JP2014129811A - Liquid heating device - Google Patents

Liquid heating device Download PDF

Info

Publication number
JP2014129811A
JP2014129811A JP2013210804A JP2013210804A JP2014129811A JP 2014129811 A JP2014129811 A JP 2014129811A JP 2013210804 A JP2013210804 A JP 2013210804A JP 2013210804 A JP2013210804 A JP 2013210804A JP 2014129811 A JP2014129811 A JP 2014129811A
Authority
JP
Japan
Prior art keywords
fuel
heating
liquid
boiling state
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013210804A
Other languages
Japanese (ja)
Other versions
JP6114159B2 (en
Inventor
Kenryo Suzuki
健了 鈴木
Hisashi Iida
飯田  寿
Hayata Ogura
隼太 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2013210804A priority Critical patent/JP6114159B2/en
Priority to BR102013030510-3A priority patent/BR102013030510B1/en
Publication of JP2014129811A publication Critical patent/JP2014129811A/en
Application granted granted Critical
Publication of JP6114159B2 publication Critical patent/JP6114159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently heat fuel of an internal combustion engine.SOLUTION: A fuel heating device 15 is provided in the middle of a fuel passage 13 connected between a fuel injection valve 14 and a fuel pump 12, and the fuel heating device 15 includes: a columnar heating part 16 which heats fuel in the fuel passage 13; and a cylindrical guide part 17 arranged in the surroundings of the heating part 16. The heating part 16 is arranged so as to extend approximately in the horizontal direction in the fuel passage 13, and the guide part 17 is arranged so as to surround the whole circumference of the heating part 16 at predetermined distance from the heating part 16. A plurality of circular through holes 18 are formed on at least each of an upper surface side and a lower surface side of the guide part 17. Thus, when the fuel is heated by the heating part 16, the fuel can be promptly transited to a nucleate boiling state, it becomes possible to maintain the fuel at the nucleate boiling state (or from a later stage of the nucleate boiling state to a former stage of a transition boiling state) for a long time, and the fuel can be efficiently heated.

Description

本発明は、液体通路内の液体を加熱する液体加熱装置に関する発明である。   The present invention relates to a liquid heating apparatus that heats a liquid in a liquid passage.

近年、CO2 排出量削減、石油代替燃料の活用等の社会的要請から、燃料として、ガソリン、アルコール(エタノールやメタノール等)、ガソリンにアルコールを混合したアルコール混合燃料をいずれも使用可能な内燃機関を搭載した自動車の需要が増加してきている。しかし、アルコールは、ガソリンに比べて、気化潜熱が大きく、低温時に気化し難くなるため、アルコール燃料(アルコール100%又はアルコールを含む混合燃料)を使用した場合に、内燃機関の始動性が悪化するという問題がある。 In recent years, internal combustion engines that can use gasoline, alcohol (ethanol, methanol, etc.), and alcohol-mixed fuels mixed with gasoline as fuel, in response to social demands such as reducing CO 2 emissions and using alternative fuels for petroleum. The demand for automobiles equipped with is increasing. However, since alcohol has a larger latent heat of vaporization than gasoline and is difficult to vaporize at low temperatures, the startability of the internal combustion engine is deteriorated when alcohol fuel (100% alcohol or a mixed fuel containing alcohol) is used. There is a problem.

この対策として、内燃機関の低温時に燃料噴射弁に供給する燃料をヒータで加熱することで噴射燃料の気化を促進させるようにしたものがある。また、燃料を効率良く加熱する技術として、例えば、特許文献1(特開2011−80379号公報)に記載されているように、燃料を収容するケース内に配置したヒータの表面に粗面加工を施すことで、燃料を加熱する際にヒータの表面に生じる気泡をヒータの表面から離脱し易くするようにしたものがある。   As a countermeasure against this, there is one that promotes vaporization of the injected fuel by heating the fuel supplied to the fuel injection valve with a heater when the internal combustion engine is at a low temperature. In addition, as a technique for efficiently heating the fuel, for example, as described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2011-80379), the surface of the heater disposed in the case containing the fuel is roughened. In some cases, air bubbles generated on the surface of the heater when the fuel is heated are easily separated from the surface of the heater.

特開2011−80379号公報JP 2011-80379 A

上記特許文献1の技術では、ヒータの表面に粗面加工を施すことで、燃料を加熱する際にヒータの表面に生じる気泡をヒータの表面から離脱し易くするようにしているが、長期間の燃料の接触によりヒータの表面に付着物が生成されると、ヒータの表面状態を適正な粗面に維持することができず、燃料を効率良く加熱できなくなる可能性がある。   In the technique of Patent Document 1 described above, the surface of the heater is roughened so that bubbles generated on the surface of the heater when the fuel is heated are easily separated from the surface of the heater. If deposits are generated on the surface of the heater due to the contact of the fuel, the surface state of the heater cannot be maintained at an appropriate rough surface, and the fuel may not be efficiently heated.

そこで、本発明が解決しようとする課題は、より確実に液体を効率良く加熱することができる液体加熱装置を提供することにある。   Therefore, the problem to be solved by the present invention is to provide a liquid heating apparatus capable of heating a liquid more reliably and efficiently.

上記課題を解決するために、請求項1に係る発明は、液体通路(13)内の液体を加熱する加熱部(16)を該液体通路(13)内に配置した液体加熱装置において、液体通路(13)内で加熱部(16)から所定距離を隔てて該加熱部(16)の全周又は一部を囲むように配置されたガイド部(17,24)を備え、該ガイド部(17,24)に一つ又は複数の貫通孔(18,20,21,22)が形成されているようにしたものである。   In order to solve the above problems, the invention according to claim 1 is directed to a liquid heating apparatus in which a heating section (16) for heating a liquid in a liquid passage (13) is disposed in the liquid passage (13). (13) includes a guide portion (17, 24) disposed so as to surround the entire circumference or part of the heating portion (16) at a predetermined distance from the heating portion (16), and the guide portion (17 24), one or a plurality of through holes (18, 20, 21, 22) are formed.

