WO2013146773A1 - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
WO2013146773A1
WO2013146773A1 PCT/JP2013/058760 JP2013058760W WO2013146773A1 WO 2013146773 A1 WO2013146773 A1 WO 2013146773A1 JP 2013058760 W JP2013058760 W JP 2013058760W WO 2013146773 A1 WO2013146773 A1 WO 2013146773A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
output
unit
power
inverter
Prior art date
Application number
PCT/JP2013/058760
Other languages
French (fr)
Japanese (ja)
Inventor
沖田 真大
三保谷 拓史
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012070497A external-priority patent/JP2015111962A/en
Priority claimed from JP2012112997A external-priority patent/JP2015111964A/en
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013146773A1 publication Critical patent/WO2013146773A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers

Definitions

  • the present invention relates to a power supply system.
  • FIG. 14 is a block diagram showing the configuration of the power supply system of Patent Document 1. As shown in FIG.
  • the power supply system of Patent Document 1 includes a converter 2 that converts alternating current from a commercial power system 1 into direct current, a solar cell 9, and a maximum power point tracking control function for always taking out maximum power from the solar cell 9.
  • a power supply device 5 including a DC-DC converter 8, an inverter 3 that converts direct current into alternating current having a predetermined frequency and voltage, a control circuit 4 that performs predetermined control, and a supply source of power supplied to the load 7
  • a connection switching device 6 for switching is provided.
  • the output of the inverter 3 or the commercial power system is switched by switching the connection switching device 6 according to the control signal of the control circuit 4 according to the output power value of the power supply device 5, that is, the power generation state of the solar cell 9. Power is supplied from 1 to the load, and stable power can be supplied to the load without being affected by fluctuations in the power supply amount of the power supply device 5.
  • Patent Document 1 when the technique of Patent Document 1 is applied to a parallel operation power supply system including a self-supporting generator independent of a commercial power system and a power supply using renewable energy such as a solar battery, the following problems arise. That is, in Patent Document 1, when the power supplied to the load 7 is insufficient with only the output of the power supply device 5, the converter 2 controlled by the control signal from the control circuit 4 operates, and the AC power of the commercial power system 1 is Is converted into DC power, and both the converted DC power and the output of the power supply device 5 are input to the inverter 3, and then necessary AC power is supplied from the inverter 3 to the load 7. That is, when parallel operation is performed in the power supply device 5 and the commercial power system 1, both are connected only at the direct current portion.
  • connection switching device 6 is switched so that the output of the commercial power system 1 is directly supplied to the load 7.
  • power is always supplied to the load 7 only by the commercial power system 1, and in this case, the utilization factor of the solar cell 9 of the power supply device 5 is greatly impaired.
  • the present invention has been made in view of such problems, and an object thereof is to provide a highly efficient power supply system using renewable energy.
  • the present invention includes a DC input unit to which an output from a DC generator is input, an AC input unit to which an output from an AC generator is input, and an AC- that converts AC input to the AC input unit to DC.
  • the power supply system includes: a switching unit; and an output unit that selectively outputs an alternating current input to the alternating current input unit and an alternating current output from the inverter.
  • the DC generator and the AC generator can be operated in parallel according to the output of the DC generator, and switching control of the switching unit can be performed so that the output of the DC generator can be used to the maximum extent. . That is, according to the power supply system according to the present embodiment, the use ratio of the DC generator can be improved, and a highly efficient power supply system using renewable energy can be obtained.
  • the present invention also provides a DC input unit to which an output from the DC generator is input, an AC input unit to which an output from the AC generator is input, and an inverter that converts the DC input to the DC input unit into AC.
  • a switching unit that switches between operation and stop of the AC generator and the DC generator, and an output unit that selectively outputs the AC input to the AC input unit and the AC output from the inverter.
  • the power supply system is provided.
  • the usage ratio of the DC generator can be improved, and a highly efficient power supply system using renewable energy can be obtained.
  • Embodiment 1 of this invention It is a block diagram which shows Embodiment 1 of this invention. It is a block diagram which shows Embodiment 2 of this invention. It is a block diagram which shows Embodiment 3 of this invention. It is a graph which shows the relationship for every time of load power consumption at the time of fine weather, and a DC generator output. It is a graph which shows the relationship for every time of the load power consumption at the time of cloudy weather, and rainy weather, and a DC generator output. It is a graph which shows the relationship for every time of the load power consumption at the time of irregular weather, and a DC generator output. It is a graph explaining the balance of the maximum output of a DC generator and load power consumption. It is a block diagram which shows Embodiment 4 of this invention.
  • FIG. 13 is a partial detail view of the block diagram shown in FIG. 12. It is a block diagram of the conventional power supply system.
  • the power supply system according to the present invention uses a parallel operation type power supply system (embodiments 1 to 3) when using a DC generator and an AC generator using renewable energy in parallel operation, and renewable energy.
  • the present invention is preferably applied to a hybrid power supply system (Embodiments 4 to 8) when a plurality of DC generators including a DC generator and an AC generator are operated in a hybrid manner.
  • the parallel operation type power supply system (Embodiments 1 to 3) will be sequentially described.
  • FIG. 1 is a block diagram of a power supply system 100 according to the present invention
  • FIGS. 4 to 6 are graphs showing the relationship between load power consumption and DC generator output depending on the weather.
  • the power supply system 100 includes a DC generator 101 that uses renewable energy, a first DC-DC converter 104 that transforms the output of the DC generator 101, an AC generator 102 that uses fossil fuel, and an AC generator 102.
  • AC-DC converter 105 that converts the output into direct current
  • inverter 106 that converts the output of first DC-DC converter 104 and AC-DC converter 105 into alternating current
  • the output supply destination of AC generator 102 is an AC-DC converter.
  • a switching unit 103 switch
  • switches to 105 or a load 109 a control unit 107 that performs system control
  • a relay 108 that is interposed between the output of the inverter 106 and the load 109 are provided.
  • DC generator 101 for example, a solar power generation device of about 100 kW can be used. Moreover, not only solar power generation but also a power generation device using other renewable energy can be used.
  • the first DC-DC converter 104 is a step-up chopper method, and adjusts the step-up ratio by changing the duty ratio with a built-in microcomputer to perform maximum power point tracking control of the DC generator 101.
  • the AC generator 102 for example, a gas turbine of about 100 kW is used. Further, it is preferable that the speed control can be performed so that the rotor always has a constant speed. For this speed control, a mechanical system using a centrifugal pendulum may be employed, or an electronic system (electronic governor) may be employed. Moreover, you may employ
  • the AC-DC converter 105 is, for example, a combination of a rectifier circuit using a diode bridge and a DC-DC converter for voltage matching. Further, an internal microcomputer is provided, and the output is adjusted in accordance with the voltage fluctuation of the DC system caused by the first DC-DC converter 104 performing the maximum power point tracking control.
  • the inverter 106 is a transformerless system, and converts the direct current output of the first DC-DC converter 104 or the AC-DC converter 105 into alternating current by PWM (Pulse Width Modulation) control by a built-in microcomputer. Furthermore, an operational amplifier, a current transformer, and an output transformer are built in, and the current value and the voltage value are detected by amplifying the output value with the operational amplifier and performing AD conversion with the microcomputer. Furthermore, a signal is obtained by a sensor that detects a rotor, such as an encoder or resolver (not shown) incorporated in the AC generator 102, and is synchronized with the AC generator 102.
  • PWM Pulse Width Modulation
  • the switching unit 103 is a switch, and switches the output of the AC generator 102 to connection to the DC bus 114 or connection to the load 109 via the AC-DC converter 105.
  • the control unit 107 controls the operations of the first DC-DC converter 104, the AC-DC converter 105, the inverter 106, and the switch 103 using, for example, RS485 serial communication.
  • the relay 108 is connected to the operating state of the DC generator 101 and the AC generator 102 to connect between the output of the inverter 106 and the load 109.
  • FIG. 4 is a graph showing the relationship between the load power consumption and the output of the DC generator 101 during parallel operation on a sunny day all the time.
  • the DC generator 101 is a solar power generation device
  • the relationship between the load power consumption during parallel operation and the output of the DC generator 101 will be described prior to the description of the basic operation.
  • the output curve POL of the DC generator 101 becomes irregular throughout the day because of the use of sunlight, and of course there is no output at night. Therefore, only the output (not shown) of the AC generator 102 is supplied to the load in the portion where the output curve POL of the DC generator 101 does not satisfy the value of the load power consumption curve PCL at each time.
  • the actual basic operation of the power supply system 100 will be described with reference to FIG.
  • the output of the first DC-DC converter 104 and the inverter 106 is stopped because there is no output of the DC generator 101.
  • the first DC-DC converter 104 sequentially monitors the input voltage from the DC generator 101 and transmits it to the control unit 107 every preset time.
  • the control unit 107 issues an operation instruction to the first DC-DC converter 104 and the inverter 106, and an output operation is started.
  • Each of the first DC-DC converter 104, the inverter 106, and the AC-DC converter 105 measures at least the input current in addition to the input voltage and transmits them to the control unit 107.
  • the output procedure from the inverter 106 is as follows. (1) A reference sine wave having the same frequency as that of the AC generator 102 is created by a microcomputer built in the inverter 106. (2) The relay 108 is turned off, and the inverter 106 acquires the voltage phase of the AC generator 102 from the detector 117 incorporated in the AC generator 102. (3) The voltage phase of the reference sine wave is adjusted to match the voltage phase of the AC generator 102.
  • step (3) When the phases in step (3) match, the relay 108 is turned on, and the inverter 106 and the output of the AC generator 102 are connected. (5) The current value flowing out to the AC generator 102 is detected by the detector 118. (6) Current feedback control of the inverter 106 is performed so that the value of the current flowing out to the AC generator 102 is maximized and the phase matches the reference sine wave (high power factor).
  • the control unit 107 controls the inverter 106, and the detector 116 of the inverter 106 detects the output current of the AC generator 102 and the detector 115 detects the voltage of the AC bus 113.
  • the output current of the inverter 106 is controlled so as to maximize the current from the DC generator 101 within a range where the voltage of the AC bus 113 is acceptable. In this operation, even if the output voltage of the inverter 106 is increased, current feedback control is performed with a desired gain until the output current does not increase. That is, control is performed so that the output of the DC generator 101 is maximized in the system.
  • switching control of the switching unit 103 is performed according to the output of the DC generator 101. Specifically, when the output ratio of the DC generator 101 is small, for example, less than 1 ⁇ 2 of the load power consumption, the switching unit 103 is switched to the AC bus 113 side according to an instruction from the control unit 107 and the AC -The operation of the basic operation described above is performed with the operation of the DC converter 105 stopped.
  • the switching unit 103 is switched to the AC-DC converter 105 side according to an instruction from the control unit 107 and the AC-DC Converter 105 starts operating.
  • the switching unit 103 may be a mechanical switch, but a switch using a semiconductor such as a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) or a triac is more preferable.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the control of the inverter 106 is changed to voltage feedback control in order to perform a constant voltage output operation similar to that when a general power conditioner autonomously operates.
  • the procedure of the voltage feedback control of the inverter 106 is demonstrated.
  • a reference sine wave having the same frequency as that of the AC generator 102 is created by a microcomputer built in the inverter 106.
  • the voltage phase of the reference sine wave is kept the same as before the switching unit 103 is switched. (At any time, the voltage phase of the AC generator 102 is detected by the detector 117 and corrected so that synchronization is maintained.)
  • the voltage value of the AC bus 113 is detected by the detector 115.
  • the change of the switching operation and the output control of the switching unit 103 is performed by the control unit 107 comparing the load power consumption and the output voltage of the DC generator 101 and instructing the AC generator 102 and the switch 103.
  • the control unit 107 comparing the load power consumption and the output voltage of the DC generator 101 and instructing the AC generator 102 and the switch 103.
  • the parallel operation power supply system 100 includes a DC input unit to which an output from the DC generator 101 is input, an AC input unit to which an output from the AC generator 102 is input, AC-DC converter 105 that converts AC input to the AC input unit to DC, an inverter 106 that converts DC input to the DC input unit and the output of the AC-DC converter 105 to AC, and connection of the AC input unit
  • a switching unit 103 that switches the output to the output of the AC-DC converter 105 or the inverter 106 and an output unit that selectively outputs the AC input to the AC input unit and the AC output from the inverter 106 are provided.
  • the output of the DC generator 101 can be used to the maximum extent. That is, according to the power supply system 100 according to the present embodiment, the usage ratio of the DC generator 101 can be improved, and a highly efficient power supply system using renewable energy is obtained.
  • FIG. 2 Another embodiment of the present invention will be described with reference to FIG. In FIG. 2, the same parts as those of the first embodiment are indicated by the same reference numerals.
  • the present embodiment is different from the first embodiment in that a power factor adjustment unit 110 is added to the AC bus 113.
  • the power factor adjusting unit 110 includes a plurality of series circuits of capacitors, reactors, and switches. Moreover, it is more preferable to provide a circuit breaker that prevents excessive phase advance at light load. Then, the power factor adjusting unit 110 performs switching control of the switch by the control unit 107 and adjusts the power factor of the AC bus 113 to a specified power factor by adjusting the capacitor capacity in multiple stages. .
  • the second embodiment it is possible to prevent the AC bus 113 from being overcurrent depending on the consumption current of the load by reducing the power factor when the inverter 106 is under voltage feedback control.
  • FIG. 7 is a graph for explaining the balance between the maximum output of the DC generator and the load power consumption.
  • This embodiment is different from the first or second embodiment in that the power storage unit 111 is connected to the DC bus 114 via the second DC-DC converter 112.
  • the maximum output from the DC generator 101 is used as described in the above embodiment.
  • the maximum output of the DC generator 101 is assumed to be the assumed load power consumption. It is preferable to set so as not to exceed.
  • the maximum output of the DC generator 101 may exceed the load power consumption as shown in FIG. 7 due to the installation conditions of the system including the load. In such a case, the electric power in the portion surrounded by the broken broken line exceeding the load power consumption curve PCL is not actually output, and is converted as heat generated by the DC generator 101, so the utilization efficiency as electric power is reduced. Resulting in.
  • the power storage unit 111 is connected to the DC bus 114 via the second DC-DC converter 112 in order to cope with such a situation.
  • the power storage unit 111 a lead battery, a nickel metal hydride battery, a lithium ion battery, an electric double layer capacitor, a lithium ion capacitor, or the like can be used.
  • the second DC-DC converter 112 is a bidirectional converter that can control the direction of power bidirectionally.
  • the second DC-DC converter 112 includes a microcomputer inside, and the first DC-DC converter 104 performs control according to the voltage fluctuation of the DC bus 114 caused by the maximum power point tracking control of the DC generator 101.
  • the step-up / step-down ratio is adjusted by the control of the unit 107, and the output of the DC bus 114 is adjusted.
  • power storage unit 111 can also be connected to AC bus 113 via a bidirectional inverter.
  • the output of the DC bus 114 is backed up by the power storage unit 111 when the output ratio of the DC generator 101 is high or when an output fluctuation occurs due to a sudden change in weather conditions.
  • the power quality for the load 109 can be stabilized.
  • FIG. 8 is a block diagram of a hybrid power supply system 100A according to the present invention.
  • the hybrid power supply system 100A includes a direct current generator 101A (a direct current power supply device, which corresponds to the second direct current generator of the present invention), a first DC-DC converter 104 that transforms the output of the direct current generator 101A, , A power storage unit 111 that stores the power of the DC generator 101A, a second DC-DC converter 112 that transforms the output of the power storage unit 111, an AC generator 102, and a DC generator 101B (the first DC generator of the present invention).
  • a direct current generator 101A a direct current power supply device, which corresponds to the second direct current generator of the present invention
  • a first DC-DC converter 104 that transforms the output of the direct current generator 101A
  • a power storage unit 111 that stores the power of the DC generator 101A
  • a second DC-DC converter 112 that transforms the output of the power storage unit 111
  • AC generator 102 AC generator
  • DC generator 101B the first DC generator of the present invention
  • an inverter 106 that converts the output of the first DC-DC converter 104, the second DC-DC converter 112, and the DC generator 101B to AC, and a power unit that supplies power to the AC generator 102 and the DC generator 101B 119 and a switching unit 103 (switch to switch the power supply destination of the power unit 119 to the AC generator 102 or the DC generator 101B.
  • a control unit 107 for performing system control.
  • the relay 108 interposed between the output of the inverter 106 and the load 109, the relay 120 interposed between the output of the DC generator 101B and the DC bus 114, the output of the AC generator 102 and the AC bus A relay 121 interposed therebetween is provided.
  • the DC generator 101A is a second DC generator using renewable energy, and for example, a solar power generator is used. Moreover, not only solar power generation but also a power generation device using other renewable energy can be used.
  • the first DC-DC converter 104 is a step-up chopper method, and adjusts the step-up ratio by changing the duty ratio with a built-in microcomputer to perform maximum power point tracking control of the DC generator 101A.
  • the power storage unit 111 can be a lead battery, a nickel metal hydride battery, a lithium ion battery, an electric double layer capacitor, a lithium ion capacitor, or the like.
  • the power storage unit 111 can use only the above-described battery, or the battery and the capacitor are connected in parallel to the output of the first DC-DC converter 104 via separate DC-DC converters (not shown). You can also.
  • the second DC-DC converter 112 includes a microcomputer therein, and the first DC-DC converter 104 performs control according to the voltage fluctuation of the DC bus 114 caused by the maximum power point tracking control of the DC generator 101A.
  • the step-up / step-down ratio is adjusted by the control of the unit 107, and the output of the DC bus 114 is adjusted.
  • the electrical storage part 111 can also be connected to AC bus-bar 113 via a bidirectional
  • the AC generator 102 and the DC generator 101B are both rotary generators, for example, and are powered by the power unit 119 to generate power.
  • a dynamo or an alternator can be used for the DC generator 101B.
  • an alternator with less fluctuation in the amount of power generation due to a change in the rotational speed is used.
  • an internal combustion engine such as an engine using fossil fuel, or an external combustion engine such as a steam turbine using nuclear power or biomass can be used.
  • the inverter 106 is a transformer-less system, and converts the DC output of the first DC-DC converter 104, the second DC-DC converter 112, and the DC generator 101B into AC by PWM (Pulse Width Modulation) control by a built-in microcomputer. .
  • PWM Pulse Width Modulation
  • an operational amplifier, a current transformer, and an output transformer are built in.
  • the output value is amplified by the operational amplifier, and AD conversion is performed by the built-in microcomputer, so that the voltage value and current value are respectively obtained from the voltage detector 115 and the current detector 116. Detection is performed.
  • the phase of the rotor is detected by a detector 117 composed of an encoder, a resolver, or the like, and is synchronized with the AC generator 102.
  • the switching unit 103 transmits the power of the power unit 119 to the AC generator 102 or the DC generator 101B.
  • the switching of the power transmission destination by the switching unit 103 is performed by, for example, providing the switching unit 103, the AC generator 102, and the DC generator 101B each with a gear for switching power transmission, and changing the power transmission destination of the power unit 119 to AC. Switch to the generator 102 or the DC generator 101B for transmission. Further, the switching unit 103 is provided with a neutral position that does not transmit power to any gear of the AC generator 102 and the DC generator 101B, and the power supplied to the load 109 is supplied to the DC generator 101A and the power storage unit. When the output of 111 is covered, the DC generator 101B and the AC generator 102 can be stopped.
  • this state is a power supply system using the output of the DC generator 101A using the renewable energy and the power storage unit 111, the usage ratio of the DC generator using the renewable energy can be improved, and high efficiency is achieved.
  • Power system That is, it can be said that the switching unit 103 has a function of switching operation or stop of the AC generator 102 and the DC generator (101A, 101B).
  • the control unit 107 controls the operations of the first DC-DC converter 104, the second DC-DC converter 112, the inverter 106, and the switching unit 103, for example, using RS485 serial communication.
  • the relay 108 is connected to the operating state of the DC generator 101A and the AC generator 102 to open and close between the output of the inverter 106 and the load 109.
  • the relay 120 is opened and closed so that the output fluctuation due to the rotation speed change when the DC generator 101B is stopped or operated does not affect the interconnection operation with the inverter 106.
  • the relay 121 is opened and closed so that the output fluctuation due to the change in the rotation speed when the AC generator 102 is stopped or operated does not affect the interconnection operation with the inverter 106. More specifically, when stopping the generator connected to each relay, first, the generator is stopped after opening the relay, and when the generator is operated, the output of each generator is stable. Open the relay until it is closed and close it after stabilization. By doing in this way, the output fluctuation
  • the first DC-DC converter 104, the second DC-DC converter 112, and the inverter 106 measure at least the input current in addition to the input voltage, and transmit these to the control unit 107.
  • the output procedure from the inverter 106 is as follows. (1) A reference sine wave having the same frequency as that of the AC generator 102 is created by a microcomputer built in the inverter 106. (2) The relay 108 is turned off, and the inverter 106 acquires the voltage phase of the AC generator 102 from the detector 117 connected to the AC generator 102. (3) The voltage phase of the reference sine wave is adjusted to match the voltage phase of the AC generator 102.
  • step (3) When the phases in step (3) match, the relay 108 is turned on, and the inverter 106 and the output of the AC generator 102 are connected. (5) The current value flowing out to the AC generator 102 is detected by the detector 118. (6) Current feedback control of the inverter 106 is performed so that the value of the current flowing out to the AC generator 102 is maximized and the phase matches the reference sine wave.
  • the control unit 107 controls the inverter 106, the detector 116 of the inverter 106 detects the output current of the AC generator 102, and the detector 115 detects the voltage of the AC bus 113.
  • the output current of the inverter 106 is controlled so as to maximize the current from the DC generator 101A within the allowable range of the voltage of the AC bus 113. In this operation, even if the output voltage of the inverter 106 is increased, current feedback control is performed with a desired gain until the output current does not increase. That is, control is performed so that the output of the DC generator 101A is maximized in the system.
  • switching control of the switching unit 103 is performed according to the output of the DC generator 101A using renewable energy.
  • a threshold Th is set for the output P1 of the DC generator 101A using renewable energy, and switching control is performed based on the threshold Th, and the DC generator 101B or the AC generator 102 is operated.
  • This threshold Th is, for example, the ratio of the output P1 of the DC generator 101A to the power consumption L of the load 109.
  • the switching control based on the threshold value Th is performed as shown in Table 1 below, for example.
  • Table 1 shows the operating state of the DC generator 101B or the AC generator 102 when the switching unit 103 is switched by the value of the output P1 of the DC generator 101A with respect to the threshold Th.
  • the switching unit 103 is switched to the AC generator 102 side according to an instruction from the control unit 107, and the power of the power unit 119 is transmitted to the AC generator 102.
  • the operation according to the basic operation described above is performed.
  • the switching unit 103 is switched to the DC generator 101B side according to the instruction of the control unit 107, and the power of the power unit 119 is changed. It is transmitted to the DC generator 101B.
  • the AC generator 102 stops, the output of the DC generator 101B is connected in parallel with the output of the second DC-DC converter 112 and the output of the first DC-DC converter 104, and the total output thereof is input to the inverter 106. Is done. At this time, the power supply to the load 109 is only the output power of the inverter 106.
  • the switching unit 103 When the output of the DC generator 101A using renewable energy maintains 90% or more of the rating, the switching unit 103 is in the neutral position, that is, the power of the power unit 119 is the DC generator 101B, AC power generation Both generators are stopped by controlling not to transmit to any of the machines 102 so that the input to the inverter 106 becomes the total output of the first DC-DC converter 104 and the second DC-DC converter 112. good.
  • the control of the inverter 106 is changed to voltage feedback control in order to perform a constant voltage output operation similar to that when a general power conditioner autonomously operates.
  • the procedure of the voltage feedback control of the inverter 106 is demonstrated.
  • a reference sine wave having the same frequency as that of the AC generator 102 is created by a microcomputer built in the inverter 106.
  • the voltage phase of the reference sine wave is kept the same as before the switching unit 103 is switched. (At any time, the voltage phase of the AC generator 102 is detected by the detector 117 and corrected so that synchronization is maintained.)
  • the voltage value of the AC bus 113 is detected by the detector 115.
  • the switching operation of the switching unit 103 and the change of the output control are performed by the control unit 107 instructing the AC generator 102 and the switching unit 103 by comparing the power consumption of the load 109 and the output power of the DC generator 101A. Is done. Note that if the weather condition changes irregularly in time units, the output of the DC generator 101A may increase or decrease frequently. In such a case, if the switching of the switching unit 103 is switched too fast, the power transmission control to the AC generator 102 or the DC generator 101B and the synchronization with the inverter 106 become difficult. Is preferably set in advance so that switching is performed when a state requiring switching continues for a certain period of time or longer, for example, 30 minutes or longer.
  • the hybrid type power supply system 100A including the independent AC generator 102 and the DC generator 101B independent of the commercial power system and the DC generator 101A using renewable energy such as a solar battery has been described.
  • the switching unit 103 is unnecessary, and the power unit 119 and the DC generator 101B are directly connected.
  • the DC generator 101A using renewable energy when the output of the DC generator 101A using renewable energy is sufficiently high and the power supply to the load 109 is only the output of the inverter 106, the DC generator is parallel to the DC generator 101A.
  • the output of 101B is input to the inverter 106. Therefore, since the input power to the inverter 106 does not include power loss due to conversion from AC to DC, the power generation efficiency of the system is improved.
  • the power supply system 100A includes a DC input unit to which an output from the DC generator (101A, 101B) is input, an AC input unit to which an output from the AC generator 102 is input, An inverter 106 that converts direct current input to a direct current input unit into alternating current, a switching unit 103 that switches between operation and stop of the alternating current generator 102 and the direct current generator (101A, 101B), and alternating current input to the alternating current input unit And an output unit that selectively outputs the alternating current output from the inverter 106.
  • the output of the DC generator can be used to the maximum extent. That is, according to the power supply system 100A according to the present embodiment, the use ratio of renewable energy can be improved.
  • FIG. 9 is a block diagram of a hybrid power supply system 200.
  • the same parts as those of the fourth embodiment are indicated by the same reference numerals.
  • the output of the DC generator 101B may be smaller than that of the AC generator 102. That is, the power required for the DC generator 101B may be smaller than the power required for the AC generator 102.
  • a power unit 202 and a switching unit 201 that are smaller than the power unit 119 are used.
  • the DC generator 101B is operated by the power unit 202
  • the AC generator 102 is operated by the power unit 119
  • the switching unit 201 switches between the power unit 119 and the power unit 202.
  • the switching unit 201 is a switch that operates the power unit 119 or the power unit 202 in response to an instruction from the control unit 107.
  • the motive power part 119 and the motive power part 202 may be provided with one fuel system, and may be provided separately.
  • the operation description related to power generation is the same as that of the fourth embodiment, and a detailed description thereof is omitted.
  • the scale of each power unit can be optimized. Therefore, since the fuel consumption with respect to the electric power generation amount of the power part 202 can be suppressed especially, the electric power generation efficiency of a system improves more.
  • FIG. 10 is a block diagram of a hybrid power supply system 300.
  • the same parts as those in the fourth or fifth embodiment are denoted by the same reference numerals.
  • the output control range of the rotary generator described in the fourth and fifth embodiments is generally operated within a range of 30 to 100% of the rating in order to suppress a decrease in power generation efficiency and a decrease in operation reliability.
  • the operation of the AC generator 102 is set to a rated value of 30 in order to balance supply and demand with the power consumption of the load 109. It is necessary to deliberately suppress the output of the DC generator 101A, or it is not preferable in terms of power generation efficiency and operation reliability.
  • the present embodiment includes a switching unit 301, power units 302 and 304, and AC generators 303 and 305 that are different from those in the fourth or fifth embodiment.
  • a relay 306 and detectors 307 and 308 are provided between the AC generator 305 and the AC bus 113.
  • the operations of the detectors 307 and 308 are the same as those of the detectors 117 and 118, and a description thereof will be omitted.
  • the power units 302 and 304 and the AC generators 303 and 305 are obtained by dividing the power unit 119 and the AC generator 102 in the fifth embodiment into two parts, and when the required rated output of the AC generator 102 is 1, 1 Two AC generators 303 and 305 with a rated output are prepared, and the rating is satisfied with this total output. The same applies to the power units 302 and 304.
  • the required rated output of the AC generator is equal to the rated output of the DC generator 101A using renewable energy, and the rated output of the DC generator 101A is Pmax.
  • the rated output is 1 / 2Pmax.
  • the DC generator 101B and the AC generators 303 and 305 are individually operated according to the output status of the DC generator 101A. That is, a plurality of threshold values Th are set for the output P1 of the DC generator 101A using renewable energy, and the switching unit 301 is switched based on the plurality of threshold values Th to change the DC generator 101B and the AC generators 303 and 305. Is operated.
  • the threshold value Th is, for example, the ratio of the output P1 of the DC generator 101A to the power consumption L of the load 109. Switching control based on the plurality of threshold values Th is performed, for example, as shown in Table 2 below.
  • Table 2 shows the DC generator 101B or the AC generator 303 when the switching unit 301 is switched according to the value of the output P1 of the DC generator 101A with respect to Th1 as the first threshold and Th2 as the second threshold.
  • 305 shows the operation state.
  • the magnitude relationship between the thresholds Th1 and Th2 is Th1 ⁇ Th2.
  • the switching unit 301 is switched to the power units 302 and 304 according to an instruction from the control unit 107.
  • the AC generators 303 and 305 are operated by the power of the power units 302 and 304.
  • the relay 306 is opened and the AC generator 305 is disconnected from the AC bus 113, and then the AC generator Until the output of 303 rises to the specified output, the insufficient power may be output from the power storage unit 111 and supplemented.
  • the AC generator 305 stops the operation promptly after disconnection.
  • the switching unit 301 is instructed by the instruction of the control unit 107. It is switched to 302 and only the AC generator 303 is operated.
  • the AC is maintained with the relay 121 closed until the DC generator 101B is activated and the output is stabilized.
  • the switching unit 301 is switched to the power unit 202 after the output of the DC generator 101B is stabilized, the AC generator 303 may be stopped and the relay 121 may be disconnected.
  • the switching unit 301 is switched to the power unit 202 according to an instruction from the control unit 107, and the DC generator 101B is operated.
  • the switching unit 301 is controlled to stop all of the power units 202, 302, and 304 by controlling the switching unit 301.
  • the generator 101B and the AC generators 303 and 305 may be stopped, and the input to the inverter 106 may be the total output of the first DC-DC converter 104 and the second DC-DC converter 112.
  • each generator will be described more specifically.
  • the power consumption of the load 109 is 10 kW
  • the rated output of the DC generator 101A using renewable energy is 10 kW
  • the ratings of the AC generators 303 and 305 are Each output is 5 kW
  • the rated output of the DC generator 101B is 2.5 kW.
  • Th1 is set to 50%
  • Th2 is set to 75%.
  • P1 ⁇ 50% the AC generators 303 and 305 are each operated at a rated 5 kW.
  • the AC generator 303 When 50% ⁇ P1 ⁇ 75%, the AC generator 303 operates in the range of 5 kW to 2.5 kW. That is, the AC generator 303 is operated in a range of rated to 50% of rated. Further, the DC generator 101B operates in the range of 2.5 kW to 1 kW while 75% ⁇ P1 ⁇ 90%. That is, the DC generator 101B is operated within a range of 40% of the rating to the rating.
  • the number of AC generators that supply power to the load 109 is plural, when the power supply to the load 109 is performed by the output operation of the inverter 106 and the AC generator connected operation, According to the power generation state of the DC generator 101A, the output power of the AC generator with respect to the power consumption of the load 109, in other words, the number of operations of the AC generator can be controlled.
  • the fuel consumption in the power section can be finely controlled, the power generation efficiency of the system is further improved. Also, since the output control of each generator can be operated in the range of 40 to 100%, a power supply system with high operation reliability can be constructed without suppressing the output of the DC generator 101A using renewable energy. .
  • FIG. 11 is a block diagram of a hybrid power supply system 400.
  • the same parts as those of the sixth embodiment are denoted by the same reference numerals.
  • the main part of this embodiment is different from the sixth embodiment in that a power unit 404 and a third DC generator 405 are provided instead of the power unit 304 and the AC generator 305.
  • the operation explanation in the case where 75% output of the load power consumption is satisfied as the interconnectable operation range of the inverter 106 with the AC generator is illustrated.
  • the interconnectable output of the inverter is not limited to this. It is also conceivable that the ratio is lower than the above ratio.
  • the number of AC generators and DC generators may be appropriately changed depending on the balance between the inverter output and the AC generator output.
  • the rated output of the DC generator 101A using renewable energy is Pmax
  • the rated output of the AC generator 303 is Pmax
  • the DC generator 101B is the DC generator 101B
  • each rated output is 1/4 Pmax.
  • the switching control of the operation state of each generator in the present embodiment is performed, for example, as shown in Table 3 below. Note that the condition for the threshold Th is the same as in the sixth embodiment.
  • the switching unit 301 is switched to the power units 202 and 404 according to an instruction from the control unit 107.
  • the DC generator 101B and the DC generator 405 are operated.
  • the switching unit 301 is switched to the power unit 202 according to an instruction from the control unit 107, and only the DC generator 101B is operated. .
  • the switching unit 301 is controlled to stop all of the power units 202, 302, 404, that is, the neutral position.
  • the input to the inverter 106 may be the total output of the first DC-DC converter 104 and the second DC-DC converter 112.
  • each generator will be described more specifically.
  • the power consumption of the load 109 is 10 kW
  • the rated output of the DC generator 101A using renewable energy is 10 kW
  • the rated output of the AC generator 303 is The rated output of 10 kW, DC generator 101B, and DC generator 405 is 2.5 kW each.
  • the range in which the inverter 106 can be connected to the AC generator satisfies, for example, the state of the inverter output 5 kW + the AC generator output 5 kW
  • Th1 is set to 50%
  • Th2 is set to 75%
  • P1 ⁇ In the case of 50%, the AC generator 303 operates within the range from the rating to 50% of the rating.
  • the DC generator 101B and the DC generator 405 operate in a total range of 5 kW to 2.5 kW. That is, both the DC generators 101B and 405 operate within a range of rated to 50% of rated. Further, the DC generator 101B operates in the range of 2.5 kW to 1 kW while 75% ⁇ P1 ⁇ 90%. That is, the DC generator 101B is operated within a range of 40% of the rating to the rating.
  • the inverter 106 has been described in the case where the range in which the inverter 106 can be connected to the AC generator satisfies the state of the inverter output 5 kW + the AC generator output 5 kW. Except when the interconnectable operation range of the inverter 106 satisfies an output of about 75% of the load power consumption (for example, only 60% output of the load power consumption is satisfied as the interconnectable operation range of the inverter 106), That is, it can be suitably applied in the range of 50% or more and less than 75% of load power consumption.
  • the interconnection operation possible range of the inverter 106 is less than 50% of the load power consumption, that is, the interconnection power is generated unless the power generation amount of the AC generator 303 always exceeds the output of the inverter 106. If this is not possible, the number of DC generators may be set to 3 or more in consideration of the general output control range of the rotary generator described above (rated to 30% of the rating is a guideline). Even in this case, the AC generator is one with a rated output of Pmax.
  • an AC-DC converter (not shown) is interposed between the output of the AC generator 303 and the DC bus 114, so that the output P1 of the inverter 106 exceeds the interconnectable range, and Th1 (here, rated 50) %) Until the relay 121 is opened and the AC generator 303 is disconnected from the AC bus 113, the DC power output from the AC-DC converter (not shown) is supplied to the DC bus 114. Then, after P1> Th1, the AC generator 303 can be stopped and the DC generator 101B and the DC generator 405 can be operated. In this case, two DC generators are sufficient.
  • the output control of each generator can be operated in the range of 40 to 100%, the power supply with high operation reliability can be obtained without suppressing the output of the DC generator 101A using renewable energy. You can build a system.
  • FIG. 12 is a block diagram of a hybrid power supply system 500.
  • FIG. 13 is a partial detail view of FIG. In FIG. 12, the same parts as those in the fourth to seventh embodiments are denoted by the same reference numerals.
  • This embodiment is different from the fourth to seventh embodiments in that a condensing heat collecting unit 501, a heat storage unit 503, and a power unit 502 are provided.
  • the concentrated heat collecting unit 501 and the heat storage unit 503 and the power unit 502 are added to the concentrated heat collecting unit 501 and the heat storage unit 503 in FIG. 8, and the power unit 119 is replaced with the power unit 502.
  • the power units 119 and 202 of FIG. 9 may be replaced with the power unit 502, and the light collecting and collecting unit 501 and the heat storage unit 503 may be connected to the respective power units.
  • the power units 202, 302, and 304 in FIG. 10 may be replaced with the power unit 502, and the light collecting and collecting unit 501 and the heat storage unit 503 may be connected to the respective power units.
  • an internal combustion engine such as an engine is used as a power unit of a generator other than the DC generator 101A using renewable energy, but in this embodiment, heat energy is generated by the light collecting and collecting unit 501. Then, the power unit 502 is driven using this thermal energy as a power source.
  • the condensing heat collecting unit 501 includes a concentrator 504 for concentrating sunlight in one place, and a heat converter 505 that receives the condensed sunlight and outputs it as thermal energy.
  • a heat storage tank or the like can be used.
  • a steam turbine or the like can be used for the power unit 503.
  • Concentrator 504 is composed of a mirror, a reflector, a lens, etc., and concentrates sunlight in one place. In addition, it is more preferable that the light collector 504 can move the light collecting direction in accordance with the irradiation direction of sunlight.
  • the solar energy collected by the condenser 504 is sent to the heat converter 505 and converted into heat, and the converted heat energy is sent to the power unit 502.
  • the steam turbine is rotated by the thermal energy received from the heat converter 505, and the power of the DC generator 101B or the AC generator 102 is generated.
  • the heat storage unit 503 stores the excess heat energy within the sunshine hours, and transmits the heat energy to the power unit 502 when the heat energy from the heat collection unit 501 cannot be obtained at night or the like.
  • operations related to power generation other than those described above are the same as those in the fourth embodiment, and a detailed description thereof will be omitted.
  • the power generation efficiency by the renewable energy of the entire system is improved.
  • the means for solving the problem corresponding to claim 1 of the present invention includes a DC input unit to which an output from the DC generator 101 is input and an AC input to which an output from the AC generator 102 is input.
  • An AC-DC converter 105 that converts alternating current input to the alternating current input portion into direct current
  • an inverter 106 that converts direct current input to the direct current input portion and the output of the AC-DC converter 105 into alternating current
  • an alternating current input A switching unit 103 that switches the connection destination of the unit to the output of the AC-DC converter 105 or the inverter 106, an output unit that selectively outputs the AC input to the AC input unit and the AC output from the inverter 106,
  • the power supply system 100 is provided.
  • the effect corresponding to claim 1 is that the switching unit is configured so that the DC generator 101 and the AC generator 102 can be operated in parallel according to the output of the DC generator 101 and the output of the DC generator 101 can be used to the maximum. 103 switching control can be performed. That is, according to the power supply system 100 according to the present embodiment, the usage ratio of the DC generator 101 can be improved, and a highly efficient power supply system using renewable energy can be obtained.
  • Means for solving the problem corresponding to claim 2 includes a control unit 107 that controls switching of the switching unit 103, and the control unit 107 is configured such that the output ratio of the DC generator 101 is less than 1 ⁇ 2 of the load power consumption.
  • the control unit 107 is configured such that the output ratio of the DC generator 101 is less than 1 ⁇ 2 of the load power consumption.
  • the output of the AC generator 102 is connected to the output of the inverter 106 and the output ratio of the DC generator 101 is 1/2 or more of the load power consumption, the output of the AC generator 102 is input to the input of the AC-DC converter 105.
  • the switching unit 103 is switched to connect.
  • the effect corresponding to claim 2 is that the load 109 is always supplied with an output that is the sum of the output of the DC generator 101 and the output of the AC generator 102, and the output of the DC generator 101 is the maximum in the system. Can be controlled to be Therefore, it is possible to obtain a power supply system that can maximize the use ratio of the renewable energy used for the DC generator
  • Means for solving the problem corresponding to claim 3 includes a power factor adjustment unit 110 connected in parallel to the output of the AC generator 102.
  • the effect corresponding to claim 3 can prevent the AC bus 113 from becoming overcurrent depending on the current consumption of the load.
  • Means for solving the problem corresponding to claim 4 includes: a DC input unit to which an output from the DC generator (101A, 101B) is input; an AC input unit to which an output from the AC generator 102 is input; An inverter 106 that converts direct current input to the input unit into alternating current, a switching unit 103 that switches between operation and stop of the alternating current generator 102 and the direct current generator (101A, 101B), and alternating current and inverter input to the alternating current input unit
  • the power supply system 100 ⁇ / b> A includes an output unit that selectively outputs the alternating current output from 106.
  • the effect corresponding to claim 4 is that the AC generator 102 and the DC generator (in order to maximize the use of the output of the DC generator (101A, 101B) according to the output of the DC generator (101A, 101B). 101A and 101B) can be switched between operation and stop. That is, according to the power supply system according to the present embodiment, the usage ratio of the DC generators (101A, 101B) can be improved, and a highly efficient power supply system using renewable energy can be obtained.
  • a means for solving the problem corresponding to claim 5 is that the DC generator includes a first and a second plurality of DC generators (101A, 101B).
  • the effect corresponding to the fifth aspect is that a highly efficient hybrid power supply system in which a plurality of DC generators (101A, 101B) and an AC generator 102 are used.
  • the means for solving the problem corresponding to claim 6 is that the second DC generator 101A is composed of a solar power generation device.
  • the effect corresponding to the sixth aspect can provide a highly efficient power supply system using renewable energy.
  • Means for solving the problem corresponding to claim 7 includes a control unit 107 that controls switching of the switching unit 103, and the control unit 107 sets a predetermined output of the second DC generator 101A for the power consumption of the load as a threshold value.
  • the control unit 107 operates the AC generator 102 when the output of the second DC generator 101A falls below the threshold, and the first DC generator when the output exceeds the threshold.
  • the control unit 103 is controlled to operate the machine 101B.
  • the effect corresponding to the seventh aspect can improve the use ratio of the second DC generator 101A using renewable energy, and the AC generator 102 according to the output of the second DC generator 101A. Since the operation of the first DC generator 101B can be controlled, the power generation efficiency of the power supply system can be improved.
  • the means for solving the problem corresponding to claim 8 is that the two threshold values are set, and the control unit 107 operates the AC generator 102 when the output of the second DC generator 101A is lower than the first threshold value.
  • the first DC generator 101B is operated when the second threshold value is larger than the first threshold value, exceeds the first threshold value, and falls below the second threshold value. This is to control the switching unit 103 to stop 101B and operate the AC generator 102.
  • the effect corresponding to claim 8 is that the use ratio of the DC generator 101A using renewable energy can be improved, and the operation of the AC generator 102 and the first DC generator 101B can be controlled. The power generation efficiency of the system can be improved.
  • Means for solving the problem corresponding to claim 9 is that the two threshold values are set, and the control unit 107 operates the AC generator 102 when the output of the second DC generator 101A falls below the first threshold value.
  • the first DC generator 101B is operated when the second threshold value is larger than the first threshold value, exceeds the first threshold value, and falls below the second threshold value. This is to control the switching unit 103 to operate 101B and stop the AC generator 102.
  • the effect corresponding to claim 9 is that the use ratio of the DC generator 101A using renewable energy can be improved and the operation of the AC generator 102 can be finely controlled, so that the power generation efficiency of the power supply system is further improved. To do.
  • a means for solving the problem corresponding to claim 10 is to include a power storage unit 111 connected to the DC input unit.
  • the effect corresponding to claim 10 is that power can be supplied to load 109 using DC power stored in power storage unit 111. Therefore, the usage ratio of the DC generators (101, 101A) can be improved, and a highly efficient power supply system using renewable energy can be obtained.
  • the power supply system according to the present invention can be widely applied to all power supply systems including a system interconnected with a commercial power system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

Provided is a highly efficient power supply system that uses renewable energy. The parallel-operation type power supply system (100) is provided with: a DC generator (101) that uses renewable energy; a first DC-DC converter (104) that transforms the output of the DC generator (101); an AC generator (102); an AC-DC converter (105) that converts the output of the AC generator (102) into direct current; an inverter (106) that converts the output of the first DC-DC converter (104) and the output of the AC-DC converter (105) into alternating current; a switching unit (103) that switches the connection destination of the output of the AC generator (102) between the input of the AC-DC converter (105) and the output of the inverter (106); and a control unit (107) that controls the switching to be executed by the switch (103). Also provided is a hybrid-type power supply system (100A) that is equipped with a DC generator (101A) that uses renewable energy, a DC generator (101B), and an AC generator (102), and wherein power generation efficiency of the system as a whole is improved through the use of a switching unit (103) and a control unit (107).

Description

電源システムPower system
 本発明は、電源システムに関するものである。 The present invention relates to a power supply system.
 複数の電源を並列に用い、これら複数の電源から負荷に対して並列給電が可能な電源システムとして、例えば特許文献1の技術が知られている。図14は、特許文献1の電源システムの構成を示すブロック図である。 For example, a technique disclosed in Patent Document 1 is known as a power supply system that uses a plurality of power supplies in parallel and can supply power to the load from the plurality of power supplies in parallel. FIG. 14 is a block diagram showing the configuration of the power supply system of Patent Document 1. As shown in FIG.
 特許文献1の電源システムは、商用電力系統1からの交流を直流に変換するコンバータ2と、太陽電池9と、太陽電池9から常に最大の電力を取り出すための最大電力点追従制御機能を備えたDC-DCコンバータ8とからなる電源装置5と、直流を所定の周波数と電圧を持つ交流に変換するインバータ3と、所定の制御を行う制御回路4と、負荷7に供給する電力の供給元を切り替える接続切替装置6とを備えて構成されている。 The power supply system of Patent Document 1 includes a converter 2 that converts alternating current from a commercial power system 1 into direct current, a solar cell 9, and a maximum power point tracking control function for always taking out maximum power from the solar cell 9. A power supply device 5 including a DC-DC converter 8, an inverter 3 that converts direct current into alternating current having a predetermined frequency and voltage, a control circuit 4 that performs predetermined control, and a supply source of power supplied to the load 7 A connection switching device 6 for switching is provided.
 そして、特許文献1では、電源装置5の出力電力値、すなわち太陽電池9の発電状態に応じて、接続切替装置6を制御回路4の制御信号により切り替えることで、インバータ3の出力又は商用電力系統1から負荷に電力を供給し、電源装置5の電力供給量の変動の影響を受けることなく、負荷に対して安定した電力を供給できるようにしている。 In Patent Document 1, the output of the inverter 3 or the commercial power system is switched by switching the connection switching device 6 according to the control signal of the control circuit 4 according to the output power value of the power supply device 5, that is, the power generation state of the solar cell 9. Power is supplied from 1 to the load, and stable power can be supplied to the load without being affected by fluctuations in the power supply amount of the power supply device 5.
特開2005-328656号公報JP 2005-328656 A
 しかしながら、特許文献1の技術を、商用電力系統から独立した自立型の発電機と太陽電池等の再生可能エネルギーを用いる電源との並列運転電源システムに適用する場合、以下のような課題が生じる。すなわち、特許文献1では、電源装置5の出力のみでは負荷7に供給する電力が不足する場合に、制御回路4からの制御信号で制御されたコンバータ2が動作し、商用電力系統1の交流電力が直流電力に変換され、この変換された直流電力と電源装置5の出力の双方がインバータ3に入力された後、負荷7へ必要な交流電力がインバータ3から供給される。つまり、電源装置5と商用電力系統1にて並列運転が行われる際は、両者は直流部分でのみ接続されるようになっている。 However, when the technique of Patent Document 1 is applied to a parallel operation power supply system including a self-supporting generator independent of a commercial power system and a power supply using renewable energy such as a solar battery, the following problems arise. That is, in Patent Document 1, when the power supplied to the load 7 is insufficient with only the output of the power supply device 5, the converter 2 controlled by the control signal from the control circuit 4 operates, and the AC power of the commercial power system 1 is Is converted into DC power, and both the converted DC power and the output of the power supply device 5 are input to the inverter 3, and then necessary AC power is supplied from the inverter 3 to the load 7. That is, when parallel operation is performed in the power supply device 5 and the commercial power system 1, both are connected only at the direct current portion.
 したがって、電源装置5と商用電力系統1により並列運転が行われる場合は、商用電力系統1から供給される電力が一旦直流に変換された後、再度交流電力に変換されて負荷に供給されるので、これら変換の際に常に電力ロスが発生してしまう。 Therefore, when parallel operation is performed by the power supply device 5 and the commercial power system 1, the power supplied from the commercial power system 1 is once converted to direct current, then converted back to alternating current power and supplied to the load. In such conversion, power loss always occurs.
 また、電源装置5の出力が予め設定した出力値を下回ると、商用電力系統1の出力が負荷7に直接供給されるように接続切替装置6の切り替えが行われるので、電源装置5の出力状況によっては、常に商用電力系1のみで負荷7へ電力供給が行われることになり、この場合、電源装置5の太陽電池9の利用率は大きく損なわれる。 Further, when the output of the power supply device 5 falls below a preset output value, the connection switching device 6 is switched so that the output of the commercial power system 1 is directly supplied to the load 7. Depending on the case, power is always supplied to the load 7 only by the commercial power system 1, and in this case, the utilization factor of the solar cell 9 of the power supply device 5 is greatly impaired.
 本発明は、このような課題に鑑みてなされたものであり、その目的は、再生可能エネルギーを用いた高効率な電源システムを提供することにある。 The present invention has been made in view of such problems, and an object thereof is to provide a highly efficient power supply system using renewable energy.
 本発明は、直流発電機からの出力が入力される直流入力部と、交流発電機からの出力が入力される交流入力部と、前記交流入力部に入力された交流を直流へ変換するAC-DCコンバータと、前記直流入力部に入力された直流と前記AC-DCコンバータの出力を交流に変換するインバータと、前記交流入力部の接続先を、前記AC-DCコンバータまたは前記インバータの出力に切り替える切替部と、前記交流入力部に入力された交流と前記インバータから出力された交流とを選択的に出力する出力部と、を備える電源システムとしたことを特徴とする。 The present invention includes a DC input unit to which an output from a DC generator is input, an AC input unit to which an output from an AC generator is input, and an AC- that converts AC input to the AC input unit to DC. A DC converter, an inverter that converts the direct current input to the direct current input unit and the output of the AC-DC converter into alternating current, and a connection destination of the alternating current input unit is switched to the output of the AC-DC converter or the inverter The power supply system includes: a switching unit; and an output unit that selectively outputs an alternating current input to the alternating current input unit and an alternating current output from the inverter.
 この構成であれば、直流発電機の出力に応じて、直流発電機と交流発電機を並列運転させると共に、直流発電機の出力を最大限利用できるように切替部の切り替え制御を行うことができる。すなわち、本実施形態に係る電源システムによれば、直流発電機の使用比率を向上することができ、再生可能エネルギーを用いた高効率な電源システムを得ることができる。 With this configuration, the DC generator and the AC generator can be operated in parallel according to the output of the DC generator, and switching control of the switching unit can be performed so that the output of the DC generator can be used to the maximum extent. . That is, according to the power supply system according to the present embodiment, the use ratio of the DC generator can be improved, and a highly efficient power supply system using renewable energy can be obtained.
 また本発明は、直流発電機からの出力が入力される直流入力部と、交流発電機からの出力が入力される交流入力部と、前記直流入力部に入力された直流を交流に変換するインバータと、前記交流発電機と前記直流発電機の運転または停止を切り替える切替部と、前記交流入力部に入力された交流と前記インバータから出力された交流とを選択的に出力する出力部と、を備える電源システムとしたことを特徴とする。 The present invention also provides a DC input unit to which an output from the DC generator is input, an AC input unit to which an output from the AC generator is input, and an inverter that converts the DC input to the DC input unit into AC. A switching unit that switches between operation and stop of the AC generator and the DC generator, and an output unit that selectively outputs the AC input to the AC input unit and the AC output from the inverter. The power supply system is provided.
 この構成であれば、直流発電機の出力に応じて、直流発電機の出力を最大限利用できるように交流発電機と直流発電機の運転と停止を切り替えることができる。すなわち、本実施形態に係る電源システムによれば、直流発電機の使用比率を向上することができ、再生可能エネルギーを用いた高効率な電源システムを得ることができる。 With this configuration, it is possible to switch between operation and stop of the AC generator and the DC generator so that the output of the DC generator can be used to the maximum according to the output of the DC generator. That is, according to the power supply system according to the present embodiment, the use ratio of the DC generator can be improved, and a highly efficient power supply system using renewable energy can be obtained.
 本発明の電源システムによれば、直流発電機の使用比率を向上することができ、再生可能エネルギーを用いた高効率な電源システムを得ることができる。 According to the power supply system of the present invention, the usage ratio of the DC generator can be improved, and a highly efficient power supply system using renewable energy can be obtained.
本発明の実施形態1を示すブロック図である。It is a block diagram which shows Embodiment 1 of this invention. 本発明の実施形態2を示すブロック図である。It is a block diagram which shows Embodiment 2 of this invention. 本発明の実施形態3を示すブロック図である。It is a block diagram which shows Embodiment 3 of this invention. 晴天時の負荷消費電力と直流発電機出力との時刻毎の関係を示すグラフである。It is a graph which shows the relationship for every time of load power consumption at the time of fine weather, and a DC generator output. 曇天時、雨天時の負荷消費電力と直流発電機出力との時刻毎の関係を示すグラフである。It is a graph which shows the relationship for every time of the load power consumption at the time of cloudy weather, and rainy weather, and a DC generator output. 不規則天候時の負荷消費電力と直流発電機出力との時刻毎の関係を示すグラフである。It is a graph which shows the relationship for every time of the load power consumption at the time of irregular weather, and a DC generator output. 直流発電機の最大出力と負荷消費電力のバランスについて説明するグラフである。It is a graph explaining the balance of the maximum output of a DC generator and load power consumption. 本発明の実施形態4を示すブロック図である。It is a block diagram which shows Embodiment 4 of this invention. 本発明の実施形態5を示すブロック図である。It is a block diagram which shows Embodiment 5 of this invention. 本発明の実施形態6を示すブロック図である。It is a block diagram which shows Embodiment 6 of this invention. 本発明の実施形態7を示すブロック図である。It is a block diagram which shows Embodiment 7 of this invention. 本発明の実施形態8を示すブロック図である。It is a block diagram which shows Embodiment 8 of this invention. 図12に示すブロック図の一部詳細図である。FIG. 13 is a partial detail view of the block diagram shown in FIG. 12. 従来の電源システムのブロック図である。It is a block diagram of the conventional power supply system.
 本発明に係る電源システムは、再生可能エネルギーを用いた直流発電機と交流発電機とを並列運転使用する際の並列運転式の電源システム(実施形態1~3)と、再生可能エネルギーを用いた直流発電機を含む複数の直流発電機と交流発電機とをハイブリッド式に運転使用する際のハイブリッド式の電源システム(実施形態4~8)とに、好適に適用される。まず、並列運転式の電源システム(実施形態1~3)について順次説明する。 The power supply system according to the present invention uses a parallel operation type power supply system (embodiments 1 to 3) when using a DC generator and an AC generator using renewable energy in parallel operation, and renewable energy. The present invention is preferably applied to a hybrid power supply system (Embodiments 4 to 8) when a plurality of DC generators including a DC generator and an AC generator are operated in a hybrid manner. First, the parallel operation type power supply system (Embodiments 1 to 3) will be sequentially described.
 〔実施形態1〕
 本発明の第1の実施形態について図1及び、図4~6を参照して説明する。図1は、本発明の電源システム100のブロック図であり、図4~6は天候による、負荷消費電力と直流発電機出力の関係を表わしたグラフである。
Embodiment 1
A first embodiment of the present invention will be described with reference to FIG. 1 and FIGS. FIG. 1 is a block diagram of a power supply system 100 according to the present invention, and FIGS. 4 to 6 are graphs showing the relationship between load power consumption and DC generator output depending on the weather.
 先ず、図1を参照して電源システム100(並列運転電源システム)の構成を説明する。電源システム100は、再生可能エネルギーを使用した直流発電機101と、直流発電機101の出力を変圧する第1DC-DCコンバータ104と、化石燃料を使用した交流発電機102と、交流発電機102の出力を直流に変換するAC-DCコンバータ105と、第1DC-DCコンバータ104及びAC-DCコンバータ105の出力を交流に変換するインバータ106と、交流発電機102の出力供給先を、AC-DCコンバータ105又は負荷109へ切り替える切替部103(スイッチ)と、システム制御を行う制御部107と、インバータ106の出力と負荷109との間に介在されるリレー108を備えている。 First, the configuration of the power supply system 100 (parallel operation power supply system) will be described with reference to FIG. The power supply system 100 includes a DC generator 101 that uses renewable energy, a first DC-DC converter 104 that transforms the output of the DC generator 101, an AC generator 102 that uses fossil fuel, and an AC generator 102. AC-DC converter 105 that converts the output into direct current, inverter 106 that converts the output of first DC-DC converter 104 and AC-DC converter 105 into alternating current, and the output supply destination of AC generator 102 is an AC-DC converter. A switching unit 103 (switch) that switches to 105 or a load 109, a control unit 107 that performs system control, and a relay 108 that is interposed between the output of the inverter 106 and the load 109 are provided.
 次に、上記した各ブロックについて具体的に説明する。直流発電機101には、例えば、100kW程度の太陽光発電装置が用いることができる。また、太陽光発電に限らず、他の再生可能エネルギーを用いる発電装置を用いることもできる。 Next, each block described above will be specifically described. For the DC generator 101, for example, a solar power generation device of about 100 kW can be used. Moreover, not only solar power generation but also a power generation device using other renewable energy can be used.
 第1DC-DCコンバータ104は、昇圧チョッパ方式であり、内蔵のマイコンでデューティ比を変化させることにより昇圧比を調整し、直流発電機101の最大電力点追従制御を行う。 The first DC-DC converter 104 is a step-up chopper method, and adjusts the step-up ratio by changing the duty ratio with a built-in microcomputer to perform maximum power point tracking control of the DC generator 101.
 交流発電機102は、例えば、100kW程度のガスタービンが用いられる。また、常時回転子が一定速度となるよう調速制御が可能なものが好ましい。この調速制御には、遠心振り子を用いた機械式を採用しても良いし、電子式(電子ガバナ)を採用することもできる。また、ガスタービンに限らず、ディーゼル発電機など他の回転式発電機を採用しても構わない。 As the AC generator 102, for example, a gas turbine of about 100 kW is used. Further, it is preferable that the speed control can be performed so that the rotor always has a constant speed. For this speed control, a mechanical system using a centrifugal pendulum may be employed, or an electronic system (electronic governor) may be employed. Moreover, you may employ | adopt other rotary generators, such as not only a gas turbine but a diesel generator.
 AC-DCコンバータ105は、例えば、ダイオードブリッジによる整流回路と電圧整合用のDC-DCコンバータが組み合わされて用いられる。また、内部にマイコンを備えており、第1DC-DCコンバータ104が最大電力点追従制御を行うことで生じるDC系統の電圧変動に応じて、出力の調整を行う。 The AC-DC converter 105 is, for example, a combination of a rectifier circuit using a diode bridge and a DC-DC converter for voltage matching. Further, an internal microcomputer is provided, and the output is adjusted in accordance with the voltage fluctuation of the DC system caused by the first DC-DC converter 104 performing the maximum power point tracking control.
 インバータ106は、トランスレス方式であり、内蔵のマイコンによるPWM(Pulse Width Modulation)制御にて、第1DC-DCコンバータ104或いは、AC-DCコンバータ105の直流出力を交流に変換する。更に、オペアンプ、変流器及び出力トランスが内蔵されており、出力値をオペアンプで増幅し、マイコンでAD変換することにより、電流値、電圧値の検出を行う。また更に、交流発電機102に組み込まれた、図示しないエンコーダ又はレゾルバ等、回転子を検出するセンサーにより信号を得て交流発電機102と同期を図る。 The inverter 106 is a transformerless system, and converts the direct current output of the first DC-DC converter 104 or the AC-DC converter 105 into alternating current by PWM (Pulse Width Modulation) control by a built-in microcomputer. Furthermore, an operational amplifier, a current transformer, and an output transformer are built in, and the current value and the voltage value are detected by amplifying the output value with the operational amplifier and performing AD conversion with the microcomputer. Furthermore, a signal is obtained by a sensor that detects a rotor, such as an encoder or resolver (not shown) incorporated in the AC generator 102, and is synchronized with the AC generator 102.
 切替部103はスイッチであって、交流発電機102の出力をAC-DCコンバータ105経由でのDC母線114への接続又は負荷109への接続に切り替える。 The switching unit 103 is a switch, and switches the output of the AC generator 102 to connection to the DC bus 114 or connection to the load 109 via the AC-DC converter 105.
 制御部107は、例えば、RS485のシリアル通信を用いて、第1DC-DCコンバータ104、AC-DCコンバータ105、インバータ106、スイッチ103の各々の動作を制御する。 The control unit 107 controls the operations of the first DC-DC converter 104, the AC-DC converter 105, the inverter 106, and the switch 103 using, for example, RS485 serial communication.
 リレー108は、直流発電機101と交流発電機102の動作状態に連系して、インバータ106の出力と負荷109との間を断続する。 The relay 108 is connected to the operating state of the DC generator 101 and the AC generator 102 to connect between the output of the inverter 106 and the load 109.
 次に、図1と図4を参照して並列運転方式の電源システム100の基本動作について説明する。図1の電源システム100において、直流発電機101と交流発電機102は下記の手順で並列運転される。また、図4は、晴天日の終日における並列運転時の負荷消費電力と直流発電機101の出力の関係を時刻毎に表わしたグラフである。以下、直流発電機101は太陽光発電装置である場合を例として説明する。 Next, the basic operation of the parallel operation power supply system 100 will be described with reference to FIG. 1 and FIG. In the power supply system 100 of FIG. 1, the DC generator 101 and the AC generator 102 are operated in parallel according to the following procedure. FIG. 4 is a graph showing the relationship between the load power consumption and the output of the DC generator 101 during parallel operation on a sunny day all the time. Hereinafter, the case where the DC generator 101 is a solar power generation device will be described as an example.
 また、図4を参照し、基本動作の説明に先立って並列運転時の負荷消費電力と直流発電機101の出力との関係について説明しておく。図4に示すように、直流発電機101の出力曲線POLは、太陽光を使用するため1日を通して不規則なものとなり、また、当然のことながら夜間は出力がない。よって、個々の時刻において直流発電機101の出力曲線POLが負荷消費電力曲線PCLの値に満たない部分は、交流発電機102の出力(図示省略)のみが負荷に供給されている。 Referring to FIG. 4, the relationship between the load power consumption during parallel operation and the output of the DC generator 101 will be described prior to the description of the basic operation. As shown in FIG. 4, the output curve POL of the DC generator 101 becomes irregular throughout the day because of the use of sunlight, and of course there is no output at night. Therefore, only the output (not shown) of the AC generator 102 is supplied to the load in the portion where the output curve POL of the DC generator 101 does not satisfy the value of the load power consumption curve PCL at each time.
 次に、図1を参照して、電源システム100の基本動作の実際を説明する。先に説明した、夜間において交流発電機102の出力のみが負荷に供給される際、直流発電機101の出力がないため、第1DC-DCコンバータ104及びインバータ106の出力は停止しているが、第1DC-DCコンバータ104は、直流発電機101からの入力電圧を逐次モニタし、予め設定した時間毎に制御部107に送信する。直流発電機101からの入力電圧が予め設定した電圧に達すると、制御部107が第1DC-DCコンバータ104及びインバータ106に動作指示を出し、出力動作が開始される。なお、第1DC-DCコンバータ104、インバータ106、AC-DCコンバータ105はそれぞれ、入力電圧の他、少なくとも入力電流を測定し、これらを制御部107に送信している。また、インバータ106からの出力手順は下記のとおりである。
(1)インバータ106に内蔵されるマイコンにより、交流発電機102と同じ周波数の基準正弦波が作成される。
(2)リレー108がオフされ、インバータ106は交流発電機102に組み込まれた検出器117から交流発電機102の電圧位相を取得する。
(3)基準正弦波の電圧位相が、交流発電機102の電圧位相に合うように調節される。
(4)手順(3)での位相が合致した時点でリレー108がオンされ、インバータ106と交流発電機102の出力が接続される。
(5)交流発電機102に流出する電流値が検出器118により検出される。
(6)交流発電機102に流出する電流値が最大になるように、また基準正弦波に位相が合致するように(高力率となるように)、インバータ106の電流フィードバック制御が行われる。
Next, the actual basic operation of the power supply system 100 will be described with reference to FIG. As described above, when only the output of the AC generator 102 is supplied to the load at night, the output of the first DC-DC converter 104 and the inverter 106 is stopped because there is no output of the DC generator 101. The first DC-DC converter 104 sequentially monitors the input voltage from the DC generator 101 and transmits it to the control unit 107 every preset time. When the input voltage from the DC generator 101 reaches a preset voltage, the control unit 107 issues an operation instruction to the first DC-DC converter 104 and the inverter 106, and an output operation is started. Each of the first DC-DC converter 104, the inverter 106, and the AC-DC converter 105 measures at least the input current in addition to the input voltage and transmits them to the control unit 107. The output procedure from the inverter 106 is as follows.
(1) A reference sine wave having the same frequency as that of the AC generator 102 is created by a microcomputer built in the inverter 106.
(2) The relay 108 is turned off, and the inverter 106 acquires the voltage phase of the AC generator 102 from the detector 117 incorporated in the AC generator 102.
(3) The voltage phase of the reference sine wave is adjusted to match the voltage phase of the AC generator 102.
(4) When the phases in step (3) match, the relay 108 is turned on, and the inverter 106 and the output of the AC generator 102 are connected.
(5) The current value flowing out to the AC generator 102 is detected by the detector 118.
(6) Current feedback control of the inverter 106 is performed so that the value of the current flowing out to the AC generator 102 is maximized and the phase matches the reference sine wave (high power factor).
 次に、制御部107による、電源システム100の制御動作の詳細について説明する。制御部107はインバータ106を制御し、インバータ106の検出器116が、交流発電機102の出力電流を、検出器115がAC母線113の電圧を検出する。 Next, details of the control operation of the power supply system 100 by the control unit 107 will be described. The control unit 107 controls the inverter 106, and the detector 116 of the inverter 106 detects the output current of the AC generator 102 and the detector 115 detects the voltage of the AC bus 113.
 また、AC母線113の電圧が許容できる範囲で、直流発電機101からの電流が最大となるようにインバータ106の出力電流を上げるよう制御する。この動作はインバータ106の出力電圧を上げても、出力電流が増加しなくなるまで所望のゲインにて電流フィードバック制御が行われる。すなわち、システム内にて直流発電機101の出力が最大となるよう制御が行われる。 Also, the output current of the inverter 106 is controlled so as to maximize the current from the DC generator 101 within a range where the voltage of the AC bus 113 is acceptable. In this operation, even if the output voltage of the inverter 106 is increased, current feedback control is performed with a desired gain until the output current does not increase. That is, control is performed so that the output of the DC generator 101 is maximized in the system.
 一方、インバータ106の出力が一定電圧を維持している状態で、出力電流が減少していく場合は、気象条件等により直流発電機101の出力が低下していると判断され、出力電流が低下しないレベルまで、インバータ106の出力電圧を低下させる制御を行う。 On the other hand, when the output current decreases while the output of the inverter 106 is maintained at a constant voltage, it is determined that the output of the DC generator 101 is decreasing due to weather conditions or the like, and the output current decreases. Control is performed to reduce the output voltage of the inverter 106 to a level at which it does not occur.
 また、直流発電機101の出力に応じて、切替部103の切り替え制御を行う。具体的には、直流発電機101の出力比率が小さいとき、例えば、負荷消費電力の1/2未満のときは、制御部107の指示により、切替部103がAC母線113側に切り替えられるとともにAC-DCコンバータ105の動作を停止させて、上述した基本動作による運転が行われる。 Further, switching control of the switching unit 103 is performed according to the output of the DC generator 101. Specifically, when the output ratio of the DC generator 101 is small, for example, less than ½ of the load power consumption, the switching unit 103 is switched to the AC bus 113 side according to an instruction from the control unit 107 and the AC -The operation of the basic operation described above is performed with the operation of the DC converter 105 stopped.
 また、直流発電機101の出力比率が大きいとき、例えば負荷消費電力の1/2以上のときは、制御部107の指示により、切替部103がAC-DCコンバータ105側に切り替えられるとともにAC-DCコンバータ105が動作を開始する。ここで、切替部103は機械式のスイッチでも良いが、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)やトライアックなどの半導体を用いたスイッチがより好ましい。 Further, when the output ratio of the DC generator 101 is large, for example, when the load power consumption is ½ or more, the switching unit 103 is switched to the AC-DC converter 105 side according to an instruction from the control unit 107 and the AC-DC Converter 105 starts operating. Here, the switching unit 103 may be a mechanical switch, but a switch using a semiconductor such as a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) or a triac is more preferable.
 更に、インバータ106の制御を、一般的なパワーコンディショナが自律運転する際と同様の定電圧出力動作をさせるために電圧フィードバック制御に変更する。以下に、インバータ106の電圧フィードバック制御の手順を説明する。
(1)インバータ106に内蔵されるマイコンにより、交流発電機102と同じ周波数の基準正弦波が作成される。
(2)基準正弦波の電圧位相は、切替部103が切り替わる前と同じに保つ。(随時、交流発電機102の電圧位相を検出器117により検出し、同期が保たれるよう補正を行う。)
(3)AC母線113の電圧値を検出器115により検出する。
(4)AC母線113の電圧が許容範囲内であることをモニタし、且つ一定電圧が保たれるよう、電圧フィードバック制御を行う。
Further, the control of the inverter 106 is changed to voltage feedback control in order to perform a constant voltage output operation similar to that when a general power conditioner autonomously operates. Below, the procedure of the voltage feedback control of the inverter 106 is demonstrated.
(1) A reference sine wave having the same frequency as that of the AC generator 102 is created by a microcomputer built in the inverter 106.
(2) The voltage phase of the reference sine wave is kept the same as before the switching unit 103 is switched. (At any time, the voltage phase of the AC generator 102 is detected by the detector 117 and corrected so that synchronization is maintained.)
(3) The voltage value of the AC bus 113 is detected by the detector 115.
(4) Monitor that the voltage of the AC bus 113 is within an allowable range, and perform voltage feedback control so that a constant voltage is maintained.
 上記の切替部103の切り替え動作及び出力制御の変更は、制御部107が負荷消費電力及び直流発電機101の出力電圧を比較して交流発電機102、及びスイッチ103に指示を行い実施される。このとき、図4のように、直流発電機101の出力が負荷消費電力に比較して小さく又、安定している晴天時や、図5のように曇天又は雨天時の場合は特に問題はないが、時刻単位で天候が不規則に変化することで、図6の丸破線で囲まれた部分のように、直流発電機101の出力曲線POLが頻繁に増減する場合がある。 The change of the switching operation and the output control of the switching unit 103 is performed by the control unit 107 comparing the load power consumption and the output voltage of the DC generator 101 and instructing the AC generator 102 and the switch 103. At this time, there is no particular problem in the case of clear weather when the output of the DC generator 101 is small and stable compared to the load power consumption as shown in FIG. 4, or when it is cloudy or rainy as shown in FIG. However, when the weather changes irregularly in units of time, the output curve POL of the DC generator 101 may increase or decrease frequently as shown by the portion surrounded by the round broken line in FIG.
 このような場合、切替部103の切り替えがあまりに高速に切り替えられると制御及びインバータ106との同期が困難となるため、スイッチ103の切り替え制御は、切り替えが必要な状態が一定時間以上、例えば30分以上継続する場合に切り替えを行うように予め設定すると良い。 In such a case, if the switching of the switching unit 103 is switched too fast, the control and the synchronization with the inverter 106 become difficult. It is good to set beforehand so that it may switch, when continuing above.
 実施形態1によれば、負荷109に対して、常に直流発電機101の出力と交流発電機102の出力とを合わせた出力が供給され、システム内で直流発電機101の出力が最大となるよう制御される。したがって、電源システム100内において、直流発電機101に用いる再生可能エネルギーの使用比率を最大限に高めることができる。 According to the first embodiment, an output in which the output of the DC generator 101 and the output of the AC generator 102 are always supplied to the load 109 so that the output of the DC generator 101 is maximized in the system. Be controlled. Therefore, the use ratio of the renewable energy used for the DC generator 101 in the power supply system 100 can be maximized.
 上記したように本実施形態に係る並列運転方式の電源システム100は、直流発電機101からの出力が入力される直流入力部と、交流発電機102からの出力が入力される交流入力部と、交流入力部に入力された交流を直流へ変換するAC-DCコンバータ105と、直流入力部に入力された直流とAC-DCコンバータ105の出力を交流に変換するインバータ106と、交流入力部の接続先を、AC-DCコンバータ105またはインバータ106の出力に切り替える切替部103と、交流入力部に入力された交流とインバータ106から出力された交流とを選択的に出力する出力部と、を備える。 As described above, the parallel operation power supply system 100 according to this embodiment includes a DC input unit to which an output from the DC generator 101 is input, an AC input unit to which an output from the AC generator 102 is input, AC-DC converter 105 that converts AC input to the AC input unit to DC, an inverter 106 that converts DC input to the DC input unit and the output of the AC-DC converter 105 to AC, and connection of the AC input unit A switching unit 103 that switches the output to the output of the AC-DC converter 105 or the inverter 106 and an output unit that selectively outputs the AC input to the AC input unit and the AC output from the inverter 106 are provided.
 この構成であれば、直流発電機101の出力に応じて、切替部103の切り替え制御を行うことにより、直流発電機101の出力を最大限利用できる構成となる。すなわち、本実施形態に係る電源システム100によれば、直流発電機101の使用比率を向上することができ、再生可能エネルギーを用いた高効率な電源システムとなる。 With this configuration, by performing switching control of the switching unit 103 according to the output of the DC generator 101, the output of the DC generator 101 can be used to the maximum extent. That is, according to the power supply system 100 according to the present embodiment, the usage ratio of the DC generator 101 can be improved, and a highly efficient power supply system using renewable energy is obtained.
 〔実施形態2〕
 本発明の他の実施形態について、図2を参照して説明する。図2において、実施形態1と同一部分は、同一符号で示している。本実施形態が実施形態1と異なる点は、AC母線113に対して力率調整部110が追加された点にある。
[Embodiment 2]
Another embodiment of the present invention will be described with reference to FIG. In FIG. 2, the same parts as those of the first embodiment are indicated by the same reference numerals. The present embodiment is different from the first embodiment in that a power factor adjustment unit 110 is added to the AC bus 113.
 力率調整部110は、内部にコンデンサとリアクトルと開閉器の直列回路を複数備えている。また、軽負荷時の位相進み過ぎを防止する遮断機を備えるとより好ましい。そして力率調整部110は、制御部107により開閉器の開閉制御が行われ、コンデンサ容量が多段階に調節されることで、AC母線113の力率が規定の力率となるように調整する。 The power factor adjusting unit 110 includes a plurality of series circuits of capacitors, reactors, and switches. Moreover, it is more preferable to provide a circuit breaker that prevents excessive phase advance at light load. Then, the power factor adjusting unit 110 performs switching control of the switch by the control unit 107 and adjusts the power factor of the AC bus 113 to a specified power factor by adjusting the capacitor capacity in multiple stages. .
 実施形態2によれば、インバータ106が電圧フィードバック制御されているときに、力率が低下することによって、負荷の消費電流に依存してAC母線113が過電流になることを防止できる。 According to the second embodiment, it is possible to prevent the AC bus 113 from being overcurrent depending on the consumption current of the load by reducing the power factor when the inverter 106 is under voltage feedback control.
 〔実施形態3〕
 本発明の更に他の実施形態について、図3と図7を参照して説明する。図3において、実施形態1又は実施形態2と同一部分については、同一符号で示している。また、図7は、直流発電機の最大出力と負荷消費電力のバランスについて説明するグラフである。
[Embodiment 3]
Still another embodiment of the present invention will be described with reference to FIGS. In FIG. 3, the same parts as those in the first embodiment or the second embodiment are denoted by the same reference numerals. FIG. 7 is a graph for explaining the balance between the maximum output of the DC generator and the load power consumption.
 本実施形態が実施形態1又は実施形態2と異なる点は、DC母線114に対して、第2DC-DCコンバータ112を介して蓄電部111が接続された点にある。 This embodiment is different from the first or second embodiment in that the power storage unit 111 is connected to the DC bus 114 via the second DC-DC converter 112.
 先ず、図7を参照し、直流発電機の最大出力と負荷消費電力のバランスについて説明する。電源システム100において、直流発電機101による出力を最大限に利用することについては、上記実施形態で説明した通りであり、このことを考慮すると直流発電機101の最大出力は、想定する負荷消費電力を超えないように設定することが好ましい。しかし、例えば、負荷も含めたシステムの設置条件等により、図7のように直流発電機101の最大出力が、負荷消費電力を超えてしまう場合も考えられる。このような場合、負荷消費電力曲線PCLを上回る丸破線に囲まれた部分の電力は実際には出力されず、直流発電機101が発生する熱として変換されるため、電力としての利用効率は低下してしまう。本実施形態では、係る状況に対応するために上述のとおり、DC母線114に対して、第2DC-DCコンバータ112を介して蓄電部111を接続する構成とする。 First, the balance between the maximum output of the DC generator and the load power consumption will be described with reference to FIG. In the power supply system 100, the maximum output from the DC generator 101 is used as described in the above embodiment. In consideration of this, the maximum output of the DC generator 101 is assumed to be the assumed load power consumption. It is preferable to set so as not to exceed. However, for example, the maximum output of the DC generator 101 may exceed the load power consumption as shown in FIG. 7 due to the installation conditions of the system including the load. In such a case, the electric power in the portion surrounded by the broken broken line exceeding the load power consumption curve PCL is not actually output, and is converted as heat generated by the DC generator 101, so the utilization efficiency as electric power is reduced. Resulting in. In the present embodiment, as described above, the power storage unit 111 is connected to the DC bus 114 via the second DC-DC converter 112 in order to cope with such a situation.
 次に、図3を参照して本実施形態の具体的構成と動作を説明する。蓄電部111には、鉛電池、ニッケル水素電池、リチウムイオン電池、電気二重層キャパシタ又はリチウムイオンキャパシタなどが使用できる。また、第2DC-DCコンバータ112は、電力の方向を双方向に制御できる双方向コンバータである。 Next, the specific configuration and operation of this embodiment will be described with reference to FIG. As the power storage unit 111, a lead battery, a nickel metal hydride battery, a lithium ion battery, an electric double layer capacitor, a lithium ion capacitor, or the like can be used. The second DC-DC converter 112 is a bidirectional converter that can control the direction of power bidirectionally.
 第2DC-DCコンバータ112は、内部にマイコンを備えており、第1DC-DCコンバータ104が、直流発電機101の最大電力点追従制御を行うことで生じるDC母線114の電圧変動に応じて、制御部107の制御により昇降圧比を調整し、DC母線114出力の調整を行う。なお、図示は省略するが、蓄電部111は、双方向インバータを介してAC母線113に接続することもできる。 The second DC-DC converter 112 includes a microcomputer inside, and the first DC-DC converter 104 performs control according to the voltage fluctuation of the DC bus 114 caused by the maximum power point tracking control of the DC generator 101. The step-up / step-down ratio is adjusted by the control of the unit 107, and the output of the DC bus 114 is adjusted. Although illustration is omitted, power storage unit 111 can also be connected to AC bus 113 via a bidirectional inverter.
 実施形態3によれば、直流発電機101の出力比率が高い場合、或いは、気象条件の急変等による出力変動が生じた場合に、蓄電部111によりDC母線114の出力をバックアップする。これにより、直流発電機101に出力変動が生じても、負荷109に対する電力品質を安定させることができる。また、直流発電機101の出力変動があっても、インバータ106における電流フィードバック制御と電圧フィードバック制御、及びスイッチの切り替え動作が頻繁に切り替わることを抑制することもできる。 According to the third embodiment, the output of the DC bus 114 is backed up by the power storage unit 111 when the output ratio of the DC generator 101 is high or when an output fluctuation occurs due to a sudden change in weather conditions. Thereby, even if the output fluctuation occurs in the DC generator 101, the power quality for the load 109 can be stabilized. Further, even when there is a fluctuation in the output of the DC generator 101, it is possible to suppress frequent switching of the current feedback control and voltage feedback control and the switch switching operation in the inverter 106.
 次に、再生可能エネルギーを用いた直流発電機を含む複数の直流発電機と交流発電機とをハイブリッド式に運転使用する際のハイブリッド式の電源システム(実施形態4~8)について説明する。 Next, a description will be given of a hybrid power supply system (Embodiments 4 to 8) when a plurality of DC generators including a DC generator using renewable energy and an AC generator are used in a hybrid manner.
 〔実施形態4〕
 本発明の他の実施形態(実施形態4)について図8を参照して説明する。図8は、本発明に係るハイブリッド式の電源システム100Aのブロック図である。
[Embodiment 4]
Another embodiment (Embodiment 4) of the present invention will be described with reference to FIG. FIG. 8 is a block diagram of a hybrid power supply system 100A according to the present invention.
 先ず、図8を参照してハイブリッド式の電源システム100Aの構成を説明する。ハイブリッド式の電源システム100Aは、直流発電機101A(直流電源装置であって、本発明の第2の直流発電機に相当)と、直流発電機101Aの出力を変圧する第1DC-DCコンバータ104と、直流発電機101Aの電力を蓄電する蓄電部111と、蓄電部111の出力を変圧する第2DC-DCコンバータ112と、交流発電機102及び直流発電機101B(本発明の第1の直流発電機に相当)と、第1DC-DCコンバータ104、第2DC-DCコンバータ112及び直流発電機101Bの出力を交流に変換するインバータ106と、交流発電機102及び直流発電機101Bに動力を供給する動力部119と、動力部119の動力供給先を、交流発電機102又は直流発電機101Bへ切り替える切替部103(スイッチ)と、システム制御を行う制御部107を備えている。又、インバータ106の出力と負荷109との間に介在されるリレー108、直流発電機101Bの出力とDC母線114との間に介在されるリレー120、交流発電機102の出力とAC母線との間に介在されるリレー121を備えている。 First, the configuration of the hybrid power supply system 100A will be described with reference to FIG. The hybrid power supply system 100A includes a direct current generator 101A (a direct current power supply device, which corresponds to the second direct current generator of the present invention), a first DC-DC converter 104 that transforms the output of the direct current generator 101A, , A power storage unit 111 that stores the power of the DC generator 101A, a second DC-DC converter 112 that transforms the output of the power storage unit 111, an AC generator 102, and a DC generator 101B (the first DC generator of the present invention). And an inverter 106 that converts the output of the first DC-DC converter 104, the second DC-DC converter 112, and the DC generator 101B to AC, and a power unit that supplies power to the AC generator 102 and the DC generator 101B 119 and a switching unit 103 (switch to switch the power supply destination of the power unit 119 to the AC generator 102 or the DC generator 101B. And h), a control unit 107 for performing system control. Further, the relay 108 interposed between the output of the inverter 106 and the load 109, the relay 120 interposed between the output of the DC generator 101B and the DC bus 114, the output of the AC generator 102 and the AC bus A relay 121 interposed therebetween is provided.
 次に、上記した各ブロックについて具体的に説明する。直流発電機101Aは再生可能エネルギーを用いた第2の直流発電機であって、例えば、太陽光発電装置が用いられる。又、太陽光発電に限らず、他の再生可能エネルギーを使用する発電装置を用いることもできる。 Next, each block described above will be specifically described. The DC generator 101A is a second DC generator using renewable energy, and for example, a solar power generator is used. Moreover, not only solar power generation but also a power generation device using other renewable energy can be used.
 第1DC-DCコンバータ104は、昇圧チョッパ方式であり、内蔵のマイコンでデューティ比を変化させることにより昇圧比を調整し、直流発電機101Aの最大電力点追従制御を行う。 The first DC-DC converter 104 is a step-up chopper method, and adjusts the step-up ratio by changing the duty ratio with a built-in microcomputer to perform maximum power point tracking control of the DC generator 101A.
 蓄電部111は、鉛電池、ニッケル水素電池、リチウムイオン電池、電気二重層キャパシタ、リチウムイオンキャパシタなどが使用できる。尚、蓄電部111は、上記した電池のみを使用することもできるし、電池とキャパシタをそれぞれ別のDC-DCコンバータ(図示せず)を介して第1DC-DCコンバータ104の出力に並列接続することもできる。 The power storage unit 111 can be a lead battery, a nickel metal hydride battery, a lithium ion battery, an electric double layer capacitor, a lithium ion capacitor, or the like. The power storage unit 111 can use only the above-described battery, or the battery and the capacitor are connected in parallel to the output of the first DC-DC converter 104 via separate DC-DC converters (not shown). You can also.
 第2DC-DCコンバータ112は、内部にマイコンを備えており、第1DC-DCコンバータ104が、直流発電機101Aの最大電力点追従制御を行うことで生じるDC母線114の電圧変動に応じて、制御部107の制御により昇降圧比を調整し、DC母線114出力の調整を行う。尚、図示は省略するが、蓄電部111は、双方向インバータを介してAC母線113に接続することもできる。 The second DC-DC converter 112 includes a microcomputer therein, and the first DC-DC converter 104 performs control according to the voltage fluctuation of the DC bus 114 caused by the maximum power point tracking control of the DC generator 101A. The step-up / step-down ratio is adjusted by the control of the unit 107, and the output of the DC bus 114 is adjusted. In addition, although illustration is abbreviate | omitted, the electrical storage part 111 can also be connected to AC bus-bar 113 via a bidirectional | two-way inverter.
 交流発電機102及び直流発電機101Bは、例えば、共に回転式発電機であり、動力部119から動力を与えられて発電する。特に、直流発電機101Bにはダイナモ又はオルタネータを用いることができる。好ましくは、回転数の変化による発電量の変動がより少ないオルタネータを用いる。 The AC generator 102 and the DC generator 101B are both rotary generators, for example, and are powered by the power unit 119 to generate power. In particular, a dynamo or an alternator can be used for the DC generator 101B. Preferably, an alternator with less fluctuation in the amount of power generation due to a change in the rotational speed is used.
 動力部119には、例えば化石燃料を使用するエンジン等の内燃機関、或いは、原子力やバイオマス等を使用する蒸気タービン等の外燃機関を用いることができる。 As the power unit 119, for example, an internal combustion engine such as an engine using fossil fuel, or an external combustion engine such as a steam turbine using nuclear power or biomass can be used.
 インバータ106は、トランスレス方式であり、内蔵のマイコンによるPWM(Pulse Width Modulation)制御にて、第1DC-DCコンバータ104、第2DC-DCコンバータ112及び直流発電機101Bの直流出力を交流に変換する。また、オペアンプ、変流器及び出力トランスが内蔵されており、出力値をオペアンプで増幅し、内蔵のマイコンでAD変換することにより、電圧検出器115、電流検出器116からそれぞれ電圧値、電流値の検出を行う。又、エンコーダ又はレゾルバ等からなる検出器117により回転子の位相を検出し、交流発電機102との同期をとる。 The inverter 106 is a transformer-less system, and converts the DC output of the first DC-DC converter 104, the second DC-DC converter 112, and the DC generator 101B into AC by PWM (Pulse Width Modulation) control by a built-in microcomputer. . In addition, an operational amplifier, a current transformer, and an output transformer are built in. The output value is amplified by the operational amplifier, and AD conversion is performed by the built-in microcomputer, so that the voltage value and current value are respectively obtained from the voltage detector 115 and the current detector 116. Detection is performed. Further, the phase of the rotor is detected by a detector 117 composed of an encoder, a resolver, or the like, and is synchronized with the AC generator 102.
 切替部103は、動力部119の動力を交流発電機102又は直流発電機101Bに伝達する。切替部103による動力伝達先の切り替えは、例えば、切替部103と、交流発電機102及び直流発電機101Bに動力伝達切り替え用のギアをそれぞれ備えさせておき、動力部119の動力伝達先を交流発電機102又は直流発電機101Bに切り替えて伝達する。また、切替部103には、交流発電機102及び直流発電機101Bのいずれのギアにも動力を伝達しない中立位置が設けられており、負荷109への供給電力が、直流発電機101Aと蓄電部111の出力で賄える場合に、直流発電機101Bと交流発電機102を停止できるようになっている。 The switching unit 103 transmits the power of the power unit 119 to the AC generator 102 or the DC generator 101B. The switching of the power transmission destination by the switching unit 103 is performed by, for example, providing the switching unit 103, the AC generator 102, and the DC generator 101B each with a gear for switching power transmission, and changing the power transmission destination of the power unit 119 to AC. Switch to the generator 102 or the DC generator 101B for transmission. Further, the switching unit 103 is provided with a neutral position that does not transmit power to any gear of the AC generator 102 and the DC generator 101B, and the power supplied to the load 109 is supplied to the DC generator 101A and the power storage unit. When the output of 111 is covered, the DC generator 101B and the AC generator 102 can be stopped.
 この状態は、再生可能エネルギーを用いた直流発電機101Aと蓄電部111の出力を用いた電源システムとなるので、再生可能エネルギーを用いた直流発電機の使用比率を向上することができ、高効率な電源システムとなる。すなわち、切替部103は、交流発電機102と直流発電機(101A、101B)の運転または停止を切り替える機能を有すると言える。 Since this state is a power supply system using the output of the DC generator 101A using the renewable energy and the power storage unit 111, the usage ratio of the DC generator using the renewable energy can be improved, and high efficiency is achieved. Power system. That is, it can be said that the switching unit 103 has a function of switching operation or stop of the AC generator 102 and the DC generator (101A, 101B).
 制御部107は、例えば、RS485のシリアル通信を用いて、第1DC-DCコンバータ104、第2DC-DCコンバータ112、インバータ106、切替部103の各々の動作を制御する。 The control unit 107 controls the operations of the first DC-DC converter 104, the second DC-DC converter 112, the inverter 106, and the switching unit 103, for example, using RS485 serial communication.
 リレー108は、直流発電機101Aと交流発電機102の動作状態に連系して、インバータ106の出力と負荷109との間を開閉する。 The relay 108 is connected to the operating state of the DC generator 101A and the AC generator 102 to open and close between the output of the inverter 106 and the load 109.
 リレー120は、直流発電機101Bを停止又は運転させる際の回転数変化による出力変動が、インバータ106との連系動作に影響を与えないように開閉される。同様に、リレー121は、交流発電機102を停止又は運転させる際の回転数変化による出力変動が、インバータ106との連系動作に影響を与えないように開閉される。より詳しくは、各々のリレーに接続された発電機を停止させる際は、先ず、リレーを開いた後に発電機を停止させ、又、発電機を運転させる際は、各々の発電機の出力が安定するまではリレーを開いておき安定後に閉じるようにする。このようにすることで、各々の発電機の回転数の変化による出力変動がインバータ106との連系動作に影響を与えないようにしている。 The relay 120 is opened and closed so that the output fluctuation due to the rotation speed change when the DC generator 101B is stopped or operated does not affect the interconnection operation with the inverter 106. Similarly, the relay 121 is opened and closed so that the output fluctuation due to the change in the rotation speed when the AC generator 102 is stopped or operated does not affect the interconnection operation with the inverter 106. More specifically, when stopping the generator connected to each relay, first, the generator is stopped after opening the relay, and when the generator is operated, the output of each generator is stable. Open the relay until it is closed and close it after stabilization. By doing in this way, the output fluctuation | variation by the change of the rotation speed of each generator is prevented from affecting the interconnection | linkage operation | movement with the inverter 106. FIG.
 次に、図8を参照して、ハイブリッド式の電源システム100Aの基本動作を説明する。夜間等で直流発電機101Aの出力が無く、交流発電機102の出力のみが負荷に供給される際、第1DC-DCコンバータ104及びインバータ106の出力は停止しているが、第1DC-DCコンバータ104は、直流発電機101Aからの入力電圧を逐次モニタし、予め設定した時間毎に制御部107に送信する。直流発電機101Aからの入力電圧が予め設定した電圧に達すると、制御部107が第1DC-DCコンバータ104、第2DC-DCコンバータ112及びインバータ106に動作指示を出し、出力動作が開始される。尚、第1DC-DCコンバータ104、第2DC-DCコンバータ112、インバータ106はそれぞれ、入力電圧の他、少なくとも入力電流を測定し、これらを制御部107に送信している。又、インバータ106からの出力手順は下記のとおりである。
(1)インバータ106に内蔵されるマイコンにより、交流発電機102と同じ周波数の基準正弦波が作成される。
(2)リレー108がオフされ、インバータ106は交流発電機102に接続された検出器117から交流発電機102の電圧位相を取得する。
(3)基準正弦波の電圧位相が、交流発電機102の電圧位相に合うように調節される。
(4)手順(3)での位相が合致した時点でリレー108がオンされ、インバータ106と交流発電機102の出力が接続される。
(5)交流発電機102に流出する電流値が検出器118により検出される。
(6)交流発電機102に流出する電流値が最大になるように、又基準正弦波に位相が合致するように、インバータ106の電流フィードバック制御が行われる。
Next, the basic operation of the hybrid power supply system 100A will be described with reference to FIG. When there is no output of the DC generator 101A at night or the like and only the output of the AC generator 102 is supplied to the load, the outputs of the first DC-DC converter 104 and the inverter 106 are stopped, but the first DC-DC converter 104 sequentially monitors the input voltage from the DC generator 101A and transmits it to the control unit 107 every preset time. When the input voltage from DC generator 101A reaches a preset voltage, control unit 107 issues an operation instruction to first DC-DC converter 104, second DC-DC converter 112, and inverter 106, and an output operation is started. The first DC-DC converter 104, the second DC-DC converter 112, and the inverter 106 measure at least the input current in addition to the input voltage, and transmit these to the control unit 107. The output procedure from the inverter 106 is as follows.
(1) A reference sine wave having the same frequency as that of the AC generator 102 is created by a microcomputer built in the inverter 106.
(2) The relay 108 is turned off, and the inverter 106 acquires the voltage phase of the AC generator 102 from the detector 117 connected to the AC generator 102.
(3) The voltage phase of the reference sine wave is adjusted to match the voltage phase of the AC generator 102.
(4) When the phases in step (3) match, the relay 108 is turned on, and the inverter 106 and the output of the AC generator 102 are connected.
(5) The current value flowing out to the AC generator 102 is detected by the detector 118.
(6) Current feedback control of the inverter 106 is performed so that the value of the current flowing out to the AC generator 102 is maximized and the phase matches the reference sine wave.
 次に、制御部107による、ハイブリッド式の電源システム100Aの制御動作の詳細について説明する。制御部107はインバータ106を制御し、インバータ106の検出器116が、交流発電機102の出力電流を検出し、検出器115がAC母線113の電圧を検出する。 Next, the details of the control operation of the hybrid power supply system 100A by the control unit 107 will be described. The control unit 107 controls the inverter 106, the detector 116 of the inverter 106 detects the output current of the AC generator 102, and the detector 115 detects the voltage of the AC bus 113.
 又、AC母線113の電圧が許容できる範囲で、直流発電機101Aからの電流が最大となるようにインバータ106の出力電流を上げるよう制御する。この動作はインバータ106の出力電圧を上げても、出力電流が増加しなくなるまで所望のゲインにて電流フィードバック制御が行われる。すなわち、システム内にて直流発電機101Aの出力が最大となるよう制御が行われる。 Also, the output current of the inverter 106 is controlled so as to maximize the current from the DC generator 101A within the allowable range of the voltage of the AC bus 113. In this operation, even if the output voltage of the inverter 106 is increased, current feedback control is performed with a desired gain until the output current does not increase. That is, control is performed so that the output of the DC generator 101A is maximized in the system.
 一方、インバータ106の出力が一定電圧を維持している状態で、出力電流が減少していく場合は、気象条件等により第1直流発電機101Aの出力が低下していると判断され、出力電流が低下しないレベルまで、インバータ106の出力電圧を低下させる制御を行う。 On the other hand, when the output current decreases while the output of the inverter 106 is maintained at a constant voltage, it is determined that the output of the first DC generator 101A has decreased due to weather conditions or the like, and the output current Control is performed to reduce the output voltage of the inverter 106 to a level at which does not decrease.
 又、再生可能エネルギーを用いた直流発電機101Aの出力に応じて、切替部103の切り替え制御を行う。ここで、負荷109の消費電力L、交流発電機102の出力電力α、インバータ106の出力電力βのとき、L=α+βの関係で電力の需給バランスが保たれるとすると、インバータ106の出力電力βは、直流発電機101Aの出力に依存して比較的大きな変動が生じる。 Also, switching control of the switching unit 103 is performed according to the output of the DC generator 101A using renewable energy. Here, when the power consumption L of the load 109, the output power α of the AC generator 102, and the output power β of the inverter 106, if the power supply-demand balance is maintained in a relationship of L = α + β, the output power of the inverter 106 β varies relatively depending on the output of the DC generator 101A.
 そこで、再生可能エネルギーを用いた直流発電機101Aの出力P1に閾値Thを設定し、この閾値Thに基いて切り替え制御を行い、直流発電機101B又は交流発電機102を運転する。この閾値Thは、例えば、負荷109の消費電力Lに対する直流発電機101Aの出力P1の比である。この閾値Thに基く切り替え制御は、例えば以下の表1のように行われる。 Therefore, a threshold Th is set for the output P1 of the DC generator 101A using renewable energy, and switching control is performed based on the threshold Th, and the DC generator 101B or the AC generator 102 is operated. This threshold Th is, for example, the ratio of the output P1 of the DC generator 101A to the power consumption L of the load 109. The switching control based on the threshold value Th is performed as shown in Table 1 below, for example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1は、閾値Thに対する直流発電機101Aの出力P1の値によって切替部103が切り替えられるときの、直流発電機101B又は交流発電機102の運転状態を表わしている。直流発電機101Aの出力P1が閾値Thを下回るときは、制御部107の指示により、切替部103が交流発電機102の側に切り替えられ、動力部119の動力が交流発電機102へ伝達され、上述した基本動作による運転が行われる。 Table 1 shows the operating state of the DC generator 101B or the AC generator 102 when the switching unit 103 is switched by the value of the output P1 of the DC generator 101A with respect to the threshold Th. When the output P1 of the DC generator 101A falls below the threshold Th, the switching unit 103 is switched to the AC generator 102 side according to an instruction from the control unit 107, and the power of the power unit 119 is transmitted to the AC generator 102. The operation according to the basic operation described above is performed.
 又、再生可能エネルギーを用いた直流発電機101Aの出力P1が閾値Thを上回るときは、制御部107の指示により、切替部103が直流発電機101Bの側に切り替えられ、動力部119の動力が直流発電機101Bへ伝達される。これにより、交流発電機102は停止し、直流発電機101Bの出力が第2DC-DCコンバータ112の出力及び第1DC-DCコンバータ104の出力と並列に接続され、これらの合計出力がインバータ106へ入力される。このとき、負荷109への電力供給はインバータ106の出力電力のみとなる。 Further, when the output P1 of the DC generator 101A using renewable energy exceeds the threshold Th, the switching unit 103 is switched to the DC generator 101B side according to the instruction of the control unit 107, and the power of the power unit 119 is changed. It is transmitted to the DC generator 101B. As a result, the AC generator 102 stops, the output of the DC generator 101B is connected in parallel with the output of the second DC-DC converter 112 and the output of the first DC-DC converter 104, and the total output thereof is input to the inverter 106. Is done. At this time, the power supply to the load 109 is only the output power of the inverter 106.
 尚、再生可能エネルギーを用いた直流発電機101Aの出力が定格の90%以上を維持しているときは、切替部103を中立位置、すなわち、動力部119の動力が直流発電機101B、交流発電機102のいずれにも伝達しないように制御して両方の発電機を停止させ、インバータ106への入力が、第1DC-DCコンバータ104と第2DC-DCコンバータ112の合計出力となるようにしても良い。 When the output of the DC generator 101A using renewable energy maintains 90% or more of the rating, the switching unit 103 is in the neutral position, that is, the power of the power unit 119 is the DC generator 101B, AC power generation Both generators are stopped by controlling not to transmit to any of the machines 102 so that the input to the inverter 106 becomes the total output of the first DC-DC converter 104 and the second DC-DC converter 112. good.
 更に、インバータ106の制御を、一般的なパワーコンディショナが自律運転する際と同様の定電圧出力動作をさせるために電圧フィードバック制御に変更する。以下に、インバータ106の電圧フィードバック制御の手順を説明する。
(1)インバータ106に内蔵されるマイコンにより、交流発電機102と同じ周波数の基準正弦波が作成される。
(2)基準正弦波の電圧位相は、切替部103が切り替わる前と同じに保つ。(随時、交流発電機102の電圧位相を検出器117により検出し、同期が保たれるよう補正を行う。)
(3)AC母線113の電圧値を検出器115により検出する。
(4)AC母線113の電圧が許容範囲内であることをモニタし、且つ一定電圧が保たれるよう、電圧フィードバック制御を行う。
Further, the control of the inverter 106 is changed to voltage feedback control in order to perform a constant voltage output operation similar to that when a general power conditioner autonomously operates. Below, the procedure of the voltage feedback control of the inverter 106 is demonstrated.
(1) A reference sine wave having the same frequency as that of the AC generator 102 is created by a microcomputer built in the inverter 106.
(2) The voltage phase of the reference sine wave is kept the same as before the switching unit 103 is switched. (At any time, the voltage phase of the AC generator 102 is detected by the detector 117 and corrected so that synchronization is maintained.)
(3) The voltage value of the AC bus 113 is detected by the detector 115.
(4) Monitor that the voltage of the AC bus 113 is within an allowable range, and perform voltage feedback control so that a constant voltage is maintained.
 上記の切替部103の切り替え動作及び出力制御の変更は、制御部107が、負荷109の消費電力及び直流発電機101Aの出力電力を比較して交流発電機102及び切替部103に指示を行い実施される。尚、気象条件が時刻単位で不規則に変化すると直流発電機101Aの出力が頻繁に増減する場合がある。このような場合、切替部103の切り替えがあまり高速に切り替えられると、交流発電機102又は直流発電機101Bへの動力伝達制御及びインバータ106との同期が困難となるため、切替部103の切り替え制御は、切り替えが必要な状態が一定時間以上、例えば30分以上継続する場合に切り替えを行うように予め設定すると良い。 The switching operation of the switching unit 103 and the change of the output control are performed by the control unit 107 instructing the AC generator 102 and the switching unit 103 by comparing the power consumption of the load 109 and the output power of the DC generator 101A. Is done. Note that if the weather condition changes irregularly in time units, the output of the DC generator 101A may increase or decrease frequently. In such a case, if the switching of the switching unit 103 is switched too fast, the power transmission control to the AC generator 102 or the DC generator 101B and the synchronization with the inverter 106 become difficult. Is preferably set in advance so that switching is performed when a state requiring switching continues for a certain period of time or longer, for example, 30 minutes or longer.
 以上、商用電力系統から独立した自立型の交流発電機102及び直流発電機101Bと、太陽電池等の再生可能エネルギーを用いる直流発電機101Aを備えたハイブリッド式の電源システム100Aについて説明したが、変形例として、図8の構成において交流発電機102を使用せず、インバータ106の出力を図示しない商用電力系統に接続する構成とすることも可能である。この場合、切替部103は不要であり、動力部119と直流発電機101Bが直結される。 The hybrid type power supply system 100A including the independent AC generator 102 and the DC generator 101B independent of the commercial power system and the DC generator 101A using renewable energy such as a solar battery has been described. As an example, it is possible to connect the output of the inverter 106 to a commercial power system (not shown) without using the AC generator 102 in the configuration of FIG. In this case, the switching unit 103 is unnecessary, and the power unit 119 and the DC generator 101B are directly connected.
 実施形態4によれば、再生可能エネルギーを用いた直流発電機101Aの出力が十分高く、負荷109への電力供給がインバータ106の出力のみとなるとき、直流発電機101Aと並行して直流発電機101Bの出力がインバータ106へ入力される。したがって、インバータ106への入力電力は交流から直流への変換に伴う電力損失を含まないため、システムの発電効率が向上する。 According to the fourth embodiment, when the output of the DC generator 101A using renewable energy is sufficiently high and the power supply to the load 109 is only the output of the inverter 106, the DC generator is parallel to the DC generator 101A. The output of 101B is input to the inverter 106. Therefore, since the input power to the inverter 106 does not include power loss due to conversion from AC to DC, the power generation efficiency of the system is improved.
 上記したように本実施形態に係る電源システム100Aは、直流発電機(101A、101B)からの出力が入力される直流入力部と、交流発電機102からの出力が入力される交流入力部と、直流入力部に入力された直流を交流に変換するインバータ106と、交流発電機102と直流発電機(101A、101B)の運転または停止を切り替える切替部103と、交流入力部に入力された交流とインバータ106から出力された交流とを選択的に出力する出力部と、を備える。 As described above, the power supply system 100A according to the present embodiment includes a DC input unit to which an output from the DC generator (101A, 101B) is input, an AC input unit to which an output from the AC generator 102 is input, An inverter 106 that converts direct current input to a direct current input unit into alternating current, a switching unit 103 that switches between operation and stop of the alternating current generator 102 and the direct current generator (101A, 101B), and alternating current input to the alternating current input unit And an output unit that selectively outputs the alternating current output from the inverter 106.
 この構成であれば、直流発電機(101A、101B)の出力に応じて、切替部103の切り替え制御を行うことにより、直流発電機の出力を最大限利用できる構成となる。すなわち、本実施形態に係る電源システム100Aによれば、再生可能エネルギーの使用比率を向上することができる。 With this configuration, by performing switching control of the switching unit 103 in accordance with the output of the DC generator (101A, 101B), the output of the DC generator can be used to the maximum extent. That is, according to the power supply system 100A according to the present embodiment, the use ratio of renewable energy can be improved.
 〔実施形態5〕
 本発明の他の実施形態について、図9を参照して説明する。図9は、ハイブリッド式の電源システム200のブロック図である。図9において、実施形態4と同一部分は同一符号で示している。
[Embodiment 5]
Another embodiment of the present invention will be described with reference to FIG. FIG. 9 is a block diagram of a hybrid power supply system 200. In FIG. 9, the same parts as those of the fourth embodiment are indicated by the same reference numerals.
 実施形態4において、直流発電機101Bの出力は、交流発電機102に比較して小さい出力でよい。つまり、直流発電機101Bに要する動力は、交流発電機102に要する動力よりも小さい動力でよい。 In the fourth embodiment, the output of the DC generator 101B may be smaller than that of the AC generator 102. That is, the power required for the DC generator 101B may be smaller than the power required for the AC generator 102.
 そこで、本実施形態では、動力部119よりも小規模な動力部202と、切替部201を用いる。そして、直流発電機101Bを動力部202により運転し、交流発電機102を動力部119により運転し、動力部119と動力部202の切り替えを切替部201により行う。尚、切替部201は、制御部107からの指示を受けて動力部119又は動力部202を動作させるスイッチである。 Therefore, in this embodiment, a power unit 202 and a switching unit 201 that are smaller than the power unit 119 are used. The DC generator 101B is operated by the power unit 202, the AC generator 102 is operated by the power unit 119, and the switching unit 201 switches between the power unit 119 and the power unit 202. The switching unit 201 is a switch that operates the power unit 119 or the power unit 202 in response to an instruction from the control unit 107.
 尚、図示は省略するが、動力部119と動力部202は、1つの燃料系統を備えてもよいし、別々に備えてもよい。又、発電に係る動作説明は実施形態4と同様であり、詳しい説明は省略する。 In addition, although illustration is abbreviate | omitted, the motive power part 119 and the motive power part 202 may be provided with one fuel system, and may be provided separately. In addition, the operation description related to power generation is the same as that of the fourth embodiment, and a detailed description thereof is omitted.
 実施形態5によれば、直流発電機101Bと交流発電機102を各々別の動力部で運転するようにしたので、各々の動力部の規模を最適化できる。これにより、特に動力部202の発電量に対する燃料消費を抑制できるため、システムの発電効率がより向上する。 According to the fifth embodiment, since the DC generator 101B and the AC generator 102 are operated by separate power units, the scale of each power unit can be optimized. Thereby, since the fuel consumption with respect to the electric power generation amount of the power part 202 can be suppressed especially, the electric power generation efficiency of a system improves more.
 〔実施形態6〕
 本発明の更に他の実施形態について、図10を参照して説明する。図10は、ハイブリッド式の電源システム300のブロック図である。図10において、実施形態4又は5と同一部分については、同一符号で示している。
[Embodiment 6]
Still another embodiment of the present invention will be described with reference to FIG. FIG. 10 is a block diagram of a hybrid power supply system 300. In FIG. 10, the same parts as those in the fourth or fifth embodiment are denoted by the same reference numerals.
 実施形態4、5で説明した回転式発電機の出力制御範囲は、発電効率低下の抑制や運転信頼性の低下を抑制するため、一般的には定格の30~100%の範囲で運転される。しかし、上述した実施形態において、再生可能エネルギーを用いた直流発電機101Aの出力P1の値によっては、負荷109の消費電力との需給バランスをとるために、交流発電機102の運転を定格の30%付近或いはこれ以下で行うか、直流発電機101Aの出力を敢えて抑制する必要が生じてしまい、このような運転は、発電効率や運転信頼性において好ましいとはいえない。 The output control range of the rotary generator described in the fourth and fifth embodiments is generally operated within a range of 30 to 100% of the rating in order to suppress a decrease in power generation efficiency and a decrease in operation reliability. . However, in the above-described embodiment, depending on the value of the output P1 of the DC generator 101A using renewable energy, the operation of the AC generator 102 is set to a rated value of 30 in order to balance supply and demand with the power consumption of the load 109. It is necessary to deliberately suppress the output of the DC generator 101A, or it is not preferable in terms of power generation efficiency and operation reliability.
 そこで、このような状況を回避するため、本実施形態では、実施形態4又は5とは異なる切替部301と、動力部302、304と、交流発電機303、305とを備える。又、交流発電機305とAC母線113との間を介在するリレー306、検出器307、308を備えている。検出器307、308の動作は、検出器117、118と同じであり、説明は省略する。 Therefore, in order to avoid such a situation, the present embodiment includes a switching unit 301, power units 302 and 304, and AC generators 303 and 305 that are different from those in the fourth or fifth embodiment. In addition, a relay 306 and detectors 307 and 308 are provided between the AC generator 305 and the AC bus 113. The operations of the detectors 307 and 308 are the same as those of the detectors 117 and 118, and a description thereof will be omitted.
 動力部302、304と交流発電機303、305は、実施形態5における動力部119と交流発電機102を2分割としたものであり、交流発電機102の必要定格出力を1とした場合、1/2定格出力の交流発電機303、305を2台用意し、この合計出力にて定格を満たすようにする。動力部302、304においても同様である。又、交流発電機の必要定格出力は、再生可能エネルギーを用いた直流発電機101Aの定格出力に等しい値とし、直流発電機101Aの定格出力をPmaxとすると、交流発電機303、305の各々の定格出力は、1/2Pmaxである。 The power units 302 and 304 and the AC generators 303 and 305 are obtained by dividing the power unit 119 and the AC generator 102 in the fifth embodiment into two parts, and when the required rated output of the AC generator 102 is 1, 1 Two AC generators 303 and 305 with a rated output are prepared, and the rating is satisfied with this total output. The same applies to the power units 302 and 304. The required rated output of the AC generator is equal to the rated output of the DC generator 101A using renewable energy, and the rated output of the DC generator 101A is Pmax. The rated output is 1 / 2Pmax.
 本実施形態では、直流発電機101Aの出力状況に応じて、直流発電機101B、交流発電機303、305をそれぞれ個別に運転する。つまり、再生可能エネルギーを用いた直流発電機101Aの出力P1に対して閾値Thを複数設定し、この複数の閾値Thに基いて切替部301を切り替えて直流発電機101B、交流発電機303、305の運転が行われる。この閾値Thは、例えば、負荷109の消費電力Lに対する直流発電機101Aの出力P1の比であり、この複数の閾値Thに基く切り替え制御は、例えば以下の表2のように行われる。 In the present embodiment, the DC generator 101B and the AC generators 303 and 305 are individually operated according to the output status of the DC generator 101A. That is, a plurality of threshold values Th are set for the output P1 of the DC generator 101A using renewable energy, and the switching unit 301 is switched based on the plurality of threshold values Th to change the DC generator 101B and the AC generators 303 and 305. Is operated. The threshold value Th is, for example, the ratio of the output P1 of the DC generator 101A to the power consumption L of the load 109. Switching control based on the plurality of threshold values Th is performed, for example, as shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2は、第1の閾値であるTh1、第2の閾値であるTh2に対する直流発電機101Aの出力P1の値によって、切替部301が切り替えられるときの、直流発電機101B又は交流発電機303、305の運転状態を表わしている。尚、閾値Th1、Th2の大小関係は、Th1<Th2とする。 Table 2 shows the DC generator 101B or the AC generator 303 when the switching unit 301 is switched according to the value of the output P1 of the DC generator 101A with respect to Th1 as the first threshold and Th2 as the second threshold. 305 shows the operation state. The magnitude relationship between the thresholds Th1 and Th2 is Th1 <Th2.
 表2において、直流発電機101Aの出力P1が、閾値Th1に対してP1<Th1の関係を維持している場合は、制御部107の指示により、切替部301が動力部302、304に切り替えられ、動力部302、304の動力により交流発電機303、305が運転される。又、直流発電機101Aの出力P1が、閾値Th1を下回る値から、閾値Th1を上回る値へ変移した場合、リレー306を開いて交流発電機305をAC母線113から解列した後、交流発電機303の出力が規定出力まで上昇するまでの間、不足電力を蓄電部111から出力して補完しても良い。又、交流発電機305は、解列後に速やかに運転を停止させる。 In Table 2, when the output P1 of the DC generator 101A maintains a relationship of P1 <Th1 with respect to the threshold Th1, the switching unit 301 is switched to the power units 302 and 304 according to an instruction from the control unit 107. The AC generators 303 and 305 are operated by the power of the power units 302 and 304. When the output P1 of the DC generator 101A changes from a value lower than the threshold Th1 to a value higher than the threshold Th1, the relay 306 is opened and the AC generator 305 is disconnected from the AC bus 113, and then the AC generator Until the output of 303 rises to the specified output, the insufficient power may be output from the power storage unit 111 and supplemented. Moreover, the AC generator 305 stops the operation promptly after disconnection.
 又、再生可能エネルギーを用いた直流発電機101Aの出力P1が、閾値Th1及び閾値Th2に対してTh1<P1<Th2の関係にある場合は、制御部107の指示により、切替部301が動力部302に切り替えられ、交流発電機303のみが運転される。 When the output P1 of the DC generator 101A using renewable energy is in the relationship of Th1 <P1 <Th2 with respect to the threshold value Th1 and the threshold value Th2, the switching unit 301 is instructed by the instruction of the control unit 107. It is switched to 302 and only the AC generator 303 is operated.
 又、直流発電機101Aの出力P1が、閾値Th2を下回る値から閾値Th2を上回る値へ変移した場合、直流発電機101Bが起動して出力が安定するまでの間、リレー121を閉じたまま交流発電機303の運転を継続し、直流発電機101Bの出力の安定後に切替部301を動力部202へ切り替えた後、交流発電機303を停止させ、リレー121を解列しても良い。 Further, when the output P1 of the DC generator 101A changes from a value lower than the threshold Th2 to a value higher than the threshold Th2, the AC is maintained with the relay 121 closed until the DC generator 101B is activated and the output is stabilized. After the operation of the generator 303 is continued and the switching unit 301 is switched to the power unit 202 after the output of the DC generator 101B is stabilized, the AC generator 303 may be stopped and the relay 121 may be disconnected.
 又、直流発電機101Aの出力P1が、閾値Th2に対してTh2<P1の場合は、制御部107の指示により、切替部301が動力部202に切り替えられ、直流発電機101Bが運転される。 Further, when the output P1 of the DC generator 101A is Th2 <P1 with respect to the threshold Th2, the switching unit 301 is switched to the power unit 202 according to an instruction from the control unit 107, and the DC generator 101B is operated.
 尚、直流発電機101Aの出力が定格の90%以上を維持しているときは、切替部301を中立位置、すなわち、動力部202、302、304の全てを停止するよう制御することで、直流発電機101Bと交流発電機303、305を停止させ、インバータ106への入力が、第1DC-DCコンバータ104と第2DC-DCコンバータ112の合計出力となるようにしても良い。 When the output of the DC generator 101A is maintained at 90% or more of the rated value, the switching unit 301 is controlled to stop all of the power units 202, 302, and 304 by controlling the switching unit 301. The generator 101B and the AC generators 303 and 305 may be stopped, and the input to the inverter 106 may be the total output of the first DC-DC converter 104 and the second DC-DC converter 112.
 各発電機の運転について、より具体的に説明すると、例えば、負荷109の消費電力が10kWの場合、再生可能エネルギーを用いた直流発電機101Aの定格出力を10kW、交流発電機303、305の定格出力を各々5kW、直流発電機101Bの定格出力を2.5kWとする。そして、インバータ106の、交流発電機との連系運転可能範囲が、例えば、インバータ出力7.5kW+交流発電機出力2.5kWの状態を満たすとして、Th1を50%、Th2を75%と設定した場合、P1<50%の場合は、交流発電機303、305が、各々定格の5kWで運転する。 The operation of each generator will be described more specifically. For example, when the power consumption of the load 109 is 10 kW, the rated output of the DC generator 101A using renewable energy is 10 kW, and the ratings of the AC generators 303 and 305 are Each output is 5 kW, and the rated output of the DC generator 101B is 2.5 kW. Then, assuming that the range in which the inverter 106 can be connected to the AC generator satisfies, for example, an inverter output of 7.5 kW + an AC generator output of 2.5 kW, Th1 is set to 50% and Th2 is set to 75%. In this case, when P1 <50%, the AC generators 303 and 305 are each operated at a rated 5 kW.
 50%<P1<75%の場合は、交流発電機303が5kW~2.5kWの範囲で運転する。つまり、交流発電機303は、定格~定格の50%の範囲で運転する。又、75%<P1<90%の間は、直流発電機101Bが2.5kW~1kWの範囲で運転する。つまり、直流発電機101Bは、定格~定格の40%の範囲内で運転することとなる。 When 50% <P1 <75%, the AC generator 303 operates in the range of 5 kW to 2.5 kW. That is, the AC generator 303 is operated in a range of rated to 50% of rated. Further, the DC generator 101B operates in the range of 2.5 kW to 1 kW while 75% <P1 <90%. That is, the DC generator 101B is operated within a range of 40% of the rating to the rating.
 実施形態6によれば、負荷109へ電力を供給する交流発電機の数を複数としたので、インバータ106の出力と交流発電機の連系運転で負荷109への電力供給が行われる際に、直流発電機101Aの発電状態に合わせて、負荷109の消費電力に対する交流発電機の出力電力、換言すると、交流発電機の運転数を制御することができる。 According to the sixth embodiment, since the number of AC generators that supply power to the load 109 is plural, when the power supply to the load 109 is performed by the output operation of the inverter 106 and the AC generator connected operation, According to the power generation state of the DC generator 101A, the output power of the AC generator with respect to the power consumption of the load 109, in other words, the number of operations of the AC generator can be controlled.
 したがって、動力部における燃料消費をきめ細かく制御できるのでシステムの発電効率が更に向上する。又、各発電機の出力制御は40~100%の範囲で運転可能となるため、再生可能エネルギーを用いた直流発電機101Aの出力を抑制することなく、運転信頼性の高い電源システムを構築できる。 Therefore, since the fuel consumption in the power section can be finely controlled, the power generation efficiency of the system is further improved. Also, since the output control of each generator can be operated in the range of 40 to 100%, a power supply system with high operation reliability can be constructed without suppressing the output of the DC generator 101A using renewable energy. .
 〔実施形態7〕
 実施形態6の変形例としての実施形態7について、図11を参照して説明する。図11は、ハイブリッド式の電源システム400のブロック図である。図11において、実施形態6と同一部分については、同一符号で示している。本実施形態の要部について実施形態6と異なる点は、動力部304と交流発電機305に代えて、動力部404と第3直流発電機405を備える点である。
[Embodiment 7]
Embodiment 7 as a modification of Embodiment 6 will be described with reference to FIG. FIG. 11 is a block diagram of a hybrid power supply system 400. In FIG. 11, the same parts as those of the sixth embodiment are denoted by the same reference numerals. The main part of this embodiment is different from the sixth embodiment in that a power unit 404 and a third DC generator 405 are provided instead of the power unit 304 and the AC generator 305.
 実施形態6では、インバータ106の交流発電機との連系運転可能範囲として、負荷消費電力の75%出力を満足する場合の動作説明を例示したが、インバータの連系可能出力はこの限りではなく、上記の比率を下回る場合も考えられる。 In the sixth embodiment, the operation explanation in the case where 75% output of the load power consumption is satisfied as the interconnectable operation range of the inverter 106 with the AC generator is illustrated. However, the interconnectable output of the inverter is not limited to this. It is also conceivable that the ratio is lower than the above ratio.
 このように、インバータ出力と交流発電機出力とのバランスの都合によっては、交流発電機と直流発電機の台数を適宜変更すると良い。例えば、本実施形態では、再生可能エネルギーを用いた直流発電機101Aの定格出力がPmaxの場合、交流発電機303の定格出力をPmax、直流発電機101B、(第3の)直流発電機405の定格出力を各々1/4Pmaxとして説明する。又、本実施形態での各発電機の運転状態の切り替え制御は、例えば以下の表3のように行われる。尚、閾値Thの条件は実施形態6と同じである。 As described above, the number of AC generators and DC generators may be appropriately changed depending on the balance between the inverter output and the AC generator output. For example, in this embodiment, when the rated output of the DC generator 101A using renewable energy is Pmax, the rated output of the AC generator 303 is Pmax, the DC generator 101B, and the (third) DC generator 405. A description will be given assuming that each rated output is 1/4 Pmax. In addition, the switching control of the operation state of each generator in the present embodiment is performed, for example, as shown in Table 3 below. Note that the condition for the threshold Th is the same as in the sixth embodiment.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3において、再生可能エネルギーを用いた直流発電機101Aの出力P1が、閾値Th1に対してP1<Th1の関係を維持している場合は、制御部107の指示により、切替部301が動力部302に切り替えられ、動力部302の動力により交流発電機303が運転される。 In Table 3, when the output P1 of the DC generator 101A using renewable energy maintains the relationship of P1 <Th1 with respect to the threshold Th1, the switching unit 301 is set to the power unit in accordance with an instruction from the control unit 107. Then, the AC generator 303 is operated by the power of the power unit 302.
 又、直流発電機101Aの出力P1が、閾値Th1及び閾値Th2に対してTh1<P1<Th2の関係にある場合は、制御部107の指示により、切替部301が動力部202、404に切り替えられ、直流発電機101B、直流発電機405が運転される。 Further, when the output P1 of the DC generator 101A has a relationship of Th1 <P1 <Th2 with respect to the threshold Th1 and the threshold Th2, the switching unit 301 is switched to the power units 202 and 404 according to an instruction from the control unit 107. The DC generator 101B and the DC generator 405 are operated.
 又、直流発電機101Aの出力P1が、閾値Th2に対してTh2<P1の場合は、制御部107の指示により、切替部301が動力部202に切り替えられ、直流発電機101Bのみが運転される。 When the output P1 of the DC generator 101A is Th2 <P1 with respect to the threshold Th2, the switching unit 301 is switched to the power unit 202 according to an instruction from the control unit 107, and only the DC generator 101B is operated. .
 尚、直流発電機101Aの出力が定格の90%以上を維持しているときは、切替部301を中立位置、すなわち、動力部202、302、404の全てを停止するよう制御することで、全ての発電機を停止させ、インバータ106への入力が、第1DC-DCコンバータ104と第2DC-DCコンバータ112の合計出力となるようにしても良い。 When the output of the DC generator 101A is maintained at 90% or more of the rated value, the switching unit 301 is controlled to stop all of the power units 202, 302, 404, that is, the neutral position. And the input to the inverter 106 may be the total output of the first DC-DC converter 104 and the second DC-DC converter 112.
 各発電機の運転について、より具体的に説明すると、例えば、負荷109の消費電力が10kWの場合、再生可能エネルギーを用いた直流発電機101Aの定格出力を10kW、交流発電機303の定格出力を10kW、直流発電機101B、直流発電機405の定格出力を各々2.5kWとする。そして、インバータ106の、交流発電機との連系運転可能範囲が、例えば、インバータ出力5kW+交流発電機出力5kWの状態を満たすとして、Th1を50%、Th2を75%と設定した場合、P1<50%の場合は、交流発電機303が定格~定格の50%までの範囲内で運転する。 The operation of each generator will be described more specifically. For example, when the power consumption of the load 109 is 10 kW, the rated output of the DC generator 101A using renewable energy is 10 kW, and the rated output of the AC generator 303 is The rated output of 10 kW, DC generator 101B, and DC generator 405 is 2.5 kW each. Then, assuming that the range in which the inverter 106 can be connected to the AC generator satisfies, for example, the state of the inverter output 5 kW + the AC generator output 5 kW, when Th1 is set to 50% and Th2 is set to 75%, P1 < In the case of 50%, the AC generator 303 operates within the range from the rating to 50% of the rating.
 50%<P1<75%の場合は、直流発電機101B、直流発電機405が合計で5kW~2.5kWの範囲で運転する。つまり、直流発電機101B、405は共に定格~定格の50%の範囲で運転する。又、75%<P1<90%の間は、直流発電機101Bが2.5kW~1kWの範囲で運転する。つまり、直流発電機101Bは、定格~定格の40%の範囲内で運転することとなる。 When 50% <P1 <75%, the DC generator 101B and the DC generator 405 operate in a total range of 5 kW to 2.5 kW. That is, both the DC generators 101B and 405 operate within a range of rated to 50% of rated. Further, the DC generator 101B operates in the range of 2.5 kW to 1 kW while 75% <P1 <90%. That is, the DC generator 101B is operated within a range of 40% of the rating to the rating.
 尚、上記において、インバータ106の、交流発電機との連系運転可能範囲が、インバータ出力5kW+交流発電機出力5kWの状態を満たす場合で説明したがこの限りではなく、実施形態6で説明した、インバータ106の連系運転可能範囲が負荷消費電力の75%程度の出力を満足する場合を除く(例えば、インバータ106の連系運転可能範囲として、負荷消費電力の60%出力しか満足しない等)、つまり、負荷消費電力の50%以上75%未満の範囲において好適に適用できる。 In the above description, the inverter 106 has been described in the case where the range in which the inverter 106 can be connected to the AC generator satisfies the state of the inverter output 5 kW + the AC generator output 5 kW. Except when the interconnectable operation range of the inverter 106 satisfies an output of about 75% of the load power consumption (for example, only 60% output of the load power consumption is satisfied as the interconnectable operation range of the inverter 106), That is, it can be suitably applied in the range of 50% or more and less than 75% of load power consumption.
 更に、詳細な説明は省略するが、インバータ106の連系運転可能範囲が負荷消費電力の50%未満まで、つまり、交流発電機303の発電量が常にインバータ106の出力を上回っていないと連系できない場合は、上述した回転式発電機の一般的な出力制御範囲(定格~定格の30%が目安)を考慮した上で、直流発電機の台数を3台以上とすれば良い。この場合でも、交流発電機は、定格出力がPmaxのもの1台となる。 Further, although detailed description is omitted, the interconnection operation possible range of the inverter 106 is less than 50% of the load power consumption, that is, the interconnection power is generated unless the power generation amount of the AC generator 303 always exceeds the output of the inverter 106. If this is not possible, the number of DC generators may be set to 3 or more in consideration of the general output control range of the rotary generator described above (rated to 30% of the rating is a guideline). Even in this case, the AC generator is one with a rated output of Pmax.
 又、交流発電機303の出力とDC母線114との間にAC-DCコンバータ(図示せず)を介在させ、インバータ106の出力P1が連系運転可能範囲を上回り、Th1(ここでは定格の50%)に達するまでの間は、リレー121を開いて交流発電機303をAC母線113から解列した上で、AC-DCコンバータ(図示せず)の出力である直流電力をDC母線114へ給電し、P1>Th1となってから交流発電機303を停止して直流発電機101B、直流発電機405を運転させることもできる。この場合、直流発電機は2台で済む。 Further, an AC-DC converter (not shown) is interposed between the output of the AC generator 303 and the DC bus 114, so that the output P1 of the inverter 106 exceeds the interconnectable range, and Th1 (here, rated 50) %) Until the relay 121 is opened and the AC generator 303 is disconnected from the AC bus 113, the DC power output from the AC-DC converter (not shown) is supplied to the DC bus 114. Then, after P1> Th1, the AC generator 303 can be stopped and the DC generator 101B and the DC generator 405 can be operated. In this case, two DC generators are sufficient.
 本実施形態においても、各発電機の出力制御は40~100%の範囲で運転可能となるため、再生可能エネルギーを用いた直流発電機101Aの出力を抑制することなく、運転信頼性の高い電源システムを構築できる。 Also in this embodiment, since the output control of each generator can be operated in the range of 40 to 100%, the power supply with high operation reliability can be obtained without suppressing the output of the DC generator 101A using renewable energy. You can build a system.
 〔実施形態8〕
 本発明の別の実施形態について、図12、13を参照して説明する。図12は、ハイブリッド式の電源システム500のブロック図である。図13は、図12の一部詳細図である。図12において、実施形態4~7と同一部分は、同一符号で示している。本実施形態が実施形態4~7と異なる点は、集光集熱部501及び蓄熱部503と、動力部502を備える点である。
[Embodiment 8]
Another embodiment of the present invention will be described with reference to FIGS. FIG. 12 is a block diagram of a hybrid power supply system 500. FIG. 13 is a partial detail view of FIG. In FIG. 12, the same parts as those in the fourth to seventh embodiments are denoted by the same reference numerals. This embodiment is different from the fourth to seventh embodiments in that a condensing heat collecting unit 501, a heat storage unit 503, and a power unit 502 are provided.
 又、図12において、集光集熱部501及び蓄熱部503と、動力部502は、図8に集光集熱部501及び蓄熱部503を追加し、動力部119を動力部502に置き換えて示している。これ以外にも、図9の動力部119、202をそれぞれ動力部502に置き換えて、集光集熱部501及び蓄熱部503をそれぞれの動力部に接続しても構わない。同様に、図10の動力部202、302、304をそれぞれ動力部502に置き換えて、集光集熱部501及び蓄熱部503をそれぞれの動力部に接続しても構わない。 In FIG. 12, the concentrated heat collecting unit 501 and the heat storage unit 503 and the power unit 502 are added to the concentrated heat collecting unit 501 and the heat storage unit 503 in FIG. 8, and the power unit 119 is replaced with the power unit 502. Show. In addition to this, the power units 119 and 202 of FIG. 9 may be replaced with the power unit 502, and the light collecting and collecting unit 501 and the heat storage unit 503 may be connected to the respective power units. Similarly, the power units 202, 302, and 304 in FIG. 10 may be replaced with the power unit 502, and the light collecting and collecting unit 501 and the heat storage unit 503 may be connected to the respective power units.
 先ず、図12を参照し本実施形態の概要を説明する。実施形態4~7では再生可能エネルギーを用いた直流発電機101A以外の発電機の動力部にエンジン等の内燃機関を用いたが、本実施形態では、集光集熱部501で熱エネルギーを生成し、この熱エネルギーを動力源として動力部502を駆動する。 First, the outline of the present embodiment will be described with reference to FIG. In the fourth to seventh embodiments, an internal combustion engine such as an engine is used as a power unit of a generator other than the DC generator 101A using renewable energy, but in this embodiment, heat energy is generated by the light collecting and collecting unit 501. Then, the power unit 502 is driven using this thermal energy as a power source.
 次に、図13を参照し、より詳しい構成と動作を説明する。集光集熱部501は、太陽光を1か所に集中させるための集光器504と、集光された太陽光を受けて熱エネルギーとして出力する熱変換器505を備えている。蓄熱部503は特に詳細には図示しないが、例えば蓄熱タンク等を用いることができる。動力部503には例えば、蒸気タービン等を用いることができる。 Next, a more detailed configuration and operation will be described with reference to FIG. The condensing heat collecting unit 501 includes a concentrator 504 for concentrating sunlight in one place, and a heat converter 505 that receives the condensed sunlight and outputs it as thermal energy. Although the heat storage unit 503 is not particularly illustrated in detail, for example, a heat storage tank or the like can be used. For example, a steam turbine or the like can be used for the power unit 503.
 集光器504は、鏡や反射板或いはレンズ等からなり、太陽光を1か所に集中させる。又、集光器504は、太陽光の照射方向に合わせて集光方向を可動可能とするとより好ましい。集光器504で集められた太陽光エネルギーは熱変換器505へ送られて熱に変換され、変換された熱エネルギーが動力部502へ送られる。動力部502では、熱変換器505から受けた熱エネルギーにより蒸気タービンを回転させ、直流発電機101B又は交流発電機102の動力を発生する。 Concentrator 504 is composed of a mirror, a reflector, a lens, etc., and concentrates sunlight in one place. In addition, it is more preferable that the light collector 504 can move the light collecting direction in accordance with the irradiation direction of sunlight. The solar energy collected by the condenser 504 is sent to the heat converter 505 and converted into heat, and the converted heat energy is sent to the power unit 502. In the power unit 502, the steam turbine is rotated by the thermal energy received from the heat converter 505, and the power of the DC generator 101B or the AC generator 102 is generated.
 又、蓄熱部503は、日照時間内の熱エネルギーの余剰分を蓄熱し、夜間等に集熱部501からの熱エネルギーが得られないときに、動力部502へ熱エネルギーを伝達する。尚、本実施形態において、上記した以外の発電に係る動作は実施形態4と同様であり、詳しい説明は省略する。 Further, the heat storage unit 503 stores the excess heat energy within the sunshine hours, and transmits the heat energy to the power unit 502 when the heat energy from the heat collection unit 501 cannot be obtained at night or the like. In the present embodiment, operations related to power generation other than those described above are the same as those in the fourth embodiment, and a detailed description thereof will be omitted.
 実施形態8によれば、直流発電機101B及び交流発電機102の運転においても再生可能エネルギーを用いるので、システム全体の再生可能エネルギーによる発電効率が向上する。 According to the eighth embodiment, since the renewable energy is used in the operation of the DC generator 101B and the AC generator 102, the power generation efficiency by the renewable energy of the entire system is improved.
 上記したように、本発明の請求項1に対応した課題を解決する手段は、直流発電機101からの出力が入力される直流入力部と、交流発電機102からの出力が入力される交流入力部と、交流入力部に入力された交流を直流へ変換するAC-DCコンバータ105と、直流入力部に入力された直流とAC-DCコンバータ105の出力を交流に変換するインバータ106と、交流入力部の接続先を、AC-DCコンバータ105またはインバータ106の出力に切り替える切替部103と、交流入力部に入力された交流とインバータ106から出力された交流とを選択的に出力する出力部と、を備える電源システム100としたことである。 As described above, the means for solving the problem corresponding to claim 1 of the present invention includes a DC input unit to which an output from the DC generator 101 is input and an AC input to which an output from the AC generator 102 is input. , An AC-DC converter 105 that converts alternating current input to the alternating current input portion into direct current, an inverter 106 that converts direct current input to the direct current input portion and the output of the AC-DC converter 105 into alternating current, and an alternating current input A switching unit 103 that switches the connection destination of the unit to the output of the AC-DC converter 105 or the inverter 106, an output unit that selectively outputs the AC input to the AC input unit and the AC output from the inverter 106, The power supply system 100 is provided.
 この請求項1に対応した効果は、直流発電機101の出力に応じて、直流発電機101と交流発電機102を並列運転させると共に、直流発電機101の出力を最大限利用できるように切替部103の切り替え制御を行うことができる。すなわち、本実施形態に係る電源システム100によれば、直流発電機101の使用比率を向上することができ、再生可能エネルギーを用いた高効率な電源システムを得ることができる。 The effect corresponding to claim 1 is that the switching unit is configured so that the DC generator 101 and the AC generator 102 can be operated in parallel according to the output of the DC generator 101 and the output of the DC generator 101 can be used to the maximum. 103 switching control can be performed. That is, according to the power supply system 100 according to the present embodiment, the usage ratio of the DC generator 101 can be improved, and a highly efficient power supply system using renewable energy can be obtained.
 請求項2に対応した課題を解決する手段は、切替部103の切り替えを制御する制御部107を備え、制御部107は、直流発電機101の出力比率が負荷消費電力の1/2未満のとき、交流発電機102の出力をインバータ106の出力と接続し、直流発電機101の出力比率が負荷消費電力の1/2以上のとき、交流発電機102の出力をAC-DCコンバータ105の入力へ接続するよう、切替部103を切り替えることである。この請求項2に対応した効果は、負荷109に対して、常に直流発電機101の出力と交流発電機102の出力とを合わせた出力が供給され、システム内で直流発電機101の出力が最大となるように制御できる。従って、直流発電機101に用いる再生可能エネルギーの使用比率を最大限に高めることができる電源システムを得ることができる。 Means for solving the problem corresponding to claim 2 includes a control unit 107 that controls switching of the switching unit 103, and the control unit 107 is configured such that the output ratio of the DC generator 101 is less than ½ of the load power consumption. When the output of the AC generator 102 is connected to the output of the inverter 106 and the output ratio of the DC generator 101 is 1/2 or more of the load power consumption, the output of the AC generator 102 is input to the input of the AC-DC converter 105. The switching unit 103 is switched to connect. The effect corresponding to claim 2 is that the load 109 is always supplied with an output that is the sum of the output of the DC generator 101 and the output of the AC generator 102, and the output of the DC generator 101 is the maximum in the system. Can be controlled to be Therefore, it is possible to obtain a power supply system that can maximize the use ratio of the renewable energy used for the DC generator 101.
 請求項3に対応した課題を解決する手段は、前記交流発電機102の出力に並列に接続される力率調整部110を備えることである。この請求項3に対応した効果は、負荷の消費電流に依存してAC母線113が過電流になることを防止できる。 Means for solving the problem corresponding to claim 3 includes a power factor adjustment unit 110 connected in parallel to the output of the AC generator 102. The effect corresponding to claim 3 can prevent the AC bus 113 from becoming overcurrent depending on the current consumption of the load.
 請求項4に対応した課題を解決する手段は、直流発電機(101A、101B)からの出力が入力される直流入力部と、交流発電機102からの出力が入力される交流入力部と、直流入力部に入力された直流を交流に変換するインバータ106と、交流発電機102と直流発電機(101A、101B)の運転または停止を切り替える切替部103と、交流入力部に入力された交流とインバータ106から出力された交流とを選択的に出力する出力部と、を備える電源システム100Aとしたことである。この請求項4に対応した効果は、直流発電機(101A、101B)の出力に応じて、直流発電機(101A、101B)の出力を最大限利用できるように交流発電機102と直流発電機(101A、101B)の運転と停止を切り替えることができる。すなわち、本実施形態に係る電源システムによれば、直流発電機(101A、101B)の使用比率を向上することができ、再生可能エネルギーを用いた高効率な電源システムを得ることができる。 Means for solving the problem corresponding to claim 4 includes: a DC input unit to which an output from the DC generator (101A, 101B) is input; an AC input unit to which an output from the AC generator 102 is input; An inverter 106 that converts direct current input to the input unit into alternating current, a switching unit 103 that switches between operation and stop of the alternating current generator 102 and the direct current generator (101A, 101B), and alternating current and inverter input to the alternating current input unit The power supply system 100 </ b> A includes an output unit that selectively outputs the alternating current output from 106. The effect corresponding to claim 4 is that the AC generator 102 and the DC generator (in order to maximize the use of the output of the DC generator (101A, 101B) according to the output of the DC generator (101A, 101B). 101A and 101B) can be switched between operation and stop. That is, according to the power supply system according to the present embodiment, the usage ratio of the DC generators (101A, 101B) can be improved, and a highly efficient power supply system using renewable energy can be obtained.
 請求項5に対応した課題を解決する手段は、前記直流発電機は、第1および第2の複数の直流発電機(101A、101B)を有することである。この請求項5に対応した効果は、複数の発電方式による直流発電機(101A、101B)と交流発電機102を組み合わせた高効率なハイブリッド方式の電源システムを得ることができる。 A means for solving the problem corresponding to claim 5 is that the DC generator includes a first and a second plurality of DC generators (101A, 101B). The effect corresponding to the fifth aspect is that a highly efficient hybrid power supply system in which a plurality of DC generators (101A, 101B) and an AC generator 102 are used.
 請求項6に対応した課題を解決する手段は、第2の直流発電機101Aは太陽光発電装置から成ることである。この請求項6に対応した効果は、再生エネルギーを用いた高効率な電源システムを得ることができる。 The means for solving the problem corresponding to claim 6 is that the second DC generator 101A is composed of a solar power generation device. The effect corresponding to the sixth aspect can provide a highly efficient power supply system using renewable energy.
 請求項7に対応した課題を解決する手段は、切替部103の切り替えを制御する制御部107を備え、制御部107は、負荷の消費電力に対する第2の直流発電機101Aの所定の出力を閾値として、切替部103の切り替えを制御し、制御部107は、第2の直流発電機101Aの出力が、前記閾値を下回るとき交流発電機102を運転し、前記閾値を上回るとき第1の直流発電機101Bを運転するよう、切替部103を制御することである。この請求項7に対応した効果は、再生可能エネルギーを用いた第2の直流発電機101Aの使用比率を向上することができ、この第2の直流発電機101Aの出力に応じて交流発電機102と第1の直流発電機101Bの運転を制御できるので、電源システムの発電効率を向上させることができる。 Means for solving the problem corresponding to claim 7 includes a control unit 107 that controls switching of the switching unit 103, and the control unit 107 sets a predetermined output of the second DC generator 101A for the power consumption of the load as a threshold value. The control unit 107 operates the AC generator 102 when the output of the second DC generator 101A falls below the threshold, and the first DC generator when the output exceeds the threshold. The control unit 103 is controlled to operate the machine 101B. The effect corresponding to the seventh aspect can improve the use ratio of the second DC generator 101A using renewable energy, and the AC generator 102 according to the output of the second DC generator 101A. Since the operation of the first DC generator 101B can be controlled, the power generation efficiency of the power supply system can be improved.
 請求項8に対応した課題を解決する手段は、前記閾値が2つ設定され、制御部107は、第2の直流発電機101Aの出力が、第1の閾値を下回るとき交流発電機102を運転し、前記第1の閾値よりも大きい第2の閾値を上回るとき第1の直流発電機101Bを運転し、前記第1の閾値を上回り、前記第2の閾値を下回るとき第1の直流発電機101Bを停止し、交流発電機102を運転するよう、切替部103を制御することである。この請求項8に対応した効果は、再生可能エネルギーを用いた直流発電機101Aの使用比率を向上することができ、交流発電機102と第1の直流発電機101Bの運転を制御できるので、電源システムの発電効率を向上させることができる。 The means for solving the problem corresponding to claim 8 is that the two threshold values are set, and the control unit 107 operates the AC generator 102 when the output of the second DC generator 101A is lower than the first threshold value. The first DC generator 101B is operated when the second threshold value is larger than the first threshold value, exceeds the first threshold value, and falls below the second threshold value. This is to control the switching unit 103 to stop 101B and operate the AC generator 102. The effect corresponding to claim 8 is that the use ratio of the DC generator 101A using renewable energy can be improved, and the operation of the AC generator 102 and the first DC generator 101B can be controlled. The power generation efficiency of the system can be improved.
 請求項9に対応した課題を解決する手段は、前記閾値が2つ設定され、制御部107は、第2の直流発電機101Aの出力が、第1の閾値を下回るとき交流発電機102を運転し、前記第1の閾値よりも大きい第2の閾値を上回るとき第1の直流発電機101Bを運転し、前記第1の閾値を上回り、前記第2の閾値を下回るとき第1の直流発電機101Bを運転し、交流発電機102を停止するよう、切替部103を制御することである。この請求項9に対応した効果は、再生可能エネルギーを用いた直流発電機101Aの使用比率を向上することができ、交流発電機102の運転をきめ細かく制御できるので、電源システムの発電効率がさらに向上する。 Means for solving the problem corresponding to claim 9 is that the two threshold values are set, and the control unit 107 operates the AC generator 102 when the output of the second DC generator 101A falls below the first threshold value. The first DC generator 101B is operated when the second threshold value is larger than the first threshold value, exceeds the first threshold value, and falls below the second threshold value. This is to control the switching unit 103 to operate 101B and stop the AC generator 102. The effect corresponding to claim 9 is that the use ratio of the DC generator 101A using renewable energy can be improved and the operation of the AC generator 102 can be finely controlled, so that the power generation efficiency of the power supply system is further improved. To do.
 請求項10に対応した課題を解決する手段は、直流入力部に接続される蓄電部111を備えることである。この請求項10に対応した効果は、蓄電部111に蓄えられた直流電力を用いて負荷109に電力を供給できる。従って、直流発電機(101、101A)の使用比率を向上することができ、再生可能エネルギーを用いた高効率な電源システムを得ることができる。 A means for solving the problem corresponding to claim 10 is to include a power storage unit 111 connected to the DC input unit. The effect corresponding to claim 10 is that power can be supplied to load 109 using DC power stored in power storage unit 111. Therefore, the usage ratio of the DC generators (101, 101A) can be improved, and a highly efficient power supply system using renewable energy can be obtained.
 今回開示された実施形態は全ての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図されるものである。 The embodiment disclosed this time is illustrative in all respects and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明による電源システムは、商用電力系統との連系システムも含めた、電源システム全般に広く適用することができる。 The power supply system according to the present invention can be widely applied to all power supply systems including a system interconnected with a commercial power system.
  100  電源システム
  100A、200~500 電源システム(ハイブリッド式)
  101、101A  直流発電機(再生可能エネルギーを用いた)
  101B、405  直流発電機
  102  交流発電機
  103  切替部(スイッチ)
  104  第1DC-DCコンバータ
  105  AC-DCコンバータ
  106  インバータ
  107  制御部
  108  リレー
  109  負荷
  110  力率調整部
  111  蓄電部
  112  第2DC-DCコンバータ
  113  AC母線
  114  DC母線
  115、116、117、118 検出器
  119、202、302、304、404、502  動力部
  303、305 交流発電機
  501  集光集熱部
  503  蓄熱部
  504  集光器
  505  熱変換器
  PCL  負荷消費電力曲線
  POL  出力曲線
100 power supply system 100A, 200-500 power supply system (hybrid type)
101, 101A DC generator (using renewable energy)
101B, 405 DC generator 102 AC generator 103 Switching unit (switch)
104 First DC-DC converter 105 AC-DC converter 106 Inverter 107 Control unit 108 Relay 109 Load 110 Power factor adjustment unit 111 Power storage unit 112 Second DC-DC converter 113 AC bus 114 DC bus 115, 116, 117, 118 Detector 119 , 202, 302, 304, 404, 502 Power unit 303, 305 AC generator 501 Condensing heat collecting unit 503 Heat accumulating unit 504 Concentrator 505 Heat converter PCL Load power consumption curve POL Output curve

Claims (10)

  1. 直流発電機からの出力が入力される直流入力部と、
     交流発電機からの出力が入力される交流入力部と、
     前記交流入力部に入力された交流を直流へ変換するAC-DCコンバータと、
     前記直流入力部に入力された直流と前記AC-DCコンバータの出力を交流に変換するインバータと、
     前記交流入力部の接続先を、前記AC-DCコンバータまたは前記インバータの出力に切り替える切替部と、
     前記交流入力部に入力された交流と前記インバータから出力された交流とを選択的に出力する出力部と、を備えることを特徴とする電源システム。
    A DC input unit to which the output from the DC generator is input;
    An AC input unit to which the output from the AC generator is input;
    An AC-DC converter that converts alternating current input to the alternating current input section into direct current;
    An inverter that converts the direct current input to the direct current input unit and the output of the AC-DC converter into alternating current;
    A switching unit for switching the connection destination of the AC input unit to the output of the AC-DC converter or the inverter;
    An output unit that selectively outputs an alternating current input to the alternating current input unit and an alternating current output from the inverter.
  2. 前記切替部の切り替えを制御する制御部を備え、前記制御部は、前記直流発電機の出力比率が負荷消費電力の1/2未満のとき、前記交流発電機の出力を前記インバータの出力と接続し、前記直流発電機の出力比率が負荷消費電力の1/2以上のとき、前記交流発電機の出力を前記AC-DCコンバータの入力へ接続するよう、前記切替部を切り替えることを特徴とする請求項1記載の電源システム。 A control unit that controls switching of the switching unit, and the control unit connects the output of the AC generator to the output of the inverter when the output ratio of the DC generator is less than ½ of load power consumption; And when the output ratio of the DC generator is 1/2 or more of load power consumption, the switching unit is switched so as to connect the output of the AC generator to the input of the AC-DC converter. The power supply system according to claim 1.
  3. 前記交流発電機の出力に並列に接続される力率調整部を備えることを特徴とする請求項1または2に記載の電源システム。 The power supply system according to claim 1, further comprising a power factor adjustment unit connected in parallel to the output of the AC generator.
  4. 直流発電機からの出力が入力される直流入力部と、
     交流発電機からの出力が入力される交流入力部と、
     前記直流入力部に入力された直流を交流に変換するインバータと、
     前記交流発電機と前記直流発電機の運転または停止を切り替える切替部と、
     前記交流入力部に入力された交流と前記インバータから出力された交流とを選択的に出力する出力部と、を備えることを特徴とする電源システム。
    A DC input unit to which the output from the DC generator is input;
    An AC input unit to which the output from the AC generator is input;
    An inverter that converts direct current input to the direct current input section into alternating current;
    A switching unit for switching between operation and stop of the AC generator and the DC generator;
    An output unit that selectively outputs an alternating current input to the alternating current input unit and an alternating current output from the inverter.
  5. 前記直流発電機は、第1および第2の複数の直流発電機を有することを特徴とする請求項4に記載の電源システム。 The power system according to claim 4, wherein the DC generator includes a first and a second plurality of DC generators.
  6. 第2の直流発電機は太陽光発電装置から成ることを特徴とする請求項5に記載の電源システム。 The power supply system according to claim 5, wherein the second DC generator includes a solar power generation device.
  7. 前記切替部の切り替えを制御する制御部を備え、
     前記制御部は、負荷の消費電力に対する前記第2の直流発電機の所定の出力を閾値として、前記切替部の切り替えを制御し、
     前記制御部は、前記第2の直流発電機の出力が、前記閾値を下回るとき前記交流発電機を運転し、前記閾値を上回るとき前記第1の直流発電機を運転するよう、前記切替部を制御することを特徴とする請求項6に記載の電源システム
    A control unit that controls switching of the switching unit;
    The control unit controls switching of the switching unit with a predetermined output of the second DC generator for power consumption of a load as a threshold,
    The control unit operates the switching unit to operate the AC generator when an output of the second DC generator is lower than the threshold, and to operate the first DC generator when the output is higher than the threshold. It controls, The power supply system of Claim 6 characterized by the above-mentioned.
  8. 前記閾値が2つ設定され、前記制御部は、
     前記第2の直流発電機の出力が、第1の閾値を下回るとき前記交流発電機を運転し、
     前記第1の閾値よりも大きい第2の閾値を上回るとき前記第1の直流発電機を運転し、
     前記第1の閾値を上回り、前記第2の閾値を下回るとき前記第1の直流発電機を停止し、前記交流発電機を運転するよう、前記切替部を制御することを特徴とする請求項7に記載の電源システム。
    Two thresholds are set, and the control unit
    Operating the alternator when the output of the second dc generator is below a first threshold;
    Operating the first DC generator when a second threshold value greater than the first threshold value is exceeded;
    8. The switching unit is controlled to stop the first DC generator and operate the AC generator when it exceeds the first threshold and falls below the second threshold. Power supply system as described in.
  9. 前記閾値が2つ設定され、前記制御部は、
     前記第2の直流発電機の出力が、第1の閾値を下回るとき前記交流発電機を運転し、
     前記第1の閾値よりも大きい第2の閾値を上回るとき前記第1の直流発電機を運転し、
     前記第1の閾値を上回り、前記第2の閾値を下回るとき前記第1の直流発電機を運転し、前記交流発電機を停止するよう、前記切替部を制御することを特徴とする請求項7に記載の電源システム。
    Two thresholds are set, and the control unit
    Operating the alternator when the output of the second dc generator is below a first threshold;
    Operating the first DC generator when a second threshold value greater than the first threshold value is exceeded;
    8. The switching unit is controlled to operate the first DC generator and stop the AC generator when it exceeds the first threshold and falls below the second threshold. Power supply system as described in.
  10. 前記直流入力部に接続される蓄電部を備えることを特徴とする請求項1から9のいずれかに記載の電源システム。 The power supply system according to claim 1, further comprising a power storage unit connected to the DC input unit.
PCT/JP2013/058760 2012-03-27 2013-03-26 Power supply system WO2013146773A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-070497 2012-03-27
JP2012070497A JP2015111962A (en) 2012-03-27 2012-03-27 Parallel operation power supply system
JP2012112997A JP2015111964A (en) 2012-05-17 2012-05-17 Hybrid power generation system
JP2012-112997 2012-05-17

Publications (1)

Publication Number Publication Date
WO2013146773A1 true WO2013146773A1 (en) 2013-10-03

Family

ID=49260024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058760 WO2013146773A1 (en) 2012-03-27 2013-03-26 Power supply system

Country Status (1)

Country Link
WO (1) WO2013146773A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111893A (en) * 2014-12-10 2016-06-20 三星エスディアイ株式会社Samsung SDI Co., Ltd. Power supply system and base station system
WO2016203800A1 (en) * 2015-06-17 2016-12-22 シャープ株式会社 Power conditioner control device, power conditioner, power supply system, power conditioner control method, control program, and computer-readable recording medium
WO2017029747A1 (en) * 2015-08-20 2017-02-23 シャープ株式会社 Power-source system, output control device, output control method, and storage medium
JP2017136894A (en) * 2016-02-01 2017-08-10 川崎重工業株式会社 Electric power system of ship
CN106208228B (en) * 2016-08-12 2018-12-18 中国电子科技集团公司第三十六研究所 A kind of power-supply system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366037U (en) * 1986-10-20 1988-05-02
JPH04372528A (en) * 1991-06-19 1992-12-25 Shinko Electric Co Ltd Hybrid power generating apparatus and its control method
JP2000139041A (en) * 1998-10-30 2000-05-16 Nec Corp Power supply for ship
JP2001136681A (en) * 1999-11-09 2001-05-18 Nissin Electric Co Ltd Power generation facility
JP2002142383A (en) * 2000-10-31 2002-05-17 Canon Inc Direct-current link device
JP2005328656A (en) * 2004-05-14 2005-11-24 Mitsubishi Electric Corp Power supply system
JP2006280177A (en) * 2005-03-30 2006-10-12 Honda Motor Co Ltd Power supply

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366037U (en) * 1986-10-20 1988-05-02
JPH04372528A (en) * 1991-06-19 1992-12-25 Shinko Electric Co Ltd Hybrid power generating apparatus and its control method
JP2000139041A (en) * 1998-10-30 2000-05-16 Nec Corp Power supply for ship
JP2001136681A (en) * 1999-11-09 2001-05-18 Nissin Electric Co Ltd Power generation facility
JP2002142383A (en) * 2000-10-31 2002-05-17 Canon Inc Direct-current link device
JP2005328656A (en) * 2004-05-14 2005-11-24 Mitsubishi Electric Corp Power supply system
JP2006280177A (en) * 2005-03-30 2006-10-12 Honda Motor Co Ltd Power supply

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111893A (en) * 2014-12-10 2016-06-20 三星エスディアイ株式会社Samsung SDI Co., Ltd. Power supply system and base station system
WO2016203800A1 (en) * 2015-06-17 2016-12-22 シャープ株式会社 Power conditioner control device, power conditioner, power supply system, power conditioner control method, control program, and computer-readable recording medium
WO2017029747A1 (en) * 2015-08-20 2017-02-23 シャープ株式会社 Power-source system, output control device, output control method, and storage medium
WO2017029821A1 (en) * 2015-08-20 2017-02-23 シャープ株式会社 Power-source system, output control device, output control method, and storage medium
JP2017136894A (en) * 2016-02-01 2017-08-10 川崎重工業株式会社 Electric power system of ship
CN108602550A (en) * 2016-02-01 2018-09-28 川崎重工业株式会社 The electric system of ship
EP3412558A4 (en) * 2016-02-01 2019-05-01 Kawasaki Jukogyo Kabushiki Kaisha Ship power system
US10822067B2 (en) 2016-02-01 2020-11-03 Kawasaki Jukogyo Kabushiki Kaisha Power system of ship
CN106208228B (en) * 2016-08-12 2018-12-18 中国电子科技集团公司第三十六研究所 A kind of power-supply system

Similar Documents

Publication Publication Date Title
EP2477299B1 (en) Power Conversion Control With Energy Storage
US8537581B2 (en) Power converter system and methods of operating a power converter system
US8355265B2 (en) DC-to-DC power conversion
US9276410B2 (en) Dual use photovoltaic system
US7518257B2 (en) Hybrid power-generating device
EP2169800B1 (en) Power generation system and method for storing electrical energy
EP3058637B1 (en) Auxiliary power system for turbine-based energy generation system
JP4369450B2 (en) Power supply system
RU2509001C2 (en) Power converter with motor for automotive engine
SG186432A1 (en) Energy storage system
WO2013146773A1 (en) Power supply system
JP5541982B2 (en) DC power distribution system
WO2011152249A1 (en) Utility interconnection system and distributor
MX2014005359A (en) System and method for power conversion for renewable energy sources.
AU2013206703A1 (en) Power converter module, photovoltaic system with power converter module, and method for operating a photovoltaic system
Manojkumar et al. Power electronics interface for hybrid renewable energy system—A survey
WO2017056114A1 (en) Wind-solar hybrid power generation system and method
CA2784963A1 (en) Ac diversion mode controller
US8890364B2 (en) Methods and systems for controlling an intra-plant voltage level
JP2005245105A (en) Gas engine power generating facility
JP5812503B1 (en) Power supply system for photovoltaic power generation
WO2023019418A1 (en) Backup power supply and operating method therefor
JP2015111964A (en) Hybrid power generation system
JP2021136709A (en) Energy system and operational method therefor and virtual power plant system
JP2015111962A (en) Parallel operation power supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13768042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP