JP2014122252A - Manufacturing method and manufacturing apparatus of aqueous resin particulate-mixed liquid - Google Patents
Manufacturing method and manufacturing apparatus of aqueous resin particulate-mixed liquid Download PDFInfo
- Publication number
- JP2014122252A JP2014122252A JP2010018273A JP2010018273A JP2014122252A JP 2014122252 A JP2014122252 A JP 2014122252A JP 2010018273 A JP2010018273 A JP 2010018273A JP 2010018273 A JP2010018273 A JP 2010018273A JP 2014122252 A JP2014122252 A JP 2014122252A
- Authority
- JP
- Japan
- Prior art keywords
- aqueous
- mixed liquid
- pigment
- mixture
- resin fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Description
本発明は、水性樹脂微粒子混合液の製造方法及び製造装置に関する。 The present invention relates to a method and an apparatus for producing an aqueous resin fine particle mixture.
一般に、塗料、インキ、接着剤などのバインダー樹脂に用いられる水性エマルジョン(ポリマーエマルジョン)が知られている(例えば、下記特許文献1参照)。この種の水性エマルジョンは、例えば、モノマー、重合開始剤、界面活性剤(乳化剤)などを水中で加えて乳化重合する方法により得ることができ、この乳化重合した水性エマルジョン中には、通常、粒子径(直径)が0.1〜数十μmの広範囲に渡って種々の大きさの樹脂粒子(ポリマー粒子)が存在している。 In general, aqueous emulsions (polymer emulsions) used for binder resins such as paints, inks, and adhesives are known (see, for example, Patent Document 1 below). This type of aqueous emulsion can be obtained, for example, by a method in which a monomer, a polymerization initiator, a surfactant (emulsifier), etc. are added in water to carry out emulsion polymerization. Resin particles (polymer particles) of various sizes exist over a wide range of diameter (diameter) of 0.1 to several tens of μm.
このように、樹脂粒子が広範囲に渡って存在するのは、粒子径が数十nm〜0.1μm(100nm)程度の大きさの樹脂微粒子(一次粒子)が複数凝集して凝集塊(二次粒子)が生じ易いからである。そして、凝集塊の多い水性エマルジョンは、樹脂微粒子の単体を多く含むものに比べると、防錆性(耐候性)、塗膜硬度、臭気性などの点で著しく劣るため、凝集塊の分散化(分離化、ナノ化)を図ることが可能な水性樹脂微粒子混合液の製造方法及び製造装置の開発が望まれている。 As described above, the resin particles exist over a wide range because a plurality of resin fine particles (primary particles) having a particle size of about several tens of nm to 0.1 μm (100 nm) are aggregated to form an aggregate (secondary). This is because particles are easily generated. An aqueous emulsion with a large amount of agglomerates is significantly inferior in terms of rust prevention (weather resistance), coating film hardness, odor, etc., compared with those containing a large amount of resin fine particles alone. Development of a manufacturing method and a manufacturing apparatus of an aqueous resin fine particle mixed solution capable of achieving separation and nano-ization is desired.
本発明は、上記課題を解決するためになされたものであり、その目的は、樹脂微粒子の凝集塊を個々の樹脂微粒子に良好に分散させ得る水性樹脂微粒子混合液の製造方法及び製造装置を提供することにある。 The present invention has been made to solve the above-mentioned problems, and an object thereof is to provide a method and an apparatus for producing an aqueous resin fine particle mixture capable of satisfactorily dispersing agglomerates of resin fine particles in individual resin fine particles. There is to do.
上記課題を解決するために本発明に係る水性樹脂微粒子混合液の製造方法は、
個々の樹脂微粒子および個々の樹脂微粒子が複数凝集して塊を生じている凝集塊が多数混合・分散した水性粗分散混合液である1次水性混合液を、その混合液が蒸発によっても残存する状態を保持する、大気圧より低圧状態下で攪拌する低圧攪拌工程と、
その低圧攪拌により1次水性混合液から得られた2次水性混合液に、攪拌に伴う1次水性混合液の運動速度より大きな速度を付与する高速度付与工程と、
その高速度を付与された2次水性混合液を対象物に高速で衝突させる衝突処理工程と、
その衝突処理工程により2次水性混合液から得られた3次水性混合液を収容する収容工程と、
を含むことを特徴とする。
なお、「水性粗分散混合液」、「1次水性混合液」は、粘度の低いものに限らず、かなり粘度の高いもの、例えばヨーグルト状の流体をも含む意である。
In order to solve the above problems, a method for producing an aqueous resin fine particle mixture according to the present invention includes:
A primary aqueous mixed liquid which is an aqueous coarse dispersion mixed liquid in which a large number of individual resin fine particles and a plurality of individual resin fine particles are aggregated to form agglomerates is mixed and dispersed. A low-pressure stirring step for maintaining the state and stirring under a pressure lower than atmospheric pressure;
A high speed imparting step of imparting to the secondary aqueous mixture obtained from the primary aqueous mixture by the low pressure stirring a speed greater than the motion speed of the primary aqueous mixture accompanying the stirring;
A collision treatment step of causing the secondary aqueous liquid mixture imparted with the high speed to collide with an object at a high speed;
An accommodating step for accommodating a tertiary aqueous mixture obtained from the secondary aqueous mixture by the collision treatment step;
It is characterized by including.
The “aqueous coarse dispersion mixture” and “primary aqueous mixture” are not limited to those having a low viscosity, but also include those having a considerably high viscosity, for example, a yogurt-like fluid.
この場合、衝突処理工程は、例えば2次水性混合液を加圧して噴射し、その噴射した液を対象物に衝突させるものとすることができる。また、衝突処理工程は、例えば2次水性混合液を互いに向かい合うように加圧・噴射して、その2次水性混合液同士を相互に衝突の対象物として高速で衝突させるものとすることもできる。 In this case, the collision treatment step can be performed by, for example, pressurizing and ejecting the secondary aqueous mixed liquid and causing the ejected liquid to collide with the object. Further, in the collision treatment step, for example, the secondary aqueous mixed liquid is pressurized and jetted so as to face each other, and the secondary aqueous mixed liquids can collide with each other at high speed as objects of collision with each other. .
そして、上記した製造方法を実施するために本発明に係る水性樹脂微粒子混合液の製造装置は、
個々の樹脂微粒子および個々の樹脂微粒子が複数凝集して塊を生じている凝集塊が多数混合・分散した水性粗分散混合液である1次水性混合液を収容する減圧容器と、
その減圧容器内を、1次水性混合液が蒸発によっても残存する状態を保持する、大気圧より低圧状態に減圧する減圧装置と、
その減圧装置で生じる減圧状態下で1次水性混合液を撹拌する撹拌装置と、
減圧容器から導かれる、撹拌により得られた2次水性混合液を大気圧より高い高圧に加圧して噴射し対象物に衝突させる噴射衝突装置と、
その噴射・衝突で得られた3次水性混合液を収容する収容容器と、
を含むことを特徴とする。
And in order to implement the above-mentioned manufacturing method, the manufacturing apparatus of the aqueous resin fine particle mixed liquid according to the present invention includes:
A decompression container containing a primary aqueous mixed liquid which is an aqueous coarse dispersion mixed liquid in which a large number of agglomerates in which a plurality of individual resin fine particles and a plurality of individual resin fine particles are aggregated are mixed and dispersed;
A pressure reducing device for reducing the pressure from the atmospheric pressure to a lower pressure state, maintaining the state in which the primary aqueous mixture remains even after evaporation in the reduced pressure vessel;
A stirrer that stirs the primary aqueous mixture under reduced pressure produced by the decompressor;
An injection collision device that is guided from a decompression vessel and pressurizes the secondary aqueous mixed liquid obtained by stirring to a high pressure higher than atmospheric pressure to inject it and collide with an object;
A storage container for storing a tertiary aqueous mixture obtained by the jetting / collision;
It is characterized by including.
この場合、噴射衝突装置は、例えば減圧容器から2次水性混合液を導く誘導通路と、その誘導された2次水性混合液を加圧するシリンダと、加圧された2次水性混合液を衝突させる衝突部を含み、そのシリンダは、2次水性混合液を加圧するピストン又はプランジャと、加圧された2次水性混合液を噴射する噴射口とを含み、その噴射口から噴射された2次水性混合液が衝突部に衝突する構成とすることができる。また、噴射衝突装置は、例えば減圧容器から2次水性混合液を導く誘導通路と、その誘導された2次水性混合液を加圧するシリンダとを含み、そのシリンダは、2次水性混合液を分岐させて加圧するピストン又はプランジャと、加圧された2次水性混合液を互いに噴射する相互の噴射口とを含み、その相互の噴射口から噴射された2次水性混合液が互いに高速で衝突する構成とすることもできる。このとき噴射口は、相対向して配置され、その相互の噴射口から相対向して噴射された2次水性混合液が互いに高速で衝突する構成にするとよい。 In this case, for example, the jetting collision device causes the guiding passage for guiding the secondary aqueous mixed liquid from the decompression vessel, the cylinder for pressurizing the guided secondary aqueous mixed liquid, and the pressurized secondary aqueous mixed liquid to collide with each other. The cylinder includes a collision part, and the cylinder includes a piston or a plunger that pressurizes the secondary aqueous mixed liquid, and an injection port that injects the pressurized secondary aqueous mixed liquid. It can be set as the structure which a liquid mixture collides with a collision part. The jetting collision device includes, for example, a guide passage that guides the secondary aqueous mixed liquid from the decompression vessel and a cylinder that pressurizes the guided secondary aqueous mixed liquid. The cylinder branches the secondary aqueous mixed liquid. A piston or plunger for pressurization and a mutual injection port for injecting the pressurized secondary aqueous mixed solution to each other, and the secondary aqueous mixed solution injected from the mutual injection ports collide with each other at high speed It can also be configured. At this time, it is preferable that the injection ports are arranged so as to face each other and the secondary aqueous mixed liquids jetted to face each other from the mutual injection ports collide with each other at high speed.
本発明の水性樹脂微粒子混合液の製造方法では、低圧攪拌工程において、1次水性混合液を、その混合液が蒸発によっても残存する状態を保持する、大気圧より低圧状態下で攪拌する。低圧状態下では樹脂微粒子間に作用する凝集力が弱くなる。このため、樹脂微粒子間に水が浸入して凝集塊自体が膨潤(膨張)し、凝集塊を構成する個々の樹脂微粒子の表面が界面活性剤で覆われるようになる。このとき、1次水性混合液に溶け込んでいた空気(酸素)に加えて、余剰の界面活性剤等の添加剤や不純物がガスとなって1次水性混合液から除去される。この低圧状態で1次水性混合液を攪拌することにより、凝集塊をより小さな塊とすることが可能である。 In the method for producing the aqueous resin fine particle mixture of the present invention, in the low pressure stirring step, the primary aqueous mixture is stirred under a pressure lower than the atmospheric pressure so that the liquid mixture remains even after evaporation. Under low pressure conditions, the cohesive force acting between the resin fine particles becomes weak. For this reason, water permeates between the resin fine particles, and the aggregate itself swells (expands), and the surface of each resin fine particle constituting the aggregate is covered with the surfactant. At this time, in addition to the air (oxygen) dissolved in the primary aqueous mixture, surplus additives such as surfactants and impurities are removed as gas from the primary aqueous mixture. The agglomerates can be made smaller by agitating the primary aqueous mixed solution in this low pressure state.