図2に示すように、液体が沸騰する際には、まず、加熱部の表面に比較的小さい気泡が発生する核沸騰状態となり、その後、遷移沸騰状態を経て、比較的大きい気泡(加熱部の表面を覆うような気泡)が生成される膜沸騰状態に遷移する。核沸騰状態では、加熱部から液体への熱伝達率が上昇し、その後、核沸騰状態から膜沸騰状態に遷移する過程で、熱伝達率が低下する。従って、液体を効率良く加熱するには、液体を速やかに核沸騰状態に遷移させると共に核沸騰状態(又は核沸騰状態の後期から遷移沸騰状態の前期)に長く維持することが好ましい。   As shown in FIG. 2, when the liquid is boiled, first, a nucleate boiling state in which relatively small bubbles are generated on the surface of the heating unit is brought about, and then a relatively large bubble (of the heating unit is passed through the transition boiling state). The film transitions to a film boiling state where bubbles are generated to cover the surface. In the nucleate boiling state, the heat transfer coefficient from the heating unit to the liquid increases, and then the heat transfer coefficient decreases in the process of transition from the nucleate boiling state to the film boiling state. Therefore, in order to heat the liquid efficiently, it is preferable to quickly transition the liquid to the nucleate boiling state and to maintain the nucleate boiling state (or from the latter stage of the nucleate boiling state to the first stage of the transition boiling state) for a long time.

この点に着目して、本発明は、加熱部から所定距離を隔てて加熱部を囲むようにガイド部を配置しているため、加熱部による液体の加熱を開始すると、まず、加熱部とガイド部との間の比較的狭い領域の液体を加熱することができる。これにより、加熱部の周辺の液体の温度を速やかに上昇させて液体を速やかに核沸騰状態に遷移させることができる。   Focusing on this point, in the present invention, since the guide unit is disposed so as to surround the heating unit at a predetermined distance from the heating unit, when heating of the liquid by the heating unit is started, first, the heating unit and the guide are arranged. The liquid in a relatively narrow area between the parts can be heated. Thereby, the temperature of the liquid around a heating part can be raised rapidly, and a liquid can be changed to a nucleate boiling state rapidly.

また、ガイド部に貫通孔を形成しているため、核沸騰により生成された気泡は、貫通孔を通ってガイド部の外側へ排出されることで冷却されて消滅する。核沸騰状態では、このような気泡の発生と消滅により加熱部の周辺に液体の乱れ(流れ)が発生し、加熱部から液体への熱伝達率が向上する。   In addition, since the through hole is formed in the guide portion, bubbles generated by nucleate boiling are cooled and disappeared by being discharged to the outside of the guide portion through the through hole. In the nucleate boiling state, the generation and disappearance of such bubbles cause a turbulence (flow) of the liquid around the heating unit, and the heat transfer rate from the heating unit to the liquid is improved.

更に、核沸騰により生成された気泡が貫通孔を通ってガイド部の外側へ排出されることで、加熱部の周辺で気泡が寄り集まって大きな気泡となることを抑制して、膜沸騰状態へ遷移することを抑制することができ、核沸騰状態(又は核沸騰状態の後期から遷移沸騰状態の前期)に長く維持することができる。   Furthermore, the bubbles generated by nucleate boiling are discharged to the outside of the guide part through the through-hole, thereby suppressing the bubbles from gathering around the heating part to form large bubbles, and to the film boiling state. Transition can be suppressed, and the nucleate boiling state (or the late stage of the nucleate boiling state to the early stage of the transition boiling state) can be maintained for a long time.

このようにして、液体を速やかに核沸騰状態に遷移させることができると共に、核沸騰状態(又は核沸騰状態の後期から遷移沸騰状態の前期)に長く維持することが可能となり、より確実に液体を効率良く加熱することができる。   In this way, the liquid can be quickly transitioned to the nucleate boiling state, and can be maintained in the nucleate boiling state (or from the latter stage of the nucleate boiling state to the first stage of the transition boiling state) for more reliable liquid Can be efficiently heated.

図1は本発明の実施例1における燃料供給システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a fuel supply system according to Embodiment 1 of the present invention. 図2は核沸騰状態と遷移沸騰状態と膜沸騰状態を説明する図である。FIG. 2 is a diagram for explaining a nucleate boiling state, a transition boiling state, and a film boiling state. 図3は核沸騰状態時の燃料加熱装置の一部破断側面図である。FIG. 3 is a partially broken side view of the fuel heating device in a nucleate boiling state. 図4は実施例1の効果を説明する図である。FIG. 4 is a diagram for explaining the effect of the first embodiment. 図5は実施例2の燃料加熱装置の一部破断側面図である。FIG. 5 is a partially broken side view of the fuel heating apparatus according to the second embodiment. 図6は実施例2の燃料加熱装置の平面図である。FIG. 6 is a plan view of the fuel heating apparatus according to the second embodiment. 図7は実施例3の燃料加熱装置の一部破断側面図である。FIG. 7 is a partially broken side view of the fuel heating apparatus according to the third embodiment. 図8は実施例4の燃料加熱装置の一部破断側面図である。FIG. 8 is a partially broken side view of the fuel heating apparatus according to the fourth embodiment. 図9は実施例5の燃料加熱レールの外観斜視図である。FIG. 9 is an external perspective view of the fuel heating rail of the fifth embodiment. 図10は実施例5の燃料加熱レールの正面断面図である。FIG. 10 is a front sectional view of the fuel heating rail of the fifth embodiment. 図11は実施例5の燃料加熱レールの側面断面図である。FIG. 11 is a side sectional view of the fuel heating rail of the fifth embodiment.

以下、本発明を実施するための形態を具体化した幾つかの実施例を説明する。   Hereinafter, some embodiments embodying the mode for carrying out the present invention will be described.

本発明の実施例1を図1乃至図4に基づいて説明する。
まず、図1に基づいてエンジンの燃料供給システムの概略構成を説明する。
A first embodiment of the present invention will be described with reference to FIGS.
First, a schematic configuration of an engine fuel supply system will be described with reference to FIG.

内燃機関であるエンジン(図示せず)は、燃料(液体)として、ガソリン、アルコール(エタノールやメタノール等)、ガソリンにアルコールを混合したアルコール混合燃料をいずれも使用可能である。これらのガソリン、アルコール、アルコール混合燃料のいずれかを燃料タンク11に給油してエンジンに供給するようになっている。燃料を貯溜する燃料タンク11には、燃料を汲み上げる燃料ポンプ12が設置されている。この燃料ポンプ12から吐出(圧送)される燃料は、燃料通路13(液体通路)を通して燃料噴射弁14に供給される。   An engine (not shown) that is an internal combustion engine can use any of gasoline, alcohol (such as ethanol and methanol), and alcohol-mixed fuel obtained by mixing alcohol with gasoline as fuel (liquid). One of these gasoline, alcohol, and alcohol mixed fuel is supplied to the fuel tank 11 and supplied to the engine. A fuel tank 12 that pumps fuel is installed in a fuel tank 11 that stores fuel. The fuel discharged (pressure-fed) from the fuel pump 12 is supplied to the fuel injection valve 14 through the fuel passage 13 (liquid passage).

燃料噴射弁14と燃料ポンプ12との間に接続された燃料通路13の途中には、燃料加熱装置15(液体加熱装置)が設けられている。この燃料加熱装置15には、燃料通路13内の燃料を加熱する円柱状の加熱部16(例えば電気式ヒータ)と、この加熱部16の周囲に配置された円筒状のガイド部17とが設けられている。   In the middle of the fuel passage 13 connected between the fuel injection valve 14 and the fuel pump 12, a fuel heating device 15 (liquid heating device) is provided. The fuel heating device 15 is provided with a columnar heating unit 16 (for example, an electric heater) that heats the fuel in the fuel passage 13 and a cylindrical guide unit 17 disposed around the heating unit 16. It has been.

加熱部16は、燃料通路13内でほぼ水平方向に延びるように配置され、ガイド部17は、加熱部16から所定距離を隔てて加熱部16の全周を囲むように配置されている。このガイド部17の少なくとも上面側及び下面側には、それぞれ複数の円形状の貫通孔18が形成されている。加熱部16で加熱された燃料や沸騰により発生した気泡は、ガイド部16の上面側の貫通孔18を通ってガイド部17の外側に排出され、ガイド部16の下面側の貫通孔18からガイド部17内に燃料が流入するようになっている。   The heating unit 16 is disposed so as to extend substantially horizontally in the fuel passage 13, and the guide unit 17 is disposed so as to surround the entire circumference of the heating unit 16 at a predetermined distance from the heating unit 16. A plurality of circular through holes 18 are formed at least on the upper surface side and the lower surface side of the guide portion 17. Fuel heated by the heating unit 16 and bubbles generated by boiling are discharged to the outside of the guide unit 17 through the through hole 18 on the upper surface side of the guide unit 16 and guided from the through hole 18 on the lower surface side of the guide unit 16. The fuel flows into the portion 17.

ECU19(制御手段)は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御用のプログラムを実行することで、エンジン運転状態に応じて燃料噴射量や点火時期等を制御する。また、ECU19は、加熱部16で燃料を加熱する場合に、加熱部16の表面温度を燃料の沸点よりも高い温度になるように加熱部16を制御する。   The ECU 19 (control means) is composed mainly of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium) to thereby control the fuel injection amount and the engine operation state. Control ignition timing. In addition, when the fuel is heated by the heating unit 16, the ECU 19 controls the heating unit 16 so that the surface temperature of the heating unit 16 is higher than the boiling point of the fuel.

尚、ECU19は、エンジン(燃料噴射量や点火時期等)、燃料ポンプ11、加熱部16等を総合的に制御する1つの制御回路で構成しても良いし、エンジンを制御する制御回路と、燃料ポンプ11を制御する制御回路と、加熱部16を制御する制御回路等を別々に設けた構成としても良い。   The ECU 19 may be configured by a single control circuit that comprehensively controls the engine (fuel injection amount, ignition timing, etc.), the fuel pump 11, the heating unit 16, and the like, or a control circuit that controls the engine; A control circuit that controls the fuel pump 11 and a control circuit that controls the heating unit 16 may be provided separately.

図2に示すように、燃料が沸騰する際には、まず、加熱部16の表面に比較的小さい気泡が発生する核沸騰状態となり、その後、遷移沸騰状態を経て、比較的大きい気泡(加熱部16の表面を覆うような気泡)が生成される膜沸騰状態に遷移する。核沸騰状態では、加熱部16から燃料への熱伝達率が上昇し、その後、核沸騰状態から膜沸騰状態に遷移する過程で、熱伝達率が低下する。従って、燃料を効率良く加熱するには、燃料を速やかに核沸騰状態に遷移させると共に核沸騰状態(又は核沸騰状態の後期から遷移沸騰状態の前期)に長く維持することが好ましい。   As shown in FIG. 2, when the fuel boils, first, a nucleate boiling state in which relatively small bubbles are generated on the surface of the heating unit 16 is obtained, and then relatively large bubbles (heating unit) are passed through the transition boiling state. Transition to a film boiling state in which bubbles 16 covering the surface of 16 are generated. In the nucleate boiling state, the heat transfer rate from the heating unit 16 to the fuel increases, and then the heat transfer rate decreases in the process of transition from the nucleate boiling state to the film boiling state. Therefore, in order to heat the fuel efficiently, it is preferable to quickly change the fuel to the nucleate boiling state and to maintain it for a long time from the nucleate boiling state (or from the latter stage of the nucleate boiling state to the first stage of the transition boiling state).

この点に着目して、本実施例では、加熱部16から所定距離を隔てて加熱部16を囲むようにガイド部17を配置しているため、加熱部16による燃料の加熱を開始すると、まず、加熱部16とガイド部17との間の比較的狭い領域の燃料を加熱することができる。これにより、加熱部16の周辺の燃料の温度を速やかに上昇させて燃料を速やかに核沸騰状態に遷移させることができる。   Focusing on this point, in this embodiment, since the guide portion 17 is disposed so as to surround the heating portion 16 at a predetermined distance from the heating portion 16, when heating of the fuel by the heating portion 16 is started, The fuel in a relatively narrow region between the heating unit 16 and the guide unit 17 can be heated. Thereby, the temperature of the fuel around the heating unit 16 can be quickly raised, and the fuel can be quickly changed to the nucleate boiling state.

また、ガイド部17に貫通孔18を形成しているため、核沸騰により生成された気泡は、貫通孔18を通ってガイド部17の外側へ排出されることで冷却されて消滅する。図3に示すように、核沸騰状態では、このような気泡の発生と消滅により加熱部16の周辺に燃料の乱れ(流れ)が発生し、加熱部16から燃料への熱伝達率が向上する。   In addition, since the through hole 18 is formed in the guide portion 17, bubbles generated by nucleate boiling are cooled and disappeared by being discharged to the outside of the guide portion 17 through the through hole 18. As shown in FIG. 3, in the nucleate boiling state, the turbulence (flow) of the fuel occurs around the heating unit 16 due to the generation and disappearance of such bubbles, and the heat transfer rate from the heating unit 16 to the fuel is improved. .

更に、核沸騰により生成された気泡が貫通孔18を通ってガイド部17の外側へ排出されることで、加熱部16の周辺で気泡が寄り集まって大きな気泡となることを抑制して、膜沸騰状態へ遷移することを抑制することができ、核沸騰状態(又は核沸騰状態の後期から遷移沸騰状態の前期)に長く維持することができる。   Further, the bubbles generated by the nucleate boiling are discharged to the outside of the guide portion 17 through the through-holes 18, thereby suppressing the bubbles from gathering around the heating portion 16 to become large bubbles, and the film Transition to the boiling state can be suppressed, and the nucleate boiling state (or the latter stage of the transition boiling state from the latter stage of the nucleate boiling state) can be maintained for a long time.

以上説明した本実施例1では、加熱部16から所定距離を隔てて加熱部16を囲むようにガイド部17を配置すると共に、このガイド部17に気泡を排出するための貫通孔18を形成するようにしたので、加熱部16で燃料を加熱する際に、燃料を速やかに核沸騰状態に遷移させることができると共に、核沸騰状態(又は核沸騰状態の後期から遷移沸騰状態の前期)に長く維持することが可能となり、より確実に燃料を効率良く加熱することができる。しかも、本実施例1では、加熱部16の表面温度を燃料の沸点よりも高い温度に制御するようにしたので、加熱部16の周辺の燃料を速やかに沸点よりも高い温度まで加熱して核沸騰状態にすることができる。   In the first embodiment described above, the guide portion 17 is disposed so as to surround the heating portion 16 at a predetermined distance from the heating portion 16, and the through hole 18 for discharging bubbles is formed in the guide portion 17. As described above, when the fuel is heated by the heating unit 16, the fuel can be quickly changed to the nucleate boiling state, and the nucleate boiling state (or from the latter stage of the nucleate boiling state to the first stage of the transition boiling state) is prolonged. The fuel can be maintained, and the fuel can be heated more reliably and efficiently. Moreover, in the first embodiment, the surface temperature of the heating unit 16 is controlled to a temperature higher than the boiling point of the fuel. Therefore, the fuel around the heating unit 16 is quickly heated to a temperature higher than the boiling point to Can be boiled.

その結果、図4に示すように、本実施例1の燃料加熱装置15では、従来の燃料加熱装置(ガイド部を備えていない燃料加熱装置)に比べて、燃料を効率良く加熱することができ、燃料の温度を速やかに上昇させることができる。   As a result, as shown in FIG. 4, the fuel heating device 15 of the first embodiment can heat the fuel more efficiently than the conventional fuel heating device (fuel heating device that does not include a guide portion). The temperature of the fuel can be quickly raised.

以下、本発明の実施例2〜5を図5乃至図11に基づいて説明する。但し、前記実施例1と実質的に同一部分には同一符号を付して説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。   Embodiments 2 to 5 according to the present invention will be described below with reference to FIGS. However, parts that are substantially the same as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified, and parts different from those in the first embodiment are mainly described.

図5及び図6に示すように、本実施例2では、ガイド部17に、複数種類の貫通孔20〜22が形成されている。具体的には、ガイド部17の上面側の中央部(加熱部16の中央部に相当する部分)には、大径の円形状の貫通孔20が形成され、ガイド部17の上面側の中央部以外の部分(加熱部16の先端側及び根元側に相当する部分)には、中央部の貫通孔20よりも開放面積が小さい楕円形状の貫通孔21が形成されている。加熱部16の中央部の発熱量が多い場合には、加熱部16の上面側の中央部付近に多くの気泡が発生するため、ガイド部17の上面側の中央部の貫通孔20を大きくすることで、加熱部16の上面側の中央部付近で発生した気泡を、ガイド部17の上面側の中央部の大きい貫通孔20から容易に排出できるようになっている。   As shown in FIGS. 5 and 6, in the second embodiment, a plurality of types of through holes 20 to 22 are formed in the guide portion 17. Specifically, a large-diameter circular through hole 20 is formed in the center portion on the upper surface side of the guide portion 17 (the portion corresponding to the center portion of the heating portion 16), and the center on the upper surface side of the guide portion 17. An elliptical through hole 21 having an opening area smaller than that of the central through hole 20 is formed in a part other than the part (a part corresponding to the tip side and the base side of the heating part 16). When the amount of heat generated in the central part of the heating unit 16 is large, many bubbles are generated near the central part on the upper surface side of the heating unit 16, so the through hole 20 in the central part on the upper surface side of the guide unit 17 is enlarged. Thus, bubbles generated near the central portion on the upper surface side of the heating unit 16 can be easily discharged from the large through-hole 20 in the central portion on the upper surface side of the guide portion 17.

一方、ガイド部17の下面側には、上面側の貫通孔20,21よりも開放面積が小さい小径の円形状の貫通孔22が形成されていると共に、下面側の貫通孔22の数を上面側の貫通孔20,21の数よりも少なくしている。これにより、ガイド部17の下面側の貫通孔22から加熱されていない燃料が多量に加熱部16の周囲に流入することを抑制して、加熱部16の周囲の燃料の温度が低下することを抑制することで、気泡の排出の容易性を増すようにしている。   On the other hand, a small-diameter circular through hole 22 having a smaller open area than the through holes 20 and 21 on the upper surface side is formed on the lower surface side of the guide portion 17, and the number of the through holes 22 on the lower surface side is set to the upper surface. The number is smaller than the number of through holes 20 and 21 on the side. Accordingly, it is possible to suppress a large amount of fuel that is not heated from the through hole 22 on the lower surface side of the guide portion 17 from flowing into the periphery of the heating portion 16 and to reduce the temperature of the fuel around the heating portion 16. By suppressing it, the ease of discharging bubbles is increased.

図7に示すように、本実施例3では、ガイド部17の上面側の貫通孔18の下側(加熱部16側)の開口周縁部に面取り23が形成されている。これにより、ガイド部17の上面側の貫通孔18から燃料や気泡が排出され易くなるようにしている。更に、ガイド部17の下面側の貫通孔18の下側(加熱部16と反対側)の開口周縁部に面取り23が形成されている。これにより、ガイド部17の下面側の貫通孔18から燃料が流入し易くなるようにしている。   As shown in FIG. 7, in the third embodiment, a chamfer 23 is formed on the opening peripheral edge of the lower side (heating unit 16 side) of the through hole 18 on the upper surface side of the guide unit 17. Thus, fuel and bubbles are easily discharged from the through hole 18 on the upper surface side of the guide portion 17. Further, a chamfer 23 is formed on the opening peripheral portion of the lower side of the guide portion 17 below the through hole 18 (opposite the heating portion 16). As a result, the fuel can easily flow from the through hole 18 on the lower surface side of the guide portion 17.

尚、上記各実施例1〜3では、円筒状のガイド部17を用いるようにしたが、ガイド部の形状は、円筒状に限定されず、適宜変更しても良く、例えば、四角形や六角形等の多角形の筒状のガイド部を用いるようにしても良い。   In the first to third embodiments, the cylindrical guide portion 17 is used. However, the shape of the guide portion is not limited to the cylindrical shape, and may be changed as appropriate. A polygonal cylindrical guide portion such as the above may be used.

図8に示すように、本実施例4では、加熱部16の上面側を囲むように半円筒状のガイド部24が配置されている。加熱部16で加熱された燃料は、自然対流により上方へ向かうため、半円筒状のガイド部24で加熱部16の上面側のみを囲むようにしても、前記実施例1とほぼ同様の効果を得ることができる(燃料を速やかに核沸騰状態に遷移させることができると共に、核沸騰状態(又は核沸騰状態の後期から遷移沸騰状態の前期)に長く維持することが可能となる)。   As shown in FIG. 8, in the fourth embodiment, a semi-cylindrical guide portion 24 is disposed so as to surround the upper surface side of the heating portion 16. Since the fuel heated by the heating unit 16 is directed upward by natural convection, even if the semi-cylindrical guide unit 24 surrounds only the upper surface side of the heating unit 16, the same effect as in the first embodiment can be obtained. (The fuel can be promptly transitioned to the nucleate boiling state and can be maintained for a long time in the nucleate boiling state (or from the latter stage of the nucleate boiling state to the first stage of the transition boiling state)).

尚、上記実施例4では、半円筒状のガイド部24を用いるようにしたが、ガイド部の形状は、半円筒状に限定されず、適宜変更しても良く、例えば、断面「く」字状のガイド部や断面「コ」字状のガイド部で加熱部16の上面側を囲むようにしても良い。   In the fourth embodiment, the semi-cylindrical guide portion 24 is used. However, the shape of the guide portion is not limited to the semi-cylindrical shape, and may be changed as appropriate. The upper surface side of the heating unit 16 may be surrounded by a guide portion having a shape or a guide portion having a U-shaped cross section.

次に、図9乃至図11を用いて本発明の実施例5を説明する。
図9に示すように、燃料ポンプ12(図1参照)から吐出される燃料は、燃料配管25を通して燃料加熱レール26(液体加熱装置)に送られ、この燃料加熱レール26からエンジンの各気筒に取り付けられた燃料噴射弁14に燃料が供給される。燃料加熱レール26には、燃料配管25に接続された燃料レール27(液体レール)と、この燃料レール27のうちの各気筒の燃料噴射弁14に対応する位置に取り付けられた複数の燃料加熱室28(液体加熱室)とが設けられている。燃料レール27と燃料加熱室28は、燃料通路(液体通路)として機能し、燃料配管25を通して燃料レール27内に送られた燃料は、各燃料加熱室28を通して各気筒の燃料噴射弁14に供給される。
Next, Embodiment 5 of the present invention will be described with reference to FIGS.
As shown in FIG. 9, the fuel discharged from the fuel pump 12 (see FIG. 1) is sent to a fuel heating rail 26 (liquid heating device) through a fuel pipe 25 from the fuel heating rail 26 to each cylinder of the engine. Fuel is supplied to the attached fuel injection valve 14. The fuel heating rail 26 includes a fuel rail 27 (liquid rail) connected to the fuel pipe 25 and a plurality of fuel heating chambers attached to the fuel rail 27 at positions corresponding to the fuel injection valves 14 of each cylinder. 28 (liquid heating chamber). The fuel rail 27 and the fuel heating chamber 28 function as a fuel passage (liquid passage), and the fuel sent into the fuel rail 27 through the fuel pipe 25 is supplied to the fuel injection valve 14 of each cylinder through each fuel heating chamber 28. Is done.

図10及び図11に示すように、燃料レール27は、下蓋29に上蓋30を取り付けて一体化したものであり、下蓋29と上蓋30との間に燃料の通路が形成されている。この燃料レール27の上蓋30に、箱状の燃料加熱室28が取り付けられている。   As shown in FIGS. 10 and 11, the fuel rail 27 is formed by attaching an upper lid 30 to a lower lid 29, and a fuel passage is formed between the lower lid 29 and the upper lid 30. A box-shaped fuel heating chamber 28 is attached to the upper lid 30 of the fuel rail 27.

図10に示すように、燃料加熱室28には、該燃料加熱室28に加熱部16を取り付けるための略円筒状の取付部31が横方向(燃料レール27の上面とほぼ平行な方向)に延びるように取り付けられ、この取付部31の先端側にガイド部17が接続されている。本実施例5では、取付部31とガイド部17とが一体部品で形成されている。尚、ガイド部17は、上記実施例1で説明したガイド部に限定されず、上記実施例2乃至4のいずれかで説明したガイド部としても良い。   As shown in FIG. 10, the fuel heating chamber 28 has a substantially cylindrical attachment portion 31 for attaching the heating portion 16 to the fuel heating chamber 28 in the lateral direction (a direction substantially parallel to the upper surface of the fuel rail 27). It attaches so that it may extend, and the guide part 17 is connected to the front end side of this attaching part 31. In the fifth embodiment, the attachment portion 31 and the guide portion 17 are formed as an integral part. The guide portion 17 is not limited to the guide portion described in the first embodiment, and may be the guide portion described in any of the second to fourth embodiments.

また、加熱部16の根元側には、加熱部16よりも大径の支持固定部32が一体的に設けられている。加熱部16を燃料加熱室28の側方から取付部31の内側を通してガイド部17の内側まで挿入して支持固定部32を取付部31に組み付け固定することで、燃料加熱室28に加熱部16が燃料加熱室28の側方から挿入されて横方向に延びる状態で取り付けられている。   Further, a support fixing portion 32 having a larger diameter than the heating portion 16 is integrally provided on the base side of the heating portion 16. The heating unit 16 is inserted from the side of the fuel heating chamber 28 to the inside of the guide unit 17 through the inside of the mounting unit 31 and the support fixing unit 32 is assembled and fixed to the mounting unit 31. Is inserted from the side of the fuel heating chamber 28 and attached in a state extending in the lateral direction.

燃料加熱室28のうちの加熱部16の先端側には、燃料レール27内の燃料を燃料加熱室28内に導入するための流入管33が設けられ、この流入管33の先端に、燃料の流入口34が設けられている。一方、燃料加熱室28のうちの加熱部16の根元側には、燃料加熱室28内の燃料を排出する(燃料噴射弁14側に供給する)ための排出管35が設けられ、この排出管35の先端に、燃料の排出口36が設けられている。つまり、燃料加熱室28のうちの加熱部16の先端側に燃料の流入口34が配置され、燃料加熱室28のうちの加熱部16の根元側に燃料の排出口36が配置されている。   An inflow pipe 33 for introducing the fuel in the fuel rail 27 into the fuel heating chamber 28 is provided on the front end side of the heating unit 16 in the fuel heating chamber 28. An inflow port 34 is provided. On the other hand, a discharge pipe 35 for discharging the fuel in the fuel heating chamber 28 (supplying it to the fuel injection valve 14 side) is provided on the base side of the heating unit 16 in the fuel heating chamber 28. A fuel discharge port 36 is provided at the tip of 35. In other words, the fuel inlet 34 is disposed on the leading end side of the heating unit 16 in the fuel heating chamber 28, and the fuel discharge port 36 is disposed on the root side of the heating unit 16 in the fuel heating chamber 28.

図11に示すように、燃料の流入口34と排出口36は、加熱部16よりも後方(図11では左方)に配置され、流入口34と排出口36との間に、仕切壁37が配置されている。この仕切壁37は、加熱部16よりも後方で流入口34側と排出口36側とを仕切るように設けられている。これにより、流入口34から燃料加熱室28内に流入した燃料は、加熱部16の先端側から根元側に向かって概ね加熱部16の長手方向に沿った方向に流れた後、排出口36から燃料加熱室28外に排出されるようになっている。   As shown in FIG. 11, the fuel inflow port 34 and the discharge port 36 are arranged behind the heating unit 16 (leftward in FIG. 11), and a partition wall 37 is provided between the inflow port 34 and the discharge port 36. Is arranged. The partition wall 37 is provided behind the heating unit 16 so as to partition the inlet 34 side and the outlet 36 side. As a result, the fuel that has flowed into the fuel heating chamber 28 from the inlet 34 flows in the direction substantially along the longitudinal direction of the heating unit 16 from the distal end side to the root side of the heating unit 16, and then from the discharge port 36. The fuel is discharged outside the fuel heating chamber 28.

以上説明した本実施例5では、燃料レール27の上蓋30に燃料加熱室28を取り付けて燃料加熱レール26を構成するようにしたので、燃料加熱レール26の上方投影面積をほとんど拡大させずに燃料加熱室28を取り付けることができる(燃料レール27の上方投影面積の範囲内に燃料加熱室28を収めることができる)。更に、燃料加熱室28には、加熱部16を燃料加熱室28の側方から挿入して横方向に延びる状態で取り付けるようにしたので、加熱部16による燃料の加熱性能を確保しながら、燃料加熱室28の高さ寸法を低く抑えて燃料加熱レール26全体の高さ寸法を低く抑えることができる。これにより、燃料加熱レール26の車両への搭載性を向上させることができる。   In the fifth embodiment described above, the fuel heating chamber 28 is configured by attaching the fuel heating chamber 28 to the upper lid 30 of the fuel rail 27, so that the fuel projected on the fuel heating rail 26 can be increased without substantially increasing the projected area. The heating chamber 28 can be attached (the fuel heating chamber 28 can be accommodated within the upper projected area of the fuel rail 27). Further, since the heating unit 16 is inserted into the fuel heating chamber 28 from the side of the fuel heating chamber 28 and extends in the lateral direction, the fuel heating performance of the fuel by the heating unit 16 is ensured while ensuring the fuel heating performance. The height dimension of the heating chamber 28 can be kept low, and the height dimension of the entire fuel heating rail 26 can be kept low. Thereby, the mounting property to the vehicle of the fuel heating rail 26 can be improved.

また、本実施例5では、取付部31とガイド部17とを一体部品で形成するようにしたので、取付部31とガイド部17とを別部品にする場合に比べて、燃料加熱レール26の部品点数を削減することができると共に組立性(生産性)を向上させることができ、燃料加熱レール26を低コスト化することができる。   Further, in the fifth embodiment, since the attachment portion 31 and the guide portion 17 are formed as an integral part, the fuel heating rail 26 of the fuel heating rail 26 is compared with the case where the attachment portion 31 and the guide portion 17 are separate parts. The number of parts can be reduced and the assemblability (productivity) can be improved, and the fuel heating rail 26 can be reduced in cost.

更に、本実施例5では、燃料加熱室28のうちの加熱部16の先端側に燃料の流入口34を配置して、燃料加熱室28のうちの加熱部16の根元側に燃料の排出口36を配置するようにしたので、燃料加熱室28内の燃料を加熱部16の先端側から根元側に向かって流すことができる。これにより、燃料加熱室28内の燃料を概ね加熱部16の長手方向に沿った方向に流すことができ、燃料加熱室28内の燃料を加熱部16で効率良く加熱することができる。   Further, in the fifth embodiment, a fuel inflow port 34 is disposed on the front end side of the heating unit 16 in the fuel heating chamber 28, and a fuel discharge port is provided on the base side of the heating unit 16 in the fuel heating chamber 28. Since 36 is arranged, the fuel in the fuel heating chamber 28 can flow from the front end side of the heating unit 16 toward the root side. Thereby, the fuel in the fuel heating chamber 28 can be made to flow in a direction substantially along the longitudinal direction of the heating unit 16, and the fuel in the fuel heating chamber 28 can be efficiently heated by the heating unit 16.

尚、上記実施例5では、燃料加熱室28のうちの加熱部16の先端側に燃料の流入口34を配置して、燃料加熱室28のうちの加熱部16の根元側に燃料の排出口36を配置するようにしたが、これに限定されず、燃料加熱室28のうちの加熱部16の根元側に燃料の流入口34を配置して、燃料加熱室28のうちの加熱部16の先端側に燃料の排出口36を配置するようにしても良い。   In the fifth embodiment, a fuel inflow port 34 is disposed on the leading end side of the heating unit 16 in the fuel heating chamber 28, and a fuel discharge port is provided on the base side of the heating unit 16 in the fuel heating chamber 28. However, the present invention is not limited to this, and a fuel inflow port 34 is arranged on the base side of the heating unit 16 in the fuel heating chamber 28, and the heating unit 16 in the fuel heating chamber 28 is arranged. A fuel discharge port 36 may be disposed on the front end side.

また、上記実施例5では、取付部31とガイド部17とを一体部品で形成するようにしたが、これに限定されず、取付部31とガイド部17とを別部品で形成するようにしても良い。   Moreover, in the said Example 5, although the attachment part 31 and the guide part 17 were formed with integral components, it is not limited to this, As the attachment part 31 and the guide part 17 are formed with another components, Also good.

また、上記各実施例1〜5では、円柱状の加熱部16を用いるようにしたが、加熱部のの形状は、円柱状に限定されず、適宜変更しても良く、例えば、四角柱や六角柱等の角柱状の加熱部や平板状の加熱部を用いるようにしても良い。更に、複数の加熱部を互いにガイド部の役割を果たすように又は一方が他方のガイド部の役割を果たすように配置するようにしても良い。   Moreover, in each said Examples 1-5, it was made to use the cylindrical heating part 16, However, The shape of a heating part is not limited to a cylindrical shape, You may change suitably, for example, a square pole, A prismatic heating unit such as a hexagonal column or a flat heating unit may be used. Furthermore, you may make it arrange | position so that a some heating part may mutually serve as a guide part, or one may serve as the other guide part.

また、上記各実施例1〜5では、ガイド部に円形状(又は楕円形状)の貫通孔を形成するようにしたが、貫通孔の形状は、これに限定されず、適宜変更しても良く、例えば、四角形等の多角形状の貫通孔や楕円形状の貫通孔やメッシュ状の貫通孔を形成するようにしても良い。また、ガイド部を複数の部材を組み合わせて構成し、これらの複数の部材間に形成された隙間を貫通孔として利用するようにしても良い。   Further, in each of the first to fifth embodiments, a circular (or elliptical) through hole is formed in the guide portion. However, the shape of the through hole is not limited to this, and may be changed as appropriate. For example, a polygonal through hole such as a quadrangle, an elliptical through hole, or a mesh-like through hole may be formed. Further, the guide portion may be configured by combining a plurality of members, and a gap formed between the plurality of members may be used as a through hole.

更に、ガイドに形成する貫通孔の数や位置を適宜変更しても良い。また、上記各実施例1〜5では、ガイド部に複数の貫通孔を形成するようにしたが、ガイド部に一つの貫通孔を形成するようにしても良い。   Furthermore, the number and position of through holes formed in the guide may be changed as appropriate. In each of the first to fifth embodiments, a plurality of through holes are formed in the guide portion. However, a single through hole may be formed in the guide portion.

その他、本発明は、内燃機関の燃料を加熱する燃料加熱装置に限定されず、内燃機関の冷却水や潤滑油等の他の液体を加熱する液体加熱装置に本発明を適用しても良い。また、内燃機関に限定されず、温水洗浄便座用や食品加熱殺菌用の液体加熱装置等、内燃機関以外の分野の液体加熱装置に本発明を適用しても良い。   In addition, the present invention is not limited to the fuel heating device that heats the fuel of the internal combustion engine, and the present invention may be applied to a liquid heating device that heats other liquids such as cooling water and lubricating oil of the internal combustion engine. Further, the present invention is not limited to the internal combustion engine, and the present invention may be applied to a liquid heating apparatus in a field other than the internal combustion engine, such as a liquid heating apparatus for a hot water washing toilet seat or a food heating sterilization.

12…燃料ポンプ、13…燃料通路(液体通路)、14…燃料噴射弁、15…燃料加熱装置(液体加熱装置)、16…加熱部、17…ガイド部、18…貫通孔、19…ECU(制御手段)、20〜22…貫通孔、24…ガイド部、27…燃料レール(液体レール)、28…燃料加熱室(液体加熱室)   DESCRIPTION OF SYMBOLS 12 ... Fuel pump, 13 ... Fuel passage (liquid passage), 14 ... Fuel injection valve, 15 ... Fuel heating device (liquid heating device), 16 ... Heating part, 17 ... Guide part, 18 ... Through-hole, 19 ... ECU ( Control means) 20-22 ... through hole, 24 ... guide portion, 27 ... fuel rail (liquid rail), 28 ... fuel heating chamber (liquid heating chamber)

Claims (6)

