JP6109380B2 - Distributed power system - Google Patents

Distributed power system Download PDF

Info

Publication number
JP6109380B2
JP6109380B2 JP2016089067A JP2016089067A JP6109380B2 JP 6109380 B2 JP6109380 B2 JP 6109380B2 JP 2016089067 A JP2016089067 A JP 2016089067A JP 2016089067 A JP2016089067 A JP 2016089067A JP 6109380 B2 JP6109380 B2 JP 6109380B2
Authority
JP
Japan
Prior art keywords
power
line
failure state
power system
generation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016089067A
Other languages
Japanese (ja)
Other versions
JP2016158496A (en
Inventor
幸嗣 桝本
幸嗣 桝本
正美 濱走
正美 濱走
東口 誠作
誠作 東口
平井 一裕
一裕 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2016089067A priority Critical patent/JP6109380B2/en
Publication of JP2016158496A publication Critical patent/JP2016158496A/en
Application granted granted Critical
Publication of JP6109380B2 publication Critical patent/JP6109380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation

Description

本発明は、電力系統に接続される電力線と、前記電力線に対して第1接続箇所で接続される蓄電部を有する充放電装置と、前記電力線に対して第2接続箇所で接続される発電装置と、前記電力線に対して第3接続箇所で接続される第1電力消費装置とを備える分散型電源システムに関する。   The present invention relates to a power line connected to a power system, a charge / discharge device having a power storage unit connected to the power line at a first connection location, and a power generation device connected to the power line at a second connection location. And a first power consuming device connected to the power line at a third connection location.

特許文献1には、電力系統に接続される電力線と、その電力線に対して接続される発電装置、充放電装置及び電力消費装置とを備える分散型電源システムが記載されている。電力線において電力系統へ向かう側を上流側とし、電力系統から離れる側を下流側としたとき、この分散型電源システムでは、電力線の最上流側に電力系統が接続され、電力線の最下流側に電力消費装置が接続されている。そして、電力線の上流側から下流側に向かって、充放電装置と発電装置とが順に接続されている。更に、発電装置から上流側(即ち、電力系統側)に電力の潮流を向かわせないという条件下(所謂、逆潮流を禁止するという条件下)で発電装置の動作が制御されている。   Patent Document 1 describes a distributed power supply system including a power line connected to an electric power system, and a power generation device, a charge / discharge device, and a power consumption device connected to the power line. In this distributed power system, the power system is connected to the most upstream side of the power line and the power line is connected to the most downstream side of the power line. A consumer device is connected. And the charging / discharging apparatus and the electric power generating apparatus are connected in order from the upstream of the power line toward the downstream. Further, the operation of the power generator is controlled under the condition that the power flow is not directed from the power generator to the upstream side (that is, the power system side) (so-called reverse power flow is prohibited).

図5(a)は、比較例として示す、特許文献1と同様の構成の分散型電源システムである。図5(a)に示す分散型電源システムは、電力系統1に接続される電力線2と、電力線2に対して第1接続箇所P1で接続される充放電装置10と、電力線2に対して第2接続箇所P2で接続される発電装置11と、電力線2に対して第3接続箇所P3で接続される第1電力消費装置12とを備え、電力線2に対する電力系統1の接続箇所から見て下流側に向かって第1接続箇所P1と第3接続箇所P3第2接続箇所P2とがその並び順で設けられている。更に、第1接続箇所P1よりも電力系統1の側の第4接続箇所P4では、第2電力消費装置13が電力線2に対して接続されている。そして、発電装置11は、カレントトランスCT2の検出結果を参照して(即ち、電力線2上の第1接続箇所P1と第2接続箇所P2よりも上流側の第3接続箇所P3との間を流れる電流値に基づいて導出できる電力を参照して)、第3接続箇所P3よりも電力系統1の側に電力の潮流を向かわせないという条件下で最大の発電電力を電力線2に供給し、並びに、充放電装置10は、カレントトランスCT1の検出結果を参照して(即ち、第4接続箇所P4よりも電力系統1の側での電流値に基づいて導出できる電力を参照して)、第4接続箇所P4よりも電力系統1の側に電力の潮流を向かわせないという条件下で最大の放電電力を電力線2に供給している。 FIG. 5A shows a distributed power supply system having a configuration similar to that of Patent Document 1 shown as a comparative example. The distributed power supply system shown in FIG. 5A includes a power line 2 connected to the power system 1, a charge / discharge device 10 connected to the power line 2 at a first connection location P 1, and a power line 2 connected to the power line 2. A power generation device 11 connected at two connection points P2 and a first power consuming device 12 connected at a third connection point P3 with respect to the power line 2, and downstream from the connection point of the power system 1 with respect to the power line 2 The 1st connection location P1, the 3rd connection location P3, and the 2nd connection location P2 are provided in the arrangement order toward the side. Furthermore, the second power consuming device 13 is connected to the power line 2 at the fourth connection point P4 closer to the power system 1 than the first connection point P1. Then, the power generation apparatus 11, with reference to the detection result of the current transformer CT2 (i.e., the first connection point P1 on the power line 2, between the third connection point P3 on the upstream side of the second connection point P2 Supply the maximum generated power to the power line 2 under the condition that the power flow is not directed to the power system 1 side than the third connection point P3 ) (see the power that can be derived based on the flowing current value) In addition, the charging / discharging device 10 refers to the detection result of the current transformer CT1 (that is, refers to the power that can be derived based on the current value on the power system 1 side from the fourth connection point P4). The maximum discharge power is supplied to the power line 2 under the condition that the power flow is not directed toward the power system 1 from the four connection points P4.

図5(a)のように構成することで、電力系統1が非停電状態であれば、第1電力消費装置12に対しては電力系統1及び充放電装置10及び発電装置11の少なくとも何れか一つから電力を供給でき、第2電力消費装置13に対しては電力系統1及び充放電装置10の少なくとも何れか一つから電力を供給できる。また、電力系統1が停電状態になり、遮断器3が開放された場合であっても、第1電力消費装置12に対しては、充放電装置10及び発電装置11の少なくとも何れか一つから電力を供給できる。
従って、停電時であっても電力供給を安定して行う必要のある重要な電気機器は、図5(a)に示す第1電力消費装置12の位置に接続しておけばよい。
By configuring as shown in FIG. 5A, if the power system 1 is in a non-power failure state, the first power consuming device 12 is at least one of the power system 1, the charge / discharge device 10, and the power generation device 11. The power can be supplied from one, and the second power consuming device 13 can be supplied from at least one of the power system 1 and the charge / discharge device 10. Further, even when the power system 1 is in a power failure state and the circuit breaker 3 is opened, the first power consuming device 12 is supplied from at least one of the charge / discharge device 10 and the power generation device 11. Can supply power.
Therefore, an important electrical device that needs to stably supply power even during a power failure may be connected to the position of the first power consuming device 12 shown in FIG.

特開2011−188607号公報JP 2011-188607 A

図5(a)に記載した構成の分散型電源システムは、例えば第1電力消費装置12に対する安定的な電力供給という目的は達成できるものの、発電装置11は、第3接続箇所P3よりも電力系統1の側に電力を供給できないため、発電装置11の発電電力を充放電装置10に充電させることや、第2電力消費装置13に供給することはできない。そのため、発電装置11の稼働率(発電出力の大きさ、発電時間の長さなど)が低くなるという点に課題がある。その結果、発電装置11の運転によるメリット(省エネルギー性、環境性、経済性)が限定的になる。また、このような非常時での運転が望まれる発電装置の導入メリットが限定的に考えられてしまう。 The distributed power supply system having the configuration described in FIG. 5A can achieve the purpose of supplying stable power to, for example, the first power consuming device 12, but the power generating device 11 is connected to the power system more than the third connection point P3. Since power cannot be supplied to the 1 side, the generated power of the power generation device 11 cannot be charged into the charge / discharge device 10 or supplied to the second power consumption device 13. Therefore, there is a problem in that the operating rate (the size of the power generation output, the length of the power generation time, etc.) of the power generation device 11 is lowered. As a result, the merit (energy saving property, environmental property, economical efficiency) by operation of the power generation device 11 is limited. In addition, the merit of introducing a power generator that is desired to be operated in such an emergency is limited.

発電装置11の稼働率を高くすることを目的とする場合、図5(b)に示す比較例のシステム構成を想定できる。図5(b)の分散型電源システムでは、図5(a)に記載した分散型電源システムにおいて、例えば相対的に重要度が低く、停電時に電力供給が行われなかった第2電力消費装置13にも発電装置11から常時電力が供給されることになるため、発電装置11の稼働率は高くなる。
しかし、電力系統1が停電状態になると、電力系統1からの電力供給を受けることができず、その結果、充放電装置10及び発電装置11の少なくとも何れか一つが第1電力消費装置12及び第2電力消費装置13の消費電力を全て供給しなければならないため、発電装置11及び充放電装置10が過負荷状態になり、例えば発電装置11が正常に発電運転できなくなってしまう。
When it aims at making the operation rate of the electric power generating apparatus 11 high, the system structure of the comparative example shown in FIG.5 (b) can be assumed. In the distributed power supply system of FIG. 5B, in the distributed power supply system shown in FIG. 5A, for example, the second power consuming device 13 that is relatively less important and has not been supplied with power during a power failure. In addition, since the electric power is always supplied from the power generation device 11, the operating rate of the power generation device 11 is increased.
However, when the power system 1 is in a power failure state, the power supply from the power system 1 cannot be received. As a result, at least one of the charge / discharge device 10 and the power generation device 11 is connected to the first power consumption device 12 and Since all the power consumption of the second power consuming device 13 has to be supplied, the power generation device 11 and the charge / discharge device 10 are overloaded, and for example, the power generation device 11 can not normally perform a power generation operation.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、発電装置の稼働率を高めつつ発電装置及び充放電装置の過負荷を避けることができる分散型電源システムを提供する点にある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a distributed power supply system capable of avoiding overloading of the power generation device and the charge / discharge device while increasing the operating rate of the power generation device. It is in.

上記目的を達成するための本発明に係る分散型電源システムの特徴構成は、電力系統に接続される電力線と、前記電力線に対して第1接続箇所で接続される蓄電部を有する充放電装置と、前記電力線に対して第2接続箇所で接続される発電装置と、前記電力線に対して第3接続箇所で接続される第1電力消費装置とを備える分散型電源システムであって、
前記電力線に対して第4接続箇所で接続される第2電力消費装置を備え、
前記電力線に対する前記電力系統の接続箇所から見て下流側に向かって前記第1接続箇所と前記第3接続箇所前記第2接続箇所とがその並び順で設けられ、前記第4接続箇所は前記第3接続箇所よりも前記電力系統側に設けられ、
前記発電装置は、前記電力系統が停電状態にあるときは前記電力線における電力の潮流を前記第3接続箇所よりも前記電力系統側に向かわせないという条件下で発電電力を制御し、前記電力系統が非停電状態にあるときは前記電力線における電力の潮流を前記第4接続箇所よりも前記電力系統側の所定箇所よりも前記電力系統側に向かわせないという条件下で発電電力を制御するように構成され、
前記電力系統が停電状態にあるとき、前記充放電装置と前記発電装置と前記第1電力消費装置とは前記電力線を介して互いに電気的に接続され、並びに、前記第2電力消費装置は前記充放電装置と前記発電装置と前記第1電力消費装置とから電気的に切断され、
前記電力系統が非停電状態にあるとき、前記充放電装置と前記発電装置と前記第1電力消費装置と前記第2電力消費装置とは前記電力線を介して互いに電気的に接続される点にある。
The characteristic configuration of the distributed power supply system according to the present invention for achieving the above object includes: a power line connected to a power system; and a charge / discharge device having a power storage unit connected to the power line at a first connection location; A distributed power supply system comprising: a power generation device connected to the power line at a second connection location; and a first power consumption device connected to the power line at a third connection location,
A second power consuming device connected to the power line at a fourth connection point;
Wherein said first connection point toward the downstream side as viewed from the connection point of the power system and the third connecting portion and the second connecting portion is provided at its sorted with respect to the power line, the fourth connecting portion has the Provided on the power system side from the third connection location ,
The power generation device controls the generated power under a condition that when the power system is in a power failure state, the power flow in the power line is not directed toward the power system side than the third connection point , the power system When the power is in a non-power failure state, the generated power is controlled under the condition that the power flow in the power line is not directed to the power system side rather than the predetermined part on the power system side than the fourth connection place. Configured,
When the power system is in a power failure state, the charge / discharge device, the power generation device, and the first power consumption device are electrically connected to each other via the power line, and the second power consumption device is Electrically disconnected from the discharge device, the power generation device and the first power consuming device;
When the power system is in a non-power failure state, the charge / discharge device, the power generation device, the first power consumption device, and the second power consumption device are electrically connected to each other via the power line. .

上記特徴構成によれば、発電装置は、電力系統が停電状態にあるときは電力線における電力の潮流を第3接続箇所から電力系統側に向かわせないという条件下で発電電力を制御する。つまり、第3接続箇所を含んでそこよりも下流側の範囲、即ち、第3接続箇所を含んでそこよりも電力系統から離れる側の範囲の電力線に接続されている第1電力消費装置へ電力を継続して供給するために発電装置を活用できる。
加えて、発電装置は、電力系統が非停電状態にあるときは電力線における電力の潮流を第4接続箇所よりも電力系統側の所定箇所よりも電力系統側に向かわせないという条件下で発電電力を制御する。つまり、第4接続箇所を含んでそこよりも下流側の範囲、即ち、第4接続箇所を含んでそこよりも電力系統から離れる側の範囲の電力線に接続されている第1電力消費装置及び第2電力消費装置へ電力を供給するために、発電装置を有効に活用できる。
According to the above characteristic configuration, the power generation device controls the generated power under the condition that the power flow in the power line is not directed from the third connection location to the power system side when the power system is in a power failure state. That is, the power is supplied to the first power consuming device that is connected to the power line in the range including the third connection point and the downstream side thereof, that is, in the range including the third connection point and further away from the power system. Can be used to continuously supply power.
In addition, when the power system is in an uninterruptible state, the power generator generates power under the condition that the power flow on the power line is not directed to the power system side from the predetermined location on the power system side rather than the fourth connection location. To control. That is, the first power consuming device and the first power consuming device connected to the power line in the range including the fourth connection location and the downstream side thereof, that is, the range including the fourth connection location and further away from the power system. In order to supply power to the two power consuming devices, the power generator can be used effectively.

更に、電力系統が非停電状態にあるとき、充放電装置と発電装置と第1電力消費装置と第2電力消費装置とは電力線を介して互いに電気的に接続されるので、第1電力消費装置に対しては電力系統と充放電装置と発電装置との少なくとも何れか一つから電力を供給でき、第2電力消費装置に対しては電力系統と充放電装置と発電装置との少なくとも何れか一つから電力を供給できる。
また、電力系統が停電状態にあるとき、充放電装置と発電装置と第1電力消費装置とは電力線を介して互いに電気的に接続されるので、第1電力消費装置に対しては充放電装置及び発電装置の少なくとも何れか一つから電力を供給できる。つまり、第1電力消費装置の消費電力を充放電装置及び発電装置で分担すればよいので、充放電装置及び発電装置が過負荷になることを回避できる。
Furthermore, when the power system is in a non-power failure state, the charging / discharging device, the power generation device, the first power consumption device, and the second power consumption device are electrically connected to each other via the power line. Power can be supplied from at least one of the power system, the charge / discharge device, and the power generation device, and the second power consumption device can be supplied with at least one of the power system, the charge / discharge device, and the power generation device. Power can be supplied from one.
In addition, when the power system is in a power failure state, the charging / discharging device, the power generation device, and the first power consuming device are electrically connected to each other via the power line. The power can be supplied from at least one of the power generation device. That is, since it is only necessary to share the power consumption of the first power consuming device between the charging / discharging device and the power generation device, it is possible to avoid overloading the charging / discharging device and the power generation device.

加えて、電力系統が非停電状態にあるときに発電装置から第2電力消費装置への電力供給を行う必要があったとしても、電力系統が停電状態にあるときは、第2電力消費装置が発電装置から電気的に切断されて、発電装置から第2電力消費装置への電力供給が不要になる。その結果、電力系統が停電状態にあるときは、充放電装置及び発電装置にとっての負荷を小さくすることができ、充放電装置から第1電力消費装置に対して相対的に長い時間電力を供給できる。よって、発電装置の単独運転を防止する機構が設けられていたとしても、電力系統が停電状態になると即座に発電装置の運転が停止されるのではなく、充放電装置が、電力系統から電力線への電力供給を擬似して電力線への電力供給を行い続けている限り、発電装置も運転し続けることができるようになる。
従って、発電装置の稼働率を高めつつ発電装置及び充放電装置の過負荷を避けることができる分散型電源システムを提供できる。
In addition, even if it is necessary to supply power from the power generator to the second power consuming device when the power system is in a non-power failure state, when the power system is in a power failure state, the second power consuming device is It is electrically disconnected from the power generation device, and power supply from the power generation device to the second power consuming device becomes unnecessary. As a result, when the power system is in a power failure state, the load on the charging / discharging device and the power generation device can be reduced, and power can be supplied from the charging / discharging device to the first power consuming device for a relatively long time. . Therefore, even if a mechanism for preventing the single operation of the power generation device is provided, the operation of the power generation device is not immediately stopped when the power system is in a power failure state, but the charge / discharge device is connected from the power system to the power line. As long as the power supply is continued and power supply to the power line is continued, the power generator can continue to operate.
Therefore, it is possible to provide a distributed power supply system that can avoid overloading of the power generation device and the charge / discharge device while increasing the operating rate of the power generation device.

本発明に係る分散型電源システムの別の特徴構成は、前記第2電力消費装置が前記電力線に対して接続される前記第4接続箇所は、前記充放電装置が前記電力線に対して接続される前記第1接続箇所よりも前記電力系統側にある点にある。   Another characteristic configuration of the distributed power supply system according to the present invention is that the charge / discharge device is connected to the power line at the fourth connection point where the second power consuming device is connected to the power line. It exists in the point which exists in the said electric power system side rather than the said 1st connection location.

上記特徴構成によれば、電力系統が非停電状態にあるとき、発電装置の発電電力を充放電装置に対しても供給できる。その結果、発電装置の稼働率を高めることができる。   According to the above characteristic configuration, when the power system is in a non-power failure state, the generated power of the power generator can be supplied also to the charge / discharge device. As a result, the operating rate of the power generator can be increased.

本発明に係る分散型電源システムの更に別の特徴構成は、前記電力系統が停電状態にあるか或いは非停電状態にあるかを判定可能な系統情報を検出する系統情報検出装置を備え、
前記発電装置は、前記系統情報検出装置から受け取った前記系統情報に基づいて前記電力系統が停電状態にあるか或いは非停電状態にあるかを判定する点にある。
Still another characteristic configuration of the distributed power supply system according to the present invention includes a system information detection device that detects system information capable of determining whether the power system is in a power outage state or a non-power outage state,
The power generator is in a point of determining whether the power system is in a power failure state or a non-power failure state based on the system information received from the system information detection device.

上記特徴構成によれば、発電装置は、電力系統が停電状態であるか或いは非停電状態にあるかに基づいて、電力線における電力の潮流を第3接続箇所よりも電力系統側の所定箇所から電力系統側に向かわせないという条件下で発電電力を制御するか、或いは、電力線における電力の潮流を第4接続箇所よりも電力系統側の所定箇所から電力系統側に向かわせないという条件下で発電電力を制御するかを自発的に切り換えることができる。 According to the above-described characteristic configuration, the power generator generates power from a predetermined location on the power system side from the third connection location based on whether the power system is in a power failure state or a non-power failure state. Generate power under the condition that the generated power is controlled under the condition that it is not directed to the grid side, or the power flow on the power line is not directed from the predetermined location on the power system side to the power system side rather than the fourth connection location. Whether to control power can be switched spontaneously.

本発明に係る分散型電源システムの更に別の特徴構成は、前記発電装置は、前記第4接続箇所よりも前記電力系統側の前記所定箇所から前記電力系統側へ向かう電力の潮流を表す第1信号及び前記第3接続箇所から前記電力系統側へ向かう電力の潮流を表す第2信号を受け取り、前記系統情報検出装置から受け取った前記系統情報に基づいて前記電力系統が停電状態にあると判定したときは前記第2信号を参照して発電電力を制御し、前記電力系統が非停電状態にあると判定したときは前記第1信号を参照して発電電力を制御する点にある。 Still another characteristic configuration of the distributed power supply system according to the present invention is a first configuration in which the power generation device represents a power flow from the predetermined location on the power system side toward the power system side with respect to the fourth connection location. A signal and a second signal representing a power flow from the third connection point toward the power system side are received, and the power system is determined to be in a power failure state based on the system information received from the system information detection device When the generated power is controlled with reference to the second signal, the generated power is controlled with reference to the first signal when it is determined that the power system is in a non-power failure state.

上記特徴構成によれば、発電装置は、電力系統が停電状態にあるか或いは非停電状態にあるかに基づいて、第3接続箇所から電力系統側へ向かう電力の潮流を表す第2信号を参照して電力線における電力の潮流を第3接続箇所よりも電力系統側の所定箇所から電力系統側に向かわせないという条件下で発電電力を制御するか、或いは、第4接続箇所よりも電力系統側の所定箇所から電力系統側へ向かう電力の潮流を表す第1信号を参照して電力線における電力の潮流を第4接続箇所よりも電力系統側の所定箇所から電力系統側に向かわせないという条件下で発電電力を制御するかを自発的に切り換えることができる。 According to the above characteristic configuration, the power generation device refers to the second signal representing the power flow from the third connection point toward the power system, based on whether the power system is in a power failure state or a non-power failure state. Then, the generated power is controlled under the condition that the power flow in the power line is not directed from the predetermined location on the power system side to the power system side from the third connection location , or the power system side from the fourth connection location. The condition that the power flow in the power line is not directed from the predetermined location on the power system side to the power system side from the fourth connection location with reference to the first signal representing the power flow from the predetermined location to the power system side. It is possible to voluntarily switch whether to control the generated power.

本発明に係る分散型電源システムの更に別の特徴構成は、前記電力系統が停電状態にあるか或いは非停電状態にあるかを判定可能な系統情報を検出する系統情報検出装置と、
前記第4接続箇所よりも前記電力系統側の前記所定箇所から前記電力系統側へ向かう電力の潮流を表す第1信号が入力される第1信号線、及び、前記第3接続箇所から前記電力系統側へ向かう電力の潮流を表す第2信号が入力される第2信号線が接続される切換器と、前記第1信号線を前記発電装置に接続する第1切換状態と前記第2信号線を前記発電装置に接続する第2切換状態との何れかに前記切換器を切り換える切換制御部とを有する切換装置を備え、
前記切換制御部は、前記系統情報検出装置から受け取った前記系統情報に基づいて、前記電力系統が非停電状態にあるときは前記切換器を前記第1切換状態に切り換え、前記電力系統が停電状態にあるときは前記切換器を前記第2切換状態に切り換える点にある。
Still another characteristic configuration of the distributed power supply system according to the present invention is a system information detection device that detects system information capable of determining whether the power system is in a power outage state or a non-power outage state,
A first signal line to which a first signal representing a power flow from the predetermined location on the power system side to the power system side than the fourth connection location is input, and from the third connection location to the power system. A switch to which a second signal line to which a second signal representing a power flow toward the side is input is connected; a first switching state in which the first signal line is connected to the power generator; and the second signal line A switching device having a switching control unit that switches the switch to any one of the second switching states connected to the power generation device;
The switching control unit switches the switch to the first switching state when the power system is in a non-power failure state based on the system information received from the system information detection device, and the power system is in a power failure state. The switching device is switched to the second switching state.

上記特徴構成によれば、切換装置が、電力系統が停電状態にあるか或いは非停電状態にあるかに基づいて、発電装置に対して第1信号が伝達されるか或いは第2信号が伝達されるかを切り換える。つまり、発電装置は、電力系統が停電状態にあるか或いは非停電状態にあるかの判定を行わなくても、自動的に電力系統が停電状態であるときは電力線における電力の潮流を第3接続箇所よりも電力系統側の所定箇所から電力系統側に向かわせないという条件下で発電電力を制御し、電力系統が非停電状態であるときは電力線における電力の潮流を第4接続箇所よりも電力系統側の所定箇所から電力系統側に向かわせないという条件下で発電電力を制御するように動作する。 According to the above characteristic configuration, the switching device transmits the first signal or the second signal to the power generation device based on whether the power system is in a power failure state or a non-power failure state. Switch between. In other words, the power generator automatically connects the power flow on the power line to the third line when the power system is in a power outage state automatically without determining whether the power system is in a power outage state or in a non-power outage state. The generated power is controlled under the condition that it does not go from the predetermined location on the power system side to the power system side rather than the location, and when the power system is in an uninterruptible state, the power flow in the power line is more power than the fourth connection location. It operates to control the generated power under the condition that it does not go from the predetermined location on the grid side to the power grid side.

第1実施形態の分散型電源システムの構成を説明する図である。It is a figure explaining the structure of the distributed power supply system of 1st Embodiment. 第2実施形態の分散型電源システムの構成を説明する図である。It is a figure explaining the structure of the distributed power supply system of 2nd Embodiment. 第3実施形態の分散型電源システムの構成を説明する図である。It is a figure explaining the structure of the distributed power supply system of 3rd Embodiment. 第4実施形態の分散型電源システムの構成を説明する図である。It is a figure explaining the structure of the distributed power supply system of 4th Embodiment. 比較例の分散型電源システムの構成を説明する図である。It is a figure explaining the structure of the distributed power supply system of a comparative example.

<第1実施形態>
以下に図面を参照して第1実施形態の分散型電源システムについて説明する。
図1は、第1実施形態の分散型電源システムの構成を説明する図である。図1に示すように、分散型電源システムは、電力系統1に接続される電力線2と、電力線2に対して第1接続箇所P1で接続される蓄電部10bを有する充放電装置10と、電力線2に対して第2接続箇所P2で接続される発電装置11と、電力線2に対して第3接続箇所P3で接続される第1電力消費装置12とを備え、電力線2に対する電力系統1の接続箇所から見て下流側に向かって第1接続箇所P1と第3接続箇所P3第2接続箇所P2とがその並び順で設けられている。更に、第1接続箇所P1よりも電力系統1の側の第4接続箇所P4では、第2電力消費装置13が電力線2に対して接続されている。尚、本実施形態において、電力線2において電力系統1に近づく側を上流側とし、電力線2において電力系統1から離れる側を下流側と記載する。
<First Embodiment>
The distributed power supply system according to the first embodiment will be described below with reference to the drawings.
FIG. 1 is a diagram illustrating the configuration of the distributed power supply system according to the first embodiment. As shown in FIG. 1, the distributed power supply system includes a power line 2 connected to the power system 1, a charging / discharging device 10 having a power storage unit 10 b connected to the power line 2 at a first connection location P 1, and a power line 2 is connected to the power line 2 at the second connection point P2 and the first power consuming device 12 is connected to the power line 2 at the third connection point P3. A first connection point P1, a third connection point P3, and a second connection point P2 are provided in the arrangement order toward the downstream side as viewed from the point. Furthermore, the second power consuming device 13 is connected to the power line 2 at the fourth connection point P4 closer to the power system 1 than the first connection point P1. In the present embodiment, the side closer to the power system 1 in the power line 2 is referred to as the upstream side, and the side away from the power system 1 in the power line 2 is referred to as the downstream side.

本実施形態では、第1接続箇所P1よりも電力系統1の側の電力線2に遮断器3を設けている。また、遮断器3よりも電力系統1の側で、電力系統1が停電状態にあるか或いは非停電状態にあるかを判定可能な系統情報を検出する系統情報検出装置15を設けている。例えば、系統情報検出装置15は、電力線2での電力の電圧を系統情報として検出する装置である。この場合、遮断器3よりも電力系統1の側の電力線2の電圧が所定電圧未満であれば電力系統1が停電状態であると判定でき、所定電圧以上であれば電力系統1が非停電状態であると判定できる。ここで、系統情報検出装置15自身が、電力線2の電圧に基づいて電力系統1が停電状態であるか或いは非停電状態であるかを判定し、その判定結果を各装置に伝達するように構成してもよい。   In this embodiment, the circuit breaker 3 is provided in the power line 2 on the power system 1 side from the first connection point P1. Moreover, the system information detection apparatus 15 which detects the system information which can determine whether the electric power system 1 is in the power failure state or the non-power failure state is provided on the power system 1 side from the circuit breaker 3. For example, the system information detection device 15 is a device that detects the voltage of power on the power line 2 as system information. In this case, if the voltage of the power line 2 on the power system 1 side of the circuit breaker 3 is less than a predetermined voltage, it can be determined that the power system 1 is in a power failure state, and if the voltage is higher than the predetermined voltage, the power system 1 is in a non-power failure state. Can be determined. Here, the system information detection device 15 itself is configured to determine whether the power system 1 is in a power failure state or a non-power failure state based on the voltage of the power line 2 and to transmit the determination result to each device. May be.

具体的には、発電装置11は、系統情報検出装置15から伝達された電力線2の電圧が所定電圧以上であれば、電力系統1が非停電状態であると判定できる。これに対して、発電装置11は、系統情報検出装置15から伝達された電力線2の電圧が所定電圧未満であれば、電力系統1が停電状態であると判定できる。   Specifically, when the voltage of the power line 2 transmitted from the system information detection device 15 is equal to or higher than a predetermined voltage, the power generation device 11 can determine that the power system 1 is in a non-power failure state. On the other hand, if the voltage of the power line 2 transmitted from the system information detection device 15 is less than the predetermined voltage, the power generation device 11 can determine that the power system 1 is in a power failure state.

遮断器3は、系統情報検出装置15の検出結果を参照して、電力系統1が非停電状態であれば、閉作動して電力系統1と第1接続箇所P1とを電気的に接続することで、電力系統1から供給される電力が第1接続箇所P1よりも下流側に供給されるようにする。また、遮断器3は、系統情報検出装置15の検出結果を参照して、電力系統1が停電状態であれば、開作動して電力系統1と第1接続箇所P1とを電気的に切断する。   The circuit breaker 3 refers to the detection result of the system information detection device 15, and if the power system 1 is in a non-power failure state, the circuit breaker 3 is closed to electrically connect the power system 1 and the first connection location P1. Thus, the power supplied from the power system 1 is supplied to the downstream side of the first connection point P1. Moreover, the circuit breaker 3 refers to the detection result of the system information detection device 15, and if the power system 1 is in a power failure state, the circuit breaker 3 is opened to electrically disconnect the power system 1 and the first connection location P1. .

充放電装置10は、電気を蓄えることのできる蓄電部10bと、その蓄電部10bから電力線2への放電電力及び電力線2から蓄電部10bへの充電電力を制御可能な電力変換部10aとを備える。蓄電部10bは、蓄電池や電気二重層キャパシタなど、蓄電機能を有する各種機器で構成することができる。また、系統情報検出装置15の検出結果は充放電装置10へ伝達されるように構成されている。   The charging / discharging device 10 includes a power storage unit 10b capable of storing electricity, and a power conversion unit 10a capable of controlling discharge power from the power storage unit 10b to the power line 2 and charge power from the power line 2 to the power storage unit 10b. . The power storage unit 10b can be composed of various devices having a power storage function, such as a storage battery or an electric double layer capacitor. Moreover, the detection result of the system | strain information detection apparatus 15 is comprised so that it may be transmitted to the charging / discharging apparatus 10. FIG.

本実施形態において、各カレントトランスCT1、CT2の検出結果である第1信号、第2信号は、電力線2における電流値である。その結果、カレントトランスCT1、CT2の検出結果と、別途検出される電力線2の電力の電圧値とから、電力線2における電力を導出できる。具体的には、発電装置11は、カレントトランスCT1の検出結果である第1信号と電力線2の電力の電圧値とから、第4接続箇所P4よりも電力系統1の側の所定箇所よりも電力系統1の側へ向かう電力の潮流を知ることができ、及び、カレントトランスCT2の検出結果である第2信号と電力線2の電力の電圧値とから、第3接続箇所P3から電力系統1の側へ向かう電力の潮流を知ることができる。 In the present embodiment, the first signal and the second signal, which are detection results of the current transformers CT1 and CT2, are current values in the power line 2. As a result, the power in the power line 2 can be derived from the detection results of the current transformers CT1 and CT2 and the voltage value of the power line 2 detected separately. Specifically, the power generation device 11 uses the first signal, which is the detection result of the current transformer CT1, and the voltage value of the power of the power line 2 so that the power is higher than a predetermined location on the power system 1 side from the fourth connection location P4. It is possible to know the power flow toward the grid 1 side, and from the second signal, which is the detection result of the current transformer CT2, and the voltage value of the power on the power line 2, from the third connection point P3 to the grid 1 side. You can know the power flow toward

充放電装置10の電力変換部10aは、例えば、電力系統1からの買電料金が相対的に低い深夜時間帯に蓄電部10bへの充電を行い、電力系統1からの買電料金が相対的に高い他の時間帯に蓄電部10bからの放電を行うような動作形態や、第1電力消費装置12及び第2電力消費装置13の合計消費電力が相対的に小さい時間帯に蓄電部10bへの充電を行い、その合計消費電力が相対的に大きい時間帯に蓄電部10bからの放電を行うような動作形態などを採るように構成させることができる。このうち、充放電装置10の電力変換部10aが、第1電力消費装置12及び第2電力消費装置13の合計消費電力が相対的に小さい時間帯に蓄電部10bへの充電を行うように構成すると、充放電装置10へ充電するためにも発電装置11を運転して、その結果、発電装置11の稼働率を上げることができる。尚、発電装置11の発電電力を充放電装置10に充電できない場合、発電効率(即ち、エネルギー効率)がそれほど高くない火力発電所等から電力系統1へと供給された電力を充放電装置10に充電し、その電力を放電して電力消費装置12、13等へ供給しなければならない。つまり、発電装置11の稼働率は相対的に低くなり、且つ、充放電装置10も見かけ上、低いエネルギー効率(即ち、火力発電所の発電効率(約37%)×充電効率×放電効率)での運転をしなければならない。これに対して、発電装置11の発電電力を充放電装置10に充電できれば、発電装置11の稼働率を向上させることができると共に、発電装置11として、例えば熱と電気とを併せて発生する熱電併給装置を用いた場合であればエネルギー効率は約90%(発電効率(約35%)+排熱効率(約55%))となるため、充放電装置10も見かけ上、高いエネルギー効率(熱電併給装置の発電効率(約35%)×充電効率×放電効率+熱電併給装置の排熱効率(約55%))での運転を行うことができる。   For example, the power conversion unit 10a of the charging / discharging device 10 charges the power storage unit 10b in the midnight time zone when the power purchase fee from the power system 1 is relatively low, and the power purchase fee from the power system 1 is relatively To the power storage unit 10b when the total power consumption of the first power consuming device 12 and the second power consuming device 13 is relatively small. It is possible to adopt an operation mode in which charging is performed and discharging from the power storage unit 10b is performed in a time zone in which the total power consumption is relatively large. Among these, the power conversion unit 10a of the charging / discharging device 10 is configured to charge the power storage unit 10b in a time zone in which the total power consumption of the first power consumption device 12 and the second power consumption device 13 is relatively small. Then, in order to charge the charging / discharging device 10, the power generation device 11 is operated, and as a result, the operating rate of the power generation device 11 can be increased. In addition, when the generated power of the power generator 11 cannot be charged to the charge / discharge device 10, the power supplied to the power system 1 from a thermal power plant or the like whose power generation efficiency (that is, energy efficiency) is not so high is supplied to the charge / discharge device 10. It must be charged, the power discharged and supplied to the power consuming devices 12, 13, etc. That is, the operating rate of the power generation device 11 is relatively low, and the charge / discharge device 10 is also apparently low in energy efficiency (that is, power generation efficiency (about 37%) × charging efficiency × discharge efficiency of a thermal power plant). Must drive. On the other hand, if the charge / discharge device 10 can be charged with the power generated by the power generation device 11, the operating rate of the power generation device 11 can be improved, and the power generation device 11 can generate, for example, thermoelectric power combined with heat and electricity. In the case of using a combined supply device, the energy efficiency is about 90% (power generation efficiency (about 35%) + exhaust heat efficiency (about 55%)), so the charging / discharging device 10 also appears to have high energy efficiency (cogeneration) Operation with the power generation efficiency of the device (about 35%) × charge efficiency × discharge efficiency + exhaust heat efficiency of the combined heat and power supply device (about 55%) can be performed.

電力系統1が非停電状態にあるときは遮断器3が閉作動するため、充放電装置10と発電装置11と第1電力消費装置12と第2電力消費装置13とは電力線2を介して互いに電気的に接続される。このとき、第1電力消費装置12に対しては、電力系統1及び充放電装置10及び発電装置11の少なくとも何れか一つから電力が供給され、第2電力消費装置13に対しては、電力系統1及び充放電装置10の少なくとも何れか一つから電力が供給される。
電力系統1が停電状態にあるときは遮断器3が開作動するため、充放電装置10と発電装置11と第1電力消費装置12とは電力線2を介して互いに電気的に接続され、並びに、第2電力消費装置13は充放電装置10と発電装置11と第1電力消費装置12とから電気的に切断される。
Since the circuit breaker 3 is closed when the power system 1 is in an uninterrupted state, the charging / discharging device 10, the power generation device 11, the first power consumption device 12, and the second power consumption device 13 are mutually connected via the power line 2. Electrically connected. At this time, power is supplied from at least one of the power system 1, the charge / discharge device 10, and the power generation device 11 to the first power consumption device 12, and power is supplied to the second power consumption device 13. Power is supplied from at least one of the system 1 and the charge / discharge device 10.
Since the circuit breaker 3 is opened when the power system 1 is in a power failure state, the charging / discharging device 10, the power generation device 11, and the first power consumption device 12 are electrically connected to each other via the power line 2, and The second power consumption device 13 is electrically disconnected from the charge / discharge device 10, the power generation device 11, and the first power consumption device 12.

第1電力消費装置12は、電力系統1が停電状態であっても電力供給を行う必要がある重要な電気機器である。例えば、停電などの非常時にも点灯することが必要な照明装置や常時稼動させておくことが必要な情報機器などが、第1電力消費装置12として電力線2の第3接続箇所P3に接続されている。これに対して、第2電力消費装置13は、電力系統1が停電状態であれば電力供給が行われない電気機器である。例えば、停電などの非常時には電力供給が行われなくても構わない空調装置やそれほど重要度の高くない照明装置など、第1電力消費装置12に比べて重要度の低い電気機器が、第2電力消費装置13として電力線2の第4接続箇所P4に接続されている。
尚、どのような電気機器を第1電力消費装置12及び第2電力消費装置13とするかは適宜設定可能である。
The first power consuming device 12 is an important electrical device that needs to supply power even when the power system 1 is in a power failure state. For example, a lighting device that needs to be lit in an emergency such as a power outage or an information device that needs to be always operated is connected to the third connection point P3 of the power line 2 as the first power consuming device 12. Yes. On the other hand, the second power consuming device 13 is an electrical device that is not supplied with power if the power system 1 is in a power failure state. For example, an electric device that is less important than the first power consuming device 12 such as an air conditioner that does not have to be supplied with power in an emergency such as a power outage or a lighting device that is not so important is the second power. The consumer device 13 is connected to the fourth connection point P4 of the power line 2.
In addition, it can be set suitably what kind of electric equipment is made into the 1st power consuming apparatus 12 and the 2nd power consuming apparatus 13. FIG.

発電装置11は、燃料電池や、エンジンの駆動力によって動作する発電機など、自身の発電電力を制御可能な装置を用いて構成できる。そして、発電装置11は、電力系統1が停電状態にあるときは電力線2における電力の潮流を第3接続箇所P3よりも電力系統1の側に向かわせないという条件下で発電電力を制御し(即ち、その条件下で最大の発電電力を電力線2に供給し)、電力系統1が非停電状態にあるときは電力線2における電力の潮流を第4接続箇所P4よりも電力系統1の側の所定箇所よりも電力系統1の側に向かわせないという条件下で発電電力を制御する(即ち、その条件下で最大の発電電力を電力線2に供給する)ように構成される。 The power generation device 11 can be configured using a device capable of controlling its own generated power, such as a fuel cell or a generator that operates by the driving force of the engine. And the electric power generating apparatus 11 controls generated electric power on the conditions that the electric power flow in the electric power line 2 is not made to go to the electric power system 1 side rather than the 3rd connection location P3, when the electric power system 1 is in a power failure state ( That is, the maximum generated power is supplied to the power line 2 under the conditions), and when the power system 1 is in a non-power-out state, the power flow in the power line 2 is set to a predetermined value closer to the power system 1 than the fourth connection point P4 It is configured to control the generated power under the condition that it is not directed toward the power system 1 rather than the location (that is, supply the maximum generated power to the power line 2 under the condition).

具体的には、発電装置11は、電力系統1が非停電状態にあるときは、カレントトランスCT1の検出結果(第1信号)を参照して、電力線2における電力の潮流を第4接続箇所P4よりも電力系統1の側の所定箇所から電力系統1側に向かわせないという条件下で発電電力を制御する。   Specifically, when the power system 1 is in a non-power failure state, the power generation apparatus 11 refers to the detection result (first signal) of the current transformer CT1 to change the power flow in the power line 2 to the fourth connection point P4. The generated power is controlled under the condition that the power system 1 does not go from the predetermined location on the power system 1 side to the power system 1 side.

これに対して、発電装置11は、電力系統1が停電状態にあるときは、カレントトランスCT2の検出結果(第2信号)を参照して、電力線2における電力の潮流を第3接続箇所P3から電力系統1側に向かわせないという条件下で発電電力を制御する。つまり、発電装置11は、第1電力消費装置12の消費電力に相当する電力又はその消費電力以下の電力を電力線2へと供給する。 On the other hand, when the power system 1 is in a power failure state, the power generation device 11 refers to the detection result (second signal) of the current transformer CT2 to change the power flow in the power line 2 from the third connection point P3. The generated power is controlled under the condition that it is not directed to the power system 1 side. That is, the power generation device 11 supplies the power line 2 with power corresponding to the power consumption of the first power consumption device 12 or power less than the power consumption.

以上のように、電力系統1が停電状態にあるときは、第3接続箇所P3において電力線2に接続されている第1電力消費装置12へ電力を継続して供給するために発電装置11を活用できる。加えて、電力系統1が非停電状態にあるときは、第4接続箇所P4を含んでそこよりも下流側の範囲の電力線2に接続されている第1電力消費装置12及び第2電力消費装置13へ電力を供給するために、発電装置11を有効に活用できる。 As described above, when the power system 1 is in a power failure state , the power generator 11 is used to continuously supply power to the first power consuming device 12 connected to the power line 2 at the third connection point P3. it can. In addition, when the power system 1 is in a non-power failure state, the first power consuming device 12 and the second power consuming device that are connected to the power line 2 in the range downstream from the fourth connecting point P4. In order to supply power to 13, the power generation device 11 can be effectively used.

また、電力系統が停電状態にあるとき、充放電装置10及び発電装置11が第1電力消費装置12にとっての電力供給源となり得る、即ち、第1電力消費装置12の消費電力を充放電装置10及び発電装置11で分担して供給できるので、充放電装置10及び発電装置11が過負荷になることを回避できる。加えて、電力系統1が停電状態にあるときは、第2電力消費装置13が発電装置11から電気的に切断されて、発電装置11から第2電力消費装置13への電力供給が不要になる。その結果、電力系統1が停電状態にあるときは、充放電装置10及び発電装置11にとっての負荷を小さくすることができ、充放電装置10から第1電力消費装置12に対して相対的に長い時間電力を供給できるようになる。よって、発電装置11の単独運転を防止する機構が設けられていたとしても、電力系統1が停電状態になると即座に発電装置11の運転が停止されるのではなく、充放電装置10が、電力系統1から電力線2への電力供給を擬似して電力線2への電力供給を行い続けている限り、発電装置11も運転し続けることができるようになる。   Further, when the power system is in a power failure state, the charging / discharging device 10 and the power generation device 11 can serve as a power supply source for the first power consuming device 12, that is, the power consumption of the first power consuming device 12 is changed to the charging / discharging device 10 And since it can supply by sharing with the electric power generating apparatus 11, it can avoid that the charging / discharging apparatus 10 and the electric power generating apparatus 11 become overload. In addition, when the power system 1 is in a power failure state, the second power consuming device 13 is electrically disconnected from the power generating device 11, and power supply from the power generating device 11 to the second power consuming device 13 becomes unnecessary. . As a result, when the power system 1 is in a power failure state, the load on the charging / discharging device 10 and the power generation device 11 can be reduced, and is relatively long from the charging / discharging device 10 to the first power consuming device 12. Time power can be supplied. Therefore, even if a mechanism for preventing the power generator 11 from being operated alone is provided, the operation of the power generator 11 is not immediately stopped when the power system 1 is in a power failure state. As long as power supply from the system 1 to the power line 2 is simulated and power supply to the power line 2 is continued, the power generation apparatus 11 can also continue to operate.

<第2実施形態>
第2実施形態の分散型電源システムは、切換装置14を備えている点で第1実施形態の分散型電源システムと異なる。以下に第2実施形態の分散型電源システムについて説明するが、第1実施形態と同様の構成については説明を省略する。
Second Embodiment
The distributed power supply system of the second embodiment is different from the distributed power supply system of the first embodiment in that a switching device 14 is provided. Although the distributed power supply system of 2nd Embodiment is demonstrated below, description is abbreviate | omitted about the structure similar to 1st Embodiment.

図2は、第2実施形態の分散型電源システムの構成を説明する図である。図示するように、第2実施形態の分散型電源システムは切換装置14を備えている。切換装置14は、第4接続箇所P4よりも電力系統1の側の所定箇所から電力系統1の側へ向かう電力の潮流を表す第1信号が入力される第1信号線4、及び、第3接続箇所P3から電力系統1の側へ向かう電力の潮流を表す第2信号が入力される第2信号線5とが接続される切換器14aと、第1信号線4を発電装置11に接続する第1切換状態と第2信号線5を発電装置11に接続する第2切換状態との何れかに切換器14aを切り換える切換制御部14bとを有する。そして、切換制御部14bは、電力系統1が非停電状態であるか或いは停電状態であるかを示す系統情報を系統情報検出装置15から受信して、電力系統1が非停電状態にあるときは切換器14aを第1切換状態に切り換え、電力系統1が停電状態にあるときは切換器14aを第2切換状態に切り換える。 FIG. 2 is a diagram illustrating the configuration of the distributed power supply system according to the second embodiment. As shown in the figure, the distributed power supply system of the second embodiment includes a switching device 14. The switching device 14 includes a first signal line 4 to which a first signal representing a power flow from a predetermined location closer to the power system 1 than the fourth connection location P4 to the power system 1 side is input, and a third signal line 4 The switch 14a to which the second signal line 5 to which the second signal representing the power flow from the connection point P3 toward the power system 1 is input is connected, and the first signal line 4 is connected to the power generator 11. It has the switching control part 14b which switches the switch 14a to either a 1st switching state and the 2nd switching state which connects the 2nd signal wire | line 5 to the electric power generating apparatus 11. FIG. And the switching control part 14b receives the system | strain information which shows whether the electric power grid | system 1 is a non-power-out state or a power-out state from the system | strain information detection apparatus 15, and when the power system 1 is in a non-power-out state. The switching device 14a is switched to the first switching state, and when the power system 1 is in the power failure state, the switching device 14a is switched to the second switching state.

つまり、電力系統1が停電状態であるとき、切換制御部14bは系統情報検出装置15から伝達される系統情報に基づいて第2信号線5を発電装置11に接続する第2切換状態に切換器14aを切り換える。その結果、発電装置11にはカレントトランスCT2の検出結果が伝達され、発電装置11は、第3接続箇所P3よりも電力系統1の側に電力の潮流を向かわせないという条件下で発電電力を制御する。
これに対して、電力系統1が停電状態であるとき、切換制御部14bは系統情報検出装置15から伝達される系統情報に基づいて、第1信号線4を発電装置11に接続する第1切換状態に切換器14aを切り換える。その結果、発電装置11にはカレントトランスCT1の検出結果が伝達され、発電装置11は、第4接続箇所P4よりも電力系統1の側の所定箇所よりも電力系統1の側に電力の潮流を向かわせないという条件下で発電電力を制御する。
That is, when the power system 1 is in a power failure state, the switching control unit 14b switches to the second switching state in which the second signal line 5 is connected to the power generation device 11 based on the system information transmitted from the system information detecting device 15. 14a is switched. As a result, the detection result of the current transformer CT2 is transmitted to the power generation device 11, and the power generation device 11 generates generated power under the condition that the power flow is not directed to the power system 1 side from the third connection point P3. Control.
In contrast, when the power system 1 is in a non- power failure state, the switching control unit 14b connects the first signal line 4 to the power generation device 11 based on the system information transmitted from the system information detection device 15. The switch 14a is switched to the switching state. As a result, the detection result of the current transformer CT1 is transmitted to the power generation device 11, and the power generation device 11 transmits power flow to the power system 1 side from a predetermined location on the power system 1 side than the fourth connection location P4. The generated power is controlled under the condition that it is not directed.

このような切換装置14を設けることで、発電装置11は、電力系統1が停電状態にあるか或いは非停電状態にあるかの判定を行わなくても、自動的に電力系統1が停電状態であるときは電力線2における電力の潮流を第3接続箇所P3よりも電力系統1の側の所定箇所から電力系統1の側に向かわせないという条件下で発電電力を制御し、電力系統1が非停電状態であるときは電力線2における電力の潮流を第4接続箇所P4よりも電力系統1の側の所定箇所から電力系統1の側に向かわせないという条件下で発電電力を制御するように動作する。 By providing such a switching device 14, the power generation device 11 automatically has the power system 1 in the power outage state without determining whether the power system 1 is in the power outage state or the non-power outage state. In some cases, the generated power is controlled under the condition that the power flow in the power line 2 is not directed from the predetermined location on the power system 1 side to the power system 1 side relative to the third connection location P3. Operates to control the generated power under the condition that the power flow in the power line 2 is not directed from the predetermined location on the power system 1 side to the power system 1 side than the fourth connection location P4 when in a power failure state. To do.

<第3実施形態>
第3実施形態の分散型電源システムは、電力線2に対する第2電力消費装置13の接続箇所が上記実施形態と異なっている。以下に第3実施形態の分散型電源システムの構成について説明するが、上記実施形態と同様の構成については説明を省略する。
<Third Embodiment>
The distributed power supply system of the third embodiment is different from the above embodiment in the connection location of the second power consuming device 13 with respect to the power line 2. The configuration of the distributed power supply system according to the third embodiment will be described below, but the description of the same configuration as the above embodiment will be omitted.

図3は、第3実施形態の分散型電源システムの構成を説明する図である。図示するように、第2電力消費装置13が電力線2に接続される第4接続箇所P4は、第1電力消費装置12が電力線2に接続される第3接続箇所P3及び発電装置11が電力線2に接続される第2接続箇所P2よりも電力系統1の側であり、且つ、充放電装置10が電力線2に接続される第1接続箇所P1よりも下流側(即ち、電力系統1から離れる側)に位置する。 FIG. 3 is a diagram illustrating the configuration of the distributed power supply system according to the third embodiment. As shown in the figure, the fourth connection point P4 where the second power consuming device 13 is connected to the power line 2 is the third connection point P3 where the first power consuming device 12 is connected to the power line 2, and the power generator 11 is the power line 2. And the downstream side of the first connection point P1 where the charging / discharging device 10 is connected to the power line 2 (that is, the side away from the power system 1). ).

更に、第2電力消費装置13は、遮断器6を介して電力線2の第4接続箇所P4と接続されている。そして、この遮断器6は、上記遮断器3と同様に、系統情報検出装置15の検出結果を参照して、電力系統1が非停電状態であれば閉作動して第2電力消費装置13と電力線2とを電気的に接続することで、電力線2から第2電力消費装置13へと電力が供給されるようにする。また、遮断器6は、系統情報検出装置15の検出結果を参照して、電力系統1が停電状態であれば開作動して第2電力消費装置13と電力線2とを電気的に切断することで、電力線2から第2電力消費装置13へは電力が供給されないようにする。   Further, the second power consuming device 13 is connected to the fourth connection point P4 of the power line 2 via the circuit breaker 6. Then, like the circuit breaker 3, the circuit breaker 6 refers to the detection result of the system information detection device 15 and is closed when the power system 1 is in a non-power failure state. By electrically connecting the power line 2, power is supplied from the power line 2 to the second power consuming device 13. Moreover, the circuit breaker 6 refers to the detection result of the system information detection device 15 and opens the power system 1 if the power system 1 is in a power outage state to electrically disconnect the second power consuming device 13 and the power line 2. Thus, power is not supplied from the power line 2 to the second power consuming device 13.

このように構成することで、電力系統1が非停電状態にあるとき、発電装置11は、カレントトランスCT1の検出結果を参照して、第1電力消費装置12の消費電力と第2電力消費装置13の消費電力との合計電力に相当する電力或いはその合計電力以下の電力を電力線2へと供給する。つまり、発電装置11の稼働率を高めることができる。尚、第1電力消費装置12での消費電力と第2電力消費装置13の消費電力との合計電力が発電装置11の発電電力を超える場合、発電装置11からはその合計電力以下の電力しか供給できないが、足りない分の電力は充放電装置10の放電電力と電力系統1から供給される電力との両方又は一方で賄うことができる。
これに対して、電力系統1が停電状態にあるとき、発電装置11は、カレントトランスCT2の検出結果を参照して、第1電力消費装置12の消費電力或いはその消費電力以下の電力を電力線2へと供給する。つまり、発電装置11が過負荷になることを回避できる。尚、この場合も第1電力消費装置12での消費電力が発電装置11の発電電力を超える場合、発電装置11からはその消費電力以下の電力しか供給できないが、足りない分の電力は充放電装置10の放電電力で賄うことができる。
With this configuration, when the power system 1 is in a non-power failure state, the power generation device 11 refers to the detection result of the current transformer CT1 and uses the power consumption of the first power consumption device 12 and the second power consumption device. The power corresponding to the total power with the 13 power consumption or the power equal to or lower than the total power is supplied to the power line 2. That is, the operating rate of the power generator 11 can be increased. In addition, when the total power of the power consumption of the first power consumption device 12 and the power consumption of the second power consumption device 13 exceeds the power generation power of the power generation device 11, the power generation device 11 supplies only less than the total power. Although it is not possible, the insufficient power can be provided for either or both of the discharge power of the charging / discharging device 10 and the power supplied from the power system 1.
On the other hand, when the power system 1 is in a power failure state, the power generation device 11 refers to the detection result of the current transformer CT2 and supplies the power consumption of the first power consumption device 12 or power less than the power consumption to the power line 2. To supply. That is, it can avoid that the electric power generating apparatus 11 becomes overloaded. In this case as well, when the power consumed by the first power consuming device 12 exceeds the power generated by the power generating device 11, the power generating device 11 can supply only the power less than the power consumed, but the insufficient power is charged / discharged. it can be covered by the discharge power of the device 10.