次に、高速度付与工程において、低圧攪拌で得られた1次水性混合液に、攪拌に伴う1次水性混合液の運動速度より大きな速度を付与する。その後、衝突処理工程において、高速度を付与された2次水性混合液を対象物に高速で衝突させる。高速度付与工程を実施することで、凝集力の弱くなった樹脂微粒子の凝集塊に対して分散に必要なエネルギーを与えることができ、衝突処理工程を実施することで、凝集塊を個々の樹脂微粒子に良好に分散させることができる。 Next, in the high-speed application step, a speed greater than the motion speed of the primary aqueous mixture accompanying stirring is applied to the primary aqueous mixture obtained by low-pressure stirring. Thereafter, in the collision treatment step, the secondary aqueous mixed liquid provided with a high speed is caused to collide with the object at a high speed. By carrying out the high-speed application step, it is possible to give energy necessary for dispersion to the agglomerates of resin fine particles whose cohesive force has become weak, and by performing the collision treatment step, the agglomerates can be separated into individual resins. It can be well dispersed in the fine particles.
また、本発明の水性樹脂微粒子混合液の製造方法において、1次、2次及び3次水性混合液は、乳化剤を含む水性塗料の素材液である、顔料を含まない水性エマルジョンであり、低圧撹拌工程、高速度付与工程、衝突処理工程及び収容工程を経て収容される3次水性混合液に対して、後に塗料の顔料微粒子が混合されることが予定されるものとすることができる。また、1次水性混合液は、例えば乳化剤を含む水性塗料の素材液である、顔料を含まない水性エマルジョンであり、低圧撹拌で得られる2次水性混合液に対し、塗料顔料となる顔料微粒子を混合し、必要に応じて更に撹拌する顔料混合工程を含む、その顔料含有2次水性混合液に対して、高速度付与工程及び衝突処理工程を実施し、その衝突処理工程において、混合液中の顔料微粒子をも対象物に衝突させるようにすることもできる。あるいは、1次水性混合液は、例えば水性塗料の顔料となる顔料微粒子及び乳化剤を含むエマルジョンとしての水性塗料直前混合液であり、その顔料含有1次水性混合液が低圧撹拌工程で撹拌され、それによって得られる顔料含有2次水性混合液に対して、高速度付与工程及び衝突処理工程を実施し、その衝突処理工程において、混合液中の顔料微粒子をも対象物に衝突させ、それにより得られる顔料含有3次水性混合物が収容工程において水性塗料として収容されるようにすることもできる。 Further, in the method for producing the aqueous resin fine particle mixed liquid of the present invention, the primary, secondary and tertiary aqueous mixed liquids are aqueous emulsions containing no emulsifier and containing no emulsifier. The pigment fine particles of the coating material can be planned to be mixed later with the tertiary aqueous mixed liquid that is accommodated through the process, the high-speed application process, the collision treatment process, and the accommodation process. Further, the primary aqueous mixed liquid is, for example, an aqueous emulsion containing no emulsifier, which is an aqueous coating material liquid containing no emulsifier. The secondary aqueous mixed liquid obtained by low-pressure stirring contains pigment fine particles that become paint pigments. A high speed application step and a collision treatment step are performed on the pigment-containing secondary aqueous mixed solution, which includes a pigment mixing step of mixing and further stirring as necessary. In the collision treatment step, It is also possible to cause the pigment fine particles to collide with the object. Alternatively, the primary aqueous mixed liquid is, for example, a mixed liquid immediately before the aqueous paint as an emulsion containing fine pigment particles and an emulsifier which are pigments of the aqueous paint, and the pigment-containing primary aqueous mixed liquid is stirred in the low-pressure stirring step. The pigment-containing secondary aqueous mixture obtained by the above step is subjected to a high-speed application step and a collision treatment step, and in that collision treatment step, the pigment fine particles in the mixture are also caused to collide with the object. The pigment-containing tertiary aqueous mixture can be accommodated as an aqueous paint in the accommodating step.
すなわち、本発明の水性樹脂微粒子混合液の製造方法においては、(1)出発液から最終液まで無顔料の水性エマルジョン(水性塗料素液)である場合、(2)出発液は無顔料の水性エマルジョンであるが、低圧攪拌後に顔料を混合し、その顔料を含むエマルジョンに高速度付与処理及び衝突処理を行い最終液が顔料を含む水性塗料となる場合、(3)出発液が顔料を含むエマルジョン(水性塗料直前液)であり、その顔料が最後まで含まれて最終液が水性塗料となる場合等、の製造パターンを採用することができる。 That is, in the method for producing the aqueous resin fine particle mixture of the present invention, when (1) a pigment-free aqueous emulsion (aqueous paint base liquid) is used from the starting solution to the final solution, (2) the starting solution is a pigment-free aqueous solution. In the case of an emulsion, when a pigment is mixed after low-pressure stirring, and the emulsion containing the pigment is subjected to a high speed imparting treatment and a collision treatment, and the final liquid becomes an aqueous paint containing the pigment, (3) the emulsion containing the pigment as the starting liquid It is possible to adopt a manufacturing pattern in which the pigment is contained up to the end and the final liquid is an aqueous paint.
上記(1)の製造パターンによれば、個々の樹脂微粒子が分散した状態の水性塗料素液を得ることができる。(2)又は(3)の製造パターンによれば、個々の樹脂微粒子のみならず顔料微粒子が微細化した状態の水性塗料を得ることができる。 According to the production pattern of (1) above, it is possible to obtain an aqueous coating material liquid in which individual resin fine particles are dispersed. According to the production pattern of (2) or (3), it is possible to obtain an aqueous coating material in which not only the individual resin fine particles but also the pigment fine particles are miniaturized.
本発明の水性樹脂微粒子混合液の製造装置によれば、例えば二酸化炭素を用いて超高圧状態を実現することにより樹脂微粒子の凝集塊の分散化を図る装置に比べて、安全面に優れており、装置の小型化及び低コスト化が可能である。 According to the apparatus for producing an aqueous resin fine particle mixed liquid of the present invention, for example, it is superior in safety compared with an apparatus that disperses agglomerates of resin fine particles by realizing an ultra-high pressure state using carbon dioxide, for example. The apparatus can be reduced in size and cost.
以下、本発明の実施の形態について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は、本発明に係る水性樹脂微粒子混合液の製造装置1(以下、単に製造装置1という)を例示したものである。製造装置1は、低圧攪拌工程、高速度付与工程、衝突処理工程及び収容工程を実施することにより、水性樹脂微粒子混合液(液中にて個々の樹脂微粒子(ポリマー微粒子)の占める割合が、個々の樹脂微粒子が凝集して塊を生じている凝集塊の占める割合よりも大きい水性エマルジョン)を製造するものであり、低圧攪拌工程を実施する減圧装置10及び攪拌装置20と、高速度付与工程及び衝突処理工程を実施する噴射衝突装置30とを備えている。 FIG. 1 illustrates a production apparatus 1 (hereinafter simply referred to as production apparatus 1) of an aqueous resin fine particle mixed solution according to the present invention. The production apparatus 1 performs the low-pressure stirring process, the high-speed application process, the collision treatment process, and the containing process so that the proportion of the aqueous resin fine particle mixed liquid (the ratio of the individual resin fine particles (polymer fine particles) in the liquid is individually Aqueous emulsion larger than the proportion of the aggregates in which the resin fine particles are aggregated to form aggregates), the decompression device 10 and the stirring device 20 for performing the low-pressure stirring step, the high-speed applying step, And a jetting collision device 30 for performing a collision processing step.
減圧装置10は、1次水性混合液L1、すなわち個々の樹脂微粒子及び上記凝集塊が多数混合・分散した水性粗分散混合液を収容する真空タンク11(減圧容器)と、真空タンク11内を、1次水性混合液L1が蒸発によっても残存する状態を保持する、大気圧より低圧状態に減圧する真空ポンプ12とを備えている。 The decompression device 10 includes a vacuum tank 11 (decompression vessel) containing a primary aqueous mixture L1, that is, an aqueous coarse dispersion mixture in which a large number of individual resin fine particles and agglomerates are mixed and dispersed. A vacuum pump 12 that maintains the state in which the primary aqueous mixed liquid L1 remains even after evaporation and reduces the pressure to a lower pressure than atmospheric pressure is provided.
真空タンク11は、例えば全容量が約327l(リットル)(φ700mm×900mm)とされ、少なくとも接液部がステンレス材(SUS304)で形成されている。真空タンク11の側壁外周面には、自身を移動可能とするための4つの車輪付き脚部11aが設けられている。真空タンク11の上部には、空気配管T1を介して真空ポンプ12に接続される真空口11bが設けられるとともに、1次水性混合液L1を真空タンク11内へ注入するための注入口(仕込口)11cが設けられている(図2参照)。 For example, the vacuum tank 11 has a total capacity of about 327 l (liter) (φ700 mm × 900 mm), and at least a liquid contact portion is formed of a stainless material (SUS304). On the outer peripheral surface of the side wall of the vacuum tank 11, four leg portions 11 a with wheels are provided so as to be movable. In the upper part of the vacuum tank 11, a vacuum port 11b connected to the vacuum pump 12 via the air pipe T1 is provided, and an injection port (feeding port) for injecting the primary aqueous mixture L1 into the vacuum tank 11 is provided. ) 11c (see FIG. 2).
真空タンク11の底部には、低圧攪拌により得られた2次水性混合液L2を、手動バルブ11dの開動作に応じて真空タンク11外へ排出するための排出口11eが設けられている。また、真空タンク11の側壁外周面には、パイプが組み込まれた温度調節部11fが取り付けられており、パイプに温水を流すことで真空タンク11を暖め、冷水を流すことで真空タンク11を冷やすことが可能とされている。 The bottom of the vacuum tank 11 is provided with a discharge port 11e for discharging the secondary aqueous mixed liquid L2 obtained by low-pressure stirring to the outside of the vacuum tank 11 in accordance with the opening operation of the manual valve 11d. Moreover, the temperature control part 11f with which the pipe was integrated is attached to the outer peripheral surface of the side wall of the vacuum tank 11, the vacuum tank 11 is warmed by flowing warm water through a pipe, and the vacuum tank 11 is cooled by flowing cold water. It is possible.
真空ポンプ12は、例えば排気速度が1〜2m3/min、すなわち真空タンク11内を大気圧から約20Torr程度の大きさの圧力に減圧するまでに10〜15秒の作動時間を要する仕様に設定されている(図12の特性図(実線)参照)。なお、補助ポンプ(粗引きポンプ)とメカニカルブースタとを組み合わせ、真空タンク11内を排気する補助ポンプの排気速度が落ち込む高真空側の圧力領域(約20Torr)でメカニカルブースタを作動させて、排気速度の向上を図るようにした型式のものを用いてもよい(図12の特性図(破線)参照)。 The vacuum pump 12 is set to a specification that requires an operation time of 10 to 15 seconds, for example, until the exhaust speed is 1 to 2 m 3 / min, that is, the pressure in the vacuum tank 11 is reduced from atmospheric pressure to a pressure of about 20 Torr. (See the characteristic diagram (solid line) in FIG. 12). The pumping speed is increased by combining the auxiliary pump (roughing pump) and the mechanical booster, and operating the mechanical booster in the high vacuum side pressure range (about 20 Torr) where the pumping speed of the auxiliary pump that exhausts the vacuum tank 11 drops. It is also possible to use a type designed to improve the above (see the characteristic diagram (broken line) in FIG. 12).
攪拌装置20は、真空ポンプ12で生じる減圧状態下で1次水性混合液L1を真空タンク11内の中心側で攪拌する内側攪拌ブレード21と、真空タンク11内の側壁側で攪拌する外側攪拌ブレード22とを含んで構成されている。内側攪拌ブレード21は、例えばブレード径がφ200〜φ300mm程度の大きさに設定されており、高速駆動軸23の先端部と中間部とにそれぞれ一体的に取り付けられている。高速駆動軸23は、例えば伝動ベルトによる伝達機構を介して駆動モータ24(例えばインバータモータ)に連結されており、例えば回転数0〜2000rpm(0〜60Hz)の範囲内で1次水性混合液L1の粘度に適した回転数で回転駆動されるようになっている。 The stirring device 20 includes an inner stirring blade 21 that stirs the primary aqueous mixed liquid L1 on the center side in the vacuum tank 11 under a reduced pressure generated by the vacuum pump 12, and an outer stirring blade that stirs on the side wall side in the vacuum tank 11. 22. The inner stirring blade 21 is set to have a blade diameter of, for example, about φ200 to φ300 mm, and is integrally attached to the tip portion and the intermediate portion of the high-speed drive shaft 23. The high-speed drive shaft 23 is connected to a drive motor 24 (for example, an inverter motor) via a transmission mechanism using, for example, a transmission belt, and the primary aqueous mixed liquid L1 is within a range of, for example, 0 to 2000 rpm (0 to 60 Hz). It is designed to be driven to rotate at a rotation speed suitable for the viscosity.
外側攪拌ブレード22は、例えばブレード径がφ600〜φ700mm程度の大きさに設定されており、低速駆動軸25の先端部に一体的に取り付けられている。低速駆動軸25は、例えばチェーンによる伝達機構を介して駆動モータ26(例えば減速機付きモータ)に連結されており、例えば回転数20〜50rpmの範囲内のうち予め定められた回転数で回転駆動されるようになっている。なお、低速駆動軸25は、中空軸とされ、その内部を高速駆動軸23が貫通した状態で配置されている。 The outer agitating blade 22 is set to have a blade diameter of about φ600 to φ700 mm, for example, and is integrally attached to the tip of the low-speed drive shaft 25. The low-speed drive shaft 25 is connected to a drive motor 26 (for example, a motor with a speed reducer) via a transmission mechanism using a chain, for example, and is driven to rotate at a predetermined rotation speed within a range of rotation speeds of 20 to 50 rpm, for example. It has come to be. The low-speed drive shaft 25 is a hollow shaft, and is disposed in a state where the high-speed drive shaft 23 passes therethrough.
内側攪拌ブレード21が高速で回転すると、1次水性混合液L1は真空タンク11内の周方向のみならず径方向外方へも押し流されるようになる。このため、内側攪拌ブレード21のみで1次水性混合液L1を攪拌する場合には、真空タンク11の側壁寄りの1次水性混合液L1が澱み、1次水性混合液L1の全体をむらなく攪拌できないおそれがある。本実施例1では、外側攪拌ブレード22が1次水性混合液L1を内側に掻き入れる形状に形成されており、両攪拌ブレード21,22の回転数を異ならせることによって1次水性混合液L1の全体をむらなく攪拌できるように構成されている。 When the inner stirring blade 21 rotates at a high speed, the primary aqueous mixture L1 is pushed away not only in the circumferential direction in the vacuum tank 11 but also in the radial direction. For this reason, when the primary aqueous mixed liquid L1 is stirred only by the inner stirring blade 21, the primary aqueous mixed liquid L1 near the side wall of the vacuum tank 11 stagnates, and the entire primary aqueous mixed liquid L1 is uniformly stirred. It may not be possible. In the first embodiment, the outer stirring blade 22 is formed in a shape in which the primary aqueous mixed liquid L1 is scraped inward, and the primary aqueous mixed liquid L1 is changed by changing the rotational speeds of both the stirring blades 21 and 22. It is comprised so that the whole can be stirred uniformly.
噴射衝突装置30は、市販の湿式微粒化装置を利用して製造装置1に取り入れたものであり、低圧攪拌により1次水性混合液L1から得られた2次水性混合液L2を導く分岐液配管T2(誘導通路)と、その誘導された2次水性混合液L2を加圧する一対のシリンダ31,31と、両シリンダ31,31間に配置されて各シリンダ31に連通路部33を介して連結されるハウジング部32とを備えている。各シリンダ31には、分岐液配管T2の各端部が接続されるポート31bが形成されるとともに、ピストン(あるいはプランジャ)34が移動可能に設けられる加圧室31aが形成されている。ハウジング部32には衝突室32aが形成されている。 The jetting collision device 30 is incorporated in the manufacturing apparatus 1 using a commercially available wet atomization device, and is a branched liquid pipe that guides the secondary aqueous mixed liquid L2 obtained from the primary aqueous mixed liquid L1 by low-pressure stirring. T2 (guide passage), a pair of cylinders 31 and 31 that pressurize the secondary aqueous mixture L2 that has been guided, and the cylinders 31 and 31 are connected to each cylinder 31 via a communication passage 33. The housing part 32 is provided. Each cylinder 31 is provided with a port 31b to which each end of the branch liquid pipe T2 is connected, and a pressurizing chamber 31a in which a piston (or plunger) 34 is movably provided. A collision chamber 32 a is formed in the housing portion 32.
連通路部33,33は、相対向して配置されており、各連通路部33には、対応する加圧室31a内の圧力が予め定められた圧力(100〜250Mpaのうちの設定圧力)になったとき開状態となる開閉弁35(開閉手段)が設けられている。つまり、噴射衝突装置30は、開閉弁35の閉状態にて各シリンダ31内のピストン34の押圧作動により、低圧攪拌で1次水性混合液L1から得られた2次水性混合液L2を100〜250Mpaの圧力範囲内で加圧する仕様に設定されている。 The communication passage portions 33 and 33 are arranged to face each other, and the pressure in the corresponding pressurizing chamber 31a is predetermined in each communication passage portion 33 (set pressure of 100 to 250 MPa). An on-off valve 35 (opening / closing means) is provided which is opened when That is, the injection collision device 30 causes the secondary aqueous mixed liquid L2 obtained from the primary aqueous mixed liquid L1 by low pressure stirring to 100 to 100 by pressing the piston 34 in each cylinder 31 in the closed state of the on-off valve 35. The pressure is set within a pressure range of 250 MPa.
図3に示すように、各開閉弁35が開状態になると、加圧室31aで加圧された2次水性混合液L2を互いに対向して噴射する噴射通路33a(噴射口)が形成されるようになっている。両ピストン34,34は同期して押圧作動するように設定されているため、相互の噴射通路33aから相対向して噴射された2次水性混合液L2は、それぞれ噴射通路33aの通過時に加速され、衝突室32a内で互いに高速で衝突する。このような噴射・衝突で2次水性混合液L2から得られた3次水性混合液L3は、ポート32bに接続された排出液配管T3(排出液通路)を通して収容容器40内に収容される(図1参照)。 As shown in FIG. 3, when each on-off valve 35 is opened, an injection passage 33a (injection port) for injecting the secondary aqueous mixed liquid L2 pressurized in the pressurizing chamber 31a to face each other is formed. It is like that. Since both pistons 34 and 34 are set so as to be pressed in synchronization with each other, the secondary aqueous mixed liquid L2 injected oppositely from the mutual injection passage 33a is accelerated when passing through the injection passage 33a. , They collide at high speed in the collision chamber 32a. The tertiary aqueous mixed liquid L3 obtained from the secondary aqueous mixed liquid L2 by such injection / collision is stored in the storage container 40 through the discharged liquid pipe T3 (discharged liquid passage) connected to the port 32b ( (See FIG. 1).
以上説明した減圧装置10の真空ポンプ12、攪拌装置20の駆動モータ24,26、噴射衝突装置30の各シリンダ31におけるピストン34等は、制御盤100(制御手段)からの操作によって、予め定められた工程を実施すべく作動する。 The vacuum pump 12 of the decompression device 10 described above, the drive motors 24 and 26 of the stirring device 20, the piston 34 in each cylinder 31 of the injection collision device 30, and the like are determined in advance by operations from the control panel 100 (control means). Act to carry out the process.
次に、実施例1で使用する1次水性混合液L1について説明する。1次水性混合液L1は、乳化剤を含む水性塗料の素材液である、顔料を含まない水性エマルジョンであり、この実施例1では予め乳化重合された市販のアクリルエマルジョン(例えば、日本エヌエスシー株式会社製の品番「AD157」)を使用している。このアクリルエマルジョンは、図4にて模式的に示すように、高分子化合物であるモノマー(疎水性モノマー)としてアクリル酸エステル等を使用し、重合開始剤として水に可溶な過硫酸塩等(過硫酸アンモニウム)を使用し、界面活性剤(乳化剤)としてアニオン型のアルキルスルホン酸ナトリウム等を使用して、これらを水中で加えて重合させたものである。なお、界面活性剤はアニオン型のものに限らず、カチオン型やノニオン型のものに適宜変更することができる。また、1次水性混合液L1は、モノマーとしてアクリルを使用したものに限らず、例えば酢酸ビニルや塩化ビニル、あるいは合成ゴムを使用したものに適宜変更することができる。また、乳化重合に限らず、懸濁重合やシード重合などの周知の重合法により重合されたものを適宜使用することができる。 Next, the primary aqueous mixed liquid L1 used in Example 1 will be described. The primary aqueous mixed liquid L1 is an aqueous emulsion containing no emulsifier and is an aqueous emulsion containing no pigment. In Example 1, a commercially available acrylic emulsion (for example, Nippon NS Product number “AD157”) is used. As schematically shown in FIG. 4, this acrylic emulsion uses an acrylate ester or the like as a monomer (hydrophobic monomer) that is a polymer compound, and a persulfate that is soluble in water as a polymerization initiator ( Ammonium persulfate) is used, and an anionic sodium alkylsulfonate is used as a surfactant (emulsifier), and these are added in water and polymerized. The surfactant is not limited to an anionic type, and can be appropriately changed to a cationic type or a nonionic type. Further, the primary aqueous mixed liquid L1 is not limited to one using acrylic as a monomer, and can be appropriately changed to one using, for example, vinyl acetate, vinyl chloride, or synthetic rubber. Moreover, not only emulsion polymerization but what was polymerized by well-known polymerization methods, such as suspension polymerization and seed polymerization, can be used suitably.
このような1次水性混合液L1では、図5にて模式的に示すように、粒子径が0.1μm未満の樹脂微粒子61(一次粒子)毎にその表面が界面活性剤62(乳化剤)で覆われる粒子形態のものと、図6にて模式的に示すように、樹脂微粒子61が凝集して粒子径が1μm以上となった凝集塊63(二次粒子)毎にその表面が界面活性剤62で覆われる粒子形態のものとが多数混合・分散した状態にある。 In such a primary aqueous mixed liquid L1, as schematically shown in FIG. 5, the surface of each fine resin particle 61 (primary particle) having a particle diameter of less than 0.1 μm is a surfactant 62 (emulsifier). As schematically shown in FIG. 6, the surface of each of the aggregates 63 (secondary particles) in which the resin fine particles 61 aggregate and have a particle diameter of 1 μm or more, as shown in FIG. A large number of particles covered with 62 are mixed and dispersed.
樹脂微粒子61が凝集した凝集塊63は、上記した減圧装置10及び攪拌装置20による低圧攪拌工程と、噴射衝突装置30による高速度付与工程及び衝突処理工程とを実施することで、個々の樹脂微粒子61へと分散させることができる。以下、製造装置1で実施される各工程について、図7等を参照して具体的に説明する。なお、図7以降の製造装置1を示す説明図では、図1に示した製造装置1の構成要素を適宜省略してある。 The aggregate 63 obtained by agglomerating the resin fine particles 61 is subjected to the above-described low-pressure agitation process by the decompression device 10 and the agitation device 20, and the high-speed application step and the collision treatment step by the jetting collision device 30. 61 can be dispersed. Hereafter, each process implemented with the manufacturing apparatus 1 is demonstrated concretely with reference to FIG. In addition, in the explanatory view showing the manufacturing apparatus 1 after FIG. 7, the components of the manufacturing apparatus 1 shown in FIG. 1 are omitted as appropriate.
最初に、1次水性混合液L1を用意し、図7(a),7(b)に示すように、これを真空タンク11内に注入する。この段階では、図8(a)に示すように、樹脂微粒子61が凝集した凝集塊63が液中に多数存在している。 First, the primary aqueous mixed liquid L1 is prepared and poured into the vacuum tank 11 as shown in FIGS. 7 (a) and 7 (b). At this stage, as shown in FIG. 8A, a large number of aggregates 63 in which the resin fine particles 61 are aggregated exist in the liquid.
次に、低圧攪拌工程Aでは、まず真空タンク11内を真空ポンプ12によって排気し(図12参照)、1次水性混合液L1が蒸発によっても残存する状態を保持する、大気圧より低圧となるまで減圧する。具体的には、図9の飽和蒸気圧表に示すように、真空タンク11内の温度が、4〜20℃である場合に対応して、真空タンク11内の圧力を6〜18Torr(トール)の範囲に設定する。 Next, in the low pressure stirring step A, first, the inside of the vacuum tank 11 is evacuated by the vacuum pump 12 (see FIG. 12), and the pressure is lower than the atmospheric pressure so that the primary aqueous mixture L1 remains even after evaporation. Depressurize until. Specifically, as shown in the saturated vapor pressure table of FIG. 9, the pressure in the vacuum tank 11 is set to 6 to 18 Torr (torr) corresponding to the case where the temperature in the vacuum tank 11 is 4 to 20 ° C. Set to the range.
このとき、真空タンク11内では、減圧に伴って図10(a),10(b)に示すように、液面Sが一旦上昇するとともに、1次水性混合液L1に溶け込んでいた空気(酸素)が膨張し泡となって1次水性混合液L1から除去される(真空脱気・真空脱泡)。この状態で、真空タンク11内をなおも排気し続けると、図10(c)に示すように、液面Sが初期位置に向けて下降し、初期位置に戻ると僅かな間静止状態となり、その後、1次水性混合液L1が急激に沸騰を開始する。本実施例1では、例えば作業者が真空タンク11に設けられた目盛りを目安として液面Sの位置をチェックし、液面Sの上昇により目盛りが見えなくなってから、液面Sの下降により目盛りが再び見えるようになったとき、すなわち、1次水性混合液L1が沸騰を開始する直前、あるいは遅くとも1次水性混合液L1が沸騰を開始した直後には、真空ポンプ12の駆動を停止するようにしている。 At this time, in the vacuum tank 11, as shown in FIGS. 10 (a) and 10 (b), the liquid level S once rises as the pressure decreases, and the air (oxygen) dissolved in the primary aqueous mixture L 1. ) Expands to form bubbles and is removed from the primary aqueous mixture L1 (vacuum degassing / vacuum defoaming). In this state, if the vacuum tank 11 is still evacuated, the liquid level S descends toward the initial position as shown in FIG. Thereafter, the primary aqueous mixture L1 starts to boil rapidly. In the first embodiment, for example, the operator checks the position of the liquid level S using the scale provided in the vacuum tank 11 as a guide, and the scale becomes invisible due to the rise of the liquid level S. Is started again, that is, immediately before the primary aqueous mixture L1 starts boiling, or immediately after the primary aqueous mixture L1 starts boiling, the drive of the vacuum pump 12 is stopped. I have to.
上記のような低圧状態下では、大気圧下に比べて樹脂微粒子61間に作用する凝集力が弱くなる。このため、図8(b)に示すように、樹脂微粒子61間に水64が浸入し、凝集塊63自体が膨潤(膨張)する。このとき、例えば図11にて模式的に示すように、凝集塊63を構成する個々の樹脂微粒子61の表面が界面活性剤62で覆われるようになり、1次水性混合液L1に溶け込んでいた空気に加えて、余剰の界面活性剤等の添加剤や不純物がガスとなって1次水性混合液L1から除去される。 Under the low pressure state as described above, the cohesive force acting between the resin fine particles 61 is weaker than under atmospheric pressure. For this reason, as shown in FIG. 8B, the water 64 enters between the resin fine particles 61, and the aggregate 63 itself swells (expands). At this time, for example, as schematically shown in FIG. 11, the surface of the individual resin fine particles 61 constituting the aggregate 63 is covered with the surfactant 62 and dissolved in the primary aqueous mixed liquid L1. In addition to air, excess additives such as surfactants and impurities are converted into gas and removed from the primary aqueous mixture L1.
そして、この低圧状態下で、駆動モータ24,26による内側攪拌ブレード21、外側攪拌ブレード22の中心軸線周りの回転によって1次水性混合液L1を攪拌することにより、図8(b)に示すように、凝集塊63のなかには元の大きさよりも小さな凝集塊となるようばらけるものがあれば、樹脂微粒子61の単体となるようばらけるものもある(凝集塊63の第一次分散(分離)化)。 Then, under this low pressure state, the primary aqueous mixed liquid L1 is stirred by rotation of the inner stirring blade 21 and the outer stirring blade 22 around the central axis by the drive motors 24 and 26, as shown in FIG. 8B. In addition, some of the aggregates 63 may be separated so as to be aggregates smaller than the original size, while others may be separated so as to be a single resin fine particle 61 (primary dispersion (separation) of the aggregates 63). ).
図7(a),7(b)に戻って、低圧攪拌により1次水性混合液L1から得られた2次水性混合液L2を分岐液配管T2を通して各シリンダ31の加圧室31a内へ移送する。 7 (a) and 7 (b), the secondary aqueous mixed liquid L2 obtained from the primary aqueous mixed liquid L1 by low pressure stirring is transferred into the pressurizing chamber 31a of each cylinder 31 through the branch liquid pipe T2. To do.
高速度付与工程Bでは、まず各ピストン34の押圧作動によって各加圧室内31aの2次水性混合液L2を加圧する。具体的には、2次水性混合液L2を100〜250Mpa(メガパスカル)の圧力範囲内で加圧する。各加圧室31aが設定圧に達すると、開閉弁35が開き、噴射通路33aを流れる2次水性混合液L2に、低圧攪拌に伴う1次水性混合液L1の運動速度より大きな速度が付与されるようになる。 In the high speed application process B, first, the secondary aqueous mixed liquid L2 in each pressurizing chamber 31a is pressurized by the pressing operation of each piston 34. Specifically, the secondary aqueous mixed liquid L2 is pressurized within a pressure range of 100 to 250 MPa (megapascal). When each pressurizing chamber 31a reaches the set pressure, the opening / closing valve 35 is opened, and the secondary aqueous mixed liquid L2 flowing through the injection passage 33a is given a speed higher than the motion speed of the primary aqueous mixed liquid L1 accompanying the low pressure stirring. Become so.
そして、衝突処理工程Cでは、衝突室32a内にて2次水性混合液L2同士を高速で衝突させる(加速度を激減させる)。高速度付与工程B及び衝突処理工程Cを実施することにより、図8(c)に示すように、膨潤により凝集力の弱くなった樹脂微粒子61の凝集塊63が分散に必要なエネルギーを得て、個々の樹脂微粒子61に分散するようになる(凝集塊63の第二次分散(分離)化))。 In the collision processing step C, the secondary aqueous mixed liquids L2 are caused to collide with each other at high speed in the collision chamber 32a (acceleration is drastically reduced). By performing the high speed imparting step B and the collision treatment step C, as shown in FIG. 8C, the aggregate 63 of the resin fine particles 61 whose cohesive force is weakened by swelling obtains energy necessary for dispersion. Then, it is dispersed in the individual resin fine particles 61 (secondary dispersion (separation) of the aggregate 63).
図7(a),7(b)に戻って、収容工程Dでは、衝突処理工程Cにより2次水性混合液L2から得られた3次水性混合液L3が排出液配管T3を通して収容容器40内に収容される。この3次水性混合液L3に対して、塗料の顔料微粒子を混合することで、水性塗料が出来上がる。 Returning to FIGS. 7A and 7B, in the storage process D, the tertiary aqueous mixed liquid L3 obtained from the secondary aqueous mixed liquid L2 in the collision processing process C passes through the discharge liquid pipe T3 in the storage container 40. Is housed in. An aqueous coating material is completed by mixing pigment fine particles of the coating material with the tertiary aqueous mixed liquid L3.
図13は、1次水性混合液L1(以下、ナノ化前のもの又はノーマルなものともいう)の粒子径分布(頻度・累積率)の測定結果を示し、図14は、3次水性混合液L3(以下、ナノ化後のものともいう)の粒子径分布(頻度・累積率)の測定結果を示す。この場合、図7の高速度付与工程Bにおいて開閉弁35が開状態となる圧力を約245MPaに設定した。なお、測定装置として、レーザ回折/散乱式粒度分布測定装置(MT3300型、日機装株式会社製)を使用した。 FIG. 13 shows the measurement results of the particle size distribution (frequency / cumulative rate) of the primary aqueous mixed liquid L1 (hereinafter also referred to as nano-sized or normal), and FIG. 14 shows the tertiary aqueous mixed liquid. The measurement result of the particle diameter distribution (frequency / cumulative rate) of L3 (hereinafter also referred to as nano-ized) is shown. In this case, the pressure at which the on-off valve 35 was opened in the high speed application step B of FIG. 7 was set to about 245 MPa. A laser diffraction / scattering particle size distribution measuring device (MT3300 type, manufactured by Nikkiso Co., Ltd.) was used as a measuring device.
図13及び図14から、製造装置1を使用して各工程を実施することにより、個々の樹脂微粒子61、及び粒子径が1μmに達しない小さな凝集塊が混合・分散した水性エマルジョンが得られていることが分かる。 From FIG. 13 and FIG. 14, by carrying out each process using the manufacturing apparatus 1, an aqueous emulsion in which individual resin fine particles 61 and small aggregates whose particle diameter does not reach 1 μm are mixed and dispersed is obtained. I understand that.