液体通路(13,28)内の液体を加熱する加熱部(16)を該液体通路(13,28)内に配置した液体加熱装置において、
前記液体通路(13,28)内で前記加熱部(16)から所定距離を隔てて該加熱部(16)の全周又は一部を囲むように配置されたガイド部(17,24)を備え、該ガイド部(17,24)に一つ又は複数の貫通孔(18,20,21,22)が形成されていることを特徴とする液体加熱装置。
In the liquid heating apparatus in which the heating section (16) for heating the liquid in the liquid passage (13, 28) is disposed in the liquid passage (13, 28),
Guide portions (17, 24) arranged to surround the entire circumference or a part of the heating portion (16) at a predetermined distance from the heating portion (16) in the liquid passage (13, 28). The liquid heating apparatus is characterized in that one or a plurality of through holes (18, 20, 21, 22) are formed in the guide portion (17, 24).
前記液体は、内燃機関の燃料であり、
前記液体通路は、前記内燃機関の燃料噴射弁(14)と該燃料噴射弁(14)へ前記燃料を圧送する燃料ポンプ(12)との間に接続された燃料通路(13,28)であることを特徴とする請求項1に記載の液体加熱装置。
The liquid is a fuel for an internal combustion engine;
The liquid passage is a fuel passage (13, 28) connected between a fuel injection valve (14) of the internal combustion engine and a fuel pump (12) for pumping the fuel to the fuel injection valve (14). The liquid heating apparatus according to claim 1.
前記加熱部(16)の表面温度を前記液体の沸点よりも高い温度に制御する制御手段(19)を備えていることを特徴とする請求項1又は2に記載の液体加熱装置。   3. The liquid heating apparatus according to claim 1, further comprising a control unit that controls a surface temperature of the heating unit to be higher than a boiling point of the liquid. 4. 前記液体通路として、下蓋(29)と上蓋(30)を有する液体レール(27)と、該液体レール(27)の上蓋(30)に取り付けられた液体加熱室(28)とを備え、
前記液体加熱室(28)には、前記加熱部(16)が前記液体加熱室(28)の側方から挿入されて横方向に延びる状態で取り付けられていることを特徴とする請求項1乃至3のいずれかに記載の液体加熱装置。
The liquid passage includes a liquid rail (27) having a lower lid (29) and an upper lid (30), and a liquid heating chamber (28) attached to the upper lid (30) of the liquid rail (27),
The said liquid heating chamber (28) has the said heating part (16) inserted from the side of the said liquid heating chamber (28), and is attached in the state extended in the horizontal direction. 4. The liquid heating apparatus according to any one of 3.
前記液体加熱室(28)に前記加熱部(16)を取り付けるための取付部(31)と前記ガイド部(17)とが一体部品で形成されていることを特徴とする請求項4に記載の液体加熱装置。   The attachment part (31) for attaching the said heating part (16) to the said liquid heating chamber (28) and the said guide part (17) are formed by integral components, The Claim 4 characterized by the above-mentioned. Liquid heating device. 前記液体加熱室(28)のうちの前記加熱部(16)の先端側と根元側の一方に前記液体の流入口(34)が配置されて他方に前記液体の排出口(36)が配置されていることを特徴とする請求項4又は5に記載の液体加熱装置。   Of the liquid heating chamber (28), the liquid inflow port (34) is arranged at one of the tip side and the base side of the heating unit (16), and the liquid discharge port (36) is arranged at the other side. The liquid heating apparatus according to claim 4, wherein the liquid heating apparatus is provided.
JP2013210804A 2012-11-29 2013-10-08 Liquid heating device Active JP6114159B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013210804A JP6114159B2 (en) 2012-11-29 2013-10-08 Liquid heating device
BR102013030510-3A BR102013030510B1 (en) 2012-11-29 2013-11-27 FLUID HEATING APPLIANCE

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012260673 2012-11-29
JP2012260673 2012-11-29
JP2013210804A JP6114159B2 (en) 2012-11-29 2013-10-08 Liquid heating device

Publications (2)

Publication Number Publication Date
JP2014129811A true JP2014129811A (en) 2014-07-10
JP6114159B2 JP6114159B2 (en) 2017-04-12

Family

ID=51408371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013210804A Active JP6114159B2 (en) 2012-11-29 2013-10-08 Liquid heating device

Country Status (2)

Country Link
JP (1) JP6114159B2 (en)
BR (1) BR102013030510B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110700973A (en) * 2019-10-16 2020-01-17 东风柳州汽车有限公司 Oil tank heating system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR102021005990A2 (en) * 2021-03-26 2022-09-27 Robert Bosch Limitada FUEL HEATER DEVICE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517926A (en) * 1982-04-19 1985-05-21 Optimizer, Limited Device for improving fuel efficiency and method of use therefor
JP2003148286A (en) * 2001-11-07 2003-05-21 Denso Corp Heater-loaded fuel injection device
WO2009009846A1 (en) * 2007-07-19 2009-01-22 Robert Bosch Limitada Fuel rail
JP2011080379A (en) * 2009-10-05 2011-04-21 Ngk Spark Plug Co Ltd Heater for fuel heating device, and fuel heating device using the same
JP2011196365A (en) * 2010-02-26 2011-10-06 Denso Corp Fuel supply device for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517926A (en) * 1982-04-19 1985-05-21 Optimizer, Limited Device for improving fuel efficiency and method of use therefor
JP2003148286A (en) * 2001-11-07 2003-05-21 Denso Corp Heater-loaded fuel injection device
WO2009009846A1 (en) * 2007-07-19 2009-01-22 Robert Bosch Limitada Fuel rail
JP2011080379A (en) * 2009-10-05 2011-04-21 Ngk Spark Plug Co Ltd Heater for fuel heating device, and fuel heating device using the same
JP2011196365A (en) * 2010-02-26 2011-10-06 Denso Corp Fuel supply device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110700973A (en) * 2019-10-16 2020-01-17 东风柳州汽车有限公司 Oil tank heating system

Also Published As

Publication number Publication date
BR102013030510B1 (en) 2021-07-27
BR102013030510A2 (en) 2015-02-24
JP6114159B2 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
JP5351696B2 (en) Fuel heating device
JP5510015B2 (en) Fuel supply device for internal combustion engine
JP2011064090A (en) Fuel heating device
BRPI0703981A2 (en) internal combustion engine system
BRPI0703129B1 (en) fuel gallery
JP2007016658A (en) Return recirculation valve
JP6114159B2 (en) Liquid heating device
JP2011208541A (en) Fuel supply device of internal combustion engine
JP5303418B2 (en) Fuel supply device
US9273645B2 (en) Fluid heating device and vehicle fuel system using the same
JP5180173B2 (en) Fuel heating device
KR20110032599A (en) The carburetter for lng integrated surge tank
US8584655B2 (en) Fuel heating device
JP2012082775A (en) Fuel supply device of internal combustion engine
JP4432795B2 (en) Fuel supply system for diesel engines
JP5210066B2 (en) Heater device
JP2017223213A (en) Heating type fuel delivery pipe
JP6430352B2 (en) diesel engine
JP6058930B2 (en) Fuel supply device for internal combustion engine
JP5303417B2 (en) Fuel supply device
JP6064827B2 (en) Fuel rail
PH12014000205A1 (en) A device for preheating fuel and cooling liquid in an internal combustion engine system
WO2015181947A1 (en) Fuel supply device
BR102016029084A2 (en) fuel heating system
JP2008185270A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160307

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170316

R150 Certificate of patent or registration of utility model

Ref document number: 6114159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250