<第4実施形態>
第4実施形態の分散型電源システムは、カレントトランスCT1の検出位置が第3実施形態と異なっている。以下に第4実施形態の分散型電源システムに構成について説明するが第3実施形態と同様の構成については説明を省略する。
<Fourth embodiment>
In the distributed power supply system of the fourth embodiment, the detection position of the current transformer CT1 is different from that of the third embodiment. The configuration of the distributed power supply system of the fourth embodiment will be described below, but the description of the same configuration as that of the third embodiment will be omitted.

図4は、第4実施形態の分散型電源システムの構成を説明する図である。本実施形態では、第2電力消費装置13が電力線2に接続される第4接続箇所P4は、第1電力消費装置12が電力線2に接続される第3接続箇所P3及び発電装置11が電力線2に接続される第2接続箇所P2よりも電力系統1の側であり、且つ、充放電装置10が電力線2に接続される第1接続箇所P1よりも下流側(即ち、電力系統1から離れる側)に位置する。更に、カレントトランスCT1の検出位置は、充放電装置10が電力線2に接続される第1接続箇所P1よりも電力系統1の側である。 FIG. 4 is a diagram illustrating the configuration of the distributed power supply system according to the fourth embodiment. In the present embodiment, the fourth connection point P4 where the second power consuming device 13 is connected to the power line 2 is the third connection point P3 where the first power consuming device 12 is connected to the power line 2, and the power generator 11 is the power line 2. And the downstream side of the first connection point P1 where the charging / discharging device 10 is connected to the power line 2 (that is, the side away from the power system 1). ). Furthermore, the detection position of the current transformer CT1 is closer to the power system 1 than the first connection point P1 where the charging / discharging device 10 is connected to the power line 2.

具体的には、発電装置11は、電力系統1が非停電状態であるとき、カレントトランスCT1の検出結果(第1信号)を参照して、電力線2における電力の潮流を第4接続箇所P4よりも電力系統1側の所定箇所(第1接続箇所P1)から電力系統1側に向かわせないという条件下で発電電力を制御する。つまり、発電装置11の発電電力を、充放電装置10の充電にも供給可能となる。
これに対して、発電装置11は、電力系統1が停電状態であるとき、カレントトランスCT2の検出結果(第2信号)を参照して、電力線2における電力の潮流を第3接続箇所P3から電力系統1側に向かわせないという条件下で発電電力を制御する。
Specifically, when the power system 1 is in a non-power failure state, the power generation device 11 refers to the detection result (first signal) of the current transformer CT1 to change the power flow in the power line 2 from the fourth connection point P4. Also, the generated power is controlled under the condition that the power system 1 does not go from the predetermined location (first connection location P1) on the power system 1 side. That is, the power generated by the power generation device 11 can be supplied to the charging / discharging device 10 as well.
On the other hand, when the power system 1 is in a power failure state, the power generation device 11 refers to the detection result (second signal) of the current transformer CT2 and transmits the power flow on the power line 2 from the third connection point P3. The generated power is controlled under the condition that it does not go to the grid 1 side.

<別実施形態>
<1>
上記実施形態では、分散型電源システムの構成について幾つか例示したが、更に別の構成に変更してもよい。例えば、別の電力消費装置を追加で設けてもよい。
<Another embodiment>
<1>
In the above embodiment, several configurations of the distributed power supply system are illustrated, but the configuration may be further changed. For example, another power consuming device may be additionally provided.

<2>
上記実施形態では、系統情報検出装置15が、電力線2での電力の電圧を系統情報として検出する装置である場合を例示したが、他の構成の系統情報検出装置15を用いることもできる。例えば、電力系統1の交流電圧のゼロクロス点を系統情報として検出する装置を系統情報検出装置15として用いることができる。例えば、交流電圧の周波数が60Hzである場合、交流電圧の半周期毎、即ち約8msec毎にゼロクロス点が検出される。従って、系統情報検出装置15は、ゼロクロス点が検出された後、例えば9msec経過しても次のゼロクロス点が検出できないときは電力系統1が停電状態であると判定し、その判定結果を各装置に伝達する。また、系統情報検出装置15は、ゼロクロス点が検出された後、例えば9msec経過する前に次のゼロクロス点が検出できたときは電力系統1が非停電状態であると判定し、その判定結果を各装置に伝達してもよい。
<2>
In the above embodiment, the system information detection apparatus 15 is an apparatus that detects the voltage of power on the power line 2 as system information. However, the system information detection apparatus 15 having another configuration can also be used. For example, a device that detects the zero-cross point of the AC voltage of the power system 1 as system information can be used as the system information detection device 15. For example, when the frequency of the AC voltage is 60 Hz, the zero cross point is detected every half cycle of the AC voltage, that is, about every 8 msec. Therefore, after the zero cross point is detected, the grid information detection device 15 determines that the power system 1 is in a power failure state when the next zero cross point cannot be detected even after elapse of 9 msec, for example. To communicate. In addition, after the zero cross point is detected, for example, when the next zero cross point can be detected before 9 msec has elapsed, the grid information detection device 15 determines that the power grid 1 is in a non-power failure state, and the determination result is You may transmit to each apparatus.

<3>
上記実施形態の図1及び図2において、系統情報検出装置15が、遮断器3の直ぐ上流側(電力系統1の側)で系統情報を検出するように構成してもよい。また、上記実施形態の図1〜図4において、充放電装置10が、遮断器3や遮断器3の直ぐ上流側(電力系統1の側)に設けた系統情報検出装置15を含む構成にしてもよい。
<3>
1 and 2 of the above-described embodiment, the system information detection device 15 may be configured to detect system information immediately upstream of the circuit breaker 3 (on the power system 1 side). 1-4 of the said embodiment, it is set as the structure by which the charging / discharging apparatus 10 contains the system | strain information detection apparatus 15 provided in the upstream immediately (the electric power system 1 side) of the circuit breaker 3 or the circuit breaker 3. FIG. Also good.

<4>
上記実施形態において、図1〜図4に示した分散型電源システムのカレントトランスCT1の検出位置よりも電力系統1の側の電力線2に、太陽光発電装置などの自然エネルギー発電装置を接続してもよい。この場合、発電装置11が、カレントトランスCT1の検出位置よりも下流側(電力系統1から離れる側)での消費電力、即ち、自然エネルギー発電装置よりも下流側での消費電力をできるだけ賄うように動作すると、自然エネルギー発電装置の発電電力の余剰分が大きくなる。その結果、自然エネルギー発電装置から電力系統1へ売電できる電力を大きくすることができる
<4>
In the above embodiment, a natural energy power generation device such as a solar power generation device is connected to the power line 2 on the power system 1 side of the detection position of the current transformer CT1 of the distributed power supply system shown in FIGS. Also good. In this case, the power generation device 11 covers as much power consumption as possible on the downstream side (side away from the power system 1) from the detection position of the current transformer CT1, that is, power consumption on the downstream side of the natural energy power generation device. When it operates, the surplus of the generated power of the natural energy power generation device increases. As a result, the electric power that can be sold from the natural energy power generation apparatus to the electric power system 1 can be increased .

本発明は、発電装置の稼働率を高めつつ発電装置及び充放電装置の過負荷を避けることができる分散型電源システムに利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used in a distributed power supply system that can avoid overloading of a power generation device and a charge / discharge device while increasing the operating rate of the power generation device.

1 電力系統
2 電力線
4 第1信号線
5 第2信号線
10 充放電装置
10b 蓄電部
11 発電装置
12 第1電力消費装置
13 第2電力消費装置
14 切換装置
14a 切換器
14b 切換制御部
15 系統情報検出装置
P1 第1接続箇所
P2 第2接続箇所
P3 第3接続箇所
P4 第4接続箇所
DESCRIPTION OF SYMBOLS 1 Power system 2 Power line 4 1st signal line 5 2nd signal line 10 Charging / discharging apparatus 10b Power storage part 11 Power generation apparatus 12 1st power consumption apparatus 13 2nd power consumption apparatus 14 Switching apparatus 14a Switching device 14b Switching control part 15 System information Detection device P1 1st connection location P2 2nd connection location P3 3rd connection location P4 4th connection location

Claims (5)

電力系統に接続される電力線と、前記電力線に対して第1接続箇所で接続される蓄電部を有する充放電装置と、前記電力線に対して第2接続箇所で接続される発電装置と、前記電力線に対して第3接続箇所で接続される第1電力消費装置とを備える分散型電源システムであって、
前記電力線に対して第4接続箇所で接続される第2電力消費装置を備え、
前記電力線に対する前記電力系統の接続箇所から見て下流側に向かって前記第1接続箇所と前記第3接続箇所前記第2接続箇所とがその並び順で設けられ、前記第4接続箇所は前記第3接続箇所よりも前記電力系統側に設けられ、
前記発電装置は、前記電力系統が停電状態にあるときは前記電力線における電力の潮流を前記第3接続箇所よりも前記電力系統側に向かわせないという条件下で発電電力を制御し、前記電力系統が非停電状態にあるときは前記電力線における電力の潮流を前記第4接続箇所よりも前記電力系統側の所定箇所よりも前記電力系統側に向かわせないという条件下で発電電力を制御するように構成され、
前記電力系統が停電状態にあるとき、前記充放電装置と前記発電装置と前記第1電力消費装置とは前記電力線を介して互いに電気的に接続され、並びに、前記第2電力消費装置は前記充放電装置と前記発電装置と前記第1電力消費装置とから電気的に切断され、
前記電力系統が非停電状態にあるとき、前記充放電装置と前記発電装置と前記第1電力消費装置と前記第2電力消費装置とは前記電力線を介して互いに電気的に接続される分散型電源システム。
A power line connected to a power system, a charge / discharge device having a power storage unit connected to the power line at a first connection location, a power generation device connected to the power line at a second connection location, and the power line A distributed power supply system comprising a first power consuming device connected at a third connection location with respect to
A second power consuming device connected to the power line at a fourth connection point;
Wherein said first connection point toward the downstream side as viewed from the connection point of the power system and the third connecting portion and the second connecting portion is provided at its sorted with respect to the power line, the fourth connecting portion has the Provided on the power system side from the third connection location ,
The power generation device controls the generated power under a condition that when the power system is in a power failure state, the power flow in the power line is not directed toward the power system side than the third connection point , the power system When the power is in a non-power failure state, the generated power is controlled under the condition that the power flow in the power line is not directed to the power system side rather than the predetermined part on the power system side than the fourth connection place. Configured,
When the power system is in a power failure state, the charge / discharge device, the power generation device, and the first power consumption device are electrically connected to each other via the power line, and the second power consumption device is Electrically disconnected from the discharge device, the power generation device and the first power consuming device;
When the power system is in a non-power failure state, the charge / discharge device, the power generation device, the first power consumption device, and the second power consumption device are electrically connected to each other via the power line. system.
前記第2電力消費装置が前記電力線に対して接続される前記第4接続箇所は、前記充放電装置が前記電力線に対して接続される前記第1接続箇所よりも前記電力系統側にある請求項1に記載の分散型電源システム。   The fourth connection location where the second power consuming device is connected to the power line is closer to the power system than the first connection location where the charge / discharge device is connected to the power line. 2. A distributed power supply system according to 1. 前記電力系統が停電状態にあるか或いは非停電状態にあるかを判定可能な系統情報を検出する系統情報検出装置を備え、
前記発電装置は、前記系統情報検出装置から受け取った前記系統情報に基づいて前記電力系統が停電状態にあるか或いは非停電状態にあるかを判定する請求項1又は2に記載の分散型電源システム。
A system information detection device that detects system information capable of determining whether the power system is in a power outage state or a non-power outage state,
The distributed power supply system according to claim 1 or 2, wherein the power generation device determines whether the power system is in a power outage state or a non-power outage state based on the system information received from the system information detection device. .
前記発電装置は、前記第4接続箇所よりも前記電力系統側の前記所定箇所から前記電力系統側へ向かう電力の潮流を表す第1信号及び前記第3接続箇所から前記電力系統側へ向かう電力の潮流を表す第2信号を受け取り、前記系統情報検出装置から受け取った前記系統情報に基づいて前記電力系統が停電状態にあると判定したときは前記第2信号を参照して発電電力を制御し、前記電力系統が非停電状態にあると判定したときは前記第1信号を参照して発電電力を制御する請求項3に記載の分散型電源システム。 The power generator includes a first signal that represents a power flow from the predetermined location on the power system side to the power system side relative to the fourth connection location, and power that is directed from the third connection location to the power system side. Receiving a second signal representing a tidal current and controlling the generated power with reference to the second signal when it is determined that the power system is in a power failure state based on the system information received from the system information detecting device; The distributed power supply system according to claim 3, wherein when it is determined that the power system is in a non-power failure state, the generated power is controlled with reference to the first signal. 前記電力系統が停電状態にあるか或いは非停電状態にあるかを判定可能な系統情報を検出する系統情報検出装置と、
前記第4接続箇所よりも前記電力系統側の前記所定箇所から前記電力系統側へ向かう電力の潮流を表す第1信号が入力される第1信号線、及び、前記第3接続箇所から前記電力系統側へ向かう電力の潮流を表す第2信号が入力される第2信号線が接続される切換器と、前記第1信号線を前記発電装置に接続する第1切換状態と前記第2信号線を前記発電装置に接続する第2切換状態との何れかに前記切換器を切り換える切換制御部とを有する切換装置を備え、
前記切換制御部は、前記系統情報検出装置から受け取った前記系統情報に基づいて、前記電力系統が非停電状態にあるときは前記切換器を前記第1切換状態に切り換え、前記電力系統が停電状態にあるときは前記切換器を前記第2切換状態に切り換える請求項1又は2に記載の分散型電源システム。
A system information detection device for detecting system information capable of determining whether the power system is in a power outage state or in a non-power outage state;
A first signal line to which a first signal representing a power flow from the predetermined location on the power system side to the power system side than the fourth connection location is input, and from the third connection location to the power system. A switch to which a second signal line to which a second signal representing a power flow toward the side is input is connected; a first switching state in which the first signal line is connected to the power generator; and the second signal line A switching device having a switching control unit that switches the switch to any one of the second switching states connected to the power generation device;
The switching control unit switches the switch to the first switching state when the power system is in a non-power failure state based on the system information received from the system information detection device, and the power system is in a power failure state. 3. The distributed power supply system according to claim 1, wherein the switch is switched to the second switching state.
JP2016089067A 2012-08-14 2016-04-27 Distributed power system Active JP6109380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016089067A JP6109380B2 (en) 2012-08-14 2016-04-27 Distributed power system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012179910A JP5932566B2 (en) 2012-08-14 2012-08-14 Distributed power system
JP2016089067A JP6109380B2 (en) 2012-08-14 2016-04-27 Distributed power system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012179910A Division JP5932566B2 (en) 2012-08-14 2012-08-14 Distributed power system

Publications (2)

Publication Number Publication Date
JP2016158496A JP2016158496A (en) 2016-09-01
JP6109380B2 true JP6109380B2 (en) 2017-04-05

Family

ID=62152156

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012179910A Active JP5932566B2 (en) 2012-08-14 2012-08-14 Distributed power system
JP2016089067A Active JP6109380B2 (en) 2012-08-14 2016-04-27 Distributed power system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012179910A Active JP5932566B2 (en) 2012-08-14 2012-08-14 Distributed power system

Country Status (1)

Country Link
JP (2) JP5932566B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6208617B2 (en) * 2014-04-24 2017-10-04 京セラ株式会社 Power control system, power control apparatus, and control method of power control system
JP6204259B2 (en) * 2014-04-24 2017-09-27 京セラ株式会社 Power control system, power control apparatus, and power control method
JP6204258B2 (en) * 2014-04-24 2017-09-27 京セラ株式会社 Power control system control method, power control apparatus, and power control system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06274233A (en) * 1993-03-24 1994-09-30 Sanyo Electric Co Ltd Power system
JP2000069675A (en) * 1998-08-25 2000-03-03 Fuji Electric Co Ltd Electric power storage power supply system, electric power supply method and electric power feed method
JP4996017B2 (en) * 2001-06-13 2012-08-08 大阪瓦斯株式会社 Received power adjustment device, private power generation device and control method thereof
JP4001004B2 (en) * 2002-12-10 2007-10-31 日立アプライアンス株式会社 Operation control device for fuel cell system
JP2006254634A (en) * 2005-03-11 2006-09-21 Tokyo Electric Power Co Inc:The Distributed power unit
JP4947926B2 (en) * 2005-06-23 2012-06-06 東京瓦斯株式会社 Method of operating private power generation equipment equipped with power storage means and private power generation equipment
JP2007215290A (en) * 2006-02-08 2007-08-23 Toshiba Corp Demand/supply control system utilizing storage apparatus and method for the same
JP2008022650A (en) * 2006-07-13 2008-01-31 Univ Of Tsukuba Self-sustained operation assist device and power supply system
JP5003819B2 (en) * 2008-04-02 2012-08-15 株式会社明電舎 System stabilization device

Also Published As

Publication number Publication date
JP2014039385A (en) 2014-02-27
JP5932566B2 (en) 2016-06-08
JP2016158496A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP6047490B2 (en) Power supply system, power distribution device, and power control method
WO2011151938A1 (en) Electric power system
JP2013123355A (en) Power management apparatus and method of controlling the same
CN105379049A (en) Power control device, power control method, and power control system
WO2011151939A1 (en) Power system
JP2005268149A (en) Power supply system
JPWO2013175612A1 (en) Power supply system
JP6109380B2 (en) Distributed power system
TWI467881B (en) Energy storage system in microgrid for mode transfer
CN104333052A (en) Battery module, battery module power supply management method, and device thereof
JP2015061429A (en) Power storage system and control method therefor
JP5851276B2 (en) Independent power supply system
JP2011083090A (en) Electric power supply system
JP6021312B2 (en) Distributed power supply system and circuit switching device
JP6252927B2 (en) Power distribution system and wiring apparatus used therefor
JP6188871B2 (en) Distributed power system
JP2015057022A (en) Dispersed power supply device, power switching device and power supply system
JP2014121151A (en) Power storage system and power supply system
JP2003092831A (en) Power supply system and its operation method
JP2004336933A (en) Power supplying system
JP6873005B2 (en) Distributed power system
JP3171578U (en) Power storage device
JP6009893B2 (en) Control device, storage battery power conversion device, and power system
JP6620346B2 (en) Power supply system
JP6272123B2 (en) Power supply control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170307

R150 Certificate of patent or registration of utility model

Ref document number: 6109380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150