JP2011080379A - Heater for fuel heating device, and fuel heating device using the same - Google Patents

Heater for fuel heating device, and fuel heating device using the same Download PDF

Info

Publication number
JP2011080379A
JP2011080379A JP2009231416A JP2009231416A JP2011080379A JP 2011080379 A JP2011080379 A JP 2011080379A JP 2009231416 A JP2009231416 A JP 2009231416A JP 2009231416 A JP2009231416 A JP 2009231416A JP 2011080379 A JP2011080379 A JP 2011080379A
Authority
JP
Japan
Prior art keywords
fuel
heater
heating device
case
fuel heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009231416A
Other languages
Japanese (ja)
Other versions
JP5240859B2 (en
Inventor
Takashi Shichida
貴史 七田
Tetsuya Kato
哲也 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2009231416A priority Critical patent/JP5240859B2/en
Priority to BRPI1003842 priority patent/BRPI1003842A2/en
Publication of JP2011080379A publication Critical patent/JP2011080379A/en
Application granted granted Critical
Publication of JP5240859B2 publication Critical patent/JP5240859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heater for a fuel heating device and the fuel heating device capable of efficiently, quickly and evenly heating fuel. <P>SOLUTION: In this fuel heating device 100, a heater 20 is inserted and fixed to a case 10 including: a fuel housing part 11 capable of housing fuel inside thereof; a lead-in opening 12 for leading fuel into the fuel housing part 11; and a discharge opening 13 for discharging fuel from the fuel housing part 11. Rough surface machining is performed to a surface 21 of the heater 20. With this structure, bubbles to be generated in the surface 21 of the heater 20 when heating the fuel are easy to be separated from the surface 21, and the fuel can be efficiently heated, and while the heater 20 can be prevented from being damaged by overheating. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関へ供給される燃料を加熱するために用いるヒータ及びそのヒータを用いた燃料加熱装置に関する。   The present invention relates to a heater used for heating fuel supplied to an internal combustion engine and a fuel heating apparatus using the heater.

自動車等に用いられる内燃機関においては、従来から用いられているガソリン、軽油の他、アルコール又はアルコールとガソリンの混合燃料等が使用されるようになってきている。特に、バイオエタノールを燃料として使用した場合、二酸化炭素の排出量を削減して地球環境の保護を図れる可能性があり、バイオエタノールの燃料としての使用が注目されている。   In internal combustion engines used for automobiles and the like, alcohol or a mixed fuel of alcohol and gasoline has been used in addition to gasoline and light oil that have been used conventionally. In particular, when bioethanol is used as a fuel, there is a possibility that the emission of carbon dioxide can be reduced to protect the global environment, and the use of bioethanol as a fuel has attracted attention.

上記のように、内燃機関の燃料としてアルコールを使用した場合、特にコールドスタート時の始動性が悪くなる。このため、ガソリンを収容したサブタンクを用意し、始動時にはガソリンを燃料として使用することが行われている。また、コールドスタート時の始動性を向上させる技術としては、内燃機関に供給する燃料を加熱するための燃料加熱装置を設ける技術が知られている。この技術では、垂直又は水平に配置された筒状の管内(燃料収容部)の中心軸に沿って棒状のヒータを設け、このヒータによって筒状の管内の燃料を加熱するようになっている(例えば、特許文献1、特許文献2参照。)。   As described above, when alcohol is used as the fuel for the internal combustion engine, the startability particularly during a cold start is deteriorated. For this reason, a subtank containing gasoline is prepared, and gasoline is used as fuel at the time of starting. Further, as a technique for improving the startability at the cold start, a technique for providing a fuel heating device for heating the fuel supplied to the internal combustion engine is known. In this technique, a rod-shaped heater is provided along the central axis of a cylindrical pipe (fuel accommodating part) arranged vertically or horizontally, and the fuel in the cylindrical pipe is heated by this heater ( For example, see Patent Document 1 and Patent Document 2.)

特開平5−26130号公報JP-A-5-26130 特開平5−18328号公報JP-A-5-18328

上記した従来の燃料加熱装置では、円筒状の管内の中心軸に沿って棒状のヒータを設けた構成となっている。このような構成の燃料加熱装置の場合、燃料加熱装置において燃料を沸騰させない場合は良いが、燃料加熱装置において燃料を沸騰させるように加熱した場合、沸騰によって、例えば直径が1mm以上の大きな気泡が多数発生する。すなわち、ヒータ表面に発生した小さな気泡がヒータ表面から離脱することなく寄り集まって大きな気泡となるまでヒータ表面に付着し続ける。このような大きな気泡は、ヒータの表面に付着し易く、ヒータ表面に気泡溜まりが形成され易くなる。このため、ヒータからの熱が燃料に伝わり難くなって燃料の加熱が効率良く行われなくなり、燃料の加熱に時間がかかるという課題と、燃料の加熱状態が不均一になるという課題があった。また、このためにヒータが過熱状態となり、ヒータが故障するおそれもある。   The above-described conventional fuel heating apparatus has a configuration in which a rod-shaped heater is provided along the central axis in the cylindrical tube. In the case of the fuel heating device having such a configuration, it is good that the fuel is not boiled in the fuel heating device. However, when the fuel heating device is heated so as to boil, large bubbles having a diameter of, for example, 1 mm or more are caused by the boiling. Many occur. That is, small bubbles generated on the heater surface gather together without leaving the heater surface and continue to adhere to the heater surface until large bubbles are formed. Such large bubbles easily adhere to the surface of the heater, and a bubble pool is easily formed on the heater surface. For this reason, the heat from the heater is difficult to be transmitted to the fuel, the fuel is not efficiently heated, and there are problems that it takes time to heat the fuel and that the heating state of the fuel becomes uneven. In addition, for this reason, the heater may be overheated and the heater may fail.

本発明は、上記課題を解決するためになされたものである。本発明は、燃料を効率良く迅速かつ均一に加熱することのできる燃料加熱装置用ヒータ及びそのヒータを用いた燃料加熱装置を提供することを目的とする。   The present invention has been made to solve the above problems. An object of the present invention is to provide a heater for a fuel heating apparatus capable of efficiently and quickly heating fuel efficiently and a fuel heating apparatus using the heater.

本発明の燃料加熱装置は、内部に燃料を収容可能とされた燃料収容部と、前記燃料収容部へ前記燃料を導入するための導入口と、前記燃料収容部から前記燃料を排出するための排出口とを具備したケースに対して、挿入、固定して用いる燃料加熱装置用ヒータであって、前記ヒータによる前記燃料の加熱において、前記ヒータの発熱温度は前記燃料の沸点以上であり、前記ヒータの表面に粗面加工が施されていることを特徴とする。   A fuel heating device according to the present invention includes a fuel storage portion capable of storing fuel therein, an introduction port for introducing the fuel into the fuel storage portion, and for discharging the fuel from the fuel storage portion. A heater for a fuel heating apparatus that is inserted into and fixed to a case having a discharge port, and the heating temperature of the heater is equal to or higher than the boiling point of the fuel when the fuel is heated by the heater. The surface of the heater is roughened.

上記構成の本発明の燃料加熱装置では、ケース内に挿入、固定されたヒータの表面に粗面加工が施されている。このように、ヒータの表面に粗面加工が施されていると、ヒータの表面で燃料が加熱された際に発生する気泡の大きさが大きくなることを抑制することができ、粗面加工が施されていない場合に比べて発生する気泡の大きさを小さくすることができる。すなわち、ヒータの表面に粗面加工が施されていると、濡れ性が向上し、気泡がヒータの表面から離脱し易くなり、気泡が発生した際に、気泡が成長して大きくなる以前にヒータの表面から離脱する。この結果、気泡溜まりが形成されることを抑制することができ、燃料を効率良く迅速かつ均一に加熱することができる。結果として、ヒータの過熱を解消し、故障を回避することも可能となる。   In the fuel heating device of the present invention having the above-described configuration, the surface of the heater inserted and fixed in the case is roughened. As described above, when the surface of the heater is roughened, it is possible to suppress an increase in the size of bubbles generated when the fuel is heated on the surface of the heater. The size of the generated bubbles can be reduced as compared with the case where no application is made. In other words, when the surface of the heater is roughened, the wettability is improved and the bubbles are easily detached from the surface of the heater. When bubbles are generated, the heaters grow before the bubbles grow and become large. Detach from the surface. As a result, the formation of bubble pools can be suppressed, and the fuel can be efficiently and quickly heated. As a result, overheating of the heater can be eliminated and failure can be avoided.

上記構成の燃料加熱装置用ヒータでは、ヒータ表面の粗面加工を、ショットピーニング又は溶射によって施すことができる。溶射によって粗面加工を行う場合、ヒータ表面を構成する母材と同様な材料を溶射することが好ましい。また、粗面加工されたヒータ表面の表面粗さRz(十点平均粗さ)を、10〜100[μm]とすることが好ましく、10〜60[μm]とすることが更に好ましい。このような構成とすることにより、ヒータ表面で発生する気泡の径を、粗面加工を行っていないヒータの場合に比べて小さくすることができる。   In the fuel heater heater having the above-described configuration, the surface of the heater can be roughened by shot peening or thermal spraying. When the rough surface processing is performed by thermal spraying, it is preferable to spray the same material as the base material constituting the heater surface. In addition, the surface roughness Rz (ten-point average roughness) of the heater surface that has been roughened is preferably 10 to 100 [μm], and more preferably 10 to 60 [μm]. By setting it as such a structure, the diameter of the bubble which generate | occur | produces on the heater surface can be made small compared with the case of the heater which has not performed roughening.

上記構成の燃料加熱装置用ヒータでは、ヒータの表面とケース内面との最短距離が0.5mm以上2.0mm以下とされ、ヒータ表面とケース内面との間の間隔が狭い場合においても、ヒータ表面から発生する気泡の直径を上記間隔より小さく維持することにより、気泡溜まりが形成されることを抑制することができ、燃料を効率良く迅速かつ均一に加熱することができる。   In the heater for the fuel heating device having the above configuration, even when the shortest distance between the heater surface and the case inner surface is 0.5 mm or more and 2.0 mm or less, and the distance between the heater surface and the case inner surface is narrow, the heater surface By keeping the diameter of the bubbles generated from the above smaller than the above-mentioned interval, it is possible to suppress the formation of bubble reservoirs and to heat the fuel efficiently and quickly.

上記構成の燃料加熱装置用ヒータでは、前記ケースが、燃料供給共通配管と燃料噴射装置とを接続する配管の内径よりも大きい内径を有するように構成することができる。換言すれば、この構成は燃料収容部を燃料供給共通配管と燃料噴射装置との間を接続する配管とは異なる別個の「部屋」とすることとも言える。すなわち、燃料収容部で加熱された燃料は配管の取り回しによっては燃料供給共通配管の内部へも移動することにもなり得るのであるが、この構成により、その部屋(燃料収容部)の内部で燃料が対流し易くなり、燃料噴射装置の直前に滞留する燃料が効率的に加熱されることとなるのである。   In the fuel heating device heater having the above-described configuration, the case may be configured to have an inner diameter larger than an inner diameter of a pipe connecting the fuel supply common pipe and the fuel injection apparatus. In other words, this configuration can also be said to make the fuel storage part a separate “room” different from the pipe connecting the fuel supply common pipe and the fuel injection device. In other words, the fuel heated in the fuel storage section may move to the inside of the fuel supply common pipe depending on the piping, but this configuration allows the fuel inside the room (fuel storage section) to move. This facilitates convection, and the fuel staying immediately before the fuel injection device is efficiently heated.

上記の本発明の燃料加熱装置用のヒータを用いた燃料加熱装置であれば、燃料を効率良く迅速に、そして均一に加熱することが可能となる。   The fuel heating device using the heater for the fuel heating device of the present invention can efficiently and rapidly heat the fuel.

本発明によれば、燃料を効率良く迅速かつ均一に加熱することのできる燃料加熱装置用ヒータ及びそのヒータを用いた燃料加熱装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the fuel heating apparatus using the heater for fuel heating apparatuses which can heat a fuel efficiently and rapidly and uniformly, and the heater can be provided.

本発明の一実施形態に係る燃料加熱装置の縦断面概略構成を示す図。The figure which shows the longitudinal cross-sectional schematic structure of the fuel heating apparatus which concerns on one Embodiment of this invention. 図1の燃料加熱装置用ヒータにおける粗面加工方法を説明するための図。The figure for demonstrating the rough surface processing method in the heater for fuel heating apparatuses of FIG. 図1の燃料加熱装置用ヒータにおける気泡の発生状態を示す拡大写真。The enlarged photograph which shows the generation | occurrence | production state of the bubble in the heater for fuel heating apparatuses of FIG. 比較例のヒータにおける気泡の発生状態を示す拡大写真。The enlarged photograph which shows the bubble generation | occurrence | production state in the heater of a comparative example.

以下、本発明の実施形態について図面を参照して説明する。図1は、本発明の実施形態に係る燃料加熱装置100の概略縦断面構成を示している。同図に示すように、燃料加熱装置100は、略有底円筒状に形成されたケース10を具備している。このケース10の内部は、燃料を収容することができる燃料収容部11として構成されている。また、ケース10の上側端部近傍には、燃料収容部11へ燃料を導入するための導入口12が形成されており、ケース10の下側端部近傍には、燃料収容部11から燃料を排出するための排出口13が形成されている。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic longitudinal sectional configuration of a fuel heating apparatus 100 according to an embodiment of the present invention. As shown in the figure, the fuel heating device 100 includes a case 10 formed in a substantially bottomed cylindrical shape. The inside of the case 10 is configured as a fuel storage portion 11 that can store fuel. An inlet 12 for introducing fuel into the fuel storage portion 11 is formed in the vicinity of the upper end portion of the case 10, and fuel is supplied from the fuel storage portion 11 in the vicinity of the lower end portion of the case 10. A discharge port 13 for discharging is formed.

本実施形態において、燃料加熱装置用ヒータ20は、シース内に発熱抵抗体を配置したシースヒータから構成されている。このヒータ20のシースは、熱伝導性の良好な金属、例えば、SUS310から構成されており、その表面21(図1において斜線にて示す)には、図2に示すように粗面加工が施されている。なお、図2(a)は、ショットピーニングによって粗面加工を施した場合を示しており、図2(b)は、溶射により粗面加工を施した場合を示している。溶射により粗面加工を施す場合、ヒータ20の表面(シース)を構成する母材と同様な材料を溶射することが好ましく(熱膨張係数差が小さいため剥がれ難い)、本実施形態の場合、SUS310から構成されたシースに対してSUS310を溶射することによって粗面加工がなされている。なお、ヒータ20としてセラミックヒータを用いると、セラミックに割れ、欠け、等が発生する可能性があり、割れ、欠け、等によって形成されたセラミック片によって燃料噴射装置等が詰まってしまう可能性がある。このため、ヒータ20としては、金属製のシースを用いたシースヒータを用いることが好ましい。もっとも上記不具合が生じないように対策したものであれば、セラミックヒータを使用してもよい。   In the present embodiment, the fuel heating device heater 20 is constituted by a sheath heater in which a heating resistor is disposed in the sheath. The sheath of the heater 20 is made of a metal having good thermal conductivity, for example, SUS310, and the surface 21 (shown by hatching in FIG. 1) is roughened as shown in FIG. Has been. 2A shows a case where the rough surface processing is performed by shot peening, and FIG. 2B shows a case where the rough surface processing is performed by thermal spraying. When roughing is performed by thermal spraying, it is preferable to spray the same material as the base material constituting the surface (sheath) of the heater 20 (it is difficult to peel off because the difference in thermal expansion coefficient is small). In the case of this embodiment, SUS310 Surface roughening is performed by spraying SUS310 on a sheath constituted of If a ceramic heater is used as the heater 20, the ceramic may be cracked, chipped, or the like, and the fuel injection device may be clogged with a ceramic piece formed by the crack, chipped, or the like. . For this reason, it is preferable to use a sheath heater using a metal sheath as the heater 20. Of course, a ceramic heater may be used as long as measures are taken so as not to cause the above problems.

上記のヒータ20の粗面加工された表面21の表面粗さRz(十点平均粗さ)は、10〜100[μm]程度とすることが好ましく、10〜60[μm]程度とすることがさらに好ましい。このように、ヒータ20の表面21を粗面加工してその表面粗さRzを10〜100[μm]とすることにより、表面21の濡れ性が向上し、燃料を加熱した際に発生する気泡がヒータ20の表面21から離脱し易くなる。したがって、気泡が発生した際に、気泡が成長して大きくなる以前にヒータ20の表面21から離脱する。この結果、気泡溜まりが形成されることを抑制することができ、燃料を効率良く迅速かつ均一に加熱することができる。表面荒さRzが100μmを超えると気泡が離脱し難くなり、結果として大きな気泡へと成長し、発熱抵抗体が断線するなどのヒータ20の故障の危険性があがる。一方、表面荒さRzが10μm未満であるとヒータ20の表面21を粗面加工した効果が得られ難く、また、気泡による燃料の攪拌・対流の効果が小さくなるおそれもある。なお、ヒータ20の故障の危険性をより少なくしつつ、十分に燃料を対流させる効果を得る観点から、その上限は上記のごとく60μmとすることがより好ましい。   The surface roughness Rz (ten-point average roughness) of the roughened surface 21 of the heater 20 is preferably about 10 to 100 [μm], and preferably about 10 to 60 [μm]. Further preferred. In this way, by roughening the surface 21 of the heater 20 and setting the surface roughness Rz to 10 to 100 [μm], the wettability of the surface 21 is improved, and bubbles generated when the fuel is heated. Becomes easy to separate from the surface 21 of the heater 20. Therefore, when bubbles are generated, they are detached from the surface 21 of the heater 20 before the bubbles grow and become large. As a result, the formation of bubble pools can be suppressed, and the fuel can be efficiently and quickly heated. When the surface roughness Rz exceeds 100 μm, it is difficult for the bubbles to be detached, and as a result, the bubbles grow into large bubbles and there is a risk of failure of the heater 20 such as disconnection of the heating resistor. On the other hand, if the surface roughness Rz is less than 10 μm, it is difficult to obtain the effect of roughing the surface 21 of the heater 20, and the effects of fuel agitation and convection by bubbles may be reduced. Note that the upper limit is more preferably set to 60 μm as described above from the viewpoint of obtaining the effect of sufficiently convection of the fuel while reducing the risk of failure of the heater 20.

ケース10の上側開口は、蓋体30によって閉塞され、ヒータ20は、この蓋体30によって支持されている。   The upper opening of the case 10 is closed by the lid 30, and the heater 20 is supported by the lid 30.

上記構成の燃料加熱装置100の導入口12には、燃料供給共通配管110から分岐した燃料供給個別配管111が接続されている。また、燃料加熱装置100の排出口13には、燃料噴射装置120が接続されている。なお、ケース10のうち燃料収容部11をなす部分は、燃料供給個別配管111や燃料噴射装置120へと接続する配管やケース10の導入口12、排出口13等と比較して内径が大きく形成されている。これにより、燃料供給共通配管110から燃料噴射装置120までの間で1つの「部屋」(燃料溜まりとも言える)を構成している。   A fuel supply individual pipe 111 branched from the fuel supply common pipe 110 is connected to the introduction port 12 of the fuel heating apparatus 100 having the above configuration. A fuel injection device 120 is connected to the discharge port 13 of the fuel heating device 100. The portion of the case 10 that forms the fuel storage portion 11 is formed with a larger inner diameter than the fuel supply individual piping 111, the piping connected to the fuel injection device 120, the inlet 12, the outlet 13, etc. of the case 10. Has been. Thus, one “room” (also referred to as a fuel reservoir) is formed between the fuel supply common pipe 110 and the fuel injection device 120.

上記構成の燃料加熱装置100では、内燃機関の始動時において、内燃機関のピストンがセルモータ等によって始動を開始する(クランキングする)以前に、燃料供給共通配管110及び燃料供給個別配管111を通ってケース10の燃料収容部11へ供給されたアルコール等の燃料を、ヒータ20に通電することによって予め加熱(予備加熱)する。この予備加熱の時間は、数秒から十数秒程度である。この時、燃料は、燃料タンクから燃料ポンプ等によって加圧されてケース10の燃料収容部11へ供給される。このため、燃料収容部11内において燃料は加圧された状態となっており、加圧された状態で予備加熱される。   In the fuel heating device 100 configured as described above, when the internal combustion engine is started, the internal combustion engine piston passes through the fuel supply common pipe 110 and the fuel supply individual pipe 111 before starting (cranking) by the cell motor or the like. A fuel such as alcohol supplied to the fuel storage portion 11 of the case 10 is heated in advance (preliminary heating) by energizing the heater 20. The preheating time is about several seconds to several tens of seconds. At this time, the fuel is pressurized from the fuel tank by a fuel pump or the like and supplied to the fuel accommodating portion 11 of the case 10. For this reason, the fuel is in a pressurized state in the fuel accommodating portion 11, and is preheated in the pressurized state.

この後、内燃機関のピストンがクランキングされ、燃料収容部11から燃料噴射装置120への燃料の供給が開始される。このクランキングの際には、燃料収容部11からの燃料の排出と燃料収容部11内への燃料の流入により燃料収容部11内で燃料の流れが生じるが、この時もヒータ20への通電は継続され、燃料の加熱が継続される。   Thereafter, the piston of the internal combustion engine is cranked, and the supply of fuel from the fuel storage unit 11 to the fuel injection device 120 is started. During the cranking, the fuel flows in the fuel accommodating portion 11 due to the discharge of the fuel from the fuel accommodating portion 11 and the inflow of the fuel into the fuel accommodating portion 11. Is continued and heating of the fuel is continued.

上記の燃料加熱装置100による燃料の予備加熱の際、ヒータ20に通電すると、ヒータ20の表面21で加熱された燃料は、ケース10の内壁とヒータ20との間を通って、ケース10の上方へ流れる。一方、温度の低い燃料は、上記の燃料の流れに押されて、ケース10の下側内壁とヒータ20との間を通って、ヒータ20の近傍に向かう流れを形成する。このような流れによって、ケース10内には、効率的な対流が発生する。   When the heater 20 is energized during the preheating of the fuel by the fuel heating device 100 described above, the fuel heated by the surface 21 of the heater 20 passes between the inner wall of the case 10 and the heater 20 and passes above the case 10. To flow. On the other hand, the fuel having a low temperature is pushed by the above-described fuel flow and passes between the lower inner wall of the case 10 and the heater 20 to form a flow toward the vicinity of the heater 20. By such a flow, an efficient convection is generated in the case 10.

そして、上記のヒータ20による燃料の加熱が継続して行われ、通電開始から数秒乃至十秒程度経過すると、燃料が沸騰し始め、燃料中に気泡が発生する。この時、本実施形態の燃料加熱装置100では、ヒータ20の表面21に、上述したように粗面加工が施してあるので、表面21の濡れ性が良く、気泡がヒータ20の表面21から速やかに離脱し、気泡が表面21に付着したまま成長して大きくなることを抑制することができる。この結果、気泡溜まりが形成されることを抑制することができ、燃料を効率良く迅速かつ均一に加熱することができる。   Then, the heating of the fuel by the heater 20 is continuously performed, and when a few seconds to ten seconds have elapsed from the start of energization, the fuel starts to boil and bubbles are generated in the fuel. At this time, in the fuel heating apparatus 100 of the present embodiment, the surface 21 of the heater 20 is roughened as described above, so that the wettability of the surface 21 is good, and bubbles are quickly generated from the surface 21 of the heater 20. It is possible to prevent the bubbles from growing and growing while adhering to the surface 21. As a result, the formation of bubble pools can be suppressed, and the fuel can be efficiently and quickly heated.

図3は、上記の実施形態に使用した表面21に粗面加工を施したヒータ20(表面粗さRzが57)を透明なケース内に収容し、燃料に代えて水を加熱した際の気泡の発生状態を示す拡大写真である。また、図4は、比較例として、表面21に粗面加工を施していないヒータ20(表面粗さRzが1.2)を透明なケース内に収容し、図3の場合と同一の条件で燃料に代えて水を加熱した際の気泡の発生状態を示す拡大写真である。これらの図3、図4に示されるように、本実施形態によれば、比較例と比較した場合、沸騰によって生じる気泡の大きさが明らかに小さくなっていることが分かる。   FIG. 3 shows the bubbles when the heater 20 (surface roughness Rz is 57), which is roughened on the surface 21 used in the above embodiment, is housed in a transparent case and water is heated instead of fuel. It is an enlarged photograph which shows the generation | occurrence | production state of. FIG. 4 shows a comparative example in which a heater 20 whose surface 21 is not roughened (surface roughness Rz is 1.2) is housed in a transparent case under the same conditions as in FIG. It is an enlarged photograph which shows the generation | occurrence | production state of the bubble at the time of heating water instead of fuel. As shown in FIGS. 3 and 4, according to the present embodiment, it can be seen that the size of bubbles generated by boiling is clearly reduced when compared with the comparative example.

気泡の大きさを測定したところ、比較例の場合、気泡の直径は1mm程度であった。一方、本実施形態に用いたヒータ20の場合、気泡の直径は0.1〜0.5mm程度であり、比較例の場合の1/2〜1/10程度の直径となっていた。したがって、本実施形態の場合、比較例に比べて気泡溜まりが形成される可能性を低減することができ、ヒータ20から燃料への伝熱が気泡によって阻害されることを抑制することができ、燃料を効率良く迅速かつ均一に加熱することができる。   When the bubble size was measured, the diameter of the bubble was about 1 mm in the comparative example. On the other hand, in the case of the heater 20 used in the present embodiment, the diameter of the bubbles is about 0.1 to 0.5 mm, which is about 1/2 to 1/10 in the case of the comparative example. Therefore, in the case of the present embodiment, it is possible to reduce the possibility that bubble accumulation is formed as compared with the comparative example, it is possible to suppress the heat transfer from the heater 20 to the fuel being inhibited by the bubbles, The fuel can be efficiently and quickly heated uniformly.

この場合、ヒータ20の表面21とケース10の内面との最短距離が狭く、例えば0.5mm以上2.0mm以下の場合、比較例では、直径が1mm程度の気泡が発生することにより、気泡溜まりが形成され易く、対流の流れが滞ることにより、ヒータ20から燃料への伝熱が著しく阻害される。なお、気泡はヒータ20の表面21とケース10の内面の双方に付着する。このため、気泡の直径が1mmの場合、ヒータ20の表面21に付着した気泡と、ケース10の内面に付着した気泡とによって、当該気泡の存在により燃料が存在しない箇所として、最大で合計2mmの空間が形成されうる。一方、上記実施形態の場合、形成される気泡の直径は0.1〜0.5mm程度であるため、気泡溜まりが形成される可能性が低く、対流の流れが滞ることを抑制することができ、ヒータ20から燃料への伝熱が阻害されることを抑制できる。   In this case, when the shortest distance between the surface 21 of the heater 20 and the inner surface of the case 10 is narrow, for example, 0.5 mm or more and 2.0 mm or less, in the comparative example, bubbles having a diameter of about 1 mm are generated. Is formed, and the convection flow is stagnated, so that the heat transfer from the heater 20 to the fuel is significantly hindered. Air bubbles adhere to both the surface 21 of the heater 20 and the inner surface of the case 10. For this reason, when the diameter of the bubbles is 1 mm, the bubbles adhering to the surface 21 of the heater 20 and the bubbles adhering to the inner surface of the case 10 can be a maximum of 2 mm in total as a location where no fuel exists due to the presence of the bubbles. A space can be formed. On the other hand, in the case of the above embodiment, since the diameter of the formed bubble is about 0.1 to 0.5 mm, the possibility that the bubble pool is formed is low, and it is possible to suppress the convection flow from being delayed. Further, it is possible to suppress the heat transfer from the heater 20 to the fuel being inhibited.

以上において、本発明を実施形態に即して説明したが、本発明は上記実施形態等に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
(a)例えば、ヒータはケースに対して平行に、互いの軸線が等しくなるように装着しなくてもよく、ケース自体が重力方向に取り付けられていない構成であってもよい。すなわち、本発明は燃料加熱装置のエンジンや車体への取り付けの向きについては何ら限定されない。
(b)また、上記実施形態では、ヒータの形状は円柱状であったが、ヒータの形状もこれに限定されることなく、短いヒータとしてもよいし、円柱状としなくてもよい。
(c)さらに、上記実施形態では、ヒータの表面に施した粗面加工は一様になされているが、ヒータの構成や、ヒータの取り付け方向に応じて粗面加工を行う部位を限定したり、粗面加工の度合いを段階的に異ならせてもよい。具体例としては、ヒータの重力方向下面側を上面側に対して表面粗度が大きくなるようにしてもよいし、ヒータの先端から後端に向かって表面粗度が小さくなるようにしてもよい。これにより、ヒータの表面から気泡が離脱する方向を制御して、対流をより効果的に発生させることも可能となるためである。
(d)また、上記実施形態では、燃料収容部が部屋を構成するにあたり、周りの配管よりも内径を大きくしたケースによって実現しているが、燃料供給共通配管から燃料噴射装置までの間の配管において、加熱された燃料が対流し易くなるように取り回すことで、上記実施形態と同様の効果が得られるようにしてもよい。この場合は、その配管の取り回し部分を本発明におけるケースとみなすことができる。
In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above-described embodiment and the like, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
(A) For example, the heater may not be mounted in parallel to the case so that the axes thereof are equal to each other, and the case itself may not be attached in the direction of gravity. That is, the present invention is not limited to the direction of attachment of the fuel heating device to the engine or the vehicle body.
(B) Moreover, in the said embodiment, although the shape of the heater was a column shape, the shape of a heater is not limited to this, It is good also as a short heater and does not need to be a column shape.
(C) Further, in the above-described embodiment, the surface roughening applied to the surface of the heater is uniformly performed. However, depending on the configuration of the heater and the mounting direction of the heater, the portion where the surface roughening is performed may be limited. The degree of rough surface processing may be varied stepwise. As a specific example, the surface roughness in the gravity direction lower surface side of the heater may be increased with respect to the upper surface side, or the surface roughness may be decreased from the front end to the rear end of the heater. . This is because it is possible to more effectively generate convection by controlling the direction in which bubbles are released from the surface of the heater.
(D) Moreover, in the said embodiment, when the fuel accommodating part comprises a room, it implement | achieves by the case where the internal diameter was enlarged rather than the surrounding piping, but piping between fuel supply common piping and a fuel-injection apparatus. In this case, the same effect as that of the above embodiment may be obtained by arranging the heated fuel so as to facilitate convection. In this case, the piping portion can be regarded as a case in the present invention.

10……ケース、11……燃料収容部、12……導入口、13……排出口、20……燃料加熱装置用ヒータ、21……ヒータの表面、100……燃料加熱装置、110……燃料供給共通配管、111……燃料供給個別配管、120……燃料噴射装置。   DESCRIPTION OF SYMBOLS 10 ... Case, 11 ... Fuel accommodating part, 12 ... Inlet port, 13 ... Discharge port, 20 ... Heater for fuel heating devices, 21 ... Heater surface, 100 ... Fuel heating device, 110 ... Fuel supply common pipe, 111... Fuel supply individual pipe, 120... Fuel injection device.

Claims (6)

内部に燃料を収容可能とされた燃料収容部と、前記燃料収容部へ前記燃料を導入するための導入口と、前記燃料収容部から前記燃料を排出するための排出口とを具備したケースに対して、挿入、固定して用いる燃料加熱装置用ヒータであって、
前記ヒータによる前記燃料の加熱において、前記ヒータの発熱温度は前記燃料の沸点以上であり、
前記ヒータの表面に粗面加工が施されていることを特徴とする燃料加熱装置用ヒータ。
A case having a fuel storage part capable of storing fuel therein, an introduction port for introducing the fuel into the fuel storage part, and a discharge port for discharging the fuel from the fuel storage part On the other hand, a heater for a fuel heating device that is inserted and fixed for use,
In heating the fuel by the heater, the heating temperature of the heater is equal to or higher than the boiling point of the fuel,
A heater for a fuel heating device, wherein a surface of the heater is roughened.
請求項1記載の燃料加熱装置用ヒータであって、
前記粗面加工が、ショットピーニング又は溶射によって施されていることを特徴とする燃料加熱装置用ヒータ。
The fuel heating device heater according to claim 1,
The heater for a fuel heating device, wherein the rough surface processing is performed by shot peening or thermal spraying.
請求項1又は2記載の燃料加熱装置用ヒータであって、
前記粗面加工が施された前記ヒータの表面の表面粗さRzが10〜100[μm]であることを特徴とする燃料加熱装置用ヒータ。
A heater for a fuel heating device according to claim 1 or 2,
A heater for a fuel heating device, wherein the surface roughness Rz of the surface of the heater subjected to the rough surface processing is 10 to 100 [μm].
請求項1〜3いずれか1項記載の燃料加熱装置用ヒータであって、
前記ヒータの表面と前記ケース内面との最短距離が0.5mm以上2.0mm以下であることを特徴とする燃料加熱装置用ヒータ。
A heater for a fuel heating device according to any one of claims 1 to 3,
The heater for a fuel heating apparatus, wherein a shortest distance between the surface of the heater and the inner surface of the case is 0.5 mm or more and 2.0 mm or less.
請求項1〜4いずれか1項記載の燃料加熱装置用ヒータであって、
前記ケースは、燃料供給共通配管と燃料噴射装置とを接続する配管の内径よりも大きい内径を有することを特徴とする燃料加熱装置用ヒータ。
A heater for a fuel heating device according to any one of claims 1 to 4,
The heater for a fuel heating device, wherein the case has an inner diameter larger than an inner diameter of a pipe connecting the fuel supply common pipe and the fuel injection device.
請求項1〜5いずれか1項記載の燃料加熱装置用ヒータを用いることを特徴とする燃料加熱装置。   A fuel heating device using the heater for a fuel heating device according to any one of claims 1 to 5.
JP2009231416A 2009-10-05 2009-10-05 Heater for fuel heating device and fuel heating device using the heater Active JP5240859B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009231416A JP5240859B2 (en) 2009-10-05 2009-10-05 Heater for fuel heating device and fuel heating device using the heater
BRPI1003842 BRPI1003842A2 (en) 2009-10-05 2010-09-22 fuel heater, fuel heater heater and fuel heater using heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009231416A JP5240859B2 (en) 2009-10-05 2009-10-05 Heater for fuel heating device and fuel heating device using the heater

Publications (2)

Publication Number Publication Date
JP2011080379A true JP2011080379A (en) 2011-04-21
JP5240859B2 JP5240859B2 (en) 2013-07-17

Family

ID=44074674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009231416A Active JP5240859B2 (en) 2009-10-05 2009-10-05 Heater for fuel heating device and fuel heating device using the heater

Country Status (1)

Country Link
JP (1) JP5240859B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8287957B2 (en) 2004-11-22 2012-10-16 Wisconsin Alumni Research Foundation Methods and compositions for forming aperiodic patterned copolymer films
US8501304B2 (en) 2004-11-22 2013-08-06 Wisconsin Alumni Research Foundation Methods and compositions for forming patterns with isolated or discrete features using block copolymer materials
US8618221B2 (en) 2005-10-14 2013-12-31 Wisconsin Alumni Research Foundation Directed assembly of triblock copolymers
US8623493B2 (en) 2005-10-06 2014-01-07 Wisconsin Alumni Research Foundation Fabrication of complex three-dimensional structures based on directed assembly of self-assembling materials on activated two-dimensional templates
JP2014129811A (en) * 2012-11-29 2014-07-10 Nippon Soken Inc Liquid heating device
JP2014199046A (en) * 2013-03-12 2014-10-23 株式会社デンソー Fuel heating device and fuel rail with the same
US9183870B2 (en) 2007-12-07 2015-11-10 Wisconsin Alumni Research Foundation Density multiplication and improved lithography by directed block copolymer assembly
US9299381B2 (en) 2011-02-07 2016-03-29 Wisconsin Alumni Research Foundation Solvent annealing block copolymers on patterned substrates
US9372398B2 (en) 2012-03-02 2016-06-21 Wisconsin Alumni Research Foundation Patterning in the directed assembly of block copolymers using triblock or multiblock copolymers
US9718250B2 (en) 2011-09-15 2017-08-01 Wisconsin Alumni Research Foundation Directed assembly of block copolymer films between a chemically patterned surface and a second surface
JP7478791B2 (en) 2022-09-30 2024-05-07 本田技研工業株式会社 Fuel supply system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597764A (en) * 1982-07-05 1984-01-14 Tokyo Roki Kk Fuel heating unit
JPS61189589U (en) * 1985-05-20 1986-11-26
JPH0518328A (en) * 1991-07-12 1993-01-26 Ngk Spark Plug Co Ltd Fuel feeder
JPH0526130A (en) * 1991-07-19 1993-02-02 Ngk Spark Plug Co Ltd Fuel supply device with heater
JP2008503066A (en) * 2004-06-09 2008-01-31 ビーコ・インストゥルメンツ・インコーポレイテッド System and method for increasing the emissivity of a material
JP2008542622A (en) * 2005-06-06 2008-11-27 ロベルト・ボッシュ・リミターダ Fuel heating system for fuel preheating of internal combustion engines

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597764A (en) * 1982-07-05 1984-01-14 Tokyo Roki Kk Fuel heating unit
JPS61189589U (en) * 1985-05-20 1986-11-26
JPH0518328A (en) * 1991-07-12 1993-01-26 Ngk Spark Plug Co Ltd Fuel feeder
JPH0526130A (en) * 1991-07-19 1993-02-02 Ngk Spark Plug Co Ltd Fuel supply device with heater
JP2008503066A (en) * 2004-06-09 2008-01-31 ビーコ・インストゥルメンツ・インコーポレイテッド System and method for increasing the emissivity of a material
JP2008542622A (en) * 2005-06-06 2008-11-27 ロベルト・ボッシュ・リミターダ Fuel heating system for fuel preheating of internal combustion engines

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8287957B2 (en) 2004-11-22 2012-10-16 Wisconsin Alumni Research Foundation Methods and compositions for forming aperiodic patterned copolymer films
US8501304B2 (en) 2004-11-22 2013-08-06 Wisconsin Alumni Research Foundation Methods and compositions for forming patterns with isolated or discrete features using block copolymer materials
US9539788B2 (en) 2005-10-06 2017-01-10 Wisconsin Alumni Research Foundation Fabrication of complex three-dimensional structures based on directed assembly of self-assembling materials on activated two-dimensional templates
US8623493B2 (en) 2005-10-06 2014-01-07 Wisconsin Alumni Research Foundation Fabrication of complex three-dimensional structures based on directed assembly of self-assembling materials on activated two-dimensional templates
US8618221B2 (en) 2005-10-14 2013-12-31 Wisconsin Alumni Research Foundation Directed assembly of triblock copolymers
US9183870B2 (en) 2007-12-07 2015-11-10 Wisconsin Alumni Research Foundation Density multiplication and improved lithography by directed block copolymer assembly
US10438626B2 (en) 2007-12-07 2019-10-08 Wisconsin Alumni Research Foundation Density multiplication and improved lithography by directed block copolymer assembly
US9299381B2 (en) 2011-02-07 2016-03-29 Wisconsin Alumni Research Foundation Solvent annealing block copolymers on patterned substrates
US9718250B2 (en) 2011-09-15 2017-08-01 Wisconsin Alumni Research Foundation Directed assembly of block copolymer films between a chemically patterned surface and a second surface
US9372398B2 (en) 2012-03-02 2016-06-21 Wisconsin Alumni Research Foundation Patterning in the directed assembly of block copolymers using triblock or multiblock copolymers
JP2014129811A (en) * 2012-11-29 2014-07-10 Nippon Soken Inc Liquid heating device
JP2014199046A (en) * 2013-03-12 2014-10-23 株式会社デンソー Fuel heating device and fuel rail with the same
JP7478791B2 (en) 2022-09-30 2024-05-07 本田技研工業株式会社 Fuel supply system

Also Published As

Publication number Publication date
JP5240859B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5240859B2 (en) Heater for fuel heating device and fuel heating device using the heater
US8808528B2 (en) Electrolyte supply tanks and bubbler tanks having improved gas diffusion properties for use in electrolyzer units
FR2947011A1 (en) MOTORIZATION DEVICE
JP2013516576A5 (en)
US8051840B2 (en) Apparatus for reducing fuel waxing
US9234483B2 (en) Thermoelectric cooled pump
JP2010084728A (en) Heat exchanger and fuel supply system
JP2011074782A (en) Fuel supply device
RU2451207C1 (en) Ice start heater
FR2971006A1 (en) Module for dispensing urea based additive to be injected into exhaust line for depollution of diesel engine of motor vehicle, has central dispensing part comprising cavities to receive heating elements in vicinity of mounting interfaces
JP2012031754A (en) Fuel supply device with heating function
BR102013030510B1 (en) FLUID HEATING APPLIANCE
RU193613U1 (en) TANK FOR PRE-STARTING DIESEL FUEL HEATING
JP2007182806A (en) Internal combustion engine
EP1808651A3 (en) Cavitation thermogenerator and method for heat generation by the caviation thermogenerator
KR20080085333A (en) Resistance decrease system of vessel
JP2004278526A (en) Fuel feeding device
JP5613787B2 (en) Fuel heating system
JP2006183943A (en) Accumulator
BRPI1003842A2 (en) fuel heater, fuel heater heater and fuel heater using heater
JP2006250704A (en) Heating device of reagent or the like, and incubation apparatus
KR20170032055A (en) Electric steam boiler
JP2670649B2 (en) Fuel heating device for fuel injection pump of diesel engine
JP2010255489A (en) Method and device for heating and supplying fuel
JP2005273531A (en) Method for cooling injector, fuel feeding device, and running vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130328

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5240859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250