JP2014121740A - Surface-coated cutting tool in which hard coating layer exhibits excellent peeling resistance in heavy cutting work - Google Patents

Surface-coated cutting tool in which hard coating layer exhibits excellent peeling resistance in heavy cutting work Download PDF

Info

Publication number
JP2014121740A
JP2014121740A JP2012277890A JP2012277890A JP2014121740A JP 2014121740 A JP2014121740 A JP 2014121740A JP 2012277890 A JP2012277890 A JP 2012277890A JP 2012277890 A JP2012277890 A JP 2012277890A JP 2014121740 A JP2014121740 A JP 2014121740A
Authority
JP
Japan
Prior art keywords
layer
crystal grains
upper layer
lower layer
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012277890A
Other languages
Japanese (ja)
Inventor
Kohei Tomita
興平 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012277890A priority Critical patent/JP2014121740A/en
Publication of JP2014121740A publication Critical patent/JP2014121740A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool in which a hard coating layer exhibits excellent peeling resistance in heavy cutting work.SOLUTION: The surface-coated cutting tool is formed by coating a Ti compound layer as a lower layer and a Ti-including AlOlayer as an upper layer on a surface of a tool base body, and the Ti-including AlOlayer of the upper layer is constituted of a Ti-including α-AlOcolumnar crystal grain having a longitudinally long shape in the layer thickness direction and having an α type crystal structure oriented on a (11-20) surface and a Ti-including κ-AlOcrystal grain having a κ type crystal structure, and the Ti-including α-AlOcolumnar crystal grain contacts with a recess of a lower layer surface in its lower end, and while, the Ti-including κ-AlOcrystal grain contacts with a surface except for the recess of the lower layer surface in its lower end, and the Ti-including κ-AlOcrystal grain is formed in a crystal grain clearance in which the mutual Ti-including α-AlOcolumnar crystal grains are not adjacent just above the lower layer surface.

Description

この発明は、特に各種の鋼や鋳鉄などの被削材の切削加工を、切れ刃に対して高送り、高切り込み等の高負荷が作用する重切削条件で行った場合にも、硬質被覆層がすぐれた耐剥離性を備えるため、長期の使用にわたってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   In particular, the present invention provides a hard coating layer even when cutting of various materials such as steel and cast iron is performed under heavy cutting conditions in which a high load such as high feed and high cutting acts on the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent cutting performance over a long period of use because it has excellent peeling resistance.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層として、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層、
(b)上部層として、酸化アルミニウム層(Al層)、
上記(a)、(b)からなる硬質被覆層を蒸着形成してなる被覆工具が良く知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) As a lower layer, Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer, carbon oxide (hereinafter referred to as TiCO) A Ti compound layer comprising one or more of a layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer,
(B) As an upper layer, an aluminum oxide layer (Al 2 O 3 layer),
A coated tool formed by vapor-depositing a hard coating layer comprising the above (a) and (b) is well known.

上記従来の被覆工具において、その工具性能の向上を図るため種々の提案がなされている。
例えば、特許文献1に示すように、工具基体表面にTiC、TiCN、TiN等の下部層を設け、この上に、Al層を上部層として形成した被覆工具において、下部層側はκ−Alに富み、表面側はα−Alに富むAl層を被覆形成することにより、鋳鉄、鋼の切削加工において、耐摩耗性、耐欠損性を向上させることが提案されている。
In the conventional coated tool, various proposals have been made to improve the tool performance.
For example, as shown in Patent Document 1, in a coated tool in which a lower layer of TiC, TiCN, TiN or the like is provided on the surface of a tool base and an Al 2 O 3 layer is formed thereon as an upper layer, the lower layer side is κ rich in -al 2 O 3, by the surface side covering forming the Al 2 O 3 layer rich in α-Al 2 O 3, the cast iron, in cutting of steel, wear resistance, to improve the chipping resistance Has been proposed.

また、特許文献2に示すように、上部層のAl層に代えて、Ti含有α−Al層を被覆形成し、さらに、該Ti含有α−Al層について、構成原子共有格子点分布グラフを作成した場合に、Σ3に最高ピークが存在し、かつΣ3の分布割合を60〜80%とすることによって、耐チッピング性を向上させることが提案されている。 Further, as shown in Patent Document 2, instead of the upper Al 2 O 3 layer, a Ti-containing α-Al 2 O 3 layer is formed by coating, and further, the Ti-containing α-Al 2 O 3 layer is It has been proposed that when a constituent atom shared lattice point distribution graph is created, the highest peak exists in Σ3 and the distribution ratio of Σ3 is set to 60 to 80% to improve chipping resistance.

さらに、例えば、特許文献3に示すように、工具基体の表面に、下部層としてTi化合物層、中間層としてα型Al層、上部層として、平板多角形状かつたて長形状の結晶粒組織構造を有するTi含有α型Al層を蒸着形成した被覆工具において、逃げ面およびすくい面の中間層及び上部層を、それぞれ、(0001)面配向率の高いα型Al層、Ti含有α型Al層から構成し、また、逃げ面およびすくい面の上部層のTi含有α型Al結晶粒の内、面積比率で60%以上の結晶粒の内部を、少なくとも一つ以上のΣ3からなる結晶格子界面により分断することによって、高速重切削加工における耐剥離性、耐摩耗性を改善することが提案されている。 Further, for example, as shown in Patent Document 3, a Ti compound layer as a lower layer, an α-type Al 2 O 3 layer as an intermediate layer, and a flat plate-shaped polygonal and long crystal as an upper layer on the surface of a tool base. In a coated tool in which a Ti-containing α-type Al 2 O 3 layer having a grain structure is vapor-deposited, an intermediate layer and an upper layer of a flank and a rake face are respectively formed as α-type Al 2 O having a high (0001) plane orientation ratio. 3 layers of Ti-containing α-type Al 2 O 3 layers, and among the Ti-containing α-type Al 2 O 3 crystal grains in the upper layer of the flank and rake face, 60% or more of the crystal grains by area ratio It has been proposed to improve peeling resistance and wear resistance in high-speed heavy cutting by dividing the inside by a crystal lattice interface composed of at least one Σ3.

特許第2759935号公報Japanese Patent No. 2775935 特開2006−289556号公報JP 2006-289556 A 特開2011−183487号公報JP 2011-183487 A

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工はますます高能率化される傾向にあるが、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での連続切削に用いた場合には問題はないが、特にこれを、切れ刃に高送り、高切り込み等の高負荷が作用する重切削条件に用いた場合には、硬質被覆層、特に、上部層のAl層と下部層のTi化合物層の付着強度が十分でないため、被覆層の剥離が発生しやすくなり、その結果、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting equipment has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and with this, cutting tends to become more efficient. In the above-mentioned conventional coated tool, there is no problem when it is used for continuous cutting under normal conditions such as steel and cast iron. However, this is particularly difficult when high loads such as high feed and high cutting are applied to the cutting edge. When used for heavy cutting conditions that act, the coating strength of the hard coating layer, particularly the upper Al 2 O 3 layer and the lower Ti compound layer, is not sufficient, and the coating layer is likely to peel off. As a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、特に、重切削加工における硬質被覆層の耐剥離性を向上すべく鋭意研究を行った結果、次のような知見を得たのである。   Therefore, the present inventors obtained the following knowledge from the above viewpoints, as a result of intensive studies to improve the peel resistance of the hard coating layer particularly in heavy cutting.

