium hydroxide added to the core material causes an endothermic reaction when overheated. The incombustible or flame-retardant heat insulating resin duct of the present invention can effectively suppress the combustion of the duct by a chain reaction between the formation of the glass layer of the heat insulating layer and the endothermic reaction of the core material.

表2は、実際に施工現場にて不燃性または難燃性の断熱樹脂ダクトを使用し、素早く容易に切断できるかについて判断した結果と、不燃性または難燃性の断熱樹脂ダクトを直管状に設置し、風量発生器でダクト内部に風の流れを発生させて測定長における静圧の差を測定して、その時の風量と差圧から直管部管摩擦抵抗係数を算出した結果を表している。   Table 2 shows the results of judging whether it can be cut quickly and easily using a non-flammable or flame-retardant insulating resin duct at the construction site, and the non-flammable or flame-retardant insulating resin duct in a straight tube Installed and generated the flow of wind inside the duct with an air flow generator, measured the difference in static pressure at the measurement length, and calculated the straight pipe pipe friction resistance coefficient from the air flow and the differential pressure at that time Yes.

実施例1〜6、比較例1は補強芯材に熱可塑性硬質樹脂や、熱可塑性硬質樹脂をベースに難燃剤を配合したものを使用しているため、現場でのダクト切断作業性に優れているが、比較例2は補強芯材に金属を使用しているためダクト切断作業性に劣り、さらに断熱層にグラスウールを使用していることから、カット時にグラスウールが飛散し、作業の安全衛生面に劣ることを表している。   Examples 1 to 6 and Comparative Example 1 are excellent in duct cutting workability in the field because they use a thermoplastic hard resin or a material containing a flame retardant based on a thermoplastic hard resin as a reinforcing core material. However, since Comparative Example 2 uses metal for the reinforcing core material, it is inferior in duct cutting workability, and since glass wool is used for the heat insulation layer, glass wool is scattered at the time of cutting, and safety and health of work It is inferior to.

また、実施例1〜6、比較例1はダクト内部が平滑なため、直管部管摩擦抵抗係数が比較的低い数値となっているが、比較例2は金属芯材を使用しているためダクト内部が平滑でなく、直管部管摩擦抵抗係数が高い数値となっている。
Moreover, since Examples 1-6 and Comparative Example 1 have a smooth duct interior, the straight pipe portion pipe frictional resistance coefficient is a relatively low numerical value, but Comparative Example 2 uses a metal core. The inside of the duct is not smooth, and the straight pipe portion has a high coefficient of friction resistance.

本発明の断熱樹脂ダクトの一例の一部断面を含む側面図Side view including a partial cross section of an example of the heat insulating resin duct of the present invention 本発明のダクト内管の一例を示す一部断面を含む側面図The side view including a partial cross section which shows an example of the pipe in a duct of the present invention

符号の説明Explanation of symbols

1:断熱層
2:気密用シート
3:内管不織布
4:補強芯材
1: Heat insulation layer 2: Airtight sheet 3: Inner tube nonwoven fabric 4: Reinforcement core material

Claims (7)

不織布からなる肉部と熱可塑性硬質樹脂からなるリング状または螺旋状の芯材からなる内管、その上に断熱層が積層され、さらにその上に気密層が積層されている空調用フレキシブルダクトにおいて、該断熱層として、難燃処理された樹脂発泡層または、難燃処理された熱可塑性繊維層が用いられていることを特徴とする不燃性または難燃性の断熱樹脂ダクト。 In an air-conditioning flexible duct in which a meat part made of nonwoven fabric and an inner tube made of a ring-shaped or spiral core material made of a thermoplastic hard resin, a heat insulating layer laminated thereon, and an airtight layer laminated thereon A non-flammable or flame-retardant heat-insulating resin duct using a flame-retardant treated resin foam layer or a flame-retardant treated thermoplastic fiber layer as the heat-insulating layer. 内管の不織布として、難燃処理が施された不織布が使用されている請求項1に記載の不燃性または難燃性の断熱樹脂ダクト。 The non-flammable or flame-retardant heat-insulating resin duct according to claim 1, wherein a non-woven fabric subjected to a flame-retardant treatment is used as the non-woven fabric of the inner tube. 気密層が、金属箔をラミネートしたガラス繊維織物または難燃樹脂フィルムである請求項1または2に記載の不燃性または難燃性の断熱樹脂ダクト。 The incombustible or incombustible heat-insulating resin duct according to claim 1 or 2, wherein the airtight layer is a glass fiber fabric or a flame-retardant resin film laminated with a metal foil. 断熱層に付与されている難燃剤がホウ酸系の難燃剤である請求項1〜3のいずれかに記載の不燃性または難燃性の断熱樹脂ダクト。 The non-flammable or flame-retardant heat-insulating resin duct according to any one of claims 1 to 3, wherein the flame retardant imparted to the heat-insulating layer is a boric acid-based flame retardant. 内管を構成する不織布にホウ酸系の難燃剤が含浸されている請求項1〜4のいずれかに記載の不燃性または難燃性の断熱樹脂ダクト。 The non-flammable or flame-retardant heat insulating resin duct according to any one of claims 1 to 4, wherein a non-woven fabric constituting the inner tube is impregnated with a boric acid flame retardant. 芯材が、水酸化アルミニウムあるいは水酸化マグネシウム含有熱可塑性樹脂からなる請求項1〜5のいずれかに記載の不燃性または難燃性の断熱樹脂ダクト。 The incombustible or incombustible heat-insulating resin duct according to any one of claims 1 to 5, wherein the core material is made of aluminum hydroxide or a thermoplastic resin containing magnesium hydroxide. 芯材に用いられている難燃剤が水酸化アルミニウムあるいは水酸化マグネシウムであり、断熱層に用いられている難燃剤がホウ酸系の難燃剤である請求項1〜6のいずれかに記載の不燃性または難燃性の断熱樹脂ダクト。 The flame retardant used in the core material is aluminum hydroxide or magnesium hydroxide, and the flame retardant used in the heat insulating layer is a boric acid-based flame retardant. Or flame-retardant insulation resin duct.
JP2007111170A 2007-04-20 2007-04-20 Incombustible or flame retardant insulation resin duct Active JP4934848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007111170A JP4934848B2 (en) 2007-04-20 2007-04-20 Incombustible or flame retardant insulation resin duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007111170A JP4934848B2 (en) 2007-04-20 2007-04-20 Incombustible or flame retardant insulation resin duct

Publications (2)

Publication Number Publication Date
JP2008267690A true JP2008267690A (en) 2008-11-06
JP4934848B2 JP4934848B2 (en) 2012-05-23

Family

ID=40047426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007111170A Active JP4934848B2 (en) 2007-04-20 2007-04-20 Incombustible or flame retardant insulation resin duct

Country Status (1)

Country Link
JP (1) JP4934848B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129838A (en) * 2012-12-28 2014-07-10 Kuraray Plastics Co Ltd Flexible pipe material, method for manufacturing the same and sound absorption pipe material made of flexible material
JP2014231916A (en) * 2013-05-28 2014-12-11 住江織物株式会社 Duct with deodorization function
JP2015004503A (en) * 2013-06-24 2015-01-08 株式会社竹中工務店 Flexible duct
JP2018112329A (en) * 2017-01-10 2018-07-19 フジモリ産業株式会社 duct
KR102209315B1 (en) * 2020-12-07 2021-02-01 주식회사 새한비엠 Insulating material using eco-friendly non woven fabric treated with flame retardant by mineral flame retardant composition and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243156A (en) * 1996-03-04 1997-09-16 Tokushu Paper Mfg Co Ltd Antidewing putty for air conditioning duct and the duct using the putty
JP2000171085A (en) * 1998-12-04 2000-06-23 Nittobo Togan Co Ltd Thermal insulation execution method of air-conditioning duct and heat insulator for air-conditioning duct used for it
JP2000220882A (en) * 1999-01-29 2000-08-08 Totaku Kogyo Kk Sound absorbing thermal insulating duct
JP2000281908A (en) * 1999-03-31 2000-10-10 Sumitomo Chem Co Ltd Production of formed article from thermoplastic resin
WO2005073343A1 (en) * 2004-01-28 2005-08-11 A. Y. Chemical Ltd. Fireproof agent, process for producing the same and method of fireproofing
WO2006043435A1 (en) * 2004-10-22 2006-04-27 Takashi Fujimori Process for producing foam

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243156A (en) * 1996-03-04 1997-09-16 Tokushu Paper Mfg Co Ltd Antidewing putty for air conditioning duct and the duct using the putty
JP2000171085A (en) * 1998-12-04 2000-06-23 Nittobo Togan Co Ltd Thermal insulation execution method of air-conditioning duct and heat insulator for air-conditioning duct used for it
JP2000220882A (en) * 1999-01-29 2000-08-08 Totaku Kogyo Kk Sound absorbing thermal insulating duct
JP2000281908A (en) * 1999-03-31 2000-10-10 Sumitomo Chem Co Ltd Production of formed article from thermoplastic resin
WO2005073343A1 (en) * 2004-01-28 2005-08-11 A. Y. Chemical Ltd. Fireproof agent, process for producing the same and method of fireproofing
WO2006043435A1 (en) * 2004-10-22 2006-04-27 Takashi Fujimori Process for producing foam

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129838A (en) * 2012-12-28 2014-07-10 Kuraray Plastics Co Ltd Flexible pipe material, method for manufacturing the same and sound absorption pipe material made of flexible material
JP2014231916A (en) * 2013-05-28 2014-12-11 住江織物株式会社 Duct with deodorization function
JP2015004503A (en) * 2013-06-24 2015-01-08 株式会社竹中工務店 Flexible duct
JP2018112329A (en) * 2017-01-10 2018-07-19 フジモリ産業株式会社 duct
KR102209315B1 (en) * 2020-12-07 2021-02-01 주식회사 새한비엠 Insulating material using eco-friendly non woven fabric treated with flame retardant by mineral flame retardant composition and manufacturing method thereof

Also Published As

Publication number Publication date
JP4934848B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
CN104080373B (en) Anti-flammability planar body and employ the mat not easily producing pernicious gas of described anti-flammability planar body and this not easily produces the manufacture method of the mat of pernicious gas
CN102529221B (en) Fire protected elastomeric insulation
USRE46443E1 (en) Flash fire and chemical resistant fabric and garments
JP4934848B2 (en) Incombustible or flame retardant insulation resin duct
JP2005260214A (en) Electromagnetic wave shield material, stereo structure, electromagnetic wave shield property interior material, and image display device
JP2019148164A (en) Laminate
EP2345535B1 (en) Fire protection system for expanded polymers
JP5139693B2 (en) Fireproof coating structure
JP2004174865A (en) Fireproof honeycomb panel and its manufacturing method
AU2013314173B2 (en) Flame retardant planar element and floor covering hardly generating hazardous gas using the flame retardant planar element, and production method of the floor covering hardly generating hazardous gas
JP6205154B2 (en) Fireproof coating and fireproof structure
EP2522502B1 (en) Reinforcing and flame protection lamination for cellular polymers
JP2009041203A (en) Fireproof heat insulating sheet
KR101830688B1 (en) Sandwich panel
JP2012149713A (en) Laminated heat insulation material and heat insulation material for air-conditioning duct of railroad vehicle
US8986815B2 (en) Flame retardant polymer jacket
JP2010125805A (en) Heat insulation for building material and its manufacturing method
JPH10231568A (en) Fireproof composite panel
JP2011038366A (en) Soundproofing material
US20230159798A1 (en) Flexible and low permeable vapor retardants for facing products
JP2000282598A (en) Fireproof structure of building
JP5978118B2 (en) Fireproof compartment penetration structure with gap shielding filler and gap shielding filler
EP4052896A1 (en) A covering for a refrigerator
KR101254118B1 (en) material for adiabatic and soundabsorption and manufacturing the same
RU55605U1 (en) FIRE PROTECTION DEVICE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4934848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250