図15は、ナノ化後から長期間(約1年)経過した後の3次水性混合液L3の粒子径分布(頻度・累積率)の測定結果を示す。図15から、製造装置1を使用して各工程を実施したものは、長期間経過すると樹脂微粒子61が再凝集するようになるが、その場合であっても、粒子径が1μmを超えない程度の範囲内に収まり、粒子径が1μmを超えるような大きな凝集塊が形成され難くなっていることが分かる。 FIG. 15 shows the measurement results of the particle size distribution (frequency / cumulative rate) of the tertiary aqueous mixture L3 after a long period (about 1 year) has passed since the nanonization. From FIG. 15, in the case where each process is performed using the manufacturing apparatus 1, the resin fine particles 61 reaggregate after a long period of time, but even in that case, the particle diameter does not exceed 1 μm. It can be seen that it is difficult to form a large agglomerate having a particle diameter exceeding 1 μm.
ナノ化後のものと、ナノ化前のものとを、それぞれ切り溝を形成した鉄板面に塗布したものを試験サンプルとして塩水噴霧試験を行った。この塩水噴霧試験では、所定の恒温槽(槽内温度を35℃に設定)内に各試験サンプルを静置した状態で、各試験サンプルに対して所定時間(30時間と150時間)、濃度5%の塩水を噴霧し続けた後、恒温槽内を室温に戻して20日間乾燥させているときに各試験サンプルでの錆の進行状況を観察した。 A salt spray test was performed using a test sample obtained by applying the nano-sampled and non-nano-coated ones to the iron plate surface on which the grooves were formed. In this salt spray test, each test sample is allowed to stand in a predetermined constant temperature bath (the temperature in the bath is set to 35 ° C.) for a predetermined time (30 hours and 150 hours) with a concentration of 5 % Of salt water was continuously sprayed, and the progress of rust in each test sample was observed when the thermostat was returned to room temperature and dried for 20 days.
図16に塩水噴霧試験の試験結果を示す。図16(a)〜(d)は噴霧時間(試験時間)を30時間としたもの、図16(e)〜(h)は噴霧時間(試験時間)を150時間としたものである。また、図16(b),(d),(f),(h)はナノ化後のもの、図16(a),(c),(e),(g)はナノ化前のものである。さらに、図16(c),(d),(g),(h)の各試験サンプルには、塩水噴霧前に150℃で30分間、塗膜の安定化のための焼付け処理を施した。したがって、図16の全体から見ると、(a)と(b)、(c)と(d)、(e)と(f)、(g)と(h)の組合せで試験条件が同じとなっている。 FIG. 16 shows the test result of the salt spray test. 16A to 16D show the spraying time (test time) of 30 hours, and FIGS. 16E to 16H show the spraying time (test time) of 150 hours. 16 (b), (d), (f), and (h) are after nano-nization, and FIGS. 16 (a), (c), (e), and (g) are before nano-nano. is there. Furthermore, each test sample in FIGS. 16C, 16D, 16G, and 16H was subjected to a baking treatment for stabilizing the coating film at 150 ° C. for 30 minutes before spraying with salt water. Therefore, from the whole of FIG. 16, the test conditions are the same for the combinations of (a) and (b), (c) and (d), (e) and (f), and (g) and (h). ing.
図16から、同じ試験条件のものを比較した場合、ナノ化後の方がナノ化前のものよりも錆の進行状況が明らかに遅くなっており、切り溝で生じた錆が鉄板の塗布面に広がることも良好に抑制されている。すなわち、ナノ化後のものは、ナノ化前のものに比べて防錆性が極めて優れていることが確認された。 From FIG. 16, when the same test conditions are compared, the progress of rust is clearly slower after the nano-ization than that before the nano-ization. It is also suppressed well. That is, it was confirmed that the material after nano-ization is extremely excellent in rust prevention compared to the material before nano-ization.
また、ナノ化後のものと、ナノ化前のものとをそれぞれガラス板上で乾燥させ、乾燥皮膜(塗膜)の鉛筆硬度(引っかき硬度)を測定した。具体的には、23℃、65%RH(相対湿度)の雰囲気下に7日間静置することを乾燥条件とした試験サンプルと、それに加えて60℃の雰囲気下に3時間静置することを乾燥条件とした試験サンプルとを用意した。図17(a)にその測定結果を示す。いずれの試験サンプルにおいても、ナノ化後のものは、ナノ化前のものに比べて鉛筆硬度が増加していることが確認された。 Moreover, the thing after nano-ized and the thing before nano-ized were each dried on the glass plate, and the pencil hardness (scratch hardness) of the dry film (coating film) was measured. Specifically, a test sample that was allowed to stand for 7 days in an atmosphere of 23 ° C. and 65% RH (relative humidity) and a sample for 3 hours in an atmosphere of 60 ° C. Test samples with dry conditions were prepared. FIG. 17A shows the measurement result. In any of the test samples, it was confirmed that the pencil hardness was increased in the nano-sampled sample compared to that before the nano-ized sample.
さらに、ナノ化後のものと、ナノ化前のものとをそれぞれガラス板上で室温乾燥させ、乾燥皮膜(塗膜)の外観を観察した。図17(b)にその観察結果を示す。ナノ化前のものがゆず肌状であるのに対し、ナノ化後のものは平滑であった。この場合、ナノ化後のものは、ナノ化前のものに比べて臭気がほとんどないことが確認された。 Furthermore, the nano-ized one and the one before nano-ized were each dried on a glass plate at room temperature, and the appearance of the dried film (coating film) was observed. FIG. 17B shows the observation result. The thing before nano-ization is a yuzu skin-like, and the thing after nano-ization was smooth. In this case, it was confirmed that the thing after nano-ization has almost no odor compared with the thing before nano-ization.
図16及び図17に示されるような結果が得られたのは、例えば図18にて模式的に示すように、ナノ化前のものでは凝集塊63が液中に多く存在しており、凝集塊63毎に塗布素材面に接触するのに対し(図18(a))、ナノ化後のものでは樹脂微粒子61が液中に多く存在しており、樹脂微粒子61毎に塗布素材面に接触するようになるので(図18(b))、ナノ化後の方が、ナノ化前のものに比べて塗布素材面との接着力が強くなるからである。つまり、ナノ化によって、塗布素材面から剥がれ難く、強靭な塗膜が形成されるようになる。 The results shown in FIG. 16 and FIG. 17 were obtained because, for example, as shown schematically in FIG. 18, many aggregates 63 exist in the liquid before the nano-ization, While the lump 63 is in contact with the coating material surface (FIG. 18 (a)), in the nano-sized one, the resin fine particles 61 are present in the liquid, and the resin fine particles 61 are in contact with the coating material surface. This is because the adhesive force with the coating material surface becomes stronger after the nano-ization than in the case before the nano-ization (FIG. 18B). That is, by nano-ization, a tough coating film is formed which is difficult to peel off from the coating material surface.
また、ナノ化前のものでは、例えば紫外線等により凝集塊63の上部(塗装表面側)における樹脂微粒子61が劣化し出すと、その凝集塊63の下部(塗布素材面側)へと劣化が進み易く、塗膜全体に渡って劣化が早く進行するのに対し、ナノ化後のものでは、塗装表面側に位置する樹脂微粒子61が劣化した場合でも、塗布素材面側に位置する樹脂微粒子61へと劣化が進み難く(個々に独立しているため)、塗膜全体に渡る劣化が抑制されるようになる。また、ナノ化により、過剰な添加物等の不純物が混合液中から除去されることで、無臭性となる。 In addition, in the case before the nano-ization, when the resin fine particles 61 at the upper part (coating surface side) of the agglomerate 63 starts to deteriorate due to, for example, ultraviolet rays, the deterioration progresses to the lower part (coating material surface side) of the agglomerate 63. It is easy and the deterioration progresses quickly over the entire coating film, whereas in the case of the nano-coated one, even when the resin fine particles 61 located on the coating surface side deteriorate, the resin fine particles 61 located on the coating material surface side are moved to. Degradation is difficult to proceed (because they are independent of each other), and degradation over the entire coating film is suppressed. Moreover, it becomes odorless by removing impurities, such as an excessive additive, from a liquid mixture by nano-ization.
上記実施例1では、製造装置1を使用して低圧攪拌工程A、高速度付与工程B、衝突処理工程C及び収容工程Dを実施するようにしたが、これらの工程に加えて、例えば図19(a),19(b)に示すように、顔料混合工程A’を実施するようにしてもよい。この実施例2で使用する製造装置1は、上記実施例1と同じ構成であるため、製造装置1についての詳細な説明、及び低圧攪拌工程A、高速度付与工程B、衝突処理工程C及び収容工程Dについての詳細な説明は省略する。 In the first embodiment, the manufacturing apparatus 1 is used to perform the low pressure stirring process A, the high speed applying process B, the collision processing process C, and the containing process D. In addition to these processes, for example, FIG. As shown in (a) and 19 (b), the pigment mixing step A ′ may be performed. Since the manufacturing apparatus 1 used in the second embodiment has the same configuration as that of the first embodiment, a detailed description of the manufacturing apparatus 1 and a low-pressure stirring process A, a high-speed applying process B, a collision processing process C, and accommodation are performed. Detailed description of the process D will be omitted.
顔料混合工程A’では、低圧攪拌工程Aにより2次水性混合液L2が得られた後、真空タンク11内に2次水性混合液L2を保持した状態で、塗料顔料となる顔料微粒子P1を湿潤剤及び分散剤と共に混合し、必要に応じて攪拌装置20で撹拌する。そして、顔料混合工程A’で得られた顔料含有2次水性混合液L2’に対して、高速度付与工程B及び衝突処理工程Cを実施し、衝突処理工程Cにおいて、その混合液L2’中の樹脂微粒子61の凝集塊63同士を相互に衝突させるとともに、顔料粒子(個々の顔料微粒子P1及び個々の顔料微粒子P1が複数凝集して塊を生じている凝集塊が混在したもの)同士をも相互に衝突させる。 In the pigment mixing step A ′, after the secondary aqueous mixed liquid L2 is obtained by the low pressure stirring step A, the pigment fine particles P1 serving as the paint pigment are wetted while the secondary aqueous mixed liquid L2 is held in the vacuum tank 11. It mixes with an agent and a dispersing agent, and stirs with the stirring apparatus 20 as needed. Then, the high-speed application step B and the collision treatment step C are performed on the pigment-containing secondary aqueous mixed liquid L2 ′ obtained in the pigment mixing step A ′. In the collision treatment step C, the mixture liquid L2 ′ The agglomerates 63 of the resin fine particles 61 collide with each other, and pigment particles (a mixture of agglomerates in which a plurality of individual pigment fine particles P1 and a plurality of individual pigment fine particles P1 agglomerate to form agglomerates) are also present. Collide with each other.
衝突処理工程Cにより、個々の樹脂微粒子61が得られることに加えて、微細化した顔料微粒子P1が得られるので、顔料含有2次水性混合液L2’から得られた顔料含有3次水性混合液L3’(最終液である水性塗料)においては、微細化した顔料微粒子P1の表面が個々の樹脂微粒子61で覆われるようになり、上記実施例1で得られた3次水性混合液L3と同様の理由に基づき、最終液である水性塗料は防錆性等の面で優れた効果を発揮するようになる。 In addition to the individual resin fine particles 61 being obtained by the collision treatment step C, the finely divided pigment fine particles P1 are obtained. Therefore, the pigment-containing tertiary aqueous mixture obtained from the pigment-containing secondary aqueous mixture L2 ′. In L3 ′ (water-based paint as the final liquid), the surface of the finely divided pigment fine particles P1 is covered with the individual resin fine particles 61, and is the same as the tertiary aqueous mixed liquid L3 obtained in Example 1 above. Based on this reason, the water-based paint as the final liquid exhibits excellent effects in terms of rust prevention and the like.
上記実施例2では、低圧攪拌工程Aにより得られた2次水性混合液L2に対し、顔料微粒子P1を混合するようにしたが、これに代えて、例えば図20に示すように、低圧攪拌工程Aを実施する前の段階で、顔料含有1次水性混合液L1’、すなわち、樹脂粒子、乳化剤62、水64及び顔料微粒子P1を含むエマルジョンとしての水性塗料直前混合液を用意するようにしてもよい。 In Example 2 described above, the pigment fine particles P1 are mixed with the secondary aqueous mixed liquid L2 obtained in the low-pressure stirring step A. Instead, for example, as shown in FIG. In the stage before carrying out A, a pigment-containing primary aqueous mixed liquid L1 ′, that is, a mixed liquid immediately before an aqueous paint as an emulsion containing resin particles, emulsifier 62, water 64 and pigment fine particles P1 may be prepared. Good.
この実施例3では、顔料含有1次水性混合液L1’に対して低圧攪拌工程Aを実施するので、その低圧攪拌で得られる顔料含有2次水性混合液L2’の全体として、酸素等の不純物が除去されるとともに、樹脂微粒子61の凝集塊63のみならず、顔料微粒子P1の凝集塊も膨潤により凝集力の弱くなった粒子態様を呈するようになる。 In Example 3, since the low-pressure stirring step A is performed on the pigment-containing primary aqueous mixture L1 ′, the pigment-containing secondary aqueous mixture L2 ′ obtained by the low-pressure stirring as a whole has impurities such as oxygen. As well as the aggregate 63 of the resin fine particles 61, the aggregate of the pigment fine particles P <b> 1 also exhibits a particle mode in which the cohesive force is weakened due to swelling.
これにより、顔料含有2次水性混合液L2’に対して、高速度付与工程B及び衝突処理工程Cを実施し、衝突処理工程Cにおいて、その混合液L2’中の樹脂微粒子61の凝集塊63同士を相互に衝突させるとともに、顔料粒子同士をも相互に衝突させ、衝突処理により得られる顔料含有3次水性混合液L3’を収容工程Dにおいて水性塗料として収容する。 Thus, the high-speed application step B and the collision treatment step C are performed on the pigment-containing secondary aqueous mixed liquid L2 ′. In the collision treatment step C, the aggregate 63 of the resin fine particles 61 in the mixed liquid L2 ′ is obtained. While colliding each other, pigment particles are also collided with each other, and the pigment-containing tertiary aqueous mixed liquid L3 ′ obtained by the collision treatment is accommodated as an aqueous paint in the accommodating step D.
これにより、上記実施例2と同様、衝突処理工程Cにより顔料含有2次水性混合液L2’から得られた顔料含有3次水性混合液L3’においては、微細化した顔料微粒子P1の表面が個々の樹脂微粒子61で覆われるようになるので、最終液である水性塗料は防錆性等の面で優れた効果を発揮するようになる。 Thus, as in Example 2, in the pigment-containing tertiary aqueous mixture L3 ′ obtained from the pigment-containing secondary aqueous mixture L2 ′ by the collision treatment step C, the surfaces of the finely divided pigment fine particles P1 are individually Therefore, the water-based paint as the final liquid exhibits an excellent effect in terms of rust prevention and the like.
(変形例)
上記実施例2、3に代えて、例えば図21に示すように、上記実施例1で使用した製造装置1を複数使用し、上記実施例1と同様にして3次水性混合液L3を収容する一方で(工程A〜D)、個々の顔料微粒子P1及び個々の顔料微粒子P1が複数凝集して塊を生じている凝集塊が多数混合・分散した1次顔料液L4に対して、低圧攪拌工程Aを実施し、その低圧攪拌で得られた2次顔料液L5に対して、高速度付与工程B及び衝突処理工程Cを実施し、衝突処理工程Cにおいて、2次顔料液L5中の顔料粒子同士を相互に衝突させ、衝突処理により得られた3次顔料液L6を収容する(工程A〜D)。そして、混合工程Eでは、3次水性混合液L3と3次顔料液L6とをそれぞれ混合し(必要に応じて攪拌する)、収容工程Fでは、混合により得られた水性塗料L7を収容する。
(Modification)
Instead of the second and third embodiments, for example, as shown in FIG. 21, a plurality of the manufacturing apparatuses 1 used in the first embodiment are used, and the tertiary aqueous mixture L3 is accommodated in the same manner as in the first embodiment. On the other hand (steps A to D), a low-pressure stirring step is performed on the primary pigment liquid L4 in which a large number of aggregates formed by agglomerating a plurality of individual pigment fine particles P1 and individual pigment fine particles P1 are mixed and dispersed. A is performed, and the high-speed application step B and the collision treatment step C are performed on the secondary pigment liquid L5 obtained by the low-pressure stirring. In the collision treatment step C, the pigment particles in the secondary pigment liquid L5 Each other is caused to collide with each other, and the tertiary pigment liquid L6 obtained by the collision treatment is accommodated (steps A to D). In the mixing step E, the tertiary aqueous mixed liquid L3 and the tertiary pigment liquid L6 are mixed (stirred if necessary), and in the containing step F, the aqueous paint L7 obtained by mixing is accommodated.
この変形例によれば、例えば異なる色の顔料を使用しようとする場合、顔料液用とした真空タンク11内を洗浄すればよいので、上記実施例2、3のように顔料含有混合液用とした真空タンク11内を洗浄することに比べて、油汚れを落とす必要がないことから、その洗浄作業が楽になる。 According to this modification, for example, when a different color pigment is to be used, the inside of the vacuum tank 11 for the pigment liquid may be washed. Compared with cleaning the inside of the vacuum tank 11, it is not necessary to remove oil stains, so that the cleaning work becomes easier.
なお、上記実施例1〜3等で使用した製造装置1においては、噴射衝突装置30の相互の連通路部33が相対向して配置され、開閉弁35が開いたときの噴射通路33aが相対向して配置されるように構成したが、これに代えて例えば図22に示すように、噴射衝突装置130の相互の連通路部33がハウジング部32の衝突室32a内で、90度以上180度未満の角度θで交差する位置関係の軸線O1,O2を有するよう配置される構成としてもよい。その他の構成は、上記実施例1と同じであるため、同一の機能を果たす部材には同一の符号を付して説明は省略する。 In the manufacturing apparatus 1 used in the first to third embodiments, the communication passage portions 33 of the injection collision device 30 are arranged to face each other, and the injection passage 33a when the on-off valve 35 is opened is relatively However, instead of this, for example, as shown in FIG. 22, the mutual communication passage portion 33 of the injection collision apparatus 130 is 90 degrees or more and 180 degrees in the collision chamber 32a of the housing portion 32. It is good also as a structure arrange | positioned so that it may have the axis lines O1 and O2 of the positional relationship which cross | intersect at angle (theta) of less than degree. Since the other configuration is the same as that of the first embodiment, members having the same function are denoted by the same reference numerals and description thereof is omitted.
また、上記実施例1〜3等で使用した製造装置1においては、噴射衝突装置30が一対のシリンダ31,31と、両シリンダ31,31間に配置されて各シリンダ31に連通路部33を介して連結されるハウジング部32とを備えるように構成したが、これに代えて例えば図23に示すように、噴射衝突装置230がシリンダ31と、シリンダ31に連通路部33を介して連結されるハウジング部32とを備える構成としてもよい。この場合、ハウジング部32内の衝突室32aには、衝突の対象物としてのセラミック部材36(2次水性混合液L2、顔料含有2次水性混合液L2’あるいは2次顔料液L5から受ける衝突エネルギーを分散すべく所定の曲率半径を有する球状に形成された衝突部)が固定配置されている。なお、その他の構成は上記実施例1と同じであるため、同一の機能を果たす部材には同一の符号を付して説明は省略する。 In the manufacturing apparatus 1 used in the first to third embodiments, the injection collision device 30 is disposed between the pair of cylinders 31 and 31 and both the cylinders 31 and 31, and the communication passage portion 33 is provided in each cylinder 31. However, instead of this, for example, as shown in FIG. 23, the injection collision device 230 is connected to the cylinder 31 and the cylinder 31 via the communication path portion 33. The housing portion 32 may be provided. In this case, the collision chamber 32a in the housing portion 32 has a collision energy received from a ceramic member 36 (secondary aqueous mixed liquid L2, pigment-containing secondary aqueous mixed liquid L2 ′ or secondary pigment liquid L5) as an object of collision. The impact portion formed in a spherical shape having a predetermined radius of curvature is fixedly disposed. In addition, since the other structure is the same as the said Example 1, the same code | symbol is attached | subjected to the member which performs the same function, and description is abbreviate | omitted.
この噴射衝突装置230を使用する場合においても、高速度付与工程Bでは、ピストン34の押圧作動によって加圧室内31aに誘導された2次水性混合液L2等が予め定められた圧力(100〜250Mpa)となるまで加圧される。加圧室31aが設定圧に達すると、開閉弁35が開き、噴射通路33aを流れる2次水性混合液L2等に、低圧攪拌に伴う1次水性混合液L1等の運動速度より大きな速度が付与される。そして、衝突処理工程Cでは、衝突室32a内にて2次水性混合液L2等がセラミック部材36に高速で衝突する。 Even when this jetting collision device 230 is used, in the high speed application step B, the secondary aqueous mixed liquid L2 or the like guided into the pressurizing chamber 31a by the pressing operation of the piston 34 is a predetermined pressure (100 to 250 Mpa). ) Until pressure is reached. When the pressurizing chamber 31a reaches the set pressure, the open / close valve 35 is opened, and the secondary aqueous mixed liquid L2 and the like flowing through the injection passage 33a is given a speed larger than the motion speed of the primary aqueous mixed liquid L1 and the like accompanying the low pressure stirring. Is done. In the collision treatment step C, the secondary aqueous mixed liquid L2 and the like collide with the ceramic member 36 at high speed in the collision chamber 32a.
したがって、噴射衝突装置230を使用して、高速度付与工程B及び衝突処理工程Cを実施することにより、上記実施例1と同様、樹脂微粒子61の凝集塊63を個々の樹脂微粒子61に良好に分散させることができ、あるいは顔料微粒子P1を良好に微細化することができる。 Therefore, by performing the high-speed imparting step B and the collision treatment step C using the jetting collision device 230, the agglomerates 63 of the resin fine particles 61 are favorably formed into the individual resin fine particles 61 as in the first embodiment. The pigment fine particles P1 can be finely dispersed.
また、上記実施例1等の噴射衝突装置30,130,230に代えて、例えば図24に示すように、吸引ポンプ13を使用し、吸引ポンプ13の吸引により、2次水性混合液L2等に大きな速度を付与し、吸引ポンプ13の吐出し口から噴出させて、衝突の対象物としてのセラミック部材37(2次水性混合液L2等から受ける衝突エネルギーを分散すべく所定の曲率半径を有する凹状に形成された衝突部)に高速で衝突させるようにしてもよい。 Further, instead of the jetting collision devices 30, 130, and 230 in the first embodiment, for example, as shown in FIG. 24, the suction pump 13 is used, and the suction to the secondary aqueous mixed liquid L <b> 2 or the like is obtained. A concave shape having a predetermined radius of curvature is applied to disperse the collision energy received from the ceramic member 37 (secondary aqueous mixed liquid L2 or the like) as an object of collision by giving a large speed and ejecting from the discharge port of the suction pump 13 It is also possible to cause a collision at a high speed.
また、例えば図25に示すように、真空ポンプ12を逆転駆動し、真空タンク11内を加圧することで、2次水性混合液L2等に大きな速度を付与し、噴射装置133のノズルから噴出させて、衝突の対象物としてのセラミック部材37に高速で衝突させるようにしてもよい。 Further, for example, as shown in FIG. 25, the vacuum pump 12 is driven in the reverse direction to pressurize the inside of the vacuum tank 11 to give a large speed to the secondary aqueous liquid mixture L2 and the like, and eject it from the nozzle of the ejection device 133. Thus, the ceramic member 37 as a collision target may be caused to collide at high speed.
さらに、例えば図26に示すように、排出液配管T3の一部を露出する態様として、その露出部位に対応して帯電装置50を設けるようにしてもよい。帯電装置50は、衝突処理工程C後の3次水性混合液L3等を、例えばコロナ放電により正又は負に帯電させるものであり、接地電極51と、正又は負の高電圧を出力する放電電極52aを有する高圧発生部52と、放電電極52aの出力電圧を制御するコントローラ53とを含んで構成されている。帯電装置50により帯電された3次水性混合液L3等は、排出液配管T3の下部を通して収容容器40内に収容される。 Furthermore, as shown in FIG. 26, for example, as a mode of exposing a part of the drainage pipe T3, a charging device 50 may be provided corresponding to the exposed portion. The charging device 50 charges the tertiary aqueous mixed liquid L3 and the like after the collision treatment step C positively or negatively by, for example, corona discharge, and outputs a ground electrode 51 and a positive or negative high voltage. The high voltage generating unit 52 having 52a and the controller 53 for controlling the output voltage of the discharge electrode 52a are configured. The tertiary aqueous mixed liquid L3 and the like charged by the charging device 50 are stored in the storage container 40 through the lower part of the discharge liquid pipe T3.
帯電装置50を使用して、例えば解離した界面活性剤が陽イオン性化合物(カチオン性)である場合には3次水性混合液L3等を正に帯電させ、陰イオン性化合物(アニオン性)である場合には3次水性混合液L3等を負に帯電させるという帯電工程を実施することにより、樹脂微粒子61間に作用する電気的反発力により樹脂微粒子61の再凝集を効果的に抑制することができる。その結果、樹脂微粒子61の分散状態を長期間に渡って良好に維持できるようになる。 Using the charging device 50, for example, when the dissociated surfactant is a cationic compound (cationic), the tertiary aqueous mixture L3 or the like is charged positively, and the anionic compound (anionic) is used. In some cases, by performing a charging step of negatively charging the tertiary aqueous mixed liquid L3 and the like, the repulsion of the resin fine particles 61 is effectively suppressed by the electric repulsive force acting between the resin fine particles 61. Can do. As a result, the dispersed state of the resin fine particles 61 can be satisfactorily maintained over a long period.
なお、図26に示した帯電装置50に代えて、例えば図27に示すような帯電装置150を使用してもよい。帯電装置150は、収容容器40を載置するための基台151を備えており、基台151には収容容器40内の3次水性混合液L3等に対して電場を付与可能な電極、コイル等が組み込まれ、電場発生装置152により電場制御される。このような帯電装置150によっても、3次水性混合液L3等を正又は負に帯電させることができる。 In place of the charging device 50 shown in FIG. 26, for example, a charging device 150 as shown in FIG. 27 may be used. The charging device 150 includes a base 151 on which the storage container 40 is placed, and the base 151 has electrodes and coils that can apply an electric field to the tertiary aqueous mixed liquid L3 and the like in the storage container 40. And the like, and the electric field generator 152 controls the electric field. Such a charging device 150 can also charge the tertiary aqueous mixed liquid L3 or the like positively or negatively.
また、上記実施例1等で使用した攪拌装置20に加えて、例えば図28に示すように、真空タンク11の底部に、超音波発生器122(超音波発信回路、超音波発生手段)により振動する超音波振動子121を取り付け、攪拌ブレード21,22による運動エネルギーとともに超音波振動子121による音響エネルギーを利用し、真空タンク11内の1次水性混合液L1等に対して攪拌効果を与えるようにしてもよい。 Further, in addition to the stirring device 20 used in Example 1 and the like, for example, as shown in FIG. 28, the bottom of the vacuum tank 11 is vibrated by an ultrasonic generator 122 (ultrasonic transmission circuit, ultrasonic generation means). The ultrasonic vibrator 121 is attached, and the kinetic energy by the stirring blades 21 and 22 and the acoustic energy by the ultrasonic vibrator 121 are used to give a stirring effect to the primary aqueous mixture L1 and the like in the vacuum tank 11 It may be.
また、上記した製造装置1は、例えば圧力センサ、温度センサ等の各種センサを用いることで、各工程が自動的に実施される制御システムとして構築することも可能である。 Moreover, the manufacturing apparatus 1 described above can be constructed as a control system in which each process is automatically performed by using various sensors such as a pressure sensor and a temperature sensor.
1 製造装置(水性樹脂微粒子混合液の製造装置)
10 減圧装置
11 真空タンク(減圧容器)
12 真空ポンプ
20 攪拌装置
21 内側攪拌ブレード
22 外側攪拌ブレード
30,130,230 噴射衝突装置
31 シリンダ
31a 加圧室
32 ハウジング部
32a 衝突室
33 連通路部
33a 噴射通路(噴射口)
34 ピストン
35 開閉弁
36,37 セラミック部材(対象物、衝突部)
40 収容容器
61 樹脂微粒子
62 乳化剤
63 凝集塊
64 水
T2 分岐液配管(誘導通路)
T3 排出液配管(排出液通路)
100 制御盤
L1 1次水性混合液
L2 2次水性混合液
L3 3次水性混合液
P1 顔料微粒子
L1’ 顔料含有1次水性混合液
L2’ 顔料含有2次水性混合液
L3’ 顔料含有3次水性混合液
1 Production equipment (Production equipment for aqueous resin fine particle mixture)
10 Pressure reducing device 11 Vacuum tank (pressure reducing container)
12 Vacuum pump 20 Agitator 21 Inner agitating blade 22 Outer agitating blade 30, 130, 230 Injection collision device 31 Cylinder 31a Pressurization chamber 32 Housing portion 32a Collision chamber 33 Communication passage portion 33a Injection passage (injection port)
34 Piston 35 On-off valve 36, 37 Ceramic member (object, collision part)
40 container 61 resin fine particle 62 emulsifier 63 agglomerate 64 water T2 branch liquid pipe (guide passage)
T3 Drainage pipe (drainage passage)
100 Control Panel L1 Primary Aqueous Mixture L2 Secondary Aqueous Mixture L3 Tertiary Aqueous Mixture P1 Pigment Fine Particle L1 ′ Pigment Containing Primary Aqueous Mixture L2 ′ Pigment Containing Secondary Aqueous Mixture L3 ′ Pigment Containing Tertiary Aqueous Mixing liquid
上記課題を解決するために本発明に係る水性樹脂微粒子混合液の製造方法は、
個々の樹脂微粒子および個々の樹脂微粒子が複数凝集して塊を生じている凝集塊が多数混合・分散した水性粗分散混合液である1次水性混合液を、その混合液が蒸発によっても残存する状態を保持する、6〜18Torrの低圧状態下で攪拌する低圧攪拌工程と、
その低圧攪拌により1次水性混合液から得られた2次水性混合液を100〜250Mpaの高圧に加圧して、攪拌に伴う1次水性混合液の運動速度より大きな速度を付与する高速度付与工程と、
その高速度を付与された2次水性混合液を互いに向かい合うように噴射して、その2次水性混合液同士を相互に高速で衝突させる衝突処理工程と、
その衝突処理工程により2次水性混合液から得られた3次水性混合液を収容する収容工程と、
を含むことを特徴とする。
なお、「水性粗分散混合液」、「1次水性混合液」は、粘度の低いものに限らず、かなり粘度の高いもの、例えばヨーグルト状の流体をも含む意である。
In order to solve the above problems, a method for producing an aqueous resin fine particle mixture according to the present invention includes:
A primary aqueous mixed liquid which is an aqueous coarse dispersion mixed liquid in which a large number of individual resin fine particles and a plurality of individual resin fine particles are aggregated to form agglomerates is mixed and dispersed. Maintaining the state, a low pressure stirring step of stirring under a low pressure state of 6 to 18 Torr ;
A high- speed application step in which the secondary aqueous mixture obtained from the primary aqueous mixture is pressurized to a high pressure of 100 to 250 Mpa by the low-pressure stirring to give a speed greater than the motion speed of the primary aqueous mixture accompanying the stirring. When,
A collision treatment step of injecting the secondary aqueous mixed liquid provided with the high speed so as to face each other and causing the secondary aqueous mixed liquid to collide with each other at high speed ;
An accommodating step for accommodating a tertiary aqueous mixture obtained from the secondary aqueous mixture by the collision treatment step;
It is characterized by including.
The “aqueous coarse dispersion mixture” and “primary aqueous mixture” are not limited to those having a low viscosity, but also include those having a considerably high viscosity, for example, a yogurt-like fluid.
そして、上記した製造方法を実施するために本発明に係る水性樹脂微粒子混合液の製造装置は、
個々の樹脂微粒子および個々の樹脂微粒子が複数凝集して塊を生じている凝集塊が多数混合・分散した水性粗分散混合液である1次水性混合液を収容する減圧容器と、
その減圧容器内を、1次水性混合液が蒸発によっても残存する状態を保持する、大気圧より低圧状態に減圧する減圧装置と、
その減圧装置で生じる6〜18Torrの減圧状態下で1次水性混合液を撹拌する撹拌装置と、
減圧容器から導かれる、撹拌により得られた2次水性混合液を大気圧より高い100〜250Mpaの高圧に加圧して噴射し対象物に衝突させる噴射衝突装置と、
その噴射・衝突で得られた3次水性混合液を収容する収容容器と、を備え、
噴射衝突装置は、減圧容器から2次水性混合液を分岐させて導く誘導通路と、その誘導された2次水性混合液を加圧するシリンダとを含み、
そのシリンダは、分岐して誘導された2次水性混合液を個別に加圧するピストン又はプランジャと、加圧された2次水性混合液を互いに噴射する相互の噴射口とを含み、
その相互の噴射口から噴射された2次水性混合液同士が互いを衝突の対象物として高速で衝突することを特徴とする。
And in order to implement the above-mentioned manufacturing method, the manufacturing apparatus of the aqueous resin fine particle mixed liquid according to the present invention includes:
A decompression container containing a primary aqueous mixed liquid which is an aqueous coarse dispersion mixed liquid in which a large number of agglomerates in which a plurality of individual resin fine particles and a plurality of individual resin fine particles are aggregated are mixed and dispersed;
A pressure reducing device for reducing the pressure from the atmospheric pressure to a lower pressure state, maintaining the state in which the primary aqueous mixture remains even after evaporation in the reduced pressure vessel;
A stirrer that stirs the primary aqueous mixture under a reduced pressure of 6 to 18 Torr generated in the decompressor;
An injection collision device that is guided from a decompression vessel and pressurizes the secondary aqueous mixed liquid obtained by stirring to a high pressure of 100 to 250 Mpa higher than atmospheric pressure to inject it into an object;
A storage container for storing a tertiary aqueous mixture obtained by the jetting / collision ,
The jetting collision device includes a guide passage that branches and guides the secondary aqueous mixed liquid from the decompression vessel, and a cylinder that pressurizes the guided secondary aqueous mixed liquid,
The cylinder includes a piston or plunger that individually pressurizes the branched secondary aqueous mixture and a mutual injection port that injects the pressurized secondary aqueous mixture to each other;
The secondary aqueous mixed liquids ejected from the mutual ejection ports collide at high speed with each other as an object of collision .
Claims (13)
その低圧攪拌により前記1次水性混合液から得られた2次水性混合液に、前記攪拌に伴う1次水性混合液の運動速度より大きな速度を付与する高速度付与工程と、
その高速度を付与された2次水性混合液を対象物に高速で衝突させる衝突処理工程と、
その衝突処理工程により前記2次水性混合液から得られた3次水性混合液を収容する収容工程と、
を含むことを特徴とする水性樹脂微粒子混合液の製造方法。 A primary aqueous mixed liquid which is an aqueous coarse dispersion mixed liquid in which a large number of individual resin fine particles and a plurality of individual resin fine particles are aggregated to form agglomerates is mixed and dispersed. A low-pressure stirring step for maintaining the state and stirring under a pressure lower than atmospheric pressure;
A high speed imparting step of imparting to the secondary aqueous mixed liquid obtained from the primary aqueous mixed liquid by the low pressure stirring a speed larger than the motion speed of the primary aqueous mixed liquid accompanying the stirring;
A collision treatment step of causing the secondary aqueous liquid mixture imparted with the high speed to collide with an object at a high speed;
An accommodating step for accommodating the tertiary aqueous mixture obtained from the secondary aqueous mixture by the collision treatment step;
The manufacturing method of the aqueous resin fine particle liquid mixture characterized by including.
その減圧容器内を、1次水性混合液が蒸発によっても残存する状態を保持する、大気圧より低圧状態に減圧する減圧装置と、
その減圧装置で生じる減圧状態下で前記1次水性混合液を撹拌する撹拌装置と、
前記減圧容器から導かれる、前記撹拌により得られた2次水性混合液を大気圧より高い高圧に加圧して噴射し対象物に衝突させる噴射衝突装置と、
その噴射・衝突で得られた3次水性混合液を収容する収容容器と、
を含むことを特徴とする水性樹脂微粒子混合液の製造装置。 A decompression container containing a primary aqueous mixed liquid which is an aqueous coarse dispersion mixed liquid in which a large number of agglomerates in which a plurality of individual resin fine particles and a plurality of individual resin fine particles are aggregated are mixed and dispersed;
A pressure reducing device for reducing the pressure from the atmospheric pressure to a lower pressure state, maintaining the state in which the primary aqueous mixture remains even after evaporation in the reduced pressure vessel;
A stirrer for stirring the primary aqueous mixture under reduced pressure generated in the decompressor;
An injection collision device that is guided from the decompression vessel and pressurizes the secondary aqueous mixed liquid obtained by the stirring to a high pressure higher than atmospheric pressure so as to be collided with an object;
A storage container for storing a tertiary aqueous mixture obtained by the jetting / collision;
An apparatus for producing an aqueous resin fine particle mixed solution, comprising:
そのシリンダは、前記2次水性混合液を加圧するピストン又はプランジャと、加圧された2次水性混合液を噴射する噴射口とを含み、
その噴射口から噴射された前記2次水性混合液が前記衝突部に衝突する請求項7に記載の水性樹脂微粒子混合液の製造装置。 The jetting collision device includes a guide passage that guides the secondary aqueous mixed liquid from the decompression vessel, a cylinder that pressurizes the induced secondary aqueous mixed liquid, and a collision that collides the pressurized secondary aqueous mixed liquid. Part
The cylinder includes a piston or plunger that pressurizes the secondary aqueous mixture, and an injection port that injects the pressurized secondary aqueous mixture.
The apparatus for producing an aqueous resin fine particle mixture according to claim 7, wherein the secondary aqueous mixture injected from the injection port collides with the collision part.
そのシリンダは、前記2次水性混合液を分岐させて加圧するピストン又はプランジャと、加圧された2次水性混合液を互いに噴射する相互の噴射口とを含み、
その相互の噴射口から噴射された前記2次水性混合液が互いに高速で衝突する請求項7に記載の水性樹脂微粒子混合液の製造装置。 The jetting collision device includes a guide passage that guides the secondary aqueous mixed liquid from the decompression container, and a cylinder that pressurizes the guided secondary aqueous mixed liquid.
The cylinder includes a piston or a plunger that branches and pressurizes the secondary aqueous mixed liquid, and a mutual injection port that injects the pressurized secondary aqueous mixed liquid to each other.
The apparatus for producing an aqueous resin fine particle mixture according to claim 7, wherein the secondary aqueous mixture injected from the mutual injection ports collides with each other at a high speed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010018273A JP4568792B1 (en) | 2010-01-29 | 2010-01-29 | Method and apparatus for producing aqueous resin fine particle mixture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010018273A JP4568792B1 (en) | 2010-01-29 | 2010-01-29 | Method and apparatus for producing aqueous resin fine particle mixture |
Publications (2)
Publication Number | Publication Date |
---|---|
JP4568792B1 JP4568792B1 (en) | 2010-10-27 |
JP2014122252A true JP2014122252A (en) | 2014-07-03 |
Family
ID=43098844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010018273A Expired - Fee Related JP4568792B1 (en) | 2010-01-29 | 2010-01-29 | Method and apparatus for producing aqueous resin fine particle mixture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4568792B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5813259B1 (en) * | 2015-01-27 | 2015-11-17 | 皆川 光雄 | Method for improving dispersibility of aqueous emulsion and aqueous emulsion with improved dispersibility |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5913670B1 (en) * | 2015-03-26 | 2016-04-27 | 皆川 光雄 | Water treatment method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5485230A (en) * | 1977-12-20 | 1979-07-06 | Nippon Oil & Fats Co Ltd | Preparation of coating resin dispersion |
JPS6086174A (en) * | 1983-09-14 | 1985-05-15 | ヘルバ−ツ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | Manufacture of storable concentrate |
JPH0559188A (en) * | 1991-08-29 | 1993-03-09 | Dainippon Ink & Chem Inc | Method for producing aqueous dispersion of chlorinated polyolefin resin |
JPH0598192A (en) * | 1991-10-04 | 1993-04-20 | Dainippon Ink & Chem Inc | Production of resin for aqueous dispersible type coating |
JPH05132567A (en) * | 1991-11-13 | 1993-05-28 | Dainippon Ink & Chem Inc | Production of water-base polyurethane resin dispersion |
JP2000336173A (en) * | 1999-06-01 | 2000-12-05 | Dainippon Ink & Chem Inc | Production of resin aqueous dispersion |
JP2001518974A (en) * | 1997-03-20 | 2001-10-16 | ユニリーバー・ナームローゼ・ベンノートシヤープ | Manufacturing process of silicone elastomer composition |
-
2010
- 2010-01-29 JP JP2010018273A patent/JP4568792B1/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5485230A (en) * | 1977-12-20 | 1979-07-06 | Nippon Oil & Fats Co Ltd | Preparation of coating resin dispersion |
JPS6086174A (en) * | 1983-09-14 | 1985-05-15 | ヘルバ−ツ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | Manufacture of storable concentrate |
JPH0559188A (en) * | 1991-08-29 | 1993-03-09 | Dainippon Ink & Chem Inc | Method for producing aqueous dispersion of chlorinated polyolefin resin |
JPH0598192A (en) * | 1991-10-04 | 1993-04-20 | Dainippon Ink & Chem Inc | Production of resin for aqueous dispersible type coating |
JPH05132567A (en) * | 1991-11-13 | 1993-05-28 | Dainippon Ink & Chem Inc | Production of water-base polyurethane resin dispersion |
JP2001518974A (en) * | 1997-03-20 | 2001-10-16 | ユニリーバー・ナームローゼ・ベンノートシヤープ | Manufacturing process of silicone elastomer composition |
JP2000336173A (en) * | 1999-06-01 | 2000-12-05 | Dainippon Ink & Chem Inc | Production of resin aqueous dispersion |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5813259B1 (en) * | 2015-01-27 | 2015-11-17 | 皆川 光雄 | Method for improving dispersibility of aqueous emulsion and aqueous emulsion with improved dispersibility |
WO2016121596A1 (en) * | 2015-01-27 | 2016-08-04 | 皆川 光雄 | Method for improving dispersibility of aqueous emulsion and method for manufacturing aqueous emulsion having improved dispersibility |
Also Published As
Publication number | Publication date |
---|---|
JP4568792B1 (en) | 2010-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108136770B (en) | Ink jet recording method | |
JP6501191B2 (en) | Micro-nano bubble cleaning method and apparatus | |
CN107674499A (en) | Ink, ink tank, liquid discharge device, image forming method and its device | |
RU2219197C2 (en) | Method of preparing polymer dispersions with average particle size between 1/10 and 10 mcm | |
CN108472672B (en) | Sprayer system | |
JPH10192670A (en) | Dispersion and dispersing apparatus utilizing supercritical state | |
JPH10140065A (en) | Water-based recording liquid | |
CN105153841B (en) | A kind of resistant chemicals-resistant aqueous automobile trim paint and preparation method thereof | |
JP4568792B1 (en) | Method and apparatus for producing aqueous resin fine particle mixture | |
CN109312186A (en) | The manufacturing method of toner dispersion | |
WO2016153043A1 (en) | Method for producing small cluster water | |
CN106471068A (en) | The manufacture method of toner dispersion | |
JP4169239B2 (en) | Submerged surface processing apparatus and processing method | |
CN104789063B (en) | A kind of preparation method of compatible inkjet printing coating | |
JPH05229140A (en) | Ink jet printing apparatus and color ink | |
US5328261A (en) | Method and apparatus for dissolving powder in a liquid | |
KR20210019350A (en) | Nano-bubble generator | |
CN110473773B (en) | Wafer cleaning method and wafer cleaning equipment | |
CN217796132U (en) | Emulsification reactor of organosilicon waterborne emulsion | |
JP5813259B1 (en) | Method for improving dispersibility of aqueous emulsion and aqueous emulsion with improved dispersibility | |
KR20210035402A (en) | Nano Bubble Generator | |
CN113648891A (en) | Reinforced acoustic resonance hybrid system and method | |
JPH05317672A (en) | Pigment dispersion method | |
KR20210035401A (en) | Nano Bubble Generator | |
CN211619990U (en) | Micro-bubble generating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100802 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100809 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4568792 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130813 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130813 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130813 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130813 Year of fee payment: 3 |
|
S201 | Request for registration of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314201 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130813 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130813 Year of fee payment: 3 |
|
S201 | Request for registration of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314201 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S804 | Written request for registration of cancellation of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314805 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S201 | Request for registration of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314201 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S804 | Written request for registration of cancellation of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314805 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |