JP2014128120A - Distributed power supply system - Google Patents

Distributed power supply system Download PDF

Info

Publication number
JP2014128120A
JP2014128120A JP2012283354A JP2012283354A JP2014128120A JP 2014128120 A JP2014128120 A JP 2014128120A JP 2012283354 A JP2012283354 A JP 2012283354A JP 2012283354 A JP2012283354 A JP 2012283354A JP 2014128120 A JP2014128120 A JP 2014128120A
Authority
JP
Japan
Prior art keywords
power
voltage line
connection point
line
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012283354A
Other languages
Japanese (ja)
Other versions
JP6025554B2 (en
Inventor
Yukitsugu Masumoto
幸嗣 桝本
Masami Hamaso
正美 濱走
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2012283354A priority Critical patent/JP6025554B2/en
Publication of JP2014128120A publication Critical patent/JP2014128120A/en
Application granted granted Critical
Publication of JP6025554B2 publication Critical patent/JP6025554B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a distributed power supply system capable of preventing generation of an inverse load flow to a power system.SOLUTION: In the distributed power supply system, a power generation device 20 comprises a power generation control section 22 controlling generated power to supply the same power to a first voltage line 2a and a second voltage line 2b in such a manner that the total of power from the side of a first connection point P1 to the side of a second connection point P2 through the first voltage line 2a and the second voltage line 2b becomes minimum and does not become negative. An auxiliary power supply device 10 comprises an operation control section 11 individually regulating output power from a power storage section 12 to the first voltage line 2a and the second voltage line 2b to a value equal to or greater than zero in such a manner that the total of power from the side of a power system 1 to the first connection point P1 through the first voltage line 2a and the second voltage line 2b does not become negative in the case where positive and negative codes of power from the side of the first connection point P1 to the side of the second connection point P2 through the first voltage line 2a and power from the side of the first connection point P1 to the second connection point P2 through the second voltage line 2b are different from each other.

Description

本発明は、電力系統に接続される、第1電圧線及び第2電圧線と中性線とを有する単相3線式の交流線と、交流線に対して第1接続箇所で接続される補助電源装置と、交流線に対して第2接続箇所で接続される発電装置と、交流線の第2接続箇所に接続される電力消費装置とを備え、交流線に対する電力系統の接続箇所から見て下流側に向かって第1接続箇所と第2接続箇所とがその並び順で設けられている分散型電源システムに関する。   The present invention is connected to a single phase three-wire AC line having a first voltage line, a second voltage line, and a neutral line connected to an electric power system, and connected to the AC line at a first connection point. An auxiliary power supply device, a power generation device connected to the AC line at the second connection location, and a power consuming device connected to the second connection location of the AC line, as seen from the connection location of the power system to the AC line. The present invention relates to a distributed power supply system in which a first connection location and a second connection location are provided in the arrangement order toward the downstream side.

特許文献1には、商用の電力系統に接続される交流線に蓄電部を有する補助電源装置と発電装置と電力消費装置とが接続され、電力系統と補助電源装置と発電装置とから電力消費装置への電力供給が可能に構成されている分散型電源システムが記載されている。特に、特許文献1には、補助電源装置が有する蓄電部の出力能力の大小に応じて、補助電源装置が有する蓄電部を出力作動させるか、或いは、発電装置を発電運転させるかを切り換えることで、電力消費装置への電力供給を行うことが記載されている。   In Patent Document 1, an auxiliary power supply device having a power storage unit, a power generation device, and a power consumption device are connected to an AC line connected to a commercial power system, and the power consumption device is connected to the power system, the auxiliary power supply device, and the power generation device. A distributed power supply system that is configured to be capable of supplying power to is described. In particular, in Patent Document 1, switching between output operation of the power storage unit included in the auxiliary power supply device or power generation operation of the power generation device is performed according to the output capacity of the power storage unit included in the auxiliary power supply device. It describes that power is supplied to the power consuming device.

特開2000−333386号公報JP 2000-333386 A

特許文献1には記載されていないが、上述したような補助電源装置、発電装置及び電力消費装置が接続される交流線として、2つの電圧線と1つの中性線とで構成される単相3線式の交流線が用いられる。図4は、補助電源装置と発電装置と電力消費装置とが、単相3線式の交流線に接続された分散型電源システムを概略的に描いた図である。尚、図示は省略しているが、第1電圧線及び第2電圧線と中性線とを有する単相3線式の交流線と補助電源装置及び発電装置とを接続するとき、それらの間にはインバータやコンバータなどの電力変換部が設けられる。そして、その電力変換部によって、補助電源装置から交流線への出力電力や、発電装置から交流線への供給電力(発電電力)が調節される。   Although not described in Patent Document 1, a single phase composed of two voltage lines and one neutral line as an AC line to which the auxiliary power supply device, the power generation device, and the power consumption device as described above are connected. A three-wire AC line is used. FIG. 4 is a diagram schematically illustrating a distributed power supply system in which an auxiliary power supply device, a power generation device, and a power consumption device are connected to a single-phase three-wire AC line. In addition, although illustration is abbreviate | omitted, when connecting a single-phase three-wire type AC line which has a 1st voltage line, a 2nd voltage line, and a neutral line, an auxiliary power supply device, and a power generator, between them Is provided with a power converter such as an inverter or a converter. The power converter adjusts the output power from the auxiliary power supply device to the AC line and the power supplied from the power generation device to the AC line (generated power).

電力変換部を介して補助電源装置や発電装置を単相3線式の交流線に接続する場合、具体的には、電力変換部が単一の電力変換回路部で構成されその単一の電力変換回路部が第1電圧線及び第2電圧線に共通に接続される構成や、電力変換部が2つの電力変換回路部で構成され、その一方が第1電圧線に接続され、他方が第2電圧線に接続される構成が考えられる。   When connecting an auxiliary power supply device or a power generation device to a single-phase three-wire AC line via a power conversion unit, specifically, the power conversion unit is composed of a single power conversion circuit unit and the single power A configuration in which the conversion circuit unit is commonly connected to the first voltage line and the second voltage line, or a power conversion unit is configured by two power conversion circuit units, one of which is connected to the first voltage line and the other is the first voltage line. A configuration connected to two voltage lines is conceivable.

前者の場合、電力変換部(単一の電力変換回路部)は、第1電圧線及び第2電圧線との間でやり取りする電力を共通して調節することはできるが、第1電圧線及び第2電圧線との間でやり取りする電力を各別に、即ち、片相毎に調節することはできない。後者の場合、電力変換部(2つの電力変換回路部)は、各電力変換回路部を用いて、第1電圧線及び第2電圧線との間でやり取りする電力を各別に、即ち、片相毎に調節することができる。
つまり、前者の場合は、片相毎に電力を調節できないものの、電力変換部の装置コストを低くできるという長所がある。後者の場合、電力変換部の装置コストが高くなるものの、片相毎に電力を調節できるという長所がある。
In the former case, the power conversion unit (single power conversion circuit unit) can adjust the power exchanged between the first voltage line and the second voltage line in common, but the first voltage line and The power exchanged with the second voltage line cannot be adjusted individually, that is, for each phase. In the latter case, the power conversion unit (two power conversion circuit units) uses each power conversion circuit unit to separately transmit power exchanged between the first voltage line and the second voltage line, that is, one phase. Can be adjusted every time.
That is, in the former case, although the power cannot be adjusted for each phase, there is an advantage that the device cost of the power conversion unit can be reduced. In the latter case, although the device cost of the power conversion unit increases, there is an advantage that the power can be adjusted for each phase.

そこで、本願では、発電装置と交流線との間の接続には単一の電力変換回路部を有する電力変換部を採用し、補助電源装置と交流線との間の接続には2つの電力変換回路部を有する電力変換部を採用した分散型電源システムを構築することとした。そして、このような分散型電源システムを運用する場合の課題を考察した。   Therefore, in the present application, a power conversion unit having a single power conversion circuit unit is employed for the connection between the power generation device and the AC line, and two power conversions are performed for the connection between the auxiliary power supply device and the AC line. It was decided to construct a distributed power supply system that employs a power conversion unit having a circuit unit. And the subject in the case of operating such a distributed power supply system was considered.

図4は、分散型電源システムの運用例を説明する図である。具体的には、電力消費装置30へ補助電源装置10及び発電装置20からどれだけの電力が供給されるかを示す例である。但し、発電装置20の定格供給電力は700W(片相につき350W)であり、補助電源装置10の定格出力電力は片相につき1200W(両相で2400W)であるとする。また、第1電圧線2aと中性線2cの間の電圧、及び、第2電圧線2bと中性線2cとの間の電圧はともにAC100Vであるので、図中に記載する電流値とAC100Vとの積が、図中に記載する電力値となる。   FIG. 4 is a diagram for explaining an operation example of the distributed power supply system. Specifically, this is an example showing how much power is supplied from the auxiliary power supply device 10 and the power generation device 20 to the power consumption device 30. However, the rated supply power of the power generation apparatus 20 is 700 W (350 W for one phase), and the rated output power of the auxiliary power supply 10 is 1200 W for one phase (2400 W for both phases). Further, since the voltage between the first voltage line 2a and the neutral line 2c and the voltage between the second voltage line 2b and the neutral line 2c are both AC100V, the current value shown in the figure and the AC100V Is the power value described in the figure.

図4(a)は、電力消費装置30を構成する第1消費部31の需要電力及び第2消費部32の需要電力が共に650W(両相合計で1300W)である場合の例である。ここで、図4に示す発電装置20や補助電源装置10の内部の構成は図1に示す通りである。
この場合、発電装置20の発電制御部22は、第1電圧線2aを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力と第2電圧線2bを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力との合計電力が最小になり且つ負の電力とはならないように、第1電圧線2a及び第2電圧線2bに対して同一の電力を供給するように発電電力を制御する。具体的には、第1電圧線2aに対して350Wの電力を供給し、第2電圧線2bに対して350Wの電力を供給する。但し、発電装置20から定格供給電力に相当する合計700Wの電力を供給しても、電力消費装置30の需要電力である1300Wには満たない。
FIG. 4A is an example when the demand power of the first consumer 31 and the demand power of the second consumer 32 constituting the power consumer 30 are both 650 W (1300 W in total for both phases). Here, the internal configuration of the power generation device 20 and the auxiliary power supply device 10 shown in FIG. 4 is as shown in FIG.
In this case, the power generation control unit 22 of the power generation apparatus 20 includes the first connection point P1 passing through the first voltage line 2a and the first connection point P1 through the second voltage line 2b and the power traveling from the first connection point P1 side to the second connection point P2. The same power is supplied to the first voltage line 2a and the second voltage line 2b so that the total power with the power directed from the side toward the second connection point P2 is minimized and does not become negative power. Control generated power. Specifically, 350 W of power is supplied to the first voltage line 2a, and 350 W of power is supplied to the second voltage line 2b. However, even if a total of 700 W corresponding to the rated supply power is supplied from the power generation device 20, it does not reach 1300 W, which is the demand power of the power consuming device 30.

その結果、第1消費部31における不足電力(即ち、第1電圧線2aを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力)は300Wとなり、第2消費部32における不足電力(即ち、第2電圧線2bを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力)は300Wとなる。
そして、補助電源装置10からこれら300Wずつの電力を出力することで、第1電圧線2aを通って電力系統1側から第1接続箇所P1へ向かう電力が零になり、第2電圧線2bを通って電力系統1側から第1接続箇所P1へ向かう電力が零になる。
As a result, the insufficient power in the first consumption unit 31 (that is, the power traveling from the first connection point P1 side to the second connection point P2 through the first voltage line 2a) is 300 W, and the insufficient power in the second consumption unit 32 (That is, the electric power passing from the first connection point P1 side to the second connection point P2 through the second voltage line 2b) is 300W.
And by outputting these electric power of 300W each from the auxiliary power supply device 10, the electric power which goes to the 1st connection location P1 from the electric power grid | system 1 side through the 1st voltage line 2a becomes zero, and the 2nd voltage line 2b is used. The power passing through the power system 1 side to the first connection point P1 becomes zero.

次に、図4(b)に示すのは、電力消費装置30を構成する第1消費部31の需要電力が1200Wであり及び第2消費部32の需要電力が100W(両相合計で1300W)である場合の例である。   Next, FIG. 4B shows that the demand power of the first consumption unit 31 constituting the power consumption device 30 is 1200 W and the demand power of the second consumption unit 32 is 100 W (1300 W in total for both phases). It is an example in the case of.

この場合も、発電装置20の発電制御部22は、第1電圧線2aを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力と第2電圧線2bを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力との合計電力が最小になり且つ負の電力とはならないように、第1電圧線2a及び第2電圧線2bに対して同一の電力を供給するように発電電力を制御する。具体的には、第1電圧線2aに対して350Wの電力を供給し、第2電圧線2bに対して350Wの電力を供給する。但し、発電装置20から定格供給電力に相当する合計700Wを供給しても、電力消費の需要電力である1300Wには満たない。   Also in this case, the power generation control unit 22 of the power generation device 20 uses the first voltage line 2a through the first voltage line 2a and the first connection point through the second voltage line 2b. The same power is supplied to the first voltage line 2a and the second voltage line 2b so that the total power with the power from the P1 side toward the second connection point P2 is minimized and does not become negative power. To control the generated power. Specifically, 350 W of power is supplied to the first voltage line 2a, and 350 W of power is supplied to the second voltage line 2b. However, even if a total of 700 W corresponding to the rated supply power is supplied from the power generation device 20, it does not reach 1300 W, which is the demand power for power consumption.

但し、図4(b)に示した例では、第1電圧線2aと中性線2cとの間での第1消費電力である1200Wと、第2電圧線2bと中性線2cとの間での第2消費電力である100Wとが異なる。その結果、発電装置20から第1電圧線2a及び第2電圧線2bに対して同一の電力(夫々に対して350W)を供給すると、第1電圧線2aを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力と、第2電圧線2bを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力とが異なってしまう。即ち、図4(b)に示した例では、第1電圧線2aを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力は+850W(不足電力)であり、第2電圧線2bを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力は−250W(余剰電力)というように、両者の電力の正負の符号が異なってしまう。   However, in the example shown in FIG. 4B, between the first power consumption 1200W between the first voltage line 2a and the neutral line 2c, and between the second voltage line 2b and the neutral line 2c. This is different from the second power consumption of 100 W. As a result, when the same power (350 W for each) is supplied from the power generator 20 to the first voltage line 2a and the second voltage line 2b, the first connection point P1 side passes through the first voltage line 2a. The power going to the second connection point P2 and the power going to the second connection point P2 from the first connection point P1 side through the second voltage line 2b are different. That is, in the example shown in FIG. 4B, the power passing through the first voltage line 2a from the first connection location P1 side to the second connection location P2 is +850 W (insufficient power), and the second voltage line 2b As for the electric power which goes to the 2nd connection location P2 from the 1st connection location P1 side through, it will be -250W (surplus power), and the sign of both powers will differ.

このような場合、−250Wの余剰電力が発生しているため、補助電源装置10から第2電圧線2bには電力を出力せず、補助電源装置10から第1電圧線2aへ上述した不足電力である850Wだけ出力すると、第1電圧線2aを通って電力系統1側から第1接続箇所P1へ向かう電力は零(0W)となる。尚、補助電源装置10が、蓄電部12から交流線2への一方向の電力出力を主目的としている場合、電力変換部13は蓄電部12から交流線2への出力電力の変換を行うことができればよく、交流線2から蓄電部12への逆方向の電力の変換を行う必要はない。即ち、電力変換部13は双方向性を有している必要はないため、使用する半導体スイッチング素子は双方向性を有するものでなくてよい。つまり、蓄電部12への充電は電力変換部13とは別の回路(図示せず)を用いて行われる。従って、電力変換部13が蓄電部12から交流線2への一方向の出力電力の変換を行うことのみができる場合、第2電圧線2bを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力は−250W(余剰電力)のまま残される。その結果、第1電圧線2aを通って電力系統1側から第1接続箇所P1へ向かう電力と第2電圧線2bを通って電力系統1側から第1接続箇所P1へ向かう電力との合計電力が負の電力(−250W)になってしまう。即ち、電力系統1へ250Wの電力の逆潮流が発生してしまうが、太陽光発電により得られる電力や風力発電により得られる電力など、自然エネルギーを利用した発電電力しか一般的には逆潮流が認められていないという状況では、上記のような発電装置20からの電力や補助電源装置10からの電力の逆潮流は認められないという問題がある。   In such a case, since the surplus power of −250 W is generated, no power is output from the auxiliary power supply 10 to the second voltage line 2b, and the above-described insufficient power is supplied from the auxiliary power supply 10 to the first voltage line 2a. When 850 W is output, the power passing through the first voltage line 2a from the power system 1 side to the first connection point P1 becomes zero (0 W). In addition, when the auxiliary power supply device 10 is mainly intended to output power in one direction from the power storage unit 12 to the AC line 2, the power conversion unit 13 performs conversion of output power from the power storage unit 12 to the AC line 2. However, it is not necessary to convert power in the reverse direction from the AC line 2 to the power storage unit 12. That is, since the power conversion unit 13 does not need to have bidirectionality, the semiconductor switching element to be used may not have bidirectionality. That is, charging of the power storage unit 12 is performed using a circuit (not shown) different from the power conversion unit 13. Therefore, when the power conversion unit 13 can only convert the output power in one direction from the power storage unit 12 to the AC line 2, the second connection point from the first connection point P1 through the second voltage line 2b. The power going to P2 remains -250W (surplus power). As a result, the total power of the power traveling from the power system 1 side to the first connection point P1 through the first voltage line 2a and the power traveling from the power system 1 side to the first connection point P1 through the second voltage line 2b Becomes negative power (−250 W). That is, a reverse power flow of 250 W is generated in the power system 1, but only a power generated using natural energy, such as power obtained by solar power generation or power obtained by wind power generation, generally has a reverse power flow. In the situation where it is not recognized, there is a problem that the reverse flow of the power from the power generation device 20 and the power from the auxiliary power supply device 10 as described above is not recognized.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、電力系統への逆潮流の発生を防止可能な分散型電源システムを提供する点にある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a distributed power supply system capable of preventing the occurrence of reverse power flow to the power system.

上記目的を達成するための本発明に係る分散型電源システムの特徴構成は、電力系統に接続される、第1電圧線及び第2電圧線と中性線とを有する単相3線式の交流線と、前記交流線に対して第1接続箇所で接続される補助電源装置と、前記交流線に対して第2接続箇所で接続される発電装置と、前記交流線の前記第2接続箇所に接続される電力消費装置とを備え、前記交流線に対する前記電力系統の接続箇所から見て下流側に向かって前記第1接続箇所と前記第2接続箇所とがその並び順で設けられている分散型電源システムであって、
前記電力系統側から前記電力消費装置へ向かう電力を正の電力とした場合において、前記電力系統から前記交流線に対する電力供給を行うことができる非停電時に、
前記発電装置は、発電部と、前記第1電圧線を通って前記第1接続箇所側から前記第2接続箇所へ向かう電力と前記第2電圧線を通って前記第1接続箇所側から前記第2接続箇所へ向かう電力との合計電力が最小になり且つ負の電力とはならないように、前記第1電圧線及び前記第2電圧線に対して同一の電力を供給するように前記発電部の発電電力を制御する発電制御部を有し、
前記補助電源装置は、蓄電部と、前記第1電圧線を通って前記第1接続箇所側から前記第2接続箇所へ向かう電力の正負の符号と前記第2電圧線を通って前記第1接続箇所側から前記第2接続箇所へ向かう電力の正負の符号とが互いに異なるとき、前記第1電圧線を通って前記電力系統側から前記第1接続箇所へ向かう電力と前記第2電圧線を通って前記電力系統側から前記第1接続箇所へ向かう電力との合計電力が負の電力とはならないように、前記蓄電部から前記第1電圧線及び前記第2電圧線に対する出力電力を零以上の値に各別に調節する動作制御部を有する点にある。
In order to achieve the above object, the distributed power system according to the present invention is characterized by a single-phase, three-wire AC having a first voltage line, a second voltage line, and a neutral line connected to a power system. An auxiliary power supply connected to the AC line at a first connection location, a power generator connected to the AC line at a second connection location, and the second connection location of the AC line. A power consuming device to be connected, and the first connection point and the second connection point are arranged in the arrangement order toward the downstream side when viewed from the connection point of the power system with respect to the AC line. Type power supply system,
When the power going from the power system side to the power consuming device is positive power, at the time of non-power failure that can supply power to the AC line from the power system,
The power generation device includes: a power generation unit; electric power passing from the first connection location side to the second connection location through the first voltage line; and the first connection location side from the first connection location side through the second voltage line. The power generation unit is configured to supply the same power to the first voltage line and the second voltage line so that the total power with the power toward the two connection points is minimized and does not become negative power. A power generation control unit for controlling generated power;
The auxiliary power supply device includes a power storage unit, a positive / negative sign of power passing from the first connection location side to the second connection location through the first voltage line, and the first connection through the second voltage line. When the positive and negative signs of the power going from the location side to the second connection location are different from each other, the power going from the power system side to the first connection location through the first voltage line and the second voltage line are passed. The output power from the power storage unit to the first voltage line and the second voltage line is not less than zero so that the total power with the power from the power system side to the first connection point does not become negative power It has the point which has the operation control part which adjusts to each value separately.

上記特徴構成によれば、補助電源装置の動作制御部は、第1電圧線を通って電力系統側から第1接続箇所へ向かう電力と第2電圧線を通って電力系統側から第1接続箇所へ向かう電力との合計電力が負の電力とはならないように、蓄電部から第1電圧線及び第2電圧線に対する出力電力を零以上の値に各別に調節する。つまり、第1電圧線を通って電力系統側から第1接続箇所へ向かう電力と第2電圧線を通って電力系統側から第1接続箇所へ向かう電力との合計電力が負の電力となる状況、即ち、逆潮流が発生する状況を防止できる。
加えて、交流線に対する電力系統の接続箇所から見て下流側に向かって第1接続箇所と第2接続箇所とがその並び順で設けられており、発電装置の発電制御部は、第1電圧線を通って第1接続箇所側から第2接続箇所へ向かう電力と第2電圧線を通って第1接続箇所側から第2接続箇所へ向かう電力との合計電力が最小になり且つ負の電力とはならないように発電部の発電電力を制御する。つまり、発電装置は、電力消費装置の需要電力を賄うための最大の発電電力で運転する。そして、補助電源装置は、発電装置で賄い切れなかった電力を補助的に出力するように動作することになる。以上のように、本特徴構成の分散型電源システムは、発電装置を高い稼働率で運用でき、且つ、補助電源装置の負荷が小さくなるという点で好ましい。例えば、発電装置が、固体酸化物形燃料電池のように系統電力よりも発電効率が高い場合や、エンジンと発電機とを組み合わせて熱と電力とを得るコージェネレーション装置のように発電効率と排熱効率とを合わせた総合効率が系統電力の発電効率よりも高い場合には、発電装置を高い稼働率で運用できると運転メリット(省エネルギー性)が高くなるという利点がある。他には、補助電源装置の蓄電部に、例えば夜間(即ち、電気料金の安い時間帯)に蓄電し、昼間(即ち、電気料金の高い時間帯)に放電するように設定すると、補助電源装置が無い場合に比べて運転メリット(経済性)が高くなるという利点がある。
従って、電力消費装置への電力供給を行いつつ、電力系統への逆潮流の発生を防止できる分散型電源システムを提供できる。
According to the above characteristic configuration, the operation control unit of the auxiliary power supply device has the first connection point from the power system side through the second voltage line and the power going from the power system side to the first connection point through the first voltage line. The output power from the power storage unit to the first voltage line and the second voltage line is individually adjusted to a value of zero or more so that the total power with the power going to the negative power does not become negative power. That is, the situation where the total power of the power traveling from the power system side to the first connection location through the first voltage line and the power traveling from the power system side to the first connection location through the second voltage line is negative power That is, it is possible to prevent a situation in which reverse power flow occurs.
In addition, the first connection point and the second connection point are provided in the arrangement order toward the downstream side when viewed from the connection point of the electric power system with respect to the AC line, and the power generation control unit of the power generation device has the first voltage. The total power of the power passing through the line from the first connection location side to the second connection location and the power passing through the second voltage line from the first connection location side to the second connection location is minimized and negative power The generated power of the power generation unit is controlled so that it does not occur. In other words, the power generator operates with the maximum generated power to cover the demand power of the power consuming device. Then, the auxiliary power supply device operates so as to supplementarily output electric power that cannot be covered by the power generation device. As described above, the distributed power supply system having this characteristic configuration is preferable in that the power generation apparatus can be operated at a high operation rate and the load on the auxiliary power supply apparatus is reduced. For example, if the power generation device has a higher power generation efficiency than the grid power, such as a solid oxide fuel cell, or a cogeneration device that combines the engine and generator to obtain heat and power, the power generation efficiency and exhaust When the total efficiency combined with the thermal efficiency is higher than the power generation efficiency of the grid power, there is an advantage that the operation merit (energy saving) becomes high if the power generation device can be operated at a high operation rate. In addition, when the power storage unit of the auxiliary power supply device is set to store electricity at night (that is, a time zone where electricity charges are low) and to discharge during the daytime (that is, a time zone where electricity charges are high), for example, There is an advantage that the driving merit (economic efficiency) becomes higher than the case where there is no.
Therefore, it is possible to provide a distributed power supply system capable of preventing the occurrence of reverse power flow to the power system while supplying power to the power consuming device.

本発明に係る分散型電源システムの別の特徴構成は、前記補助電源装置の前記動作制御部は、前記第1接続箇所から前記第2接続箇所へ向かう電力の符号が負となる方の前記第1電圧線又は前記第2電圧線への前記蓄電部からの出力電力を零に調節し、前記第1接続箇所から前記第2接続箇所へ向かう電力の符号が正となる方の前記第1電圧線又は前記第2電圧線への前記蓄電部からの出力電力を、前記第1電圧線を通って前記電力系統側から前記第1接続箇所へ向かう電力と前記第2電圧線を通って前記電力系統側から前記第1接続箇所へ向かう電力との合計電力が最小になり且つ負の電力とはならないように調節する点にある。   Another characteristic configuration of the distributed power supply system according to the present invention is that the operation control unit of the auxiliary power supply device is configured such that the sign of the power going from the first connection location to the second connection location is negative. The output voltage from the power storage unit to one voltage line or the second voltage line is adjusted to zero, and the first voltage having a positive sign from the first connection point to the second connection point is positive Output power from the power storage unit to the line or the second voltage line, the power going from the power system side to the first connection point through the first voltage line and the power passing through the second voltage line It is in the point which adjusts so that the total electric power with the electric power which goes to the said 1st connection location from the system | strain side may become the minimum, and it may not become negative electric power.

上記特徴構成によれば、補助電源装置の動作制御部は、符号が負となる方への蓄電部からの出力電力を零とした上で、第1接続箇所から第2接続箇所へ向かう電力の符号が正となる方の第1電圧線又は第2電圧線への出力電力を調節するだけで、第1電圧線を通って電力系統側から第1接続箇所へ向かう電力と第2電圧線を通って電力系統側から第1接続箇所へ向かう電力との合計電力を最小にし、且つ、負の電力とはならないようにすることができる。その結果、電力消費装置への電力供給を行いつつ、電力系統への逆潮流の発生を防止できる。   According to the above characteristic configuration, the operation control unit of the auxiliary power supply device sets the output power from the power storage unit to the negative sign to zero, and the power flowing from the first connection point to the second connection point. By adjusting the output power to the first voltage line or the second voltage line with the positive sign, the power and the second voltage line passing from the power system side to the first connection point through the first voltage line It is possible to minimize the total power with the power passing through the power system from the power system side to the first connection location and not to be negative power. As a result, it is possible to prevent reverse power flow to the power system while supplying power to the power consuming device.

本発明に係る分散型電源システムの更に別の特徴構成は、前記補助電源装置の前記動作制御部は、前記第1電圧線を通って前記電力系統側から前記第1接続箇所へ向かう電力と前記第2電圧線を通って前記電力系統側から前記第1接続箇所へ向かう電力との合計電力が最小になり且つ負の電力とはならないように、前記蓄電部から前記第1電圧線及び前記第2電圧線に対する出力電力を互いに同じ値に調節する点にある。   Still another characteristic configuration of the distributed power supply system according to the present invention is that the operation control unit of the auxiliary power supply device includes the power passing from the power system side to the first connection location through the first voltage line, and The first voltage line and the first voltage from the power storage unit are minimized so that the total power of the power going from the power system side to the first connection point through the second voltage line is minimized and does not become negative power. The output power for the two voltage lines is adjusted to the same value.

上記特徴構成によれば、補助電源装置の動作制御部は、蓄電部から第1電圧線及び第2電圧線に対する出力電力を互いに同じ値に調節して、第1電圧線を通って電力系統側から第1接続箇所へ向かう電力と第2電圧線を通って電力系統側から第1接続箇所へ向かう電力との合計電力が最小になり且つ負の電力とはならないようにすることができる。その結果、電力消費装置への電力供給を行いつつ、電力系統への逆潮流の発生を防止できる。更に、蓄電部から第1電圧線及び第2電圧線の両方に出力が行われるので、第1電圧線及び第2電圧線の一方のみに出力を行う場合に比べて、蓄電部からの出力電力の合計を大きくすることができる。その結果、電力系統から供給される電力(即ち、買電の電力)を小さくすることができる。   According to the above characteristic configuration, the operation control unit of the auxiliary power supply device adjusts the output power from the power storage unit to the first voltage line and the second voltage line to the same value, and passes through the first voltage line to the power system side. The total power of the power going from the power source to the first connection location and the power going from the power system side to the first connection location through the second voltage line can be minimized and not negative power. As a result, it is possible to prevent reverse power flow to the power system while supplying power to the power consuming device. Furthermore, since output is performed from the power storage unit to both the first voltage line and the second voltage line, the output power from the power storage unit is greater than when output is performed only to one of the first voltage line and the second voltage line. Can be increased. As a result, it is possible to reduce the power supplied from the power system (that is, the power purchased).

分散型電源システムの構成を示す図である。It is a figure which shows the structure of a distributed power supply system. 本実施形態の分散型電源システムの運用例を説明する図である。It is a figure explaining the example of operation of the distributed power supply system of this embodiment. 本実施形態の分散型電源システムの運用例を説明する図である。It is a figure explaining the example of operation of the distributed power supply system of this embodiment. 比較例の分散型電源システムの運用例を説明する図である。It is a figure explaining the operation example of the distributed power supply system of a comparative example.

以下に図面を参照して本発明に係る分散型電源システムについて説明する。図1は、分散型電源システムの構成を示す図である。
この分散型電源システムは、電力系統1に接続される、第1電圧線2a及び第2電圧線2bと中性線2cとを有する単相3線式の交流線2と、交流線2に対して第1接続箇所P1で接続される蓄電部12を有する補助電源装置10と、交流線2に対して第2接続箇所P2で接続される発電装置20と、交流線2に対して第3接続箇所P3で接続される電力消費装置30とを備える。交流線2に対する電力系統1の接続箇所から見て下流側に向かって第1接続箇所P1と第2接続箇所P2と第3接続箇所P3とがその並び順で設けられている。尚、図1において、電力消費装置30は第2接続箇所P2に接続されていると見なすことができる。つまり、発電装置20と電力消費装置30の両方が、交流線2に対して第2接続箇所P2で接続されていると見なすことができる。
A distributed power supply system according to the present invention will be described below with reference to the drawings. FIG. 1 is a diagram illustrating a configuration of a distributed power supply system.
This distributed power system includes a single-phase three-wire AC line 2 having a first voltage line 2a, a second voltage line 2b, and a neutral line 2c connected to the power system 1, and an AC line 2. Auxiliary power supply device 10 having power storage unit 12 connected at first connection point P1, power generation device 20 connected to AC line 2 at second connection point P2, and third connection to AC line 2 And a power consuming device 30 connected at the point P3. A first connection point P1, a second connection point P2, and a third connection point P3 are provided in the arrangement order toward the downstream side when viewed from the connection point of the power system 1 to the AC line 2. In FIG. 1, the power consuming device 30 can be regarded as connected to the second connection location P2. That is, it can be considered that both the power generation device 20 and the power consumption device 30 are connected to the AC line 2 at the second connection point P2.

本実施形態において、電力系統1側から電力消費装置30へ向かう電力を正の電力とする。また、電力系統1から交流線2に対する電力供給を行うことができる非停電時の場合を考える。   In the present embodiment, power directed from the power system 1 side to the power consuming device 30 is assumed to be positive power. Further, consider a case of non-power failure that allows power supply from the power system 1 to the AC line 2.

本実施形態の例において、第1電圧線2aと中性線2cとの間の電圧はAC100Vであり、第2電圧線2bと中性線2cとの間の電圧もAC100Vである。更に、第1電圧線2aと第2電圧線2bとの間の電圧はAC200Vである。図1では、電力消費装置30として、第1電圧線2aと中性線2cとの間に接続されている100V負荷としての第1消費部31と、第2電圧線2bと中性線2cとの間に接続されている100V負荷としての第2消費部32とを備える。   In the example of the present embodiment, the voltage between the first voltage line 2a and the neutral line 2c is AC100V, and the voltage between the second voltage line 2b and the neutral line 2c is also AC100V. Further, the voltage between the first voltage line 2a and the second voltage line 2b is AC200V. In FIG. 1, as the power consuming device 30, the first consumption unit 31 as a 100 V load connected between the first voltage line 2 a and the neutral line 2 c, the second voltage line 2 b, and the neutral line 2 c And a second consumer 32 as a 100V load connected between the two.

〔発電装置20〕
発電装置20は、発電部21と、その発電部21の発電電力(即ち、交流線2への供給電力)を制御する発電制御部22とを有する。発電部21は、燃料電池や、エンジンの駆動力によって動作する発電機など、自身の発電電力を制御可能な装置を用いて構成できる。図示は省略するが、発電装置20は、発電部21での発電電力を所望の電圧、周波数、位相などに変換して交流線2に供給するための電力変換部も有している。
[Power generation device 20]
The power generation device 20 includes a power generation unit 21 and a power generation control unit 22 that controls the power generated by the power generation unit 21 (that is, the power supplied to the AC line 2). The power generation unit 21 can be configured using a device capable of controlling its own generated power, such as a fuel cell or a generator that operates by the driving force of the engine. Although illustration is omitted, the power generation device 20 also includes a power conversion unit for converting the power generated by the power generation unit 21 into a desired voltage, frequency, phase, and the like and supplying the converted power to the AC line 2.

発電制御部22による発電電力の制御について説明すると、発電制御部22は、第1電圧線2aを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力と第2電圧線2bを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力との合計電力が最小になり且つ負の電力とはならない(即ち、逆潮流しない)ように、第1電圧線2a及び第2電圧線2bに対して同一の電力を供給するように発電電力を制御する。発電装置20の発電制御部22は、第1電圧線2aを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力と、第2電圧線2bを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力とを、カレントトランス(図示せず)の検出結果を参照して(即ち、第1電圧線2a、第2電圧線2b上の第1接続箇所P1と第2接続箇所P2との間を流れる電流値に基づいて導出できる電力を参照して)、監視している。   The control of the generated power by the power generation control unit 22 will be described. The power generation control unit 22 passes the first voltage line 2a through the second voltage line 2b and the power traveling from the first connection point P1 side to the second connection point P2. Thus, the first voltage line 2a and the second voltage are set so that the total power with the power from the first connection point P1 to the second connection point P2 is minimized and does not become negative power (that is, no reverse power flow). The generated power is controlled so as to supply the same power to the line 2b. The power generation control unit 22 of the power generation apparatus 20 includes power that travels from the first connection point P1 side to the second connection point P2 through the first voltage line 2a, and from the first connection point P1 side through the second voltage line 2b. With reference to the detection result of a current transformer (not shown), the electric power traveling toward the second connection point P2 (that is, the first connection point P1 and the second connection on the first voltage line 2a and the second voltage line 2b). Monitoring (see the power that can be derived based on the value of the current flowing between the points P2).

〔補助電源装置10〕
補助電源装置10は、電気を蓄えることのできる蓄電部12と、その蓄電部12から交流線2への出力電力を調節可能な電力変換部13と、電力変換部13の動作を制御する動作制御部11とを有する。補助電源装置10の動作制御部11は、第1電圧線2aを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力と、第2電圧線2bを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力と、第1電圧線2aを通って電力系統1側から第1接続箇所P1へ向かう電力と、第2電圧線2bを通って電力系統1側から第1接続箇所P1へ向かう電力とを、カレントトランス(図示せず)の検出結果を参照して(即ち、第1接続箇所P1よりも電力系統1の側の第1電圧線2a、第2電圧線2b上を流れる電流値に基づいて導出できる電力、第1接続箇所P1と第2接続箇所P2との間の第1電圧線2a、第2電圧線2b上を流れる電流値に基づいて導出できる電力を参照して)、監視している。
[Auxiliary power supply 10]
The auxiliary power supply 10 includes a power storage unit 12 that can store electricity, a power conversion unit 13 that can adjust output power from the power storage unit 12 to the AC line 2, and an operation control that controls the operation of the power conversion unit 13. Part 11. The operation control unit 11 of the auxiliary power supply device 10 includes power that travels from the first connection point P1 side to the second connection point P2 through the first voltage line 2a, and the first connection point P1 side through the second voltage line 2b. To the second connection point P2 from the power system 1 side through the first voltage line 2a to the first connection point P1 from the power system 1 side, the first connection from the power system 1 side through the second voltage line 2b With reference to the detection result of a current transformer (not shown), the electric power going to the point P1 (that is, on the first voltage line 2a and the second voltage line 2b closer to the power system 1 than the first connection point P1) Refer to the power that can be derived based on the current value that flows through the first voltage line 2a and the second voltage line 2b between the first connection point P1 and the second connection point P2 Monitoring).

蓄電部12は、蓄電池(化学電池)や電気二重層キャパシタなど、蓄電機能を有する各種機器で構成することができる。   The power storage unit 12 can be composed of various devices having a power storage function, such as a storage battery (chemical battery) or an electric double layer capacitor.

電力変換部13は、第1DC/DCコンバータ回路14a及び第1インバータ回路15aで構成される組と、第2DC/DCコンバータ回路14b及び第2インバータ回路15bで構成される組とで構成される。第1DC/DCコンバータ回路14a及び第1インバータ回路15aの組は、蓄電部12と第1電圧線2a及び中性線2cとの間に接続され、その結果、第1電圧線2aと中性線2cとの間への出力電力を調節できる。第2DC/DCコンバータ回路14b及び第2インバータ回路15bの組は、蓄電部12と第2電圧線2b及び中性線2cとの間に接続され、その結果、第2電圧線2bと中性線2cとの間への出力電力を調節できる。これら第1DC/DCコンバータ回路14a、第1インバータ回路15a、第2DC/DCコンバータ回路14b、第2インバータ回路15bは半導体スイッチング素子などを用いて構成される。半導体スイッチング素子のスイッチング動作は、動作制御部11が制御する。つまり、蓄電部12から交流線2への出力電力は動作制御部11が制御する。   The power conversion unit 13 includes a set composed of the first DC / DC converter circuit 14a and the first inverter circuit 15a and a pair composed of the second DC / DC converter circuit 14b and the second inverter circuit 15b. A set of the first DC / DC converter circuit 14a and the first inverter circuit 15a is connected between the power storage unit 12, the first voltage line 2a, and the neutral line 2c. As a result, the first voltage line 2a and the neutral line are connected. The output power to and from 2c can be adjusted. The set of the second DC / DC converter circuit 14b and the second inverter circuit 15b is connected between the power storage unit 12, the second voltage line 2b, and the neutral line 2c. As a result, the second voltage line 2b and the neutral line are connected. The output power to and from 2c can be adjusted. The first DC / DC converter circuit 14a, the first inverter circuit 15a, the second DC / DC converter circuit 14b, and the second inverter circuit 15b are configured using a semiconductor switching element or the like. The operation control unit 11 controls the switching operation of the semiconductor switching element. That is, the operation control unit 11 controls the output power from the power storage unit 12 to the AC line 2.

本実施形態において、交流線2と蓄電部12とを絶縁するために、第1DC/DCコンバータ回路14a及び第1インバータ回路15aの少なくとも何れか一方は絶縁型の回路構成となっており、同じく第2DC/DCコンバータ回路14b及び第2インバータ回路15bの少なくとも何れか一方も絶縁型の回路構成となっている。加えて、本実施形態では、蓄電部12から交流線2への一方向の電力出力を主目的としているため、第1DC/DCコンバータ回路14a及び第2DC/DCコンバータ回路14bは、蓄電部12から交流線2への出力電力の変換を行うことができればよく、交流線2から蓄電部12への逆方向の電力の変換を行う必要はない。即ち、第1DC/DCコンバータ回路14a及び第2DC/DCコンバータ回路14bは双方向性を有している必要はないため、回路の作製に必要なコストを小さくすることができる。   In the present embodiment, in order to insulate the AC line 2 from the power storage unit 12, at least one of the first DC / DC converter circuit 14a and the first inverter circuit 15a has an insulating circuit configuration. At least one of the 2DC / DC converter circuit 14b and the second inverter circuit 15b has an insulating circuit configuration. In addition, in the present embodiment, the main purpose is to output power in one direction from the power storage unit 12 to the AC line 2, and thus the first DC / DC converter circuit 14 a and the second DC / DC converter circuit 14 b are connected from the power storage unit 12. It is only necessary to convert the output power to the AC line 2, and it is not necessary to convert the power in the reverse direction from the AC line 2 to the power storage unit 12. That is, since the first DC / DC converter circuit 14a and the second DC / DC converter circuit 14b do not need to have bidirectionality, the cost required for manufacturing the circuit can be reduced.

更に、本実施形態の分散型電源システムにおいて、補助電源装置10の動作制御部11は、第1電圧線2aを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力の正負の符号と第2電圧線2bを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力の正負の符号とが互いに異なるとき、第1電圧線2aを通って電力系統1側から第1接続箇所P1へ向かう電力と第2電圧線2bを通って電力系統1側から第1接続箇所P1へ向かう電力との合計電力が負の電力とはならないように、蓄電部12から第1電圧線2a及び第2電圧線2bに対する出力電力を零以上の値に各別に調節する。
以下に、この制御の内容について具体例を挙げて説明する。
Furthermore, in the distributed power supply system according to the present embodiment, the operation control unit 11 of the auxiliary power supply device 10 has positive and negative signs of power traveling from the first connection point P1 side to the second connection point P2 through the first voltage line 2a. And the first connection from the power system 1 side through the first voltage line 2a when the positive and negative signs of the power traveling from the first connection point P1 side to the second connection point P2 through the second voltage line 2b are different from each other. The first voltage line 2a is connected from the power storage unit 12 so that the total power of the power going to the location P1 and the power going from the power system 1 side to the first connection location P1 through the second voltage line 2b does not become negative power. The output power for the second voltage line 2b is adjusted to a value of zero or more.
The contents of this control will be described below with a specific example.

図2は、分散型電源システムの運用例を説明する図であり、具体的には、補助電源装置10の動作制御部11の動作例を説明する図である。但し、発電装置20の定格供給電力は700W(片相につき350W)であり、補助電源装置10の定格出力電力は片相につき1200W(両相で2400W)であるとする。この仮定は、先に図4に関して説明した仮定と同様である。また、第1電圧線2a、2bと中性線2cとの間の電圧はAC100Vであるので、図中に記載する電流値とAC100Vとの積が、図中に記載する電力値となる。   FIG. 2 is a diagram for explaining an operation example of the distributed power supply system. Specifically, FIG. 2 is a diagram for explaining an operation example of the operation control unit 11 of the auxiliary power supply device 10. However, the rated supply power of the power generation apparatus 20 is 700 W (350 W for one phase), and the rated output power of the auxiliary power supply 10 is 1200 W for one phase (2400 W for both phases). This assumption is similar to that previously described with respect to FIG. Further, since the voltage between the first voltage lines 2a, 2b and the neutral line 2c is AC100V, the product of the current value and AC100V shown in the figure becomes the power value shown in the figure.

図2(a)に示すのは、電力消費装置30を構成する第1消費部31の需要電力が1200Wであり及び第2消費部32の需要電力が100W(両相合計で1300W)である場合の例である。   FIG. 2A shows the case where the demand power of the first consumption unit 31 constituting the power consumption device 30 is 1200 W and the demand power of the second consumption unit 32 is 100 W (1300 W in total for both phases). It is an example.

この場合、発電装置20の発電制御部22は、第1電圧線2aを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力と第2電圧線2bを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力との合計電力が最小になり且つ負の電力とはならないように、第1電圧線2a及び第2電圧線2bに対して同一の電力を供給するように発電電力を制御する。本例では、発電装置20は、第1電圧線2aに対して350Wの電力を供給し、第2電圧線2bに対して350Wの電力を供給する。但し、発電装置20からそれだけの電力(合計700W)を供給しても、電力消費装置30の需要電力である1300Wには満たない。更に、発電装置20から第1電圧線2a及び第2電圧線2bに対して同一の電力(350W)を供給すると、第1電圧線2aを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力の正負の符号と、第2電圧線2bを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力の正負の符号とが異なってしまう。具体的には、図2(a)に示した例では、第1電圧線2aを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力は+850Wであり、第2電圧線2bを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力は−250Wというように、両者の電力の正負の符号が異なる。   In this case, the power generation control unit 22 of the power generation apparatus 20 includes the first connection point P1 passing through the first voltage line 2a and the first connection point P1 through the second voltage line 2b and the power traveling from the first connection point P1 side to the second connection point P2. The same power is supplied to the first voltage line 2a and the second voltage line 2b so that the total power with the power directed from the side toward the second connection point P2 is minimized and does not become negative power. Control generated power. In this example, the power generation apparatus 20 supplies 350 W of power to the first voltage line 2a and supplies 350 W of power to the second voltage line 2b. However, even if that much power (700 W in total) is supplied from the power generation device 20, it does not reach 1300 W, which is the demand power of the power consumption device 30. Further, when the same power (350 W) is supplied from the power generation device 20 to the first voltage line 2a and the second voltage line 2b, the second connection point P2 from the first connection point P1 side through the first voltage line 2a. The sign of the power going to the second connection place differs from the sign of the power going to the second connection place P2 from the first connection point P1 side through the second voltage line 2b. Specifically, in the example shown in FIG. 2A, the power passing from the first connection point P1 side to the second connection point P2 through the first voltage line 2a is +850 W, and the second voltage line 2b is connected to the second voltage line 2b. The electric power passing through the first connection point P1 from the first connection point P1 side to the second connection point P2 is -250 W, and the signs of the powers of the two are different.

このように第1電圧線2aを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力の正負の符号と第2電圧線2bを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力の正負の符号とが互いに異なるとき、補助電源装置10の動作制御部11は、第1電圧線2aを通って電力系統1側から第1接続箇所P1へ向かう電力と第2電圧線2bを通って電力系統1側から第1接続箇所P1へ向かう電力との合計電力が負の電力とはならないように(即ち、逆潮流しないように)、蓄電部12から第1電圧線2a及び第2電圧線2bに対する出力電力を零以上の値に各別に調節する。そして、本実施形態では、補助電源装置10の動作制御部11は、第1接続箇所P1から第2接続箇所P2へ向かう電力の符号が負となる方の第1電圧線2a又は第2電圧線2bへの出力電力を零に調節し、第1接続箇所P1から第2接続箇所P2へ向かう電力の符号が正となる方の第1電圧線2a又は第2電圧線2bへの出力電力を、第1電圧線2aを通って電力系統1側から第1接続箇所P1へ向かう電力と第2電圧線2bを通って電力系統1側から第1接続箇所P1へ向かう電力との合計電力が最小になり且つ負の電力とはならないように調節する。   In this way, the positive and negative signs of the power passing from the first connection point P1 side to the second connection point P2 through the first voltage line 2a and the second connection point from the first connection point P1 side through the second voltage line 2b. When the positive and negative signs of the power going to P2 are different from each other, the operation control unit 11 of the auxiliary power supply device 10 uses the first voltage line 2a and the power and the second voltage going from the power system 1 side to the first connection point P1. The first voltage line 2a is connected from the power storage unit 12 so that the total power of the power flowing from the power system 1 side to the first connection point P1 through the line 2b does not become negative power (that is, so as not to flow backward). The output power for the second voltage line 2b is adjusted to a value of zero or more. In the present embodiment, the operation control unit 11 of the auxiliary power supply device 10 includes the first voltage line 2a or the second voltage line in which the sign of the power going from the first connection point P1 to the second connection point P2 is negative. The output power to 2b is adjusted to zero, and the output power to the first voltage line 2a or the second voltage line 2b in which the sign of the power going from the first connection point P1 to the second connection point P2 is positive, The total power of the power traveling from the power system 1 side to the first connection point P1 through the first voltage line 2a and the power traveling from the power system 1 side to the first connection point P1 through the second voltage line 2b is minimized. And adjust so that it does not become negative power.

具体的には、図2(a)に示すように、動作制御部11は、補助電源装置10から第1電圧線2aへ600Wの出力を行い、且つ、補助電源装置10と第2電圧線2bとの間で出力を行わないような出力制御を行う。その結果、第1電圧線2aを通って電力系統1側から第1接続箇所P1へ向かう電力は+250Wとなり、第2電圧線2bを通って電力系統1側から第1接続箇所P1へ向かう電力とは−250Wとなって、それらの合計電力は零(0W)となる。
従って、電力系統1への逆潮流を防止できる。
Specifically, as shown in FIG. 2A, the operation control unit 11 outputs 600 W from the auxiliary power supply device 10 to the first voltage line 2a, and the auxiliary power supply device 10 and the second voltage line 2b. Output control is performed so that output is not performed between As a result, the power traveling from the power system 1 side to the first connection point P1 through the first voltage line 2a becomes +250 W, and the power traveling from the power system 1 side to the first connection point P1 through the second voltage line 2b Becomes −250 W, and their total power becomes zero (0 W).
Therefore, reverse power flow to the power system 1 can be prevented.

次に、図2(b)を参照して、動作制御部11による出力制御の別の例を説明する。尚、この場合も、電力消費装置30を構成する第1消費部31の需要電力が1200Wであり及び第2消費部32の需要電力が100W(両相合計で1300W)である場合の例である。   Next, another example of output control by the operation control unit 11 will be described with reference to FIG. In addition, this case is also an example in which the demand power of the first consumption unit 31 constituting the power consumption device 30 is 1200 W and the demand power of the second consumption unit 32 is 100 W (1300 W in total for both phases). .

図2(b)に示す例でも、発電装置20の発電制御部22は、第1電圧線2aを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力と第2電圧線2bを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力との合計電力が最小になり且つ負の電力とはならないように、第1電圧線2a及び第2電圧線2bに対して同一の電力を供給するように発電電力を制御する。具体的には、第1電圧線2aに対して350Wの電力を供給し、第2電圧線2bに対して350Wの電力を供給する。その結果、第1電圧線2aを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力は+850Wであり、第2電圧線2bを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力は−250Wというように、両者の電力の正負の符号が異なる。   Also in the example shown in FIG. 2B, the power generation control unit 22 of the power generation device 20 transmits the power and the second voltage line 2b from the first connection point P1 side to the second connection point P2 through the first voltage line 2a. Identical to the first voltage line 2a and the second voltage line 2b so that the total power with the power passing through the first connection point P1 side to the second connection point P2 is minimized and does not become negative power The generated power is controlled so as to supply electric power. Specifically, 350 W of power is supplied to the first voltage line 2a, and 350 W of power is supplied to the second voltage line 2b. As a result, the power going from the first connection point P1 side to the second connection point P2 through the first voltage line 2a is +850 W, and the second connection point from the first connection point P1 side through the second voltage line 2b. As for the electric power which goes to P2, the sign of both electric powers differs like -250W.

この場合、補助電源装置10の動作制御部11は、第1電圧線2aを通って電力系統1側から第1接続箇所P1へ向かう電力と第2電圧線2bを通って電力系統1側から第1接続箇所P1へ向かう電力との合計電力が最小になり且つ負の電力とはならないように、蓄電部12から第1電圧線2a及び第2電圧線2bに対する出力電力を互いに同じ値に調節する。
具体的には、図2(b)に示すように、動作制御部11は、補助電源装置10から第1電圧線2aへ300Wの出力を行い、且つ、補助電源装置10から第2電圧線2bへも300Wの出力を行う。その結果、第1電圧線2aを通って電力系統1側から第1接続箇所P1へ向かう電力は+550Wとなり、第2電圧線2bを通って電力系統1側から第1接続箇所P1へ向かう電力とは−550Wとなって、それらの合計電力は零(0W)となる。
従って、図2(b)に示す運用例の場合も、電力系統1への逆潮流を防止できる。
In this case, the operation control unit 11 of the auxiliary power supply device 10 receives the power from the power system 1 side through the first voltage line 2a toward the first connection point P1 and the second voltage line 2b from the power system 1 side. The output power from the power storage unit 12 to the first voltage line 2a and the second voltage line 2b is adjusted to the same value so that the total power with the power toward the one connection point P1 is minimized and does not become negative power. .
Specifically, as illustrated in FIG. 2B, the operation control unit 11 outputs 300 W from the auxiliary power supply device 10 to the first voltage line 2 a, and from the auxiliary power supply device 10 to the second voltage line 2 b. Also outputs 300W. As a result, the power going from the power system 1 side to the first connection point P1 through the first voltage line 2a becomes +550 W, and the power going from the power system 1 side to the first connection point P1 through the second voltage line 2b Becomes −550 W, and their total power becomes zero (0 W).
Therefore, also in the case of the operation example shown in FIG. 2B, the reverse power flow to the power system 1 can be prevented.

図3は、本実施形態の分散型電源システムの運用例を説明する図であり、具体的には、電力消費装置30を構成する第1消費部31の需要電力が3100Wであり及び第2消費部32の需要電力が100W(両相合計で3200W)である場合の例である。そして、図3(a)に示すのは、図2(a)と同様の制御手法を用いた場合の例であり、図3(b)に示すのは、図2(b)と同様の制御手法を用いた場合の例である。図2で説明した場合と同様に、発電装置20の定格供給電力は700W(片相につき350W)であり、補助電源装置10の定格出力電力は片相につき1200W(両相で2400W)であるとする。   FIG. 3 is a diagram for explaining an operation example of the distributed power supply system of the present embodiment. Specifically, the demand power of the first consumer 31 constituting the power consumer 30 is 3100 W and the second consumer This is an example when the power demand of the unit 32 is 100 W (3200 W in total for both phases). FIG. 3A shows an example in which the same control method as in FIG. 2A is used, and FIG. 3B shows the same control as in FIG. 2B. This is an example of using the technique. As in the case described with reference to FIG. 2, the rated supply power of the power generator 20 is 700 W (350 W for one phase), and the rated output power of the auxiliary power supply 10 is 1200 W for one phase (2400 W for both phases). To do.

図3(a)に示した場合、発電装置20の発電制御部22は、第1電圧線2aを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力と第2電圧線2bを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力との合計電力が最小になり且つ負の電力とはならないように、第1電圧線2a及び第2電圧線2bに対して同一の電力を供給するように発電電力を制御する。具体的には、発電装置20は、第1電圧線2aに対して350Wの電力を供給し、第2電圧線2bに対して350Wの電力を供給する。その結果、第1電圧線2aを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力は+2750Wであり、第2電圧線2bを通って第1接続箇所P1側から第2接続箇所P2へ向かう電力は−250Wというように、両者の電力の正負の符号が異なる。   In the case illustrated in FIG. 3A, the power generation control unit 22 of the power generation device 20 transmits the power and the second voltage line 2b from the first connection point P1 side to the second connection point P2 through the first voltage line 2a. Identical to the first voltage line 2a and the second voltage line 2b so that the total power with the power passing through the first connection point P1 side to the second connection point P2 is minimized and does not become negative power The generated power is controlled so as to supply electric power. Specifically, the power generator 20 supplies 350 W of power to the first voltage line 2a and supplies 350 W of power to the second voltage line 2b. As a result, the power going from the first connection point P1 side to the second connection point P2 through the first voltage line 2a is +2750 W, and the second connection point from the first connection point P1 side through the second voltage line 2b. As for the electric power which goes to P2, the sign of both electric powers differs like -250W.

この場合、図2(a)と同様の制御手法を用いると、図3(a)に示すように、動作制御部11は、補助電源装置10から第1電圧線2aへ1200W(定格出力電力)の出力を行い、且つ、補助電源装置10と第2電圧線2bとの間で出力を行わないような出力制御を行う。その結果、第1電圧線2aを通って電力系統1側から第1接続箇所P1へ向かう電力は+1550Wとなり、第2電圧線2bを通って電力系統1側から第1接続箇所P1へ向かう電力とは−250Wとなって、それらの合計電力、即ち電力系統1から供給を受ける電力は+1300Wとなる。
従って、電力系統1への逆潮流を防止できたものの、電力系統1から供給を受ける電力が大きくなってしまう。
In this case, when a control method similar to that shown in FIG. 2A is used, the operation control unit 11 is 1200 W (rated output power) from the auxiliary power supply 10 to the first voltage line 2a as shown in FIG. The output control is performed so that the output is not performed between the auxiliary power supply device 10 and the second voltage line 2b. As a result, the power going from the power system 1 side to the first connection point P1 through the first voltage line 2a becomes + 1550W, and the power going from the power system 1 side to the first connection point P1 through the second voltage line 2b Becomes −250 W, and the total power, that is, the power supplied from the power system 1 becomes +1300 W.
Accordingly, although the reverse power flow to the power system 1 can be prevented, the power supplied from the power system 1 becomes large.

これに対して、図3(b)に示す例では、動作制御部11は、補助電源装置10から第1電圧線2aへ1200Wの出力を行い、且つ、補助電源装置10から第2電圧線2bへも1200Wの出力を行う。その結果、第1電圧線2aを通って電力系統1側から第1接続箇所P1へ向かう電力は+1550Wとなり、第2電圧線2bを通って電力系統1側から第1接続箇所P1へ向かう電力とは−1450Wとなって、それらの合計電力、即ち電力系統1から供給を受ける電力は+100Wとなる。
従って、電力系統1への逆潮流を防止できると共に、電力系統1から供給を受ける電力を低くできる。
On the other hand, in the example shown in FIG. 3B, the operation control unit 11 outputs 1200 W from the auxiliary power device 10 to the first voltage line 2a, and the auxiliary voltage device 10 outputs the second voltage line 2b. Also outputs 1200W. As a result, the power going from the power system 1 side to the first connection point P1 through the first voltage line 2a becomes + 1550W, and the power going from the power system 1 side to the first connection point P1 through the second voltage line 2b Becomes −1450 W, and the total power, that is, the power supplied from the power system 1 becomes +100 W.
Accordingly, reverse power flow to the power system 1 can be prevented, and power supplied from the power system 1 can be reduced.

<別実施形態>
上記実施形態では、補助電源装置10の動作制御部11の動作例について、具体的な数値を挙げて説明したが、それらの数値は例示目的で記載したものであり、本発明がそれの数値に限定されるわけではない。他にも、第1電圧線2aと中性線2cとの間の電圧、及び、第2電圧線2bと中性線2cとの間の電圧は、上記実施形態で例示したAC100Vに限定されるものではない。
<Another embodiment>
In the above embodiment, the operation example of the operation control unit 11 of the auxiliary power supply device 10 has been described with specific numerical values. However, these numerical values are described for the purpose of illustration, and the present invention includes those numerical values. It is not limited. In addition, the voltage between the first voltage line 2a and the neutral line 2c and the voltage between the second voltage line 2b and the neutral line 2c are limited to AC100V exemplified in the above embodiment. It is not a thing.

本発明は、電力系統への逆潮流の発生を防止するための分散型電源システムに利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for a distributed power supply system for preventing the occurrence of reverse power flow to a power system.

1 電力系統
2 交流線
2a 第1電圧線
2b 第2電圧線
2c 中性線
10 補助電源装置
11 動作制御部
12 蓄電部
13 電力変換部
14a 第1DC/DCコンバータ回路
14b 第2DC/DCコンバータ回路
15a 第1インバータ回路
15b 第2インバータ回路
20 発電装置
21 発電部
22 発電制御部
30 電力消費装置
31 第1消費部
32 第2消費部
P1 第1接続箇所
P2 第2接続箇所
P3 第3接続箇所
DESCRIPTION OF SYMBOLS 1 Electric power system 2 AC line 2a 1st voltage line 2b 2nd voltage line 2c Neutral line 10 Auxiliary power supply device 11 Operation control part 12 Power storage part 13 Power conversion part 14a 1st DC / DC converter circuit 14b 2nd DC / DC converter circuit 15a First inverter circuit 15b Second inverter circuit 20 Power generation device 21 Power generation unit 22 Power generation control unit 30 Power consumption device 31 First consumption unit 32 Second consumption unit P1 First connection location P2 Second connection location P3 Third connection location

Claims (3)

電力系統に接続される、第1電圧線及び第2電圧線と中性線とを有する単相3線式の交流線と、前記交流線に対して第1接続箇所で接続される補助電源装置と、前記交流線に対して第2接続箇所で接続される発電装置と、前記交流線の前記第2接続箇所に対して接続される電力消費装置とを備え、前記交流線に対する前記電力系統の接続箇所から見て下流側に向かって前記第1接続箇所と前記第2接続箇所とがその並び順で設けられている分散型電源システムであって、
前記電力系統側から前記電力消費装置へ向かう電力を正の電力とした場合において、前記電力系統から前記交流線に対する電力供給を行うことができる非停電時に、
前記発電装置は、発電部と、前記第1電圧線を通って前記第1接続箇所側から前記第2接続箇所へ向かう電力と前記第2電圧線を通って前記第1接続箇所側から前記第2接続箇所へ向かう電力との合計電力が最小になり且つ負の電力とはならないように、前記第1電圧線及び前記第2電圧線に対して同一の電力を供給するように前記発電部の発電電力を制御する発電制御部を有し、
前記補助電源装置は、蓄電部と、前記第1電圧線を通って前記第1接続箇所側から前記第2接続箇所へ向かう電力の正負の符号と前記第2電圧線を通って前記第1接続箇所側から前記第2接続箇所へ向かう電力の正負の符号とが互いに異なるとき、前記第1電圧線を通って前記電力系統側から前記第1接続箇所へ向かう電力と前記第2電圧線を通って前記電力系統側から前記第1接続箇所へ向かう電力との合計電力が負の電力とはならないように、前記蓄電部から前記第1電圧線及び前記第2電圧線に対する出力電力を零以上の値に各別に調節する動作制御部を有する分散型電源システム。
A single-phase three-wire AC line having a first voltage line, a second voltage line, and a neutral line connected to the power system, and an auxiliary power supply device connected to the AC line at a first connection location And a power generation device connected to the AC line at a second connection location, and a power consuming device connected to the second connection location of the AC line, the power system for the AC line A distributed power supply system in which the first connection portion and the second connection portion are provided in the arrangement order toward the downstream side when viewed from a connection portion,
When the power going from the power system side to the power consuming device is positive power, at the time of non-power failure that can supply power to the AC line from the power system,
The power generation device includes: a power generation unit; electric power passing from the first connection location side to the second connection location through the first voltage line; and the first connection location side from the first connection location side through the second voltage line. The power generation unit is configured to supply the same power to the first voltage line and the second voltage line so that the total power with the power toward the two connection points is minimized and does not become negative power. A power generation control unit for controlling generated power;
The auxiliary power supply device includes a power storage unit, a positive / negative sign of power passing from the first connection location side to the second connection location through the first voltage line, and the first connection through the second voltage line. When the positive and negative signs of the power going from the location side to the second connection location are different from each other, the power going from the power system side to the first connection location through the first voltage line and the second voltage line are passed. The output power from the power storage unit to the first voltage line and the second voltage line is not less than zero so that the total power with the power from the power system side to the first connection point does not become negative power A distributed power supply system having an operation control unit that individually adjusts values.
前記補助電源装置の前記動作制御部は、
前記第1接続箇所から前記第2接続箇所へ向かう電力の符号が負となる方の前記第1電圧線又は前記第2電圧線への前記蓄電部からの出力電力を零に調節し、
前記第1接続箇所から前記第2接続箇所へ向かう電力の符号が正となる方の前記第1電圧線又は前記第2電圧線への前記蓄電部からの出力電力を、前記第1電圧線を通って前記電力系統側から前記第1接続箇所へ向かう電力と前記第2電圧線を通って前記電力系統側から前記第1接続箇所へ向かう電力との合計電力が最小になり且つ負の電力とはならないように調節する請求項1に記載の分散型電源システム。
The operation control unit of the auxiliary power supply device is
Adjusting the output power from the power storage unit to the first voltage line or the second voltage line of which the sign of power going from the first connection point to the second connection point is negative, to zero,
The output power from the power storage unit to the first voltage line or the second voltage line of which the sign of power going from the first connection point to the second connection point is positive, the first voltage line The total power of the power passing through the power system side from the power system side to the first connection location and the power passing through the second voltage line from the power system side to the first connection location is minimized and negative power. The distributed power supply system according to claim 1, wherein the distributed power supply system is adjusted so as not to fall.
前記補助電源装置の前記動作制御部は、
前記第1電圧線を通って前記電力系統側から前記第1接続箇所へ向かう電力と前記第2電圧線を通って前記電力系統側から前記第1接続箇所へ向かう電力との合計電力が最小になり且つ負の電力とはならないように、前記蓄電部から前記第1電圧線及び前記第2電圧線に対する出力電力を互いに同じ値に調節する請求項1に記載の分散型電源システム。
The operation control unit of the auxiliary power supply device is
The total power of the power passing through the first voltage line from the power system side to the first connection location and the power passing through the second voltage line from the power system side to the first connection location is minimized. 2. The distributed power supply system according to claim 1, wherein output powers from the power storage unit to the first voltage line and the second voltage line are adjusted to the same value so as not to become negative power.
JP2012283354A 2012-12-26 2012-12-26 Distributed power system Active JP6025554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012283354A JP6025554B2 (en) 2012-12-26 2012-12-26 Distributed power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012283354A JP6025554B2 (en) 2012-12-26 2012-12-26 Distributed power system

Publications (2)

Publication Number Publication Date
JP2014128120A true JP2014128120A (en) 2014-07-07
JP6025554B2 JP6025554B2 (en) 2016-11-16

Family

ID=51407219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012283354A Active JP6025554B2 (en) 2012-12-26 2012-12-26 Distributed power system

Country Status (1)

Country Link
JP (1) JP6025554B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105262132A (en) * 2015-10-30 2016-01-20 浙江大学 Method for controlling power balance of micro grid based on distributed estimator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265632A (en) * 1991-02-20 1992-09-21 Meidensha Corp Load unbalance eliminating device for uninterruptible power supply
JPH07107744A (en) * 1993-09-30 1995-04-21 Meidensha Corp Power converter
JP2002281672A (en) * 2001-03-23 2002-09-27 Aisin Seiki Co Ltd Controller for domestic fuel cell system
JP2004072813A (en) * 2002-08-01 2004-03-04 Hitachi Ltd Power storing system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265632A (en) * 1991-02-20 1992-09-21 Meidensha Corp Load unbalance eliminating device for uninterruptible power supply
JPH07107744A (en) * 1993-09-30 1995-04-21 Meidensha Corp Power converter
JP2002281672A (en) * 2001-03-23 2002-09-27 Aisin Seiki Co Ltd Controller for domestic fuel cell system
JP2004072813A (en) * 2002-08-01 2004-03-04 Hitachi Ltd Power storing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105262132A (en) * 2015-10-30 2016-01-20 浙江大学 Method for controlling power balance of micro grid based on distributed estimator

Also Published As

Publication number Publication date
JP6025554B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
AU2007280258B2 (en) Power supply control for power generator
Pires et al. Power converter interfaces for electrochemical energy storage systems–A review
Maroti et al. The state-of-the-art of power electronics converters configurations in electric vehicle technologies
WO2011114422A1 (en) Power supply system, power supply method, program, recording medium, and power supply controller
JP2011120449A (en) Power generation system, control device, and switching circuit
JP2013123355A (en) Power management apparatus and method of controlling the same
WO2013175612A1 (en) Power supply system
JP5936533B2 (en) Distributed power system
WO2015011931A1 (en) Power conversion device, power management method, and power management system
US8264100B2 (en) Electric power generating system for multiple sources and interface to an AC grid
CN105122625A (en) Generator power systems with active and passive rectifiers
JP2016201893A (en) Interconnection system
JP5851276B2 (en) Independent power supply system
WO2013146773A1 (en) Power supply system
JP6025554B2 (en) Distributed power system
JP2004120845A (en) Power supply and demand system
JP6109380B2 (en) Distributed power system
JP5799548B2 (en) Power generation system
WO2015162940A1 (en) Power control device, power control method, and power control system
JP6704479B2 (en) POWER SUPPLY SYSTEM, POWER SUPPLY DEVICE, AND POWER SUPPLY SYSTEM CONTROL METHOD
JP2009005439A (en) Electric system supply and demand control system, commanding unit, and electric system supply and demand control method
KR101070726B1 (en) Fuel cell power conditioning system using multi-ilevel converter
JP5258324B2 (en) Hybrid grid interconnection system
RU2638025C1 (en) Self-contained electric power supply system
KR20150025772A (en) Distribution system and distribution method for floating structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161011

R150 Certificate of patent or registration of utility model

Ref document number: 6025554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150