まず、本発明者等は、上部層を、Ti含有α−Al柱状結晶粒とTi含有κ−Al結晶粒から構成し、特に、下部層直上近傍においては、Ti含有α−Al柱状結晶粒同士が隣接していない結晶粒間隙をTi含有κ−Al結晶粒で充填構成することにより、重切削加工時、切れ刃にかかる高負荷によって発生する応力をTi含有κ−Al結晶粒によって緩和し、また、亀裂の発生・進展を抑制し、もって、結晶粒の粒界破断等に起因する上部層の剥離発生を抑制し得ることを見出したのである。
また、本発明者等は、上部層中で(11−20)面に配向するTi含有α−Al柱状結晶粒の面積割合を高めることによって上部層の高温強度を確保することができるとともに、Ti含有α−Al柱状結晶粒の具備する熱遮蔽効果によって、すぐれた耐摩耗性が発揮されることを見出したのである。
First, the present inventors constituted the upper layer from Ti-containing α-Al 2 O 3 columnar crystal grains and Ti-containing κ-Al 2 O 3 crystal grains, and in particular, in the vicinity immediately above the lower layer, the Ti-containing α -Stress generated due to high load applied to the cutting edge during heavy cutting by filling the crystal grain gap where the Al 2 O 3 columnar crystal grains are not adjacent to each other with Ti-containing κ-Al 2 O 3 crystal grains Has been found to be relaxed by Ti-containing κ-Al 2 O 3 crystal grains, and the generation and propagation of cracks can be suppressed, so that the occurrence of delamination of the upper layer due to grain boundary fracture of the crystal grains can be suppressed. It was.
Moreover, the present inventors can ensure the high temperature strength of the upper layer by increasing the area ratio of Ti-containing α-Al 2 O 3 columnar crystal grains oriented in the (11-20) plane in the upper layer. At the same time, it has been found that excellent wear resistance is exhibited by the heat shielding effect of the Ti-containing α-Al 2 O 3 columnar crystal grains.

つまり、本発明の被覆工具によれば、切れ刃に高送り、高切り込み等の高負荷が作用する重切削条件に用いた場合であっても、すぐれた耐剥離性を発揮するとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮するのである。   In other words, according to the coated tool of the present invention, even when used in heavy cutting conditions where a high load such as high feed and high cutting acts on the cutting edge, it exhibits excellent peeling resistance and long-term performance. It exhibits excellent wear resistance over use.

この発明は、上記の知見に基づいてなされたものであって、
「炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層は、3〜20μmの全体平均層厚を有するTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、その表面に凹凸部が形成されたTi化合物層、
(b)上部層は、2〜15μmの平均層厚を有し、Alとの合量に占めるTiの含有割合が0.01〜0.2原子%であるTi含有Al層、
上記(a)、(b)からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(c)上記上部層は、層厚方向に縦長形状を有しα型の結晶構造を有するTi含有α−Al柱状結晶粒と、κ型の結晶構造を有するTi含有κ−Al結晶粒から構成され、
(d)上記上部層は、少なくとも上部層の表面近傍では、層厚方向に対して垂直方向にTi含有α−Al柱状結晶粒同士が隣接して形成されており、一方、下部層表面直上のTi含有α−Al結晶粒の下端は、下部層表面の凹部と接しており、また、下部層表面直上で、Ti含有α−Al柱状結晶粒同士が隣接していない結晶粒間隙には、下部層表面の凹部以外の表面から成長したTi含有κ−Al結晶粒が形成されており、
(e)上記上部層において、(11−20)面に配向したTi含有α−Al柱状結晶粒の面積割合は、上部層中のTi含有Al結晶粒の全面積の50面積%以上を占めることを特徴とする表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
“On the surface of the tool base made of tungsten carbide base cemented carbide or titanium carbonitride base cermet,
(A) The lower layer is composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer having an overall average layer thickness of 3 to 20 μm. A Ti compound layer having uneven portions formed on the surface thereof,
(B) The upper layer has a Ti-containing Al 2 O 3 layer having an average layer thickness of 2 to 15 μm, and the Ti content in the total amount with Al being 0.01 to 0.2 atomic%,
In the surface-coated cutting tool in which the hard coating layer composed of the above (a) and (b) is formed by vapor deposition,
(C) The upper layer includes a Ti-containing α-Al 2 O 3 columnar crystal grain having a vertically elongated shape in the layer thickness direction and having an α-type crystal structure, and a Ti-containing κ-Al 2 having a κ-type crystal structure. Composed of O 3 crystal grains,
(D) In the upper layer, at least near the surface of the upper layer, Ti-containing α-Al 2 O 3 columnar crystal grains are formed adjacent to each other in the direction perpendicular to the layer thickness direction, while the lower layer The lower ends of the Ti-containing α-Al 2 O 3 crystal grains immediately above the surface are in contact with the recesses on the surface of the lower layer, and the Ti-containing α-Al 2 O 3 columnar crystal grains are adjacent to each other immediately above the lower layer surface. Ti-containing κ-Al 2 O 3 crystal grains grown from the surface of the lower layer surface other than the recesses are formed in the crystal grain gaps that are not,
(E) In the upper layer, the area ratio of the Ti-containing α-Al 2 O 3 columnar crystal grains oriented in the (11-20) plane is 50 of the total area of the Ti-containing Al 2 O 3 crystal grains in the upper layer. A surface-coated cutting tool characterized by occupying at least area%. "
It has the characteristics.

以下に、この発明の被覆工具の硬質被覆層について、詳細に説明する。
下部層:
下部層のTi化合物層は、Tiの炭化物(TiC)層、窒化物(TiN)層、炭窒化物(TiCN)層、炭酸化物(TiCO)層および炭窒酸化物(TiCNO)層のうちの1層または2層以上で構成する。
上記の下部層は、Zr含有Al層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層が高温強度向上に寄与するほか、工具基体とZr含有Al層のいずれにも強固に密着し、硬質被覆層の工具基体に対する密着性を向上させる作用を有する。
ただ、下部層の全体平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方、その全体平均層厚が20μmを越えると、切れ刃に高負荷が作用する高送り、高切り込み等の重切削加工では、チッピング、欠損を発生しやすくなることから、その平均層厚は3〜20μmと定めた。
Below, the hard coating layer of the coated tool of this invention is demonstrated in detail.
Lower layer:
The lower Ti compound layer is one of Ti carbide (TiC) layer, nitride (TiN) layer, carbonitride (TiCN) layer, carbonate (TiCO) layer and carbonitride oxide (TiCNO) layer. It consists of two or more layers.
The lower layer exists as a lower layer of the Zr-containing Al 2 O 3 layer, and the hard coating layer contributes to the improvement of the high-temperature strength due to its excellent high-temperature strength. In addition, the tool base and the Zr-containing Al 2 O 3 It adheres firmly to any of the layers and has the effect of improving the adhesion of the hard coating layer to the tool substrate.
However, when the overall average layer thickness of the lower layer is less than 3 μm, the above-mentioned effect cannot be sufficiently exerted. On the other hand, when the overall average layer thickness exceeds 20 μm, a high feed at which a high load acts on the cutting edge, In heavy cutting such as high cutting, chipping and defects are likely to occur, so the average layer thickness is determined to be 3 to 20 μm.

上部層:
この発明では、上部層として、Ti含有Al層を蒸着形成するが、該上部層は、層厚方向に縦長形状を有しα型の結晶構造を有するTi含有α−Al柱状結晶粒と、κ型の結晶構造を有するTi含有κ−Al結晶粒からなっており、さらに、該上部層は、層厚方向に組織構造が変化している。
図1に、本発明の硬質被覆層(下部層と上部層)の概略縦断面模式図を示す。
図1に示されるように、本発明の上部層は、少なくとも上部層表面近傍では、層厚方向に対して垂直方向にTi含有α−Al柱状結晶粒同士が隣接して形成されている。一方、下部層表面直上の上部層では、該Ti含有α−Al柱状結晶粒の下端は下部層表面の凹部と接しており、また、下部層表面の凹部以外(以下、これを凸部という)の表面に接してTi含有κ−Al結晶粒が形成され、さらに、下部層表面近傍では、Ti含有α−Al柱状結晶粒同士が隣接していない結晶粒間隙には、Ti含有κ−Al結晶粒が該間隙に充填されているような状態で形成される。
Upper layer:
In the present invention, a Ti-containing Al 2 O 3 layer is formed by vapor deposition as an upper layer, and the upper layer has a vertically long shape in the layer thickness direction and has a α-type crystal structure and Ti-containing α-Al 2 O 3. It consists of columnar crystal grains and Ti-containing κ-Al 2 O 3 crystal grains having a κ-type crystal structure, and the structure of the upper layer changes in the layer thickness direction.
In FIG. 1, the schematic longitudinal cross-sectional schematic diagram of the hard coating layer (lower layer and upper layer) of this invention is shown.
As shown in FIG. 1, in the upper layer of the present invention, at least in the vicinity of the upper layer surface, Ti-containing α-Al 2 O 3 columnar crystal grains are formed adjacent to each other in a direction perpendicular to the layer thickness direction. Yes. On the other hand, in the upper layer immediately above the surface of the lower layer, the lower end of the Ti-containing α-Al 2 O 3 columnar crystal grains is in contact with the concave portion on the surface of the lower layer, and other than the concave portion on the surface of the lower layer (hereinafter, this is convex). Ti-containing κ-Al 2 O 3 crystal grains are formed in contact with the surface of the portion), and in the vicinity of the lower layer surface, Ti-containing α-Al 2 O 3 columnar crystal grains are not adjacent to each other. Is formed in such a state that Ti-containing κ-Al 2 O 3 crystal grains are filled in the gap.

ここで、上部層表面近傍とは、上部層表面から深さ0.5μmまでの領域をいい、一方、下部層表面近傍とは、下部層と上部層の界面から上部層の内部側へ0.5μmまでの領域をいう。
また、下部層表面の凹部、凹部以外の表面とは、次のとおりである。
即ち、図1に示すように、下部層表面の凹部とは、隣接するTi化合物の結晶粒と上部層のα-Al結晶粒の3つの結晶粒が交わる部分であって、それら3結晶粒子の3重点の半径0.1〜0.5μmの範囲に含まれる下部層層最表面の部分をいう。
一方、凹部以外の表面とは、下部層最表面であって、隣接するTi化合物の結晶粒の頂角の点から上記記載の凹部の範囲外の部分をいう。
Here, the vicinity of the surface of the upper layer refers to a region from the surface of the upper layer to a depth of 0.5 μm, while the vicinity of the surface of the lower layer refers to the distance from the interface between the lower layer and the upper layer to the inner side of the upper layer. An area up to 5 μm.
In addition, the recesses on the surface of the lower layer and the surfaces other than the recesses are as follows.
That is, as shown in FIG. 1, the concave portion on the surface of the lower layer is a portion where the crystal grains of the adjacent Ti compound and the α-Al 2 O 3 crystal grain of the upper layer intersect, The uppermost surface portion of the lower layer layer included in the range of the triple-point radius 0.1 to 0.5 μm of crystal grains.
On the other hand, the surface other than the concave portion is the outermost surface of the lower layer and refers to a portion outside the range of the concave portion described above from the point of the apex angle of the crystal grain of the adjacent Ti compound.

下部層表面近傍において、Ti含有α−Al柱状結晶粒同士が隣接していない結晶粒間隙を充填するTi含有κ−Al結晶粒の占める好ましい面積割合(Ti含有κ−Al結晶粒の測定占有面積/下部層表面近傍の測定面積×100)は5〜50面積%であり、また、上部層全体に占めるTi含有κ−Al結晶粒の好ましい面積割合は5〜30面積%である。
下部層表面近傍におけるTi含有κ−Al結晶粒の面積割合が5面積%未満,または、上部層全体に占めるTi含有κ−Al結晶粒の面積割合が5面積%未満の場合には、Ti含有κ−Al結晶粒による切れ刃にかかる高負荷によって発生する応力の緩和効果が不十分であり、一方、下部層表面近傍におけるTi含有κ−Al結晶粒の面積割合が50面積%を超える場合または、上部層全体に占めるTi含有κ−Al結晶粒の面積割合が30面積%を超える場合には、上部層に占める(11−20)面に配向したTi含有α-Al柱状結晶粒の面積割合が相対的に低下し、耐摩耗性が著しく低下するため、下部層表面近傍、上部層全体に占めるTi含有κ−Al結晶粒の面積割合は、それぞれ、5〜50面積%、5〜30面積%であることが好ましい。
In the vicinity of the surface of the lower layer, a preferred area ratio (Ti-containing κ-Al) occupied by Ti-containing κ-Al 2 O 3 crystal grains filling a crystal grain gap in which Ti-containing α-Al 2 O 3 columnar crystal grains are not adjacent to each other 2 O 3 measured area × 100 measurement area occupied / lower layer near the surface of the grains) is from 5 to 50 area%, also preferred area ratio of the Ti-containing kappa-Al 2 O 3 crystal grains in the entire upper layer Is 5 to 30 area%.
Area ratio of Ti-containing κ-Al 2 O 3 grains in the lower layers near the surface is less than 5 area%, or the area ratio of the Ti-containing κ-Al 2 O 3 crystal grains in the entire top layer is less than 5 area% In some cases, the effect of relaxing the stress generated by the high load applied to the cutting edge by the Ti-containing κ-Al 2 O 3 crystal grains is insufficient, while the Ti-containing κ-Al 2 O 3 crystal in the vicinity of the surface of the lower layer When the area ratio of grains exceeds 50 area% or when the area ratio of Ti-containing κ-Al 2 O 3 crystal grains in the entire upper layer exceeds 30 area%, it occupies the upper layer (11-20) Since the area ratio of the Ti-containing α-Al 2 O 3 columnar crystal grains oriented in the plane is relatively reduced and the wear resistance is remarkably reduced, the Ti-containing κ-Al 2 occupies the entire upper layer in the vicinity of the lower layer surface. The area ratio of O 3 crystal grains is It is preferably 5 to 50 area% and 5 to 30 area%, respectively.

本発明では、上部層が層厚方向に異なる上記の組織構造を有することにより、高送り、高切り込み等の切れ刃に高負荷がかかる重切削加工において、上部層、特に、下部層との界面近傍に発生する応力をTi含有κ−Al結晶粒が緩和し、その結果、亀裂の発生・進展が抑制され、また、結晶粒の粒界破断が抑えられ、上部層の剥離発生を防止することができる。
ただ、上部層の平均層厚が2μm未満では、所望のすぐれた耐摩耗性を十分に発揮させることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚は2〜15μmと定めた。
In the present invention, when the upper layer has the above-described structure in the layer thickness direction, in heavy cutting processing in which a high load is applied to the cutting edge such as high feed and high cutting, the interface with the upper layer, particularly the lower layer. Ti-containing κ-Al 2 O 3 crystal grains relieve stress generated in the vicinity. As a result, crack initiation and growth are suppressed, and grain boundary fracture of the crystal grains is suppressed, and peeling of the upper layer occurs. Can be prevented.
However, if the average layer thickness of the upper layer is less than 2 μm, the desired excellent wear resistance cannot be sufficiently exhibited. On the other hand, if the average layer thickness exceeds 15 μm, chipping is likely to occur. Therefore, the average layer thickness was determined to be 2 to 15 μm.

また、本発明の上部層は、Ti成分を含有することにより熱遮蔽効果が向上し、これが耐摩耗性の向上に寄与するが、Al成分との合量に占めるTi成分の含有割合(原子比による、Ti/(Al+Ti)×100の値)が0.01原子%未満の場合には、熱遮蔽効果による所望の耐摩耗性が発揮できず、一方、上記Ti成分の含有割合が0.2原子%を超えると上部層にTi酸化物が生成し、存在することで上部層の熱遮蔽効果が低下するため、Ti成分の含有割合(原子比による、Ti/(Al+Ti)×100の値)を0.01〜0.2原子%と定めた。   Further, the upper layer of the present invention improves the heat shielding effect by containing the Ti component, which contributes to the improvement of wear resistance, but the content ratio (atomic ratio) of the Ti component in the total amount with the Al component. When Ti / (Al + Ti) × 100) is less than 0.01 atomic%, the desired wear resistance due to the heat shielding effect cannot be exhibited, while the content ratio of the Ti component is 0.2. If it exceeds atomic%, Ti oxide is generated in the upper layer, and the presence of the Ti layer lowers the heat shielding effect of the upper layer. Therefore, the Ti content (Ti / (Al + Ti) × 100 value by atomic ratio) Was determined to be 0.01 to 0.2 atomic%.

また、本発明の上部層は、上部層のTi含有α−Al柱状結晶粒の(11−20)配向度を高めることにより、高温強度が向上し、耐摩耗性向上に寄与する。
(11−20)に配向したTi含有α−Al柱状結晶粒の面積割合が上部層のTi含有Al結晶粒全面積の50面積%未満であると、上部層の高温強度が低下傾向を示すようになり、また、耐摩耗性も低下するので、上部層における(11−20)に配向したTi含有α−Al柱状結晶粒の面積割合は50%以上と定めた。
ここで、(11−20)に配向したTi含有α−Al柱状結晶粒の面積割合とは、電界放出型走査電子顕微鏡を用い、上部層断面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、工具基体の表面の法線に対して、前記結晶粒の結晶面である(11−20)面の法線がなす角度差10°以内の結晶粒をマッピングし、そのマッピングエリアを測定エリアに対する割合で算出したものである。
Further, the upper layer of the present invention increases the (11-20) orientation degree of the Ti-containing α-Al 2 O 3 columnar crystal grains of the upper layer, thereby improving the high-temperature strength and contributing to improved wear resistance.
When the area ratio of the Ti-containing α-Al 2 O 3 columnar crystal grains oriented in (11-20) is less than 50% by area of the total area of the Ti-containing Al 2 O 3 crystal grains in the upper layer, the high-temperature strength of the upper layer Since the wear resistance also decreases, the area ratio of the Ti-containing α-Al 2 O 3 columnar crystal grains oriented to (11-20) in the upper layer is determined to be 50% or more. It was.
Here, the area ratio of the Ti-containing α-Al 2 O 3 columnar crystal grains oriented to (11-20) is a hexagonal crystal existing in the measurement range of the upper layer cross section using a field emission scanning electron microscope. Each crystal grain having a lattice is irradiated with an electron beam, and the angle difference formed by the normal of the (11-20) plane that is the crystal plane of the crystal grain is within 10 ° with respect to the normal of the surface of the tool base. The crystal grains are mapped, and the mapping area is calculated as a ratio to the measurement area.

上記したTi含有Al結晶粒からなる本発明の上部層は、例えば、以下の2段階の成膜工程によって、蒸着形成することができる。 The upper layer of the present invention composed of the Ti-containing Al 2 O 3 crystal grains described above can be deposited by, for example, the following two-stage film formation process.

即ち、例えば、通常の化学蒸着装置により下部層を被覆形成した後、この下部層の表面に、同じく通常の化学蒸着装置により、
≪第1段階≫
反応ガス組成(容量%):AlCl:1〜5%、TiCl:0.1〜0.5%、CO:0.01〜0.5%、CO:0.1〜1.0%、H2:残り、
(但し、COガスとCOガスは、1〜5分間隔で交互に導入する。また、最初に導入するのはCOガスであり、COガスとCOガスの交互の導入は、少なくとも2回以上繰り返す。)
反応雰囲気温度:900〜950 ℃、
反応雰囲気圧力:6〜10 kPa、
の条件で、蒸着する。
つまり、上記第1段階の蒸着において、酸化性の低いCOガスを先に導入し、次に酸化性の高いCOガスを導入し、ついで、これらのガスを交互に導入することにより、下部層表面の凹部にはTi含有α−Al核が形成され、また、下部層表面の凹部以外にはTi含有κ−Al核が形成される。
なお、下部層表面の凹部とは、図1に示すように、隣接するTi化合物の結晶粒と上部層のα-Al結晶粒の3つの結晶粒が交わる部分であって、それら3結晶粒子の3重点の半径0.1〜0.5μmの範囲に含まれる下部層層最表面の部分
をいい、下部層表面の凹部以外とは、下部層最表面であって、隣接するTi化合物の結晶粒の頂角の点から上記記載の凹部の範囲外の部分という。
That is, for example, after the lower layer is coated by a normal chemical vapor deposition apparatus, the surface of the lower layer is also formed by the same normal chemical vapor deposition apparatus.
≪First stage≫
Reaction gas composition (volume%): AlCl 3 : 1 to 5%, TiCl 4 : 0.1 to 0.5%, CO 2 : 0.01 to 0.5%, CO: 0.1 to 1.0% , H 2 : remaining,
(However, the CO gas and the CO 2 gas are alternately introduced at intervals of 1 to 5 minutes. The CO gas and the CO 2 gas are introduced first at least twice. Repeat above.)
Reaction atmosphere temperature: 900-950 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
Vapor deposition is performed under the conditions.
That is, in the first stage vapor deposition, a low oxidizing CO gas is first introduced, then a highly oxidizing CO 2 gas is introduced, and then these gases are alternately introduced to form the lower layer. Ti-containing α-Al 2 O 3 nuclei are formed in the recesses on the surface, and Ti-containing κ-Al 2 O 3 nuclei are formed in addition to the recesses on the surface of the lower layer.
As shown in FIG. 1, the concave portion on the surface of the lower layer is a portion where three crystal grains of the adjacent Ti compound crystal grains and the α-Al 2 O 3 crystal grains of the upper layer intersect with each other. The portion of the outermost surface of the lower layer layer included in the range of the triple-point radius 0.1 to 0.5 μm of the crystal particles, and the portion other than the concave portion on the surface of the lower layer is the uppermost surface of the lower layer and is an adjacent Ti compound From the point of the apex angle of the crystal grains, it is called a portion outside the range of the above-mentioned recess.

第1段階終了後、次のような第2段階の条件で、所望の目標層厚となるまで蒸着を行う。
≪第2段階≫
反応ガス組成(容量%):AlCl:6〜10%、TiCl:0.6〜2%、CO:5〜15%、HCl:3〜6%、H2S:0.1〜0.5%、H2:残り、
反応雰囲気温度:960〜1000 ℃、
反応雰囲気圧力:6〜10 kPa、
上記第1段階および第2段階の蒸着を行うことによって、本発明で規定するTi含有Al層からなる上部層を被覆形成することができる。
After completion of the first stage, vapor deposition is performed under the following second stage conditions until a desired target layer thickness is obtained.
≪Second stage≫
Reaction gas composition (volume%): AlCl 3 : 6 to 10%, TiCl 4 : 0.6 to 2 %, CO 2 : 5 to 15%, HCl: 3 to 6%, H 2 S: 0.1 to 0 .5%, H 2 : remaining,
Reaction atmosphere temperature: 960 to 1000 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
By performing the first-stage and second-stage vapor deposition, the upper layer composed of the Ti-containing Al 2 O 3 layer defined in the present invention can be formed by coating.

このTi含有Al層の下部層表面近傍あるいは上部層表面近傍の結晶構造、組織状態は既に述べたとおりであり、下部層表面直上のTi含有α−Al結晶粒の下端は、下部層表面の凹部と接しており、また、下部層表面直上で、Ti含有α−Al柱状結晶粒同士が隣接していない結晶粒間隙には、下部層表面の凹部以外の表面から成長したTi含有κ−Al結晶粒が形成され、また、上部層表面近傍では、層厚方向に対して垂直方向にTi含有α−Al柱状結晶粒同士が隣接して形成されている。
そして、上記組織構造を有する上部層は、Tiを含有することによって熱遮蔽性が向上し、また、下部層との界面近傍に発生する応力をTi含有κ−Al結晶粒が緩和し、その結果、亀裂の発生・進展が抑制され、また、結晶粒の粒界破断が抑えられ、上部層の剥離発生が防止される。
The crystal structure and structure of the Ti-containing Al 2 O 3 layer near the lower layer surface or near the upper layer surface are as described above, and the lower end of the Ti-containing α-Al 2 O 3 crystal grains immediately above the lower layer surface is The surface of the lower layer surface other than the recesses is in contact with the recesses on the surface of the lower layer, and the crystal grain gap immediately adjacent to the Ti layer-containing α-Al 2 O 3 columnar crystal grains is just above the surface of the lower layer. Ti-containing κ-Al 2 O 3 crystal grains grown from the above are formed, and in the vicinity of the upper layer surface, Ti-containing α-Al 2 O 3 columnar crystal grains are adjacent to each other in a direction perpendicular to the layer thickness direction. Is formed.
The upper layer having the above-described structure structure has improved thermal shielding properties by containing Ti, and Ti-containing κ-Al 2 O 3 crystal grains relieve stress generated near the interface with the lower layer. As a result, the generation / progress of cracks is suppressed, the grain boundary fracture of the crystal grains is suppressed, and the peeling of the upper layer is prevented.

さらに、本発明の上部層を構成するTi含有α−Al柱状結晶粒について、電界放出型走査電子顕微鏡を用い、その断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、工具基体表面の法線に対して、前記結晶粒の結晶面である(11−20)面の法線がなす角度差10°以内の結晶粒をマッピングし、そのマッピングエリアを測定エリアに対する割合で算出した場合、(11−20)に配向するTi含有α−Al柱状結晶粒の面積割合が、上部層のTi含有Al結晶粒全面積の50面積%以上であり、その結果、上部層はすぐれた高温強度を発揮する。 Further, for the Ti-containing α-Al 2 O 3 columnar crystal grains constituting the upper layer of the present invention, a crystal having a hexagonal crystal lattice existing within the measurement range of the cross-sectional polished surface using a field emission scanning electron microscope Each grain is irradiated with an electron beam, and a crystal grain within an angle difference of 10 ° formed by a normal of the (11-20) plane, which is the crystal plane of the crystal grain, is mapped to the normal of the tool base surface. When the mapping area is calculated as a ratio to the measurement area, the area ratio of the Ti-containing α-Al 2 O 3 columnar crystal grains oriented in (11-20) is the total Ti-containing Al 2 O 3 crystal grains in the upper layer. As a result, the upper layer exhibits excellent high temperature strength.

この発明における上部層の耐剥離性は、主として下部層表面近傍に形成されたTi含有κ−Al結晶粒によってもたらされ、また、高温強度、耐摩耗性は主として(11−20)面への配向度が高く、かつ、熱遮蔽効果にすぐれたTi含有α−Al柱状結晶粒によってもたらされる。 The peeling resistance of the upper layer in the present invention is mainly brought about by Ti-containing κ-Al 2 O 3 crystal grains formed near the surface of the lower layer, and the high-temperature strength and wear resistance are mainly (11-20). This is brought about by the Ti-containing α-Al 2 O 3 columnar crystal grains having a high degree of orientation to the surface and excellent heat shielding effect.

本発明の被覆工具は、各種の鋼や鋳鉄などの切削を、切れ刃に対して高負荷が作用する高送り、高切り込み等の重切削条件で行った場合でも、硬質被覆層、特に上部層が、亀裂の進展を抑制する作用を有するとともに、高温強度とすぐれた熱遮蔽効果を発揮することから、長期の使用にわたってすぐれた耐剥離性と耐摩耗性を発揮するものである。   The coated tool of the present invention has a hard coating layer, particularly the upper layer, even when cutting various steels and cast irons, etc., under heavy cutting conditions such as high feed and high cutting in which a high load acts on the cutting edge. However, since it has an action of suppressing the progress of cracks and exhibits a high temperature strength and an excellent heat shielding effect, it exhibits excellent peel resistance and wear resistance over a long period of use.

本発明被覆工具の硬質被覆層の縦断面模式図を示す。The longitudinal cross-sectional schematic diagram of the hard coating layer of this invention coated tool is shown.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有する表1に示される粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するインサート形状をもったWC基超硬合金製の工具基体A〜Eをそれぞれ作製した。   As the raw material powders, the powders shown in Table 1 each having an average particle diameter of 1 to 3 μm were prepared. After ball mill mixing for a period of time and drying under reduced pressure, the green compact was press-molded into a green compact of a predetermined shape at a pressure of 98 MPa, and this green compact was held at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. WC-based cemented carbide tool substrate A having an insert shape defined in ISO / CNMG120408 by performing a sintering process under vacuum conditions and performing a honing process of R: 0.07 mm on the cutting edge after sintering. Each E was produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有する表2に示される粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体a〜eを作製した。   In addition, as the raw material powder, the powders shown in Table 2 each having an average particle diameter of 0.5 to 2 μm were prepared, and these raw material powders were blended into the blending composition shown in Table 2 and wetted by a ball mill for 24 hours. After mixing and drying, the green compact was press-molded into a green compact at a pressure of 98 MPa, and the green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour and after sintering. Then, the tool bases a to e made of TiCN-based cermet having an ISO standard / CNMG120212 insert shape were prepared by performing honing of R: 0.07 mm on the cutting edge portion.

ついで、これらの工具基体A〜Eおよび工具基体a〜eのそれぞれを、通常の化学蒸着装置に装入し、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表6に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、
ついで、表4に示される蒸着条件にて、表7に示される目標層厚のTi含有Al層を上部層として蒸着形成することにより、表7に示される本発明被覆工具1〜10をそれぞれ製造した。
Next, each of these tool bases A to E and tool bases a to e was charged into a normal chemical vapor deposition apparatus, and Table 3 (l-TiCN in Table 3 is described in JP-A-6-8010). The target layer thicknesses shown in Table 6 under the conditions shown in Table 6 are the conditions for forming a TiCN layer having a vertically grown crystal structure. Of the Ti compound layer as a lower layer of the hard coating layer,
Subsequently, the present coated tools 1 to 10 shown in Table 7 are formed by vapor-depositing the Ti-containing Al 2 O 3 layer having the target layer thickness shown in Table 7 as an upper layer under the evaporation conditions shown in Table 4. Were manufactured respectively.

本発明被覆工具1〜10の上部層における(11−20)に配向するTi含有α−Al柱状結晶粒の面積割合は、上記上部層の断面を研磨面とした状態で、
電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、工具基体表面に対して平行方向に50μm測定幅と工具基体表面に対して法線方向に上部層の膜厚と同じ距離を0.1μm/stepの間隔で測定し、測定した結晶粒の結晶構造を六方晶結晶構造と特定し、かつ、工具基体表面の法線に対して、前記結晶粒の結晶面である(11−20)面の法線がなす傾斜角を測定し、この測定結果に基づいて、工具基体の表面の法線に対して、角度差が10°以内の結晶粒をマッピングし、そのマッピングエリアを測定エリアに対する割合で算出することにより(11−20)に配向したTi含有α−Al柱状結晶粒の面積割合を求めた。
これらの値を表7に示した。
The area ratio of the Ti-containing α-Al 2 O 3 columnar crystal grains oriented in (11-20) in the upper layer of the present coated tools 1 to 10 is in a state where the cross section of the upper layer is a polished surface.
It is set in a lens barrel of a field emission scanning electron microscope, and an electron beam with an acceleration voltage of 15 kV is incident on the polished surface at an incident angle of 70 degrees with an irradiation current of 1 nA and exists within the measurement range of each polished surface. Irradiate each crystal grain, and use an electron backscatter diffraction image apparatus to measure a distance of 50 μm in the direction parallel to the tool base surface and the same distance as the thickness of the upper layer in the normal direction to the tool base surface. Measured at an interval of 1 μm / step, the crystal structure of the measured crystal grain is identified as a hexagonal crystal structure, and is the crystal plane of the crystal grain with respect to the normal of the tool substrate surface (11-20) ) Measure the inclination angle formed by the normal of the surface, and map the crystal grains whose angle difference is within 10 ° to the normal of the surface of the tool base based on the measurement result. (1) Was determined area ratio of oriented Ti-containing α-Al 2 O 3 columnar grains to -20).
These values are shown in Table 7.

また、本発明被覆工具1〜10のTi含有Al層について、下部層表面近傍(下部層と上部層の界面から上部層の内部側へ0.5μmまでの領域)におけるTi含有κ−Al結晶粒の面積割合(Ti含有κ−Al結晶粒の測定占有面積/下部層表面近傍の測定面積×100)を求めるとともに、上部層全体に占めるTi含有κ−Al結晶粒の面積割合(Ti含有κ−Al結晶粒の測定占有面積/上部層全体の測定面積×100)を、以下の測定法により求めた。
下部層表面近傍(下部層と上部層の界面から上部層の内部側へ0.5μmまでの領域)におけるTi含有κ−Al結晶粒の面積割合(Ti含有κ−Al結晶粒の測定占有面積/下部層表面近傍の測定面積×100)は下部層と上部層との界面から上部層の内部側へ0.5μm、また、工具基体表面と平行方向に50μmの断面研磨面の測定範囲(0.5μm×50μm)を、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、0.5×50μmの測定領域を0.1μm/stepの間隔で測定し、測定した結晶粒の結晶構造を特定し、斜方晶の結晶構造を有するκ-Al結晶粒をマッピングし、その面積の測定範囲面積に対する割合から算出した。
上部層全体に占めるTi含有κ−Al結晶粒の面積割合(Ti含有κ−Al結晶粒の測定占有面積/上部層全体の測定面積×100)は下部層と上部層の界面から上部層最表面までの距離(上部層膜厚)と工具基体表面と平行方向に50μmの断面研磨面の距離の測定領域(上部層膜厚×50μm)を、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、上部層膜厚×50μmの測定領域を0.1μm/stepの間隔で測定し、測定した結晶粒の結晶構造を特定し、斜方晶の結晶構造を有するκ-Al結晶粒をマッピングし、その面積の測定範囲面積に対する割合から算出した。 これらの値を表7に示した。
Further, for the Ti-containing Al 2 O 3 layers of the coated tools 1 to 10 of the present invention, Ti-containing κ− in the vicinity of the lower layer surface (region from the interface between the lower layer and the upper layer to the inner side of the upper layer to 0.5 μm). Al 2 O 3 with determining the area ratio of crystal grains (Ti-containing κ-Al 2 O 3 measured area × 100 measurement area occupied / lower layer near the surface of the grains), Ti-containing kappa-Al 2 in the entire upper layer O 3 area ratio of crystal grains (Ti-containing kappa-Al 2 O 3 crystal grains measuring the occupied area / upper layer entire measurement area × 100), were determined by the following measurement method.
Area ratio of Ti-containing κ-Al 2 O 3 crystal grains (Ti-containing κ-Al 2 O 3 crystal) in the vicinity of the lower layer surface (region from the interface between the lower layer and the upper layer to the inner side of the upper layer to 0.5 μm) Grain measurement area / measurement area in the vicinity of the lower layer surface × 100) is 0.5 μm from the interface between the lower layer and the upper layer to the inner side of the upper layer, and 50 μm in the direction parallel to the tool substrate surface. Measurement range (0.5 μm × 50 μm) is set in a lens barrel of a field emission scanning electron microscope, an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees is applied to the polished surface with an irradiation current of 1 nA, Irradiate each crystal grain within the measurement range of each polished surface, and measure an area of 0.5 × 50 μm at an interval of 0.1 μm / step using an electron backscatter diffraction image apparatus. The crystal structure of the crystal grains The κ-Al 2 O 3 crystal grains having a crystal structure maps were calculated as a percentage of the measurement range area of the area.
Area ratio of Ti-containing κ-Al 2 O 3 crystal grains in the entire upper layer (Ti-containing κ-Al 2 O 3 measured area × 100 of total grain measurement area occupied / upper layer) of the lower layer and the upper layer The measurement area (upper layer film thickness x 50 μm) of the distance from the interface to the uppermost surface of the upper layer (upper layer film thickness) and the distance of the cross-sectional polished surface of 50 μm in the direction parallel to the tool substrate surface is measured by the field emission scanning electron microscope. Set in a lens barrel, and irradiate the polishing surface with an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees with an irradiation current of 1 nA on each crystal grain existing in the measurement range of each polishing surface. Using an electron backscatter diffraction image apparatus, the measurement region of the upper layer thickness × 50 μm is measured at an interval of 0.1 μm / step, the crystal structure of the measured crystal grain is specified, and the crystal structure of the orthorhombic crystal mapping the κ-Al 2 O 3 crystal grains, the area that It was calculated from the ratio of the measurement range area. These values are shown in Table 7.

比較の目的で、上記工具基体A〜Eおよび工具基体a〜eに対して、表3に示される条件にて、表6に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、
ついで、表5に示される蒸着条件にて、表8に示される目標層厚のTi含有Al層を上部層として蒸着形成することにより、表8に示す比較被覆工具1〜10を製造した。
For the purpose of comparison, with respect to the tool bases A to E and the tool bases a to e, a Ti compound layer having a target layer thickness shown in Table 6 is used as a lower layer of the hard coating layer under the conditions shown in Table 3. Vapor deposition,
Subsequently, the comparative coating tools 1 to 10 shown in Table 8 are manufactured by forming the Ti-containing Al 2 O 3 layer having the target layer thickness shown in Table 8 as an upper layer under the evaporation conditions shown in Table 5. did.

ついで、上記の比較被覆工具1〜10について、本発明被覆工具1〜10の場合と同様にして、電界放出型走査電子顕微鏡および電子後方散乱回折像装置を用いて、工具基体表面の法線に対して、前記結晶粒の結晶面である(11−20)面の法線がなす傾斜角を測定し、この測定結果に基づいて、工具基体の表面の法線に対して、角度差が10°以内の結晶粒をマッピングし、そのマッピングエリアを測定エリアに対する割合で算出することにより(11−20)に配向したTi含有α−Al柱状結晶粒の面積割合を求めた。 Next, with respect to the above-mentioned comparative coated tools 1 to 10, in the same manner as in the case of the coated tools 1 to 10 of the present invention, using a field emission scanning electron microscope and an electron backscatter diffraction image device, On the other hand, the inclination angle formed by the normal of the (11-20) plane, which is the crystal plane of the crystal grain, is measured, and based on this measurement result, the angle difference is 10 with respect to the normal of the surface of the tool base. The area ratio of Ti-containing α-Al 2 O 3 columnar crystal grains oriented in (11-20) was determined by mapping the crystal grains within the range of ° and calculating the mapping area as a ratio to the measurement area.

また、上記の比較被覆工具1〜10について、本発明被覆工具1〜10の場合と同様にして、下部層表面近傍(下部層と上部層の界面から上部層の内部側へ0.5μmまでの領域)におけるTi含有κ−Al結晶粒の面積割合(Ti含有κ−Al結晶粒の測定占有面積/下部層表面近傍の測定面積×100)及び上部層全体に占めるTi含有κ−Al結晶粒の面積割合(Ti含有κ−Al結晶粒の測定占有面積/上部層全体の測定面積×100)を求めた。
これらの値を表8に示した。
Moreover, about said comparison coated tools 1-10, it is the same as the case of this invention coated tools 1-10, the lower layer surface vicinity (from the interface of a lower layer and an upper layer to the inner side of an upper layer to 0.5 micrometer. Area) of Ti-containing κ-Al 2 O 3 crystal grains in the region) (measured occupied area of Ti-containing κ-Al 2 O 3 crystal grains / measured area in the vicinity of the lower layer surface × 100) and Ti content in the entire upper layer κ-Al 2 O 3 was determined area ratio of crystal grains (Ti-containing κ-Al 2 O 3 crystal grains measuring the occupied area / upper layer entire measurement area × 100).
These values are shown in Table 8.

つぎに、上記の本発明被覆工具1〜10、比較被覆工具1〜10について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・S45Cの丸棒、
切削速度:120m/min、
切り込み:3mm、
送り:0.7mm/rev.、
切削時間:5分、
の条件(切削条件Aという)で炭素鋼の乾式高送り切削試験(通常の送りは0.3mm/rev.、)、
被削材:JIS・SCM420の丸棒、
切削速度:120m/min、
切り込み:3.5mm、
送り:0.6mm/rev.、
切削時間:5分、
の条件(切削条件Bという)でニッケルクロムモリブデン合金鋼の乾式高送り切削試験(通常の切込み量は1.5mm)、
被削材:JIS・FC300の丸棒、
切削速度:150m/min、
切り込み:4mm、
送り:0.7mm/rev.、
切削時間:5分、
の条件(切削条件Cという)でねずみ鋳鉄の湿式高切込切削試験(通常の切込は、1.5mm)、
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。
この測定結果を表9に示した。
Next, for the above-described inventive coated tools 1 to 10 and comparative coated tools 1 to 10, both are screwed with a fixing jig to the tip of the tool steel tool,
Work material: JIS / S45C round bar,
Cutting speed: 120 m / min,
Incision: 3mm,
Feed: 0.7 mm / rev.
Cutting time: 5 minutes
Under the conditions (referred to as cutting condition A), dry high feed cutting test of carbon steel (normal feed is 0.3 mm / rev.),
Work material: JIS / SCM420 round bar,
Cutting speed: 120 m / min,
Cutting depth: 3.5mm,
Feed: 0.6mm / rev.
Cutting time: 5 minutes
In the above condition (referred to as cutting condition B), dry high feed cutting test of nickel chromium molybdenum alloy steel (normal cutting depth is 1.5 mm),
Work material: JIS / FC300 round bar,
Cutting speed: 150 m / min,
Incision: 4mm,
Feed: 0.7 mm / rev.
Cutting time: 5 minutes
Wet high-cut cutting test of gray cast iron under the conditions (cutting condition C) (normal cutting is 1.5 mm),
In each cutting test, the flank wear width of the cutting edge was measured.
The measurement results are shown in Table 9.

表7〜9から、本発明被覆工具1〜10は、上部層の下部層表面近傍に形成されたTi含有κ−Al結晶粒が、切れ刃に作用する高負荷に起因する亀裂の進行を緩和し、かつ、抑制し、剥離の発生を防止するとともに、Ti含有α−Al結晶粒がすぐれた高温強度と熱遮蔽性を有することから、切れ刃に対して高負荷が作用する高送り、高切り込み等の重切削条件において、長期の使用に亘ってすぐれた耐剥離性と耐摩耗性を発揮することがわかる。 From Table 7-9, the present invention coated tool 1-10, Ti-containing κ-Al 2 O 3 crystal grains formed in the vicinity of the lower layer surface of the top layer, the cracks caused by high load acting on the cutting edge As the Ti-containing α-Al 2 O 3 crystal grains have excellent high-temperature strength and heat shielding properties, the load is high on the cutting edge. It can be seen that excellent peeling resistance and wear resistance are exhibited over a long period of use under heavy cutting conditions such as high feed and high cutting.

これに対して、比較被覆工具1〜10では、硬質被覆層の耐剥離性あるいは耐摩耗性が劣り、剥離の発生あるいは耐摩耗性低下により短期間で使用寿命に至ることが明らかである。   On the other hand, it is clear that the comparative coated tools 1 to 10 are inferior in the peel resistance or wear resistance of the hard coating layer, and reach the service life in a short period due to the occurrence of peeling or a decrease in wear resistance.

上述のように、この発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に、切れ刃に高負荷が作用する重切削でもすぐれた耐剥離性、耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。





As described above, the coated tool of the present invention is excellent in resistance to peeling not only in continuous cutting and intermittent cutting under normal conditions such as various steels and cast iron, but also in heavy cutting in which a high load acts on the cutting edge. It exhibits excellent cutting performance over a long period of time and exhibits excellent cutting performance, so that it can sufficiently satisfy the high performance of cutting equipment, labor saving and energy saving of cutting work, and cost reduction. Is.





Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層は、3〜20μmの全体平均層厚を有するTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、その表面に凹凸部が形成されたTi化合物層、
(b)上部層は、2〜15μmの平均層厚を有し、Alとの合量に占めるTiの含有割合が0.01〜0.2原子%であるTi含有Al層、
上記(a)、(b)からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(c)上記上部層は、層厚方向に縦長形状を有しα型の結晶構造を有するTi含有α−Al柱状結晶粒と、κ型の結晶構造を有するTi含有κ−Al結晶粒から構成され、
(d)上記上部層は、少なくとも上部層の表面近傍では、層厚方向に対して垂直方向にTi含有α−Al柱状結晶粒同士が隣接して形成されており、一方、下部層表面直上のTi含有α−Al結晶粒の下端は、下部層表面の凹部と接しており、また、下部層表面直上で、Ti含有α−Al柱状結晶粒同士が隣接していない結晶粒間隙には、下部層表面の凹部以外の表面から成長したTi含有κ−Al結晶粒が形成されており、
(e)上記上部層において、(11−20)面に配向したTi含有α−Al柱状結晶粒の面積割合は、上部層中のTi含有Al結晶粒の全面積の50面積%以上を占めることを特徴とする表面被覆切削工具。



On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) The lower layer is composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer having an overall average layer thickness of 3 to 20 μm. A Ti compound layer having uneven portions formed on the surface thereof,
(B) The upper layer has a Ti-containing Al 2 O 3 layer having an average layer thickness of 2 to 15 μm, and the Ti content in the total amount with Al being 0.01 to 0.2 atomic%,
In the surface-coated cutting tool in which the hard coating layer composed of the above (a) and (b) is formed by vapor deposition,
(C) The upper layer includes a Ti-containing α-Al 2 O 3 columnar crystal grain having a vertically elongated shape in the layer thickness direction and having an α-type crystal structure, and a Ti-containing κ-Al 2 having a κ-type crystal structure. Composed of O 3 crystal grains,
(D) In the upper layer, at least near the surface of the upper layer, Ti-containing α-Al 2 O 3 columnar crystal grains are formed adjacent to each other in the direction perpendicular to the layer thickness direction, while the lower layer The lower ends of the Ti-containing α-Al 2 O 3 crystal grains immediately above the surface are in contact with the recesses on the surface of the lower layer, and the Ti-containing α-Al 2 O 3 columnar crystal grains are adjacent to each other immediately above the lower layer surface. Ti-containing κ-Al 2 O 3 crystal grains grown from the surface of the lower layer surface other than the recesses are formed in the crystal grain gaps that are not,
(E) In the upper layer, the area ratio of the Ti-containing α-Al 2 O 3 columnar crystal grains oriented in the (11-20) plane is 50 of the total area of the Ti-containing Al 2 O 3 crystal grains in the upper layer. A surface-coated cutting tool characterized by occupying at least area%.



JP2012277890A 2012-12-20 2012-12-20 Surface-coated cutting tool in which hard coating layer exhibits excellent peeling resistance in heavy cutting work Pending JP2014121740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012277890A JP2014121740A (en) 2012-12-20 2012-12-20 Surface-coated cutting tool in which hard coating layer exhibits excellent peeling resistance in heavy cutting work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012277890A JP2014121740A (en) 2012-12-20 2012-12-20 Surface-coated cutting tool in which hard coating layer exhibits excellent peeling resistance in heavy cutting work

Publications (1)

Publication Number Publication Date
JP2014121740A true JP2014121740A (en) 2014-07-03

Family

ID=51402695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012277890A Pending JP2014121740A (en) 2012-12-20 2012-12-20 Surface-coated cutting tool in which hard coating layer exhibits excellent peeling resistance in heavy cutting work

Country Status (1)

Country Link
JP (1) JP2014121740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111867761A (en) * 2018-01-29 2020-10-30 京瓷株式会社 Coated cutting tool and cutting tool provided with same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111867761A (en) * 2018-01-29 2020-10-30 京瓷株式会社 Coated cutting tool and cutting tool provided with same

Similar Documents

Publication Publication Date Title
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP6090063B2 (en) Surface coated cutting tool
JP6548072B2 (en) Surface coated cutting tool
JP5582409B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
EP3199275A1 (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
JP2012076155A (en) Surface-coated cutting tool in which hard coating layer demonstrates superior chipping resistance
JP2017013223A (en) Surface coating and cutting tool
JP2017030076A (en) Surface-coated cutting tool with hard coated layer exhibiting superior chipping resistance
JP5263514B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5838789B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5995082B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent peeling and chipping resistance in high-speed intermittent cutting.
JP2017164859A (en) Surface coated cutting tool whose hard coating layer exerts excellent chipping resistance and peeling resistance
JP4853121B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP5861982B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent peeling resistance in high-speed intermittent cutting
JP5999345B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent peeling and chipping resistance in high-speed intermittent cutting.
JP2006198740A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2014136268A (en) Surface coating cutting tool with hard coating layer exhibiting superior chipping resistance in heavy intermittent cutting
JP2007331032A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping and abrasion resistance in high-speed intermittent cutting processing
JP2018176381A (en) Coated carbide alloy tool with high defect resistance
JP2014000634A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent peeling resistance and chipping resistance in high speed intermittent cutting work
JP2014121740A (en) Surface-coated cutting tool in which hard coating layer exhibits excellent peeling resistance in heavy cutting work
JP2017177237A (en) Surface-coated cutting tool having hard coating layer excellent in chipping resistance and peeling resistance
JP2011104690A (en) Surface coated cutting tool exhibiting excellent chipping resistance in hard coating layer
JP2014121739A (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance in high speed intermittent cutting work
JP5892335B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer