JP2014120263A - Dye-sensitized solar cell, method for manufacturing the sane, and method for constructing the same - Google Patents

Dye-sensitized solar cell, method for manufacturing the sane, and method for constructing the same Download PDF

Info

Publication number
JP2014120263A
JP2014120263A JP2012273327A JP2012273327A JP2014120263A JP 2014120263 A JP2014120263 A JP 2014120263A JP 2012273327 A JP2012273327 A JP 2012273327A JP 2012273327 A JP2012273327 A JP 2012273327A JP 2014120263 A JP2014120263 A JP 2014120263A
Authority
JP
Japan
Prior art keywords
film material
electrode
dye
solar cell
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012273327A
Other languages
Japanese (ja)
Other versions
JP6112545B2 (en
Inventor
Tsutomu Miyasaka
力 宮坂
Kazushi Ikegami
和志 池上
Naoto Kajita
直人 梶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Kogyo Co Ltd
Toin Gakuen
Original Assignee
Taiyo Kogyo Co Ltd
Toin Gakuen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Kogyo Co Ltd, Toin Gakuen filed Critical Taiyo Kogyo Co Ltd
Priority to JP2012273327A priority Critical patent/JP6112545B2/en
Publication of JP2014120263A publication Critical patent/JP2014120263A/en
Application granted granted Critical
Publication of JP6112545B2 publication Critical patent/JP6112545B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a working electrode and a counter electrode of a sheet-like dye-sensitized solar cell from causing defects even when elongation is caused in the dye-sensitized solar cell.SOLUTION: A dye-sensitized solar cell has a structure where an electrolyte is filled between a first film material and a second film material. Mesh-like first and second electrodes each having a many numbers of vertical lines and transverse lines are provided on surfaces of the first and second film materials, respectively, the surfaces facing each other. In the dye-sensitized solar cell, among angles formed between a reference line along a predetermined extension direction of the dye-sensitized solar cell, and the vertical lines 131 and the transverse lines 132, small angles are within a range from 30 to 60°.

Description

本発明は、色素増感型太陽電池に関する。   The present invention relates to a dye-sensitized solar cell.

太陽電池の一ジャンルとして、色素増感型太陽電池が知られている。色素増感型太陽電池は、概ね以下のような構造である。
色素増感型太陽電池は、2つの電極を有する。2つの電極の一方は対向電極(正極)、他方は作用電極(負極)である。2つの電極は、少なくともその一部が透光性を有する材料にて包まれている。
作用電極には、金属酸化物を介して色素が付着されている。作用電極には、また、上述の材料のうちの透光性を有する部分から入ってきた光(例えば、太陽光)が当たるようになっている。色素は、光を受け励起し、電子を放出するようなものとされている。
光を受けた色素から放出された電子は、金属酸化物、作用電極を介して外部に取り出される。他方、上記材料に包まれた空間の中には、対向電極から電子を受け取り、その電子を励起した色素に渡して励起した色素を通常の状態に戻す電解質、を含む電解液が充填されている。これら、色素、金属酸化物、電解質の存在により、電子は、色素→金属酸化物→作用電極→外部→対向電極→電解質→色素と循環することになる。
このようにして、色素増感型太陽電池は、光を受けたときに起電力を生じ、電池として機能することになる。
このような色素増感型太陽電池は、その製造が比較的容易で、低エネルギーで生産でき、また、その少なくとも一部が透光性を有する上記材料を膜材とすることにより、可撓性を持つシート状のものとすることができる等の利点があり、今後の実用化に大きな期待が持たれている。
As a genre of solar cells, dye-sensitized solar cells are known. The dye-sensitized solar cell generally has the following structure.
The dye-sensitized solar cell has two electrodes. One of the two electrodes is a counter electrode (positive electrode), and the other is a working electrode (negative electrode). At least a part of the two electrodes is wrapped with a light-transmitting material.
A dye is attached to the working electrode via a metal oxide. The working electrode is also adapted to be exposed to light (for example, sunlight) that has entered from the translucent portion of the material described above. The dye is such that it receives and excites light and emits electrons.
Electrons emitted from the dye receiving light are extracted to the outside through the metal oxide and the working electrode. On the other hand, the space surrounded by the material is filled with an electrolyte solution that includes an electrolyte that receives electrons from the counter electrode, passes the electrons to the excited dye, and returns the excited dye to a normal state. . Due to the presence of these dyes, metal oxides, and electrolytes, electrons circulate in the order of dye → metal oxide → working electrode → external → counter electrode → electrolyte → dye.
Thus, the dye-sensitized solar cell generates an electromotive force when it receives light, and functions as a battery.
Such a dye-sensitized solar cell is relatively easy to manufacture, can be produced with low energy, and at least a part of the dye-sensitized solar cell is flexible by using the above material having translucency as a film material. There is an advantage that it can be made into a sheet-like material having a large thickness, and there is a great expectation for practical use in the future.

シート状の色素増感型太陽電池は一般に、2枚の膜材の間に電解液を充填した構造として実現される。そして従来のシート状の色素増感型太陽電池では、上述の作用電極と対向電極は、例えば、2枚のフィルムの対向する面に導電性ポリマーを塗布すること等によって形成される、多くの場合は透明な導電層とされている。   A sheet-like dye-sensitized solar cell is generally realized as a structure in which an electrolyte solution is filled between two film materials. And in the conventional sheet-like dye-sensitized solar cell, the above-mentioned working electrode and counter electrode are often formed by, for example, applying a conductive polymer to the opposing surfaces of two films. Is a transparent conductive layer.

しかしながら、シート状の色素増感型太陽電池には、改良すべき点がないわけではない。
全体としてシート状の色素増感型太陽電池は、例えば、建材として用いられることの多いシート状の膜材と同様に、建材として用いられることがある。そのような場合、色素増感型太陽電池には、例えばその剛性を増すことを目的として施工業者によって意図的に初期張力が入れられる場合があり、また初期張力が入れられない場合であっても施工後の風雨、或いは雪などによる荷重により張力がかかることがある。
シート状の色素増感型太陽電池に張力がかかると、その張力に沿う方向にその全体が伸び、2枚のフィルムが伸びる。導電性ポリマーによって作られた導電層は一般に伸びにくい性質を持つため、2枚のフィルムが伸びると破損が生じるおそれがある。そのような事態が生じた場合には、色素増感型太陽電池の発電の能力が低下するおそれがある。
However, sheet-shaped dye-sensitized solar cells are not without their points to be improved.
The sheet-like dye-sensitized solar cell as a whole may be used as a building material, for example, like a sheet-like film material often used as a building material. In such a case, in the dye-sensitized solar cell, for example, the initial tension may be intentionally put by the contractor for the purpose of increasing the rigidity, and even if the initial tension cannot be put. Tension may be applied due to wind and rain after construction, or loads due to snow.
When a tension is applied to the sheet-like dye-sensitized solar cell, the whole extends in a direction along the tension, and two films extend. Since a conductive layer made of a conductive polymer generally has a property that it is difficult to stretch, there is a possibility that breakage may occur when two films are stretched. When such a situation occurs, the power generation capability of the dye-sensitized solar cell may be reduced.

本発明は、シート状の色素増感型太陽電池に伸びが生じたときにおいても、その作用電極及び対向電極に不具合が生じないようにすることをその課題とする。   This invention makes it the subject to prevent a malfunction from arising in the working electrode and the counter electrode even when elongation occurs in the sheet-like dye-sensitized solar cell.

上述の課題を解決するため、本願発明者は以下の発明を提案する。
その発明は、以下のようなものである。
本願発明者が提案するのは、まず、所定の範囲の伸びが許容された膜材である第1膜材と、所定の範囲の伸びが許容された、前記第1膜材と所定の間隔を空けて配された、透明又は半透明の膜材である第2膜材と、それらのいずれもが導電性を有する多数の縦線及び多数の横線を含む、前記第1膜材の前記第2膜材に臨む面に前記第1膜材と平行に固定された、メッシュ状の第1電極と、それらの表面に色素を吸着させた金属酸化物が塗布され、且つそれらのいずれもが導電性を有する多数の縦線及び多数の横線を含む、前記第2膜材の前記第1膜材に臨む面に前記第2膜材と平行に固定された、メッシュ状の第2電極と、光を受けて励起して、前記第2電極から外部に供給される電子を放出した前記色素に対して電子を供給するとともに、前記第1電極から電子の供給を受ける機能を有する電解質を含んでいる、前記第1膜材と、前記第2膜材との間に、前記第1電極、及び前記第2電極と接触するようにして水密に封止された電解液と、を含む、全体としてシート状とされた色素増感型太陽電池の施工方法である。
そして、この色素増感型太陽電池の施工方法では、施工時における色素増感型太陽電池の向きを、施工後に張力の入る方向として予定されている方向に沿う線である基準線と、前記第1電極中の縦線及び横線がなす角のうちの小さい方がいずれも30°〜60°であり、且つ前記基準線と、前記第2電極中の縦線及び横線がなす角のうちの小さい方がいずれも30°〜60°となるようにする。
In order to solve the above-mentioned problems, the present inventor proposes the following invention.
The invention is as follows.
The inventor proposes that a first film material, which is a film material allowed to elongate in a predetermined range, and a predetermined distance from the first film material allowed to elongate in a predetermined range. The second film material, which is a transparent or semi-transparent film material arranged at an interval, and includes a plurality of vertical lines and a large number of horizontal lines, both of which are conductive, the second of the first film material. A mesh-like first electrode fixed in parallel to the first film material is applied to the surface facing the film material, and a metal oxide having a dye adsorbed on the surface thereof, and both of them are conductive. A mesh-like second electrode fixed in parallel to the second film material on a surface of the second film material facing the first film material, including a plurality of vertical lines and a plurality of horizontal lines, Receiving and exciting, supplying electrons to the dye that has emitted electrons supplied from the second electrode to the outside, The first electrode and the second electrode are in contact with each other between the first film material and the second film material containing an electrolyte having a function of receiving supply of electrons from the first electrode. And a method for constructing a dye-sensitized solar cell in the form of a sheet as a whole.
And, in the method of constructing the dye-sensitized solar cell, the direction of the dye-sensitized solar cell at the time of construction is a reference line that is a line along the direction in which the tension enters after construction, and the first The smaller one of the angles formed by the vertical and horizontal lines in one electrode is 30 ° to 60 °, and the smaller of the angles formed by the reference line and the vertical and horizontal lines in the second electrode. Both are set to be 30 ° to 60 °.

この施工方法で用いられる色素増感型太陽電池は、従来技術で述べたものと原則変わるところはなく、特にその発電の原理についてはまったく同一である。
異なるのは、対向電極として機能する第1電極と、作用電極として機能する第2電極の双方がメッシュ状の電極であるという点である。
しかしながら、この発明における色素増感型太陽電池を普通に施工したのみでは、第1電極中の縦線又は横線、或いは第2電極中の縦線又は横線の方向に張力がかかった場合に、その張力の方向に沿う第1電極中の縦線又は横線、或いは第2電極中の縦線又は横線が、切断されてしまうおそれがある。第1膜材と固定されている第1電極は、例えば、金属製や導電性ポリマーが塗布されたものであるから素材的に第1膜材程伸びないと想定され、また、第2膜材と固定されている第2電極は、例えば、金属製や導電性ポリマーを塗布された繊維であるから素材的に第2膜材程伸びないと想定されるから、切断のような事態を想定せざるを得ない。
そこで、本願発明では、施工後に張力の入る方向として予定されている方向に沿う線である基準線と、第1電極中の縦線及び横線がなす角、基準線と、第2電極中の縦線及び横線がなす角がいずれも、30°〜60°の範囲となるようにしてシート状の色素増感型太陽電池を用いることにする。言い換えれば、本願発明では、第1電極中の縦線、横線、第2電極中の縦線、横線のすべてが基準線と平行或いはそれに近い角度でなく、基準線と30°〜60°程度の角を保つ関係になるように、色素増感型太陽電池を施工するのである。
そうすると、シート状の色素増感型太陽電池が基準線に沿う方向に伸びた場合であっても、第1電極中の縦線、横線、第2電極中の縦線、横線のいずれかに、基準線に沿う方向の伸びがそのまま強要されるということを防ぐことができる。また、このように色素増感型太陽電池を施工すると、基準線は、第1電極中の縦線と横線が作る四角形、或いは第2電極中の縦線と横線が作る四角形のうちの一の対角線に沿うか、それに近い状態となるので、基準線に沿う方向に伸びる力が第1電極又は第2電極にかかったとしても、上述の四角形がいわばパンタグラフのように変形することにより、その伸びを吸収することができる。
したがって、第1電極中の縦線、横線、第2電極中の縦線、横線が基準線と上述の関係を満たしている場合には、第1電極中の縦線、横線、第2電極中の縦線、横線は、色素増感型太陽電池の伸びに対していわばある程度の逃げを持つことができるようになるから、張力がかかった色素増感型太陽電池が伸びた場合に、第1電極の第1膜材からの離脱、第2電極の第2膜材からの離脱、或いは第1電極中の縦線又は横線の断線、第2電極中の縦線又は横線の断線が生じる可能性を、小さくすることができる。
なお、この施工方法における基準線は、上述のように、施工後に張力の入る方向として予定されている方向に沿う線である。この場合の張力は、色素増感型太陽電池の剛性を増すこと等を目的として施工業者が意図的に色素増感型太陽電池に入れる初期張力と、また初期張力が入れられるか入れられないかによらず施工後の風雨、或いは雪などによる荷重により色素増感型太陽電池にかかる張力の双方を含む。後者の張力は、施工を行う者が意図して色素増感型太陽電池に与えるものではないが、色素増感型太陽電池の形状、配置等から予想可能なものである。
The dye-sensitized solar cell used in this construction method is not changed in principle from that described in the prior art, and the power generation principle is particularly the same.
The difference is that both the first electrode functioning as a counter electrode and the second electrode functioning as a working electrode are mesh electrodes.
However, when the dye-sensitized solar cell according to the present invention is normally applied, when tension is applied in the direction of the vertical line or horizontal line in the first electrode or the vertical line or horizontal line in the second electrode, There is a possibility that a vertical line or horizontal line in the first electrode or a vertical line or horizontal line in the second electrode along the direction of the tension may be cut. The first electrode fixed to the first film material is assumed not to extend as much as the first film material because it is made of, for example, a metal or a conductive polymer, and the second film material Since the second electrode fixed to, for example, is a fiber coated with a metal or a conductive polymer, it is assumed that the second film material does not stretch as much as the second film material. I must.
Therefore, in the present invention, a reference line that is a line along a direction that is planned as a direction in which tension is applied after construction, an angle formed by a vertical line and a horizontal line in the first electrode, a reference line, and a vertical line in the second electrode A sheet-like dye-sensitized solar cell is used so that both the angle formed by the line and the horizontal line is in the range of 30 ° to 60 °. In other words, in the present invention, the vertical lines and horizontal lines in the first electrode, the vertical lines and horizontal lines in the second electrode are not parallel to or close to the reference line, but are about 30 ° to 60 ° with respect to the reference line. The dye-sensitized solar cell is constructed so as to maintain the angle.
Then, even if the sheet-like dye-sensitized solar cell extends in the direction along the reference line, either the vertical line in the first electrode, the horizontal line, the vertical line in the second electrode, or the horizontal line, It can be prevented that the elongation in the direction along the reference line is forced as it is. In addition, when the dye-sensitized solar cell is constructed in this way, the reference line is one of the quadrangle formed by the vertical and horizontal lines in the first electrode or the quadrangle formed by the vertical and horizontal lines in the second electrode. Since it is in a state along or close to the diagonal line, even if a force extending in the direction along the reference line is applied to the first electrode or the second electrode, the above-mentioned square is deformed like a pantograph, so that the extension Can be absorbed.
Therefore, when the vertical line, horizontal line in the first electrode, the vertical line in the second electrode, and the horizontal line satisfy the above relationship with the reference line, the vertical line, horizontal line in the first electrode, and in the second electrode Since the vertical and horizontal lines can have a certain degree of relief with respect to the elongation of the dye-sensitized solar cell, the first line is extended when the tension-sensitized dye-sensitized solar cell is extended. Possibility of separation of electrode from first film material, separation of second electrode from second film material, disconnection of vertical or horizontal line in first electrode, disconnection of vertical or horizontal line in second electrode Can be reduced.
In addition, the reference line in this construction method is a line along the direction planned as the direction in which the tension enters after construction as described above. The tension in this case is the initial tension that the contractor intentionally puts in the dye-sensitized solar cell for the purpose of increasing the rigidity of the dye-sensitized solar cell, and whether the initial tension is entered or not. Regardless, it includes both the tension applied to the dye-sensitized solar cell by the load of wind and rain after construction or snow. The latter tension is not intended to be applied to the dye-sensitized solar cell by the operator, but is predictable from the shape and arrangement of the dye-sensitized solar cell.

上述した通り、本願の色素増感型太陽電池の施工方法では、前記基準線に沿う方向に張力を入れて前記色素増感型太陽電池を施工してもよい。その場合には、上記基準線が明確になるから、本願発明の効果を得やすい。
また、本願の色素増感型太陽電池の施工方法では、前記色素増感型太陽電池として、前記基準線に沿う方向の前記第1膜材、及び前記第2膜材の破断伸度が3%以上のものを用いることもできる。第1膜材及び第2膜材の伸びが許容されればされるほど、第1電極の第1膜材からの離脱、第2電極の第2膜材からの離脱、或いは第1電極中の縦線又は横線の断線、第2電極中の縦線又は横線の断線が生じるおそれが大きくなる。そのような観点からすれば、第1膜材、及び第2膜材の破断伸度が3%以上のものを用いた場合には、本願発明の効果を得やすい。
As described above, in the method for applying the dye-sensitized solar cell of the present application, the dye-sensitized solar cell may be applied by applying tension in a direction along the reference line. In that case, since the reference line becomes clear, it is easy to obtain the effect of the present invention.
Moreover, in the construction method of the dye-sensitized solar cell of the present application, as the dye-sensitized solar cell, the breaking elongation of the first film material and the second film material in the direction along the reference line is 3%. The above can also be used. The more the elongation of the first film material and the second film material is allowed, the more the first electrode is detached from the first film material, the second electrode is detached from the second film material, or There is a greater risk that a vertical line or horizontal line break, or a vertical line or horizontal line break in the second electrode will occur. From such a viewpoint, when the first film material and the second film material have a breaking elongation of 3% or more, the effect of the present invention can be easily obtained.

上述したように、本願の色素増感型太陽電池の施工方法で用いられる色素増感型太陽電池は、従来技術で述べたものと同様のものでも構わない。ただし、以下のような色素増感型太陽電池を用いれば、本願の色素増感型太陽電池の施工方法によって得られる上述の作用効果を、より得やすくなる。
本願発明者が、その目的で提案する色素増感型太陽電池は以下のようなものである。
その色素増感型太陽電池は、所定の範囲の伸びが許容された膜材である第1膜材と、所定の範囲の伸びが許容された、前記第1膜材と所定の間隔を空けて配された、透明又は半透明の膜材である第2膜材と、それらのいずれもが導電性を有する多数の縦線及び多数の横線を含む、前記第1膜材の前記第2膜材に臨む面に前記第1膜材と平行に固定された、メッシュ状の第1電極と、それらの表面に色素を吸着させた金属酸化物が塗布され、且つそれらのいずれもが導電性を有する多数の縦線及び多数の横線を含む、前記第2膜材の前記第1膜材に臨む面に前記第2膜材と平行に固定された、メッシュ状の第2電極と、光を受けて励起して、前記第2電極から外部に供給される電子を放出した前記色素に対して電子を供給するとともに、前記第1電極から電子の供給を受ける機能を有する電解質を含んでいる、前記第1膜材と、前記第2膜材との間に、前記第1電極、及び前記第2電極と接触するようにして水密に封止された電解液と、を含む、全体として矩形のシート状とされた色素増感型太陽電池である。
そして、この色素増感型太陽電池は、前記色素増感型太陽電池の矩形形状の一辺である基準辺と、前記第1電極中の縦線及び横線がなす角のうちの小さい方がいずれも30°〜60°であり、且つ前記基準辺と、前記第2電極中の縦線及び横線がなす角のうちの小さい方がいずれも30°〜60°となっている。
As described above, the dye-sensitized solar cell used in the method of constructing the dye-sensitized solar cell of the present application may be the same as described in the prior art. However, if the following dye-sensitized solar cell is used, the above-described effects obtained by the method for applying the dye-sensitized solar cell of the present application can be obtained more easily.
The dye-sensitized solar cell proposed by the present inventor for the purpose is as follows.
The dye-sensitized solar cell includes a first film material that is a film material that is allowed to elongate in a predetermined range, and a predetermined interval from the first film material that is allowed to elongate in a predetermined range. The second film material of the first film material, which includes a second film material that is a transparent or translucent film material, and a plurality of vertical lines and a large number of horizontal lines, both of which are conductive. A mesh-like first electrode fixed in parallel to the first film material and a metal oxide having a dye adsorbed on the surface thereof are applied to a surface facing the first film material, and both of them have conductivity. A mesh-like second electrode fixed in parallel to the second film material on the surface of the second film material facing the first film material, including a number of vertical lines and a number of horizontal lines; Electrons are supplied to the dye that has been excited to emit electrons supplied from the second electrode to the outside, and the first electrode Water-tight so as to be in contact with the first electrode and the second electrode between the first film material and the second film material containing an electrolyte having a function of receiving supply of electrons from the electrode And a dye-sensitized solar cell having a rectangular sheet shape as a whole.
In the dye-sensitized solar cell, the smaller one of the angles formed by the reference side which is one side of the rectangular shape of the dye-sensitized solar cell and the vertical line and the horizontal line in the first electrode is the same. The smaller one of the angles formed by the reference side and the vertical and horizontal lines in the second electrode is 30 ° to 60 °.

この色素増感型太陽電池は、基本的に従来の色素増感型太陽電池と変わらないが、その形状は矩形(正方形を含む)であり、また、前記色素増感型太陽電池の矩形形状の一辺である基準辺と、前記第1電極中の縦線及び横線がなす角のうちの小さい方がいずれも30°〜60°であり、且つ前記基準辺と、前記第2電極中の縦線及び横線がなす角のうちの小さい方がいずれも30°〜60°となっている、という特徴を有する。
つまり、この色素増感型太陽電池は、第1電極中の縦線、横線、第2電極中の縦線、横線のいずれもが、矩形形状の色素増感型太陽電池のいずれの辺とも平行ではなく、いずれの辺とも30°から60°の範囲の適宜の角度をなすようになっている。これは、矩形の色素増感型太陽電池を施工する場合、その張力は、意図的にかけるにせよ、意図せずにかかるにせよ、その4辺のいずれかに沿う方向にかかることが多いから、矩形形状の色素増感型太陽電池の一辺である基準辺を本願発明による色素増感型太陽電池の施工方法における上述の基準線と同様のものとして扱い、そしてその基準辺に対して、第1電極中の縦線、横線、第2電極中の縦線、横線のいずれもが、本願発明による色素増感型太陽電池の施工方法における上述の基準線との間で満たすべき上述の関係と同様の関係を満たすようにしておけば、その色素増感型太陽電池を普通に或いは、一般的な方法で施工すれば、第1電極中の縦線、横線、第2電極中の縦線、横線のいずれもが自動的に、本願発明による色素増感型太陽電池の施工方法における上述の基準線との間で満たすべき上述の関係を充足することになる。
つまり、この色素増感型太陽電池は、本願発明による上述の色素増感型太陽電池の施工方法によって得られる作用効果を得やすい。
なお、矩形の色素増感型太陽電池には4つの辺があるが、そのうちの一辺との間で、それとなす角のうちの小さい方が30°〜60°の範囲に収まる場合には、他の3辺との間でも同様の関係が満たされる。つまり、基準辺は、矩形の色素増感型太陽電池の4つの辺のどれでも構わない。
This dye-sensitized solar cell is basically the same as a conventional dye-sensitized solar cell, but its shape is rectangular (including a square), and the rectangular shape of the dye-sensitized solar cell is the same. The smaller one of the angles formed by the reference side which is one side and the vertical line and horizontal line in the first electrode is 30 ° to 60 °, and the reference side and the vertical line in the second electrode And the smaller one of the angles formed by the horizontal lines is 30 ° to 60 °.
That is, in this dye-sensitized solar cell, the vertical line and horizontal line in the first electrode, and the vertical line and horizontal line in the second electrode are all parallel to any side of the rectangular dye-sensitized solar cell. Instead, each side is at an appropriate angle in the range of 30 ° to 60 °. This is because when a rectangular dye-sensitized solar cell is constructed, the tension is often applied along one of the four sides, whether applied intentionally or unintentionally. The reference side which is one side of the rectangular dye-sensitized solar cell is treated as the same as the reference line in the method for constructing the dye-sensitized solar cell according to the present invention, and the reference side The vertical line, horizontal line in one electrode, vertical line, horizontal line in the second electrode all satisfy the above-mentioned relationship to be satisfied with the above-mentioned reference line in the method for constructing a dye-sensitized solar cell according to the present invention. If the same relationship is satisfied, if the dye-sensitized solar cell is applied normally or by a general method, the vertical line in the first electrode, the horizontal line, the vertical line in the second electrode, Any of the horizontal lines automatically, the dye-sensitized solar according to the present invention It will satisfy the above relationship to be satisfied with the above reference line in the construction method of the pond.
That is, this dye-sensitized solar cell can easily obtain the effects obtained by the above-described method for applying the dye-sensitized solar cell according to the present invention.
The rectangular dye-sensitized solar cell has four sides, and when the smaller one of the sides is within a range of 30 ° to 60 °, the other side The same relationship is satisfied among the three sides. That is, the reference side may be any of the four sides of the rectangular dye-sensitized solar cell.

本願発明の色素増感型太陽電池は、前記第1電極中の縦線及び横線が直交しており、且つ前記第2電極中の縦線及び横線が直交していても構わない。もちろん、前記第1電極中の縦線及び横線が直交しているという条件と、前記第2電極中の縦線及び横線が直交しているという条件の一方のみを充足するものでも構わない。第1電極又は第2電極中の縦線と横線は直交するように製造するのが最も容易である。
なお、本願の色素増感型太陽電池の施工方法で用いられる色素増感型太陽電池も、第1電極中の縦線及び横線が直交しているという条件と、第2電極中の縦線及び横線が直交しているという条件の少なくとも一方を満たすものであってもよい。
In the dye-sensitized solar cell of the present invention, the vertical line and the horizontal line in the first electrode may be orthogonal, and the vertical line and the horizontal line in the second electrode may be orthogonal. Of course, only one of the condition that the vertical and horizontal lines in the first electrode are orthogonal and the condition that the vertical and horizontal lines in the second electrode are orthogonal may be satisfied. It is easiest to manufacture such that the vertical and horizontal lines in the first electrode or the second electrode are orthogonal.
In addition, the dye-sensitized solar cell used in the method for constructing the dye-sensitized solar cell of the present application also has the condition that the vertical line and the horizontal line in the first electrode are orthogonal, and the vertical line in the second electrode and It may satisfy at least one of the conditions that the horizontal lines are orthogonal.

本願発明による色素増感型太陽電池は、前記色素増感型太陽電池の矩形形状の隣接する2辺に沿う方向の前記第1膜材、及び前記第2膜材の破断伸度が3%以上であってもよい。
本願発明による色素増感型太陽電池の施工方法で述べたのと同様の理由により、色素増感型太陽電池が伸びたときに、第1電極の第1膜材からの離脱、第2電極の第2膜材からの離脱、或いは第1電極中の縦線又は横線の断線、第2電極中の縦線又は横線の断線が生じるおそれを小さくできる、という作用効果をより得やすくなる。
In the dye-sensitized solar cell according to the present invention, the breaking elongation of the first film material and the second film material in the direction along two adjacent sides of the rectangular shape of the dye-sensitized solar cell is 3% or more. It may be.
For the same reason as described in the method of installing the dye-sensitized solar cell according to the present invention, when the dye-sensitized solar cell is stretched, the first electrode is detached from the first film material, and the second electrode is It is easier to obtain the effect of reducing the possibility of detachment from the second film material, disconnection of vertical lines or horizontal lines in the first electrode, and disconnection of vertical lines or horizontal lines in the second electrode.

本願発明による色素増感型太陽電池では、前記第1電極中の縦線及び横線がいずれも、その少なくとも一部が第1膜材に固定されていても良いし、その略全長にわたって前記第1膜材に固定されていてもよい。また、本願発明による色素増感型太陽電池では、前記第2電極中の縦線及び横線がいずれも、その少なくとも一部が第2膜材に固定されていても良いし、その略全長にわたって前記第2膜材に固定されていてもよい。
なお、本願の色素増感型太陽電池の施工方法で用いられる色素増感型太陽電池でも、第1電極中の縦線及び横線がいずれも、その少なくとも一部が第1膜材に固定されていても良いし、その略全長にわたって第1膜材に固定されていてもよい。また、本願の色素増感型太陽電池の施工方法で用いられる色素増感型太陽電池でも、第2電極中の縦線及び横線がいずれも、その少なくとも一部が第2膜材に固定されていても良いし、その略全長にわたって第2膜材に固定されていてもよい。
第1膜材と第1電極の固定、及び第2膜材と第2電極の固定は、例えば、第1膜材又は第2膜材の融点以上の温度で加熱しての熱溶着によることができる。第1膜材、第2膜材が樹脂、又はゴムでできている場合において、熱溶着を行えば、第1電極が第1膜材に、又は第2電極が第2膜材に幾らか埋没した状態で固定されるので、容易に、強固な固定を実現できる。
なお、本願の色素増感型太陽電池の施工方法で用いられる色素増感型太陽電池でも、このような方法で、第1電極と第1膜材を、或いは第2電極と第2膜材を固定してもよい。
In the dye-sensitized solar cell according to the present invention, at least a part of each of the vertical line and the horizontal line in the first electrode may be fixed to the first film material, or the first line extends substantially over the entire length. It may be fixed to the membrane material. In the dye-sensitized solar cell according to the present invention, at least a part of both the vertical line and the horizontal line in the second electrode may be fixed to the second film material, It may be fixed to the second film material.
In the dye-sensitized solar cell used in the method for applying the dye-sensitized solar cell of the present application, at least a part of both the vertical and horizontal lines in the first electrode is fixed to the first film material. Alternatively, it may be fixed to the first film material over substantially the entire length thereof. In the dye-sensitized solar cell used in the method for constructing the dye-sensitized solar cell of the present application, at least a part of both the vertical and horizontal lines in the second electrode is fixed to the second film material. Alternatively, it may be fixed to the second film material over substantially the entire length thereof.
The fixing of the first film material and the first electrode and the fixing of the second film material and the second electrode may be, for example, by heat welding by heating at a temperature equal to or higher than the melting point of the first film material or the second film material. it can. In the case where the first film material and the second film material are made of resin or rubber, if heat welding is performed, the first electrode is buried in the first film material or the second electrode is somewhat buried in the second film material. Since it is fixed in the state, it is possible to easily realize strong fixing.
Even in the dye-sensitized solar cell used in the method of constructing the dye-sensitized solar cell of the present application, the first electrode and the first film material, or the second electrode and the second film material are used in such a method. It may be fixed.

本願の色素増感型太陽電池の第1電極、及び第2電極は、縦線、及び横線を含んでいる。これら縦線、横線は、上述のように例えば金属でできているるが、その場合の金属は、例えば、チタン、クロム、タングステン、モリブデン、白金、タンタル、ニオブ、ジルコニウム、亜鉛、各種ステンレス及びこれらの合金である。縦線、横線には、白金などでコーティングを行うことも可能である。
或いは、縦線、及び横線は、上述のように例えば導電性ポリマーを塗布した繊維でできているが、その場合の縦線、横線は、一般的に金属製でない繊維であり、それに導電性ポリマーを塗布したものとされる。第1電極、及び第2電極は、織物や編物等の布に導電性ポリマーを塗布したものであっても良い。
縦線、横線の線径(P)は、100μm以下が好ましいが、色素増感型太陽電池の可撓性を担保するには、50μm以下とするのが好ましい。
縦線、横線の目開きは、50〜800メッシュ(本/1インチ)とすることができるが、目開きが小さい程、色素増感型太陽電池の起電力を大きくし易い。
第1電極、第2電極ともに一般的に、その厚さは小さい方が良い。その厚さは、例えば、1〜100μmであり、50μmよりも厚みを小さくするのが好ましい。
なお、本願の色素増感型太陽電池の施工方法で用いられる色素増感型太陽電池が、第1電極、第2電極、これらに含まれる縦線及び横線に関して以上の条件を充足していてもよい。
The first electrode and the second electrode of the dye-sensitized solar cell of the present application include a vertical line and a horizontal line. These vertical lines and horizontal lines are made of, for example, metal as described above. In this case, examples of the metal include titanium, chromium, tungsten, molybdenum, platinum, tantalum, niobium, zirconium, zinc, various stainless steels, and these. Alloy. The vertical and horizontal lines can be coated with platinum or the like.
Alternatively, the vertical lines and horizontal lines are made of fibers coated with a conductive polymer, for example, as described above. In this case, the vertical lines and horizontal lines are generally non-metallic fibers, and the conductive polymer It is assumed that was applied. The first electrode and the second electrode may be formed by applying a conductive polymer to a fabric such as a woven fabric or a knitted fabric.
The diameter (P) of the vertical line and horizontal line is preferably 100 μm or less, but is preferably 50 μm or less in order to ensure the flexibility of the dye-sensitized solar cell.
The opening of the vertical line and the horizontal line can be 50 to 800 mesh (lines / 1 inch), but the smaller the opening, the easier it is to increase the electromotive force of the dye-sensitized solar cell.
In general, both the first electrode and the second electrode should have a small thickness. The thickness is, for example, 1 to 100 μm, and it is preferable to make the thickness smaller than 50 μm.
In addition, even if the dye-sensitized solar cell used in the method for constructing the dye-sensitized solar cell of the present application satisfies the above-described conditions with respect to the first electrode, the second electrode, and the vertical and horizontal lines included therein. Good.

本願の色素増感型太陽電池の第2電極には、金属酸化物を介して色素が吸着している。
金属酸化物としては、例えば、酸化チタン、酸化亜鉛、酸化錫、酸化タングステン、酸化ジルコニウム、酸化ハフニウム、酸化ストロンチウム、酸化インジウム、酸化イットリウム、酸化ランタン、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、酸化鉄、酸化ニッケル、酸化銀、酸化銅が利用可能である。金属酸化物の粒子径は、例えば、一次粒子径で1〜150nmとすることができるが、5〜20nmとするのが好ましい。その理由としては、粒子径が小さい方が高い比表面積が得られるので、多くの色素を吸着することができるのと、単位面積当たりの粒子数が多くなるので、金属酸化物同士の接点が増え、電子移動しやすくなるためであるが、粒子径を小さくしすぎると粒径を維持するのが難しいので、5nm以上とするのが好ましい。
色素としては、例えば、キサンテン系色素、クマリン系色素、トリフェニルメタン系色素、シアニン系色素、メロシアニン系色素、フタロシアニン系色素、ポルフィリン系色素、ポリピリジン金属錯体色素、ルテニウムビピリジウム系色素、アゾ色素、キノン系色素、キノンイミン系色素、キナクリドン系色素、スクアリウム系色素、ペリレン系色素、インジゴ系色素、ナフタロシアニン系色素、金属錯体色素(中心金属がRu(ルテニウム)、Fe(鉄)、Cr(クロム)、Co(コバルト)、Os(オスミウム)、Re(レニウム)、Cu(銅)、Pt(白金)等)、マーキュロクロム色素を利用できる。
なお、本願の色素増感型太陽電池の施工方法で用いられる色素増感型太陽電池が、金属酸化物及び色素に関して以上の条件を充足していてもよい。
The dye is adsorbed on the second electrode of the dye-sensitized solar cell of the present application via a metal oxide.
Examples of the metal oxide include titanium oxide, zinc oxide, tin oxide, tungsten oxide, zirconium oxide, hafnium oxide, strontium oxide, indium oxide, yttrium oxide, lanthanum oxide, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, Molybdenum oxide, iron oxide, nickel oxide, silver oxide, and copper oxide can be used. The particle diameter of the metal oxide can be, for example, 1 to 150 nm as the primary particle diameter, but is preferably 5 to 20 nm. The reason is that the smaller the particle diameter, the higher the specific surface area is obtained, so that more dyes can be adsorbed and the number of particles per unit area increases, so the number of contacts between metal oxides increases. This is because electrons are easily transferred, but if the particle diameter is too small, it is difficult to maintain the particle diameter.
Examples of the dye include xanthene dyes, coumarin dyes, triphenylmethane dyes, cyanine dyes, merocyanine dyes, phthalocyanine dyes, porphyrin dyes, polypyridine metal complex dyes, ruthenium bipyridinium dyes, and azo dyes. , Quinone dyes, quinone imine dyes, quinacridone dyes, squalium dyes, perylene dyes, indigo dyes, naphthalocyanine dyes, metal complex dyes (center metal is Ru (ruthenium), Fe (iron), Cr (chromium) ), Co (cobalt), Os (osmium), Re (rhenium), Cu (copper), Pt (platinum), etc.), and a mercurochrome dye.
In addition, the dye-sensitized solar cell used with the construction method of the dye-sensitized solar cell of this application may satisfy the above conditions regarding a metal oxide and a pigment | dye.

本願の色素増感型太陽電池で用いられる前記第1膜材は、樹脂又はゴム製であってもよい。
第1膜材に用いることができる樹脂又はゴムは、例えば、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリウレタン(PU)、エチレン−酢酸ビニル共重合体(EVA)、ポリスチレン(PS)、アクリル樹脂(PMMA)とすることができるし、また、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリビニルフルオライド(PVF)などのフッ素樹脂とすることができるし、或いは、クロロプレンゴム(CR)、エチレンプロピレンゴム(EPDM)等のゴムとすることができる。
本願の色素増感型太陽電池で用いられる前記第1膜材は、繊維により形成された織物又は編物である膜基材の少なくとも一方の面を、上述の樹脂又はゴムで被覆したものであってもよい。
この場合の織物又は編物を構成する繊維は、ケナフ繊維等の天然繊維、ポリエステル維等の合成繊維、或いはガラス繊維等の無機繊維等を用いることができる。
第2膜材は、樹脂を素材とすることができるが、発電の効率という観点から透明又は半透明であることを要求されるので、第1膜材とは異なりゴムを素材とすることは難しい。第2膜材の素材となる樹脂の例は、第1膜材の素材となりうる樹脂の例で挙げたものと略一致するが、透明又は半透明であるという要請から、PTFEは除外される。同様の理由から、第2膜材として、織物又は編物である膜基材の少なくとも一方の面を、樹脂又はゴムで被覆したものを採用することも難しい。
第1膜材、第2膜材ともに、可撓性を有するのが好ましい。第2膜材は、透光率を高めた方が発電効率を向上させられるので、その厚さはなるべく薄いほうが良い。
なお、本願の色素増感型太陽電池の施工方法で用いられる色素増感型太陽電池は、以上説明したような第1膜材又は第2膜材を応用した色素増感型太陽電池であってもよい。
The first film material used in the dye-sensitized solar cell of the present application may be made of resin or rubber.
Examples of the resin or rubber that can be used for the first film material include polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), polyurethane (PU), ethylene-vinyl acetate copolymer (EVA), and polystyrene. (PS), acrylic resin (PMMA), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer Fluorine resin such as coalescence (PFA), tetrafluoroethylene-ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), or chloroprene rubber (CR), Ethylene propylene rubber ( EPDM) and the like.
The first film material used in the dye-sensitized solar cell of the present application is obtained by coating at least one surface of a film substrate that is a woven fabric or a knitted fabric with fibers with the above-described resin or rubber. Also good.
The fibers constituting the woven fabric or knitted fabric in this case can be natural fibers such as kenaf fibers, synthetic fibers such as polyester fibers, inorganic fibers such as glass fibers, or the like.
The second film material can be made of resin, but is required to be transparent or semi-transparent from the viewpoint of power generation efficiency, so unlike the first film material, it is difficult to use rubber as the material. . The example of the resin used as the material of the second film material is substantially the same as the example of the resin that can be used as the material of the first film material, but PTFE is excluded from the request for being transparent or translucent. For the same reason, it is difficult to employ a second membrane material in which at least one surface of a membrane substrate that is a woven fabric or a knitted fabric is coated with a resin or rubber.
Both the first film material and the second film material preferably have flexibility. Since the power generation efficiency can be improved by increasing the transmissivity, the thickness of the second film material is preferably as thin as possible.
The dye-sensitized solar cell used in the method for constructing the dye-sensitized solar cell of the present application is a dye-sensitized solar cell that applies the first film material or the second film material as described above. Also good.

本願の色素増感型太陽電池の第1膜材と第2膜材の間には、電解質を含む電解液が封止されている。
電解質は、光を受けて励起して、第2電極から外部に供給される電子を放出した色素に対して電子を供給するとともに、第1電極から電子の供給を受ける機能を有する。
電解質の例としては、ヨウ素/ヨウ化物イオン、臭素/臭化物イオン、コバルト錯体、などを用いることができる。
より具体的には、ヨウ素と、LiI(ヨウ化リチウム)、NaI(ヨウ化ナトリウム)、KI(ヨウ化カリウム)等の金属ヨウ化物の組合せ、ヨウ素と、4級イミダゾリウム化合物のヨウ化物塩、4級ピリジニウム化合物のヨウ化物塩、テトラアルキルアンモニウム化合物のヨウ化物塩等の組合せがその例となる。また、臭素と、LiBr(臭化リチウム)、NaBr(臭化ナトリウム)、KBr(臭化カリウム)等の金属臭化物の組合せ、臭素と、4級イミダゾリウム化合物の臭化物塩、4級ピリジニウム化合物の臭化物塩、テトラアルキルアンモニウム化合物の臭化物塩等の組合せがその例となる。或いは、[CoII(bpy)](B(CN)、[CoIII(bpy)](B(CN)、ハロゲン原子(例えば、フッ素、塩素)を含有するイオン、フッ化物イオン、塩化物イオン、過塩素酸イオン、過臭素酸イオン、過ヨウ素酸イオン、塩素酸イオン、臭素酸イオン、ヨウ素酸イオン、亜塩素酸イオン、亜臭素酸イオン、亜ヨウ素酸イオン、次亜塩素酸イオン、次亜臭素酸イオン、次亜ヨウ素酸イオンがその例となる。
これら電解質を溶かす溶媒には、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、t−ブタノール等のアルコール類、アセトニトリル、プロピオニトリル、メトキシプロピオニトリル、アジポニトリル、メトキシアセトニトリル、グルタロニトリル等のニトリル類、ベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレンなどの芳香族化合物、ペンタン、ヘプタン、ヘキサン、シクロヘキサンなどのアルカン類、ヘプタン、アセトン、メチルエチルケトン、ジエチルケトン、2−ブタノン等のケトン類、ジエチルエーテル、テトラヒドロフラン等のエーテル類、エチレンカーボネート、プロピレンカーボネート等の炭酸エステル類、γ−ブチロラクトン、γ−バレロラクトン等の環状エステル、ジメチルホルムアミド、ジメチルアセトアミド、ヘキサメチルホスホアミド等のアミド系、メチルピロリジノン、ジメチルスルホキシド、ジオキソラン、ジメトキシエタン、スルホラン、エチレングリコール、プロピレングリコール等の多価アルコール類が利用可能である。
なお、本願の色素増感型太陽電池の施工方法で用いられる色素増感型太陽電池は、以上説明したような電解質、及び溶媒を含む電解液を用いる色素増感型太陽電池であってもよい。
An electrolyte containing an electrolyte is sealed between the first film material and the second film material of the dye-sensitized solar cell of the present application.
The electrolyte has a function of receiving electrons from the first electrode as well as supplying electrons to the dye that is excited by receiving light and emits electrons supplied from the second electrode to the outside.
As examples of the electrolyte, iodine / iodide ions, bromine / bromide ions, cobalt complexes, and the like can be used.
More specifically, a combination of iodine and a metal iodide such as LiI (lithium iodide), NaI (sodium iodide), KI (potassium iodide), iodine, an iodide salt of a quaternary imidazolium compound, Examples include combinations of iodide salts of quaternary pyridinium compounds, iodide salts of tetraalkylammonium compounds, and the like. Also, a combination of bromine and a metal bromide such as LiBr (lithium bromide), NaBr (sodium bromide), KBr (potassium bromide), bromine, bromide salt of quaternary imidazolium compound, bromide of quaternary pyridinium compound Examples include combinations of salts, bromide salts of tetraalkylammonium compounds, and the like. Alternatively, ions or fluorides containing [CoII (bpy) 3 ] (B (CN) 4 ) 2 , [CoIII (bpy) 3 ] (B (CN) 4 ) 3 , halogen atoms (eg, fluorine, chlorine) Ion, chloride ion, perchlorate ion, perbromate ion, periodate ion, chlorate ion, bromate ion, iodate ion, chlorite ion, bromate ion, iodate ion, hypochlorous acid Examples are chlorate ions, hypobromite ions and hypoiodite ions.
Examples of solvents for dissolving these electrolytes include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and t-butanol, acetonitrile, propionitrile, methoxypropionitrile, and adiponitrile. , Nitriles such as methoxyacetonitrile and glutaronitrile, aromatic compounds such as benzene, toluene, o-xylene, m-xylene and p-xylene, alkanes such as pentane, heptane, hexane and cyclohexane, heptane, acetone and methyl ethyl ketone , Ketones such as diethyl ketone and 2-butanone, ethers such as diethyl ether and tetrahydrofuran, carbonates such as ethylene carbonate and propylene carbonate, γ-butyrolactone, γ-valerolac Cyclic esters such as tons, amides such as dimethylformamide, dimethylacetamide, and hexamethylphosphoamide, and polyhydric alcohols such as methylpyrrolidinone, dimethyl sulfoxide, dioxolane, dimethoxyethane, sulfolane, ethylene glycol, and propylene glycol are available. .
The dye-sensitized solar cell used in the method for constructing the dye-sensitized solar cell of the present application may be a dye-sensitized solar cell using the electrolyte as described above and an electrolytic solution containing a solvent. .

本願発明における色素増感型太陽電池は、例えば、以下のような製造方法で製造することができる。
その製造方法は、所定の範囲の伸びが許容された膜材である第1膜材の一方の面に、それらのいずれもが導電性を有する金属製である多数の縦線及び多数の横線を含む、メッシュ状の第1電極を、前記第1膜材と平行に固定する過程、所定の範囲の伸びが許容された透明又は半透明の膜材である第2膜材の一方の面に、それらの表面に色素を吸着させた金属酸化物が塗布され、且つそれらのいずれもが導電性を有する金属製である多数の縦線及び多数の横線を含む、メッシュ状の第2電極を、前記第2膜材と平行に固定する過程、前記第1電極が固定された前記第1膜材の周縁部と、前記第2電極が固定された前記第2膜材の周縁部とを、前記第1電極が固定された側の面と、前記第2電極が固定された側の面とを対向させた状態で、一部を除いて水密に接続する接続過程、前記接続過程において前記第1膜材と前記第2膜材が接続されなかった部分から、前記第1膜材と前記第2膜材の間の空間に、光を受けて励起して、前記第2電極から外部に供給される電子を放出した前記色素に対して電子を供給するとともに、前記第1電極から電子の供給を受ける機能を有する電解質を含んでいる電解液を供給し、その後前記接続過程において前記第1膜材と前記第2膜材が接続されなかった部分を水密に接続する過程、を含む、色素増感型太陽電池の製造方法である。
第1膜材の片面に第1電極を固定したものと、第2膜材の片面に第2電極を固定したものを予め作っておくことにより、本願発明による色素増感型太陽電池を簡単に製造することができる。
The dye-sensitized solar cell in the present invention can be manufactured, for example, by the following manufacturing method.
In the manufacturing method, a large number of vertical lines and a large number of horizontal lines, each of which is made of a metal having conductivity, are formed on one surface of a first film material which is a film material allowed to stretch within a predetermined range. Including a mesh-shaped first electrode, a process of fixing the first electrode in parallel with the first film material, on one surface of the second film material that is a transparent or translucent film material allowed to stretch in a predetermined range, A mesh-like second electrode comprising a large number of vertical lines and a large number of horizontal lines, each of which is coated with a metal oxide having a dye adsorbed on its surface, and each of which is made of a conductive metal, The process of fixing in parallel with the second film material, the peripheral portion of the first film material to which the first electrode is fixed, and the peripheral portion of the second film material to which the second electrode is fixed In a state where the surface on the side to which one electrode is fixed and the surface on the side to which the second electrode is fixed are opposed to each other, A connection process in which the first film material and the second film material are not connected in the connection process, and light is transmitted to the space between the first film material and the second film material. Electrolysis including an electrolyte having a function of supplying electrons to the dye that has received and excited to emit electrons supplied from the second electrode to the outside and receives electrons from the first electrode. A method for producing a dye-sensitized solar cell, comprising: supplying a liquid, and then watertightly connecting a portion where the first film material and the second film material are not connected in the connection process.
A dye-sensitized solar cell according to the present invention can be easily obtained by preparing in advance one having the first electrode fixed on one side of the first film material and one having the second electrode fixed on one side of the second film material. Can be manufactured.

上述の色素増感型太陽電池の製造方法においては、必ずしもそうする必要はないが、前記第1膜材の一方の面に、前記第1電極を固定する過程では、前記第1電極中の縦線及び横線のいずれをも、その略全長にわたって前記第1膜材に固定し、前記第2膜材の一方の面に、前記第2電極を固定する過程では、前記第2電極中の縦線及び横線のいずれをも、その略全長にわたって前記第2膜材に固定する、ようにしてもよい。
ここで、「前記第1電極中の縦線及び横線のいずれをも、その略全長にわたって前記第1膜材に固定し」、及び「前記第2電極中の縦線及び横線のいずれをも、その略全長にわたって前記第2膜材に固定する」という文章における「略全長」は、例えば、第1電極又は第2電極中の縦線及び横線の端部や、縦線と横線が重なり合っている部分などで縦線及び横線が第1膜材又は第2膜材と固定されていないことが許容されることを意味する。
In the method of manufacturing a dye-sensitized solar cell described above, it is not always necessary to do so, but in the process of fixing the first electrode to one surface of the first film material, the longitudinal direction in the first electrode is In the process of fixing both the line and the horizontal line to the first film material over substantially the entire length and fixing the second electrode to one surface of the second film material, the vertical line in the second electrode In addition, both the horizontal line and the horizontal line may be fixed to the second film material over substantially the entire length thereof.
Here, “fix both the vertical and horizontal lines in the first electrode to the first film material over substantially the entire length thereof” and “both the vertical and horizontal lines in the second electrode, The term “substantially full length” in the sentence “fix to the second film material over substantially the entire length” means, for example, the ends of the vertical and horizontal lines in the first electrode or the second electrode, and the vertical and horizontal lines overlap. It means that it is allowed that the vertical line and the horizontal line are not fixed to the first film material or the second film material in a part or the like.

上述の色素増感型太陽電池の製造方法は、前記第2電極に、前記金属酸化物を含む溶液をスプレーにより塗布し、その後前記溶液を乾燥させ、その後焼成することで、前記第2電極を作製する過程を更に含んでいてもよい。
他の方法、例えば、スクリーン印刷法により第2電極に金属酸化物を塗布した場合に比較して、スプレーにより金属酸化物を第2電極に塗布した場合の方が、金属酸化物の第2電極からの脱落が抑えられることが、本願発明者により確認されている。
In the method for producing a dye-sensitized solar cell described above, the second electrode is applied to the second electrode by spraying a solution containing the metal oxide, drying the solution, and then firing the solution. The manufacturing process may further be included.
Compared to the case where the metal oxide is applied to the second electrode by other methods, for example, the screen printing method, the case where the metal oxide is applied to the second electrode by spraying is the second electrode of the metal oxide. It has been confirmed by the inventor of the present application that the drop-off from the device is suppressed.

本願の一実施形態における色素増感型太陽電池の構成を示す断面図。Sectional drawing which shows the structure of the dye-sensitized solar cell in one Embodiment of this application. 図1に示した色素増感型太陽電池に含まれる第1膜材と第1電極の関係を、一部拡大して示す平面図。The top view which expands and shows the relationship between the 1st film | membrane material and 1st electrode which are contained in the dye-sensitized solar cell shown in FIG. 図1に示した色素増感型太陽電池に含まれる第1膜材と第1電極の関係の許容される例と許容されない例を示す平面図。The top view which shows the example with which the relationship between the 1st film | membrane material and 1st electrode contained in the dye-sensitized solar cell shown in FIG. 1 is permitted, and the example which is not permitted. 図1に示した色素増感型太陽電池の製造方法を示す平面図。The top view which shows the manufacturing method of the dye-sensitized solar cell shown in FIG. 図1に示した色素増感型太陽電池の施工例を示す平面図。The top view which shows the construction example of the dye-sensitized solar cell shown in FIG.

以下、本発明の好ましい一実施形態を説明する。   Hereinafter, a preferred embodiment of the present invention will be described.

<色素増感型太陽電池の構成>
この実施形態の色素増感型太陽電池100の断面を、図1に示す。
色素増感型太陽電池100は、全体としてシート状に形成されている。色素増感型太陽電池100は、また、共に膜材である第1膜材110と、第2膜材120を備えている。第1膜材110と、第2膜材120間の隙間は、後述する第1電極130と、第2電極140の間の隙間に応じて略平行に配されている。
第1膜材110と、第2膜材120の互いに対向する面にはそれぞれ、ともにメッシュ状の電極である、第1電極130と、第2電極140が設けられている。
また、第1膜材110と、第2膜材120の間の空間は、電解液150で満たされている。
<Configuration of dye-sensitized solar cell>
A cross section of the dye-sensitized solar cell 100 of this embodiment is shown in FIG.
The dye-sensitized solar cell 100 is formed in a sheet shape as a whole. The dye-sensitized solar cell 100 also includes a first film material 110 and a second film material 120, both of which are film materials. The gap between the first film material 110 and the second film material 120 is arranged substantially in parallel according to the gap between the first electrode 130 and the second electrode 140 described later.
A first electrode 130 and a second electrode 140, which are mesh electrodes, are provided on the surfaces of the first film material 110 and the second film material 120 facing each other.
Further, the space between the first film material 110 and the second film material 120 is filled with the electrolytic solution 150.

第1膜材110と、第2膜材120は、上述したように膜材であり、ともに所定の範囲の伸びが許容され、且つともに可撓性を有している。第1膜材110と、第2膜材120は、略同じ大きさ、形状であり、この実施形態では、これには限られないが矩形である。第1膜材110、及び第2膜材120の破断伸度は、後述する基準線の方向、及び前記基準線と直交する方向にも3%以上とされている。   The first film material 110 and the second film material 120 are film materials as described above, and both are allowed to extend within a predetermined range and both have flexibility. The first film material 110 and the second film material 120 have substantially the same size and shape. In this embodiment, the first film material 110 and the second film material 120 are rectangular, although not limited thereto. The breaking elongation of the first film material 110 and the second film material 120 is 3% or more in the direction of a reference line to be described later and also in the direction perpendicular to the reference line.

この実施形態の第1膜材110は、繊維により形成された織物又は編物である膜基材の少なくとも一方の面を、樹脂又はゴムで被覆したものとされている。そのようなものは普通に市販されているので、それを第1膜材110に用いることも可能である。図1に示した第1膜材110は、織物の両面を樹脂又はゴムで被覆したものとされている。
図1中111は織物を構成する縦糸であり、112は織物を構成する横糸である。織物を構成する繊維は、ケナフ繊維等の天然繊維、ポリエステル維等の合成繊維、或いはガラス繊維等の無機繊維とすることができる。織物の織り方は、例えば、平織や綾織、朱子織等である。膜基材を編物とする場合には、その編み方は、例えば、トリコット編とすることができる。
図1中113は、織物を被覆する樹脂又はゴムである。第1膜材110に用いることができる樹脂又はゴム113は、例えば、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリウレタン(PU)、エチレン−酢酸ビニル共重合体(EVA)、ポリスチレン(PS)、アクリル樹脂(PMMA)とすることができる。或いは、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリビニルフルオライド(PVF)などのフッ素樹脂とすることができる。或いは、クロロプレンゴム(CR)、エチレンプロピレンゴム(EPDM)等のゴムとすることができる。
第1膜材110の厚さは、150〜1000μmである。
なお、第1膜材110は、織物、編物を持たない、樹脂又はゴムのみでできたものとすることができる。その場合に用いることができる樹脂又はゴムは、上述したものと同様である。
The first membrane material 110 of this embodiment is formed by coating at least one surface of a membrane base material that is a woven or knitted fabric formed of fibers with resin or rubber. Since such a thing is marketed normally, it is also possible to use it for the 1st film | membrane material 110. FIG. The first film material 110 shown in FIG. 1 is made by covering both surfaces of a woven fabric with resin or rubber.
In FIG. 1, 111 is a warp yarn constituting the woven fabric, and 112 is a weft yarn constituting the woven fabric. The fibers constituting the woven fabric can be natural fibers such as kenaf fibers, synthetic fibers such as polyester fibers, or inorganic fibers such as glass fibers. The weaving method is, for example, plain weave, twill weave, satin weave or the like. When the membrane substrate is a knitted fabric, the knitting method can be, for example, a tricot knitting.
In FIG. 1, reference numeral 113 denotes a resin or rubber for covering the fabric. Examples of the resin or rubber 113 that can be used for the first film material 110 include polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), polyurethane (PU), and ethylene-vinyl acetate copolymer (EVA). , Polystyrene (PS), and acrylic resin (PMMA). Alternatively, polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-ethylene copolymer (ETFE) , A fluororesin such as polyvinylidene fluoride (PVDF) and polyvinyl fluoride (PVF). Alternatively, rubber such as chloroprene rubber (CR) and ethylene propylene rubber (EPDM) can be used.
The thickness of the first film material 110 is 150 to 1000 μm.
In addition, the 1st film | membrane material 110 can be made only of resin or rubber | gum which does not have a textile fabric and a knitted fabric. The resin or rubber that can be used in that case is the same as described above.

他方、第2膜材120は、樹脂を素材とする。そのようなものは普通に市販されているので、それを第2膜材120に用いることも可能である。第2膜材120は、透明又は半透明である。その素材と厚さ等に依存して決定される第2膜材120の可視光透過率は、80%以上であり、特には90%以上が好ましい。
第2膜材120の素材となる樹脂は、原則、第1膜材110の素材となりうる樹脂と同じであるが、PTFEは除外される。
第2膜材120の厚さは、100〜500μmとすることができ、より好ましくは150〜350μmとすることができる。このような範囲にすることによって、適度な透光性を保つことと同時に最終的なシートとしての強度等を得ることが可能となる。
On the other hand, the second film material 120 is made of resin. Since such a thing is marketed normally, it is also possible to use it for the 2nd film | membrane material 120. FIG. The second film material 120 is transparent or translucent. The visible light transmittance of the second film material 120 determined depending on the material, thickness, and the like is 80% or more, and particularly preferably 90% or more.
The resin that is the material of the second film material 120 is in principle the same as the resin that can be the material of the first film material 110, but PTFE is excluded.
The thickness of the 2nd film | membrane material 120 can be 100-500 micrometers, More preferably, it can be 150-350 micrometers. By setting it as such a range, it becomes possible to obtain the intensity | strength as a final sheet | seat, etc. while maintaining appropriate translucency.

第1電極130、及び第2電極140は、上述のようにメッシュ状の電極であり、多数の縦線、及び横線を含んで構成されている。必ずしもこの限りではないが、第1電極130、及び第2電極140は、縦線、横線を、平織で織ったものとされている。
第1電極130、及び第2電極140は、ともに導電性を有する金属製である。縦線、横線を構成する金属は、例えば、チタン、クロム、タングステン、モリブデン、白金、タンタル、ニオブ、ジルコニウム、亜鉛、各種ステンレス及びこれらの合金である。縦線、横線は、白金などでコーティングされている場合もある。
また、第1電極130、及び第2電極140のその他の例としては、縦線、横線が金属製でない合成繊維や無機繊維等による繊維布(織布、編布のいずれでも良い。)に導電性ポリマーを塗布したものであっても良い。
縦線、横線の線径(P)は、100μm以下が好ましいが、色素増感型太陽電池100の可撓性を担保するには、50μm以下とするのが好ましい。縦線、横線の目開きは、50〜800メッシュとすることができる。縦線、横線の目開きが小さい程、色素増感型太陽電池100の起電力を大きくし易いと共に、メッシュの目の中に金属酸化物141が入る可能性も小さくなり、張力がかかった場合(伸度が与えられた状態)における金属酸化物の脱落を少なくすることができ、発電効率の低下を少なくすることができるが、金属酸化物141の塗布等を考慮すると、200〜500メッシュとすることが好ましい。
第1電極130、と第2電極140の間隔は、小さい方が発電効率を良くすることができる。その間隔は、例えば、1〜100μmであり、50μmよりも厚みを小さくするのが好ましい。
The first electrode 130 and the second electrode 140 are mesh-like electrodes as described above, and include a large number of vertical lines and horizontal lines. Although not necessarily limited thereto, the first electrode 130 and the second electrode 140 are made by weaving vertical lines and horizontal lines in plain weave.
Both the first electrode 130 and the second electrode 140 are made of metal having conductivity. The metal which comprises a vertical line and a horizontal line is titanium, chromium, tungsten, molybdenum, platinum, tantalum, niobium, zirconium, zinc, various stainless steels, and these alloys, for example. The vertical and horizontal lines may be coated with platinum or the like.
As another example of the first electrode 130 and the second electrode 140, the vertical line and the horizontal line are electrically conductive to a fiber cloth (whether woven cloth or knitted cloth) made of a synthetic fiber or inorganic fiber that is not made of metal. It may be one coated with a conductive polymer.
The diameter (P) of the vertical and horizontal lines is preferably 100 μm or less, but in order to ensure the flexibility of the dye-sensitized solar cell 100, it is preferably 50 μm or less. Openings of vertical lines and horizontal lines can be 50 to 800 mesh. When the vertical lines and horizontal lines are smaller, it is easier to increase the electromotive force of the dye-sensitized solar cell 100, and the possibility of the metal oxide 141 entering the mesh eyes is reduced and tension is applied. The dropout of the metal oxide in a state where the elongation is given can be reduced and the reduction in power generation efficiency can be reduced, but considering the application of the metal oxide 141 and the like, 200-500 mesh It is preferable to do.
The smaller the distance between the first electrode 130 and the second electrode 140, the better the power generation efficiency. The space | interval is 1-100 micrometers, for example, and it is preferable to make thickness thinner than 50 micrometers.

第2電極140の金属酸化物141には色素が吸着している。
金属酸化物141としては、色素増感型太陽電池100で従来から使用されているものを利用することができる。具体的には、かかる金属酸化物141としては、例えば、酸化チタン、酸化亜鉛、酸化錫、酸化タングステン、酸化ジルコニウム、酸化ハフニウム、酸化ストロンチウム、酸化インジウム、酸化イットリウム、酸化ランタン、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、酸化鉄、酸化ニッケル、酸化銀、酸化銅を利用可能である。金属酸化物141の粒子径は、例えば、一次粒子径で1〜150nmとすることができるが、5〜20nmとするのが好ましい。
金属酸化物141に吸着させる色素は、色素増感型太陽電池100で従来から用いられている色素を用いることができる。かかる色素としては、例えば、キサンテン系色素、クマリン系色素、トリフェニルメタン系色素、シアニン系色素、メロシアニン系色素、フタロシアニン系色素、ポルフィリン系色素、ポリピリジン金属錯体色素、ルテニウムビピリジウム系色素、アゾ色素、キノン系色素、キノンイミン系色素、キナクリドン系色素、スクアリウム系色素、ペリレン系色素、インジゴ系色素、ナフタロシアニン系色素、金属錯体色素(中心金属がRu(ルテニウム)、Fe(鉄)、Cr(クロム)、Co(コバルト)、Os(オスミウム)、Re(レニウム)、Cu(銅)、Pt(白金)等)、マーキュロクロム色素を利用できる。
金属酸化物141を第2電極140に塗布する方法については後述する。
The dye is adsorbed on the metal oxide 141 of the second electrode 140.
As the metal oxide 141, those conventionally used in the dye-sensitized solar cell 100 can be used. Specifically, examples of the metal oxide 141 include titanium oxide, zinc oxide, tin oxide, tungsten oxide, zirconium oxide, hafnium oxide, strontium oxide, indium oxide, yttrium oxide, lanthanum oxide, vanadium oxide, and niobium oxide. Tantalum oxide, chromium oxide, molybdenum oxide, iron oxide, nickel oxide, silver oxide, and copper oxide can be used. The particle diameter of the metal oxide 141 can be, for example, 1 to 150 nm as a primary particle diameter, but is preferably 5 to 20 nm.
As the dye to be adsorbed on the metal oxide 141, a dye conventionally used in the dye-sensitized solar cell 100 can be used. Examples of such dyes include xanthene dyes, coumarin dyes, triphenylmethane dyes, cyanine dyes, merocyanine dyes, phthalocyanine dyes, porphyrin dyes, polypyridine metal complex dyes, ruthenium bipyridinium dyes, azo dyes. Dye, quinone dye, quinone imine dye, quinacridone dye, squalium dye, perylene dye, indigo dye, naphthalocyanine dye, metal complex dye (the central metal is Ru (ruthenium), Fe (iron), Cr ( (Chromium), Co (cobalt), Os (osmium), Re (rhenium), Cu (copper), Pt (platinum), etc.), and a mercurochrome pigment.
A method for applying the metal oxide 141 to the second electrode 140 will be described later.

第1電極130は第1膜材110の第2膜材120と対向する面に、第2電極140は第2膜材120の第1膜材110と対向する面に、それぞれその一部(例えば、その半分程)が埋没するようにして固定されている。第1電極130はその全長にわたって第1膜材110に、第2電極140はその全長にわたって第2膜材120に、それぞれ固定されている。かかる固定の方法については後述する。   The first electrode 130 is a part of the first film material 110 facing the second film material 120, and the second electrode 140 is a part of the second film material 120 facing the first film material 110 (for example, a part thereof (for example, , About half of it) is buried and fixed. The first electrode 130 is fixed to the first film material 110 over the entire length, and the second electrode 140 is fixed to the second film material 120 over the entire length. Such a fixing method will be described later.

第1電極130、第2電極140は、図2に示したように、縦線131と横線132を含んでいる(なお、縦線131と横線132のネーミングは便宜的なものであり、両者は入れ替えられても構わない。)。第1電極130の縦線131と横線132は、第1膜材110の任意の辺となす角のうち小さい方の角が、30°〜60°となるようになっている。
図2は、第1膜材110と、第1電極130中の縦線131及び横線132の関係を示したものである。図2の右下の吹き出し状の図は、第1膜材110の一部を拡大して示したものである。また、同図中のXの符号を付した二点鎖線で示された線分は、矩形形状である第1膜材110における図2中の上下の辺(色素増感型太陽電池100の長辺)に平行な線分である。なお、この実施形態では、図2中の膜材110の上下の辺の一方が、本願の色素増感型太陽電池100における基準辺ということになる。
図2における、縦線131と線分Xがなす角のうち小さい方は、角A1であり、横線132と線分Xがなす角のうち小さい方は、角A2である。そして、これらはともに、30°〜60°の範囲に入っている。具体的には、この例では、角A1、角A2はともに、35°である。つまり、第1電極130の縦線131と横線132は、第1膜材110の基準辺となす角のうち小さい方の角が、30°〜60°となっている。なお、仮に、基準辺を矩形形状である第1膜材110における図2中の左右の辺の一方とした場合、それと縦線131又は横線132がなす角はそれぞれ、(90−A1)°と、(90−A2)°となる。A1とA2が30°〜60°の範囲に入っているのであれば、(90−A1)°と、(90−A2)°はともに、30°〜60°の範囲に含まれる。つまり、第1電極130の縦線131と横線132は、第1膜材110のうちの任意の辺である基準辺との関係で、基準辺となす角のうち小さい方の角が、30°〜60°となっているという関係を満たすのであれば、第1膜材110の他のどの辺との関係でも、その辺となす角のうち小さい方の角が、30°〜60°となっているという関係を充足する。基準辺が矩形形状である第1膜材110の4辺のいずれであっても構わないのは、このような理由による。
The first electrode 130 and the second electrode 140 include a vertical line 131 and a horizontal line 132 as shown in FIG. 2 (note that the naming of the vertical line 131 and the horizontal line 132 is convenient and both are It may be replaced.) The vertical line 131 and the horizontal line 132 of the first electrode 130 are such that the smaller one of the angles formed with any side of the first film material 110 is 30 ° to 60 °.
FIG. 2 shows the relationship between the first film material 110 and the vertical lines 131 and horizontal lines 132 in the first electrode 130. The balloon-like view at the lower right in FIG. 2 is an enlarged view of a part of the first film material 110. In addition, the line segment indicated by the two-dot chain line with the symbol X in the figure indicates the upper and lower sides in FIG. 2 of the first film material 110 having a rectangular shape (the length of the dye-sensitized solar cell 100). Line segment parallel to (side). In this embodiment, one of the upper and lower sides of the film material 110 in FIG. 2 is a reference side in the dye-sensitized solar cell 100 of the present application.
In FIG. 2, the smaller one of the angles formed by the vertical line 131 and the line segment X is the angle A1, and the smaller one of the angles formed by the horizontal line 132 and the line segment X is the angle A2. Both of these are in the range of 30 ° to 60 °. Specifically, in this example, both the angles A1 and A2 are 35 °. In other words, the vertical line 131 and the horizontal line 132 of the first electrode 130 have a smaller angle of 30 ° to 60 ° among the angles formed with the reference side of the first film material 110. If the reference side is one of the left and right sides in FIG. 2 of the rectangular first film material 110, the angle formed by the vertical line 131 or the horizontal line 132 is (90−A1) °, respectively. , (90-A2) °. If A1 and A2 are in the range of 30 ° to 60 °, both (90-A1) ° and (90-A2) ° are included in the range of 30 ° to 60 °. In other words, the vertical line 131 and the horizontal line 132 of the first electrode 130 are related to the reference side which is an arbitrary side of the first film material 110, and the smaller one of the angles formed with the reference side is 30 °. As long as the relationship of ˜60 ° is satisfied, the smaller one of the angles formed with the other side of the first film material 110 is 30 ° to 60 °. Satisfy the relationship. This is the reason why the reference side may be any of the four sides of the first film material 110 having a rectangular shape.

なお、縦線131と横線132が基準辺となる角は、図2に示した例のように「同じ」であることを、必ずしも要求されない。
例えば、図3の(A)に示した例では、縦線131と線分Xがなす角のうち小さい方は、角A3であり、横線132と線分Xがなす角のうち小さい方は、角A4であるが、42°である角A3と30°である角A4はともに30°〜60°の範囲に入っており、且つ角A3>角A4である。
また、これまでの例では、縦線131と横線132は直交していなかったが、図3(B)の例に示したように、縦線131と横線132は直交していても構わない。なお、この例では、縦線131と線分Xがなす角のうち小さい方は角A5、横線132と線分Xがなす角のうち小さい方は角A6であり、且つ角A5、角A6ともに、45°となっている。
なお、図3(C)と図3(D)はともに、第1電極130の縦線131と横線132が、第1膜材110のうちの任意の辺である基準辺との関係で、基準辺となす角のうち小さい方の角が、30°〜60°となっているという関係を満たさない場合の例である。図3(C)の例の場合は、縦線131と線分Xがなす角のうち小さい方は角A7、横線132と線分Xがなす角のうち小さい方は角A8であり、角A7は80°、角A8は10°となっている。また、図3(D)の例の場合は、縦線131と線分Xがなす角はともに90°、横線132と線分Xは平行なので、それらがなす角のうち小さい方は、そもそも存在しないか、或いは0°である。
Note that the angle at which the vertical line 131 and the horizontal line 132 are the reference sides is not necessarily required to be “same” as in the example illustrated in FIG. 2.
For example, in the example shown in FIG. 3A, the smaller one of the angles formed by the vertical line 131 and the line segment X is the angle A3, and the smaller one of the angles formed by the horizontal line 132 and the line segment X is Although the angle is A4, both the angle A3 which is 42 ° and the angle A4 which is 30 ° are in the range of 30 ° to 60 °, and the angle A3> the angle A4.
In the examples so far, the vertical line 131 and the horizontal line 132 are not orthogonal to each other. However, as shown in the example of FIG. 3B, the vertical line 131 and the horizontal line 132 may be orthogonal to each other. In this example, the smaller one of the angles formed by the vertical line 131 and the line segment X is the corner A5, and the smaller one of the angles formed by the horizontal line 132 and the line segment X is the corner A6, and both the angles A5 and A6 are included. 45 °.
3C and 3D, both the vertical line 131 and the horizontal line 132 of the first electrode 130 are related to the reference side which is an arbitrary side of the first film material 110, and the reference line This is an example in which the smaller one of the angles formed with the side does not satisfy the relationship of 30 ° to 60 °. In the example of FIG. 3C, the smaller one of the angles formed by the vertical line 131 and the line segment X is the corner A7, and the smaller one of the angles formed by the horizontal line 132 and the line segment X is the angle A8, and the angle A7. Is 80 ° and the angle A8 is 10 °. In the case of the example of FIG. 3D, since the angle formed by the vertical line 131 and the line segment X is both 90 ° and the horizontal line 132 and the line segment X are parallel, the smaller one of the angles formed by them originally exists. No, or 0 °.

また、図示を省略するが、第2電極140中の縦線と横線の第2膜材120に対する位置関係は、第1電極130中の縦線131と横線132の第1膜材110に対する位置関係と同様になっている。つまり、第2電極140の縦線と横線は、第2膜材120のうちの任意の辺である基準辺との関係で、基準辺となす角のうち小さい方の角が、30°〜60°の範囲になるようにされている。
もっとも、第2電極140中の縦線と横線の色素増感型太陽電池100の各辺に対する角度は、第1電極130中の縦線131と横線132の色素増感型太陽電池100の各辺に対する角度と一致している必要はない。
Although not shown, the positional relationship between the vertical line and the horizontal line in the second electrode 140 with respect to the second film material 120 is the positional relationship between the vertical line 131 and the horizontal line 132 in the first electrode 130 with respect to the first film material 110. It has become the same. That is, the vertical line and the horizontal line of the second electrode 140 are related to the reference side which is an arbitrary side of the second film material 120, and the smaller one of the angles formed with the reference side is 30 ° to 60 °. It is intended to be in the range of °.
However, the angle between the vertical line and the horizontal line in the second electrode 140 with respect to each side of the dye-sensitized solar cell 100 is equal to each side of the dye-sensitized solar cell 100 in the vertical line 131 and horizontal line 132 in the first electrode 130. It is not necessary to match the angle with respect to.

電解液は、電解質を溶媒に溶かしこんだものである。
電解質は、光を受けて励起して、第2電極から外部に供給される電子を放出した色素に対して電子を供給するとともに、第1電極から電子の供給を受ける機能を有する。
電解質の例としては、ヨウ素/ヨウ化物イオン、臭素/臭化物イオン、コバルト錯体、などを用いることができる。
より具体的には、ヨウ素と、LiI(ヨウ化リチウム)、NaI(ヨウ化ナトリウム)、KI(ヨウ化カリウム)等の金属ヨウ化物の組合せ、ヨウ素と、4級イミダゾリウム化合物のヨウ化物塩、4級ピリジニウム化合物のヨウ化物塩、テトラアルキルアンモニウム化合物のヨウ化物塩等の組合せがその例となる。また、臭素と、LiBr(臭化リチウム)、NaBr(臭化ナトリウム)、KBr(臭化カリウム)等の金属臭化物の組合せ、臭素と、4級イミダゾリウム化合物の臭化物塩、4級ピリジニウム化合物の臭化物塩、テトラアルキルアンモニウム化合物の臭化物塩等の組合せがその例となる。或いは、[CoII(bpy)](B(CN)、[CoIII(bpy)](B(CN)、ハロゲン原子(例えば、フッ素、塩素)を含有するイオン、フッ化物イオン、塩化物イオン、過塩素酸イオン、過臭素酸イオン、過ヨウ素酸イオン、塩素酸イオン、臭素酸イオン、ヨウ素酸イオン、亜塩素酸イオン、亜臭素酸イオン、亜ヨウ素酸イオン、次亜塩素酸イオン、次亜臭素酸イオン、次亜ヨウ素酸イオンがその例となる。
これら電解質を溶かす溶媒には、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、t−ブタノール等のアルコール類、アセトニトリル、プロピオニトリル、メトキシプロピオニトリル、アジポニトリル、メトキシアセトニトリル、グルタロニトリル等のニトリル類、ベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレンなどの芳香族化合物、ペンタン、ヘプタン、ヘキサン、シクロヘキサンなどのアルカン類、ヘプタン、アセトン、メチルエチルケトン、ジエチルケトン、2−ブタノン等のケトン類、ジエチルエーテル、テトラヒドロフラン等のエーテル類、エチレンカーボネート、プロピレンカーボネート等の炭酸エステル類、γ−ブチロラクトン、γ−バレロラクトン等の環状エステル、ジメチルホルムアミド、ジメチルアセトアミド、ヘキサメチルホスホアミド等のアミド系、メチルピロリジノン、ジメチルスルホキシド、ジオキソラン、ジメトキシエタン、スルホラン、エチレングリコール、プロピレングリコール等の多価アルコール類が利用可能である。
The electrolytic solution is obtained by dissolving an electrolyte in a solvent.
The electrolyte has a function of receiving electrons from the first electrode as well as supplying electrons to the dye that is excited by receiving light and emits electrons supplied from the second electrode to the outside.
As examples of the electrolyte, iodine / iodide ions, bromine / bromide ions, cobalt complexes, and the like can be used.
More specifically, a combination of iodine and a metal iodide such as LiI (lithium iodide), NaI (sodium iodide), KI (potassium iodide), iodine, an iodide salt of a quaternary imidazolium compound, Examples include combinations of iodide salts of quaternary pyridinium compounds, iodide salts of tetraalkylammonium compounds, and the like. Also, a combination of bromine and a metal bromide such as LiBr (lithium bromide), NaBr (sodium bromide), KBr (potassium bromide), bromine, bromide salt of quaternary imidazolium compound, bromide of quaternary pyridinium compound Examples include combinations of salts, bromide salts of tetraalkylammonium compounds, and the like. Alternatively, ions or fluorides containing [CoII (bpy) 3 ] (B (CN) 4 ) 2 , [CoIII (bpy) 3 ] (B (CN) 4 ) 3 , halogen atoms (eg, fluorine, chlorine) Ion, chloride ion, perchlorate ion, perbromate ion, periodate ion, chlorate ion, bromate ion, iodate ion, chlorite ion, bromate ion, iodate ion, hypochlorous acid Examples are chlorate ions, hypobromite ions and hypoiodite ions.
Examples of solvents for dissolving these electrolytes include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and t-butanol, acetonitrile, propionitrile, methoxypropionitrile, and adiponitrile. , Nitriles such as methoxyacetonitrile and glutaronitrile, aromatic compounds such as benzene, toluene, o-xylene, m-xylene and p-xylene, alkanes such as pentane, heptane, hexane and cyclohexane, heptane, acetone and methyl ethyl ketone , Ketones such as diethyl ketone and 2-butanone, ethers such as diethyl ether and tetrahydrofuran, carbonates such as ethylene carbonate and propylene carbonate, γ-butyrolactone, γ-valerolac Cyclic esters such as tons, amides such as dimethylformamide, dimethylacetamide, and hexamethylphosphoamide, and polyhydric alcohols such as methylpyrrolidinone, dimethyl sulfoxide, dioxolane, dimethoxyethane, sulfolane, ethylene glycol, and propylene glycol are available. .

また、第1電極130は接続線135と、第2電極140は接続線145とそれぞれ接続されている。接続線135と、接続線145は、色素増感型太陽電池100から電流を取出すためのものである。図1では、接続線135と、接続線145はそれぞれ、第1膜材110と、第2膜材120の端面から露出しているが、かかる構成は必須ではなく、例えば、第1膜材110と、第2膜材120の図1における下と上の面から接続線135と接続線145を露出させても良い。   The first electrode 130 is connected to the connection line 135, and the second electrode 140 is connected to the connection line 145. The connection line 135 and the connection line 145 are for taking out current from the dye-sensitized solar cell 100. In FIG. 1, the connection line 135 and the connection line 145 are exposed from the end surfaces of the first film material 110 and the second film material 120, respectively, but such a configuration is not essential. For example, the first film material 110 Further, the connection line 135 and the connection line 145 may be exposed from the lower and upper surfaces of the second film material 120 in FIG.

この色素増感型太陽電池が電池として機能する理屈は、従来技術で述べたとおりであるからその説明を省略する。   The reason why this dye-sensitized solar cell functions as a battery is the same as described in the prior art, so the description thereof is omitted.

<色素増感型太陽電池の製造方法>
次に、以上で説明した色素増感型太陽電池100の製造方法について説明する。
この実施形態では、第1膜材110と、第2膜材120は、必ずしもこの限りではないが、市販のものを用いることとし、その製法についての説明は省略する。もっとも、第1膜材110と、第2膜材120から製造する場合は、同種の膜材の製法として公知な一般的な製造方法でそれらを製造すれば良い。
第1電極130、第2電極140を構成する金属製のメッシュも、市販のものを用いても良いが、この実施形態では、既に説明した条件(素材、線径、目開き、厚さ、縦線と横線の角度等)を充足するものを製造するものとする。
第1膜材110、第2膜材120、第1電極130、第2電極140を構成する金属製のメッシュ、及び後述する電解液を主な材料として、色素増感型太陽電池100が製造される。
<Method for producing dye-sensitized solar cell>
Next, a method for manufacturing the dye-sensitized solar cell 100 described above will be described.
In this embodiment, the first film material 110 and the second film material 120 are not necessarily limited to this, but commercially available materials are used, and description of the manufacturing method is omitted. But when manufacturing from the 1st film | membrane material 110 and the 2nd film | membrane material 120, they should just manufacture with a general manufacturing method well-known as a manufacturing method of the same kind of film | membrane material.
The metal mesh that constitutes the first electrode 130 and the second electrode 140 may also be a commercially available mesh. However, in this embodiment, the conditions (material, wire diameter, aperture, thickness, vertical length, which have already been described). That satisfy the angle of the line and the horizontal line, etc.).
The dye-sensitized solar cell 100 is manufactured using a metal mesh constituting the first film material 110, the second film material 120, the first electrode 130, the second electrode 140, and an electrolyte solution described later as main materials. The

まず、第2電極140に、金属酸化物141を塗布した後に色素を吸着させる。具体的には、上述したような金属酸化物を溶媒に分散させた分散液を作成し、それを第2電極140に塗布し、固定した後、色素を吸着させる。分散液の作成、その第2電極140への塗布の方法、色素の吸着方法はいずれも、公知の方法を用いることができる。
分散液の溶媒は、例えば、水、又はアルコールである。また、分散液には、分散剤として、酢酸、塩酸等の酸、又はアセチルアセトンを添加する。上述した金属酸化物141、分散剤を溶媒に加え、公知の自転公転ミキサやスターラーを用いて撹拌を行う。
次いで、上述のようにして調整した分散液を第2電極140に塗布する。塗布の方法は、スプレー法、ドクターブレード法、スクリーン印刷法、ディップコート法、スピンコート法等を用いることができる。第2電極140へ分散液を塗布する場合、メッシュの目を出来るだけ金属酸化物141で埋めないようにすることで、完成後の色素増感型太陽電池100に後述するように張力がかかった場合(伸度が与えられた状態)であっても、金属酸化物141が第2電極140から脱落にしにくくなり、発電効率の低下を少なくすることができる。分散液の第2電極140への塗布は、第2電極140のうちの第2膜材120側の面(つまり、太陽光などの光を照射される側の面)にだけ行うこともできるが、第2電極140の両面、或いは、第2電極140に含まれる縦線と横線の全表面に分散液を塗布することも可能であり、そうすることにより発電効率を上げられるようになり、また完成後の色素増感型太陽電池100に後述するように張力がかかった場合であっても、金属酸化物141が第2電極140から脱落にしにくくなる。このことは伸度が与えられた状態であっても発電効率の低下を少なくできることを意味する。この実施形態では、第2電極140に含まれる縦線と横線の全表面に分散液を塗布した。
First, the dye is adsorbed after the metal oxide 141 is applied to the second electrode 140. Specifically, a dispersion liquid in which a metal oxide as described above is dispersed in a solvent is prepared, applied to the second electrode 140 and fixed, and then the dye is adsorbed. Known methods can be used for the preparation of the dispersion, the method of coating the second electrode 140, and the method of adsorbing the dye.
The solvent of the dispersion liquid is, for example, water or alcohol. In addition, an acid such as acetic acid or hydrochloric acid, or acetylacetone is added to the dispersion as a dispersant. The above-described metal oxide 141 and dispersant are added to a solvent, and stirring is performed using a known rotation and revolution mixer or stirrer.
Next, the dispersion liquid prepared as described above is applied to the second electrode 140. As a coating method, a spray method, a doctor blade method, a screen printing method, a dip coating method, a spin coating method, or the like can be used. When applying the dispersion liquid to the second electrode 140, the mesh was not filled with the metal oxide 141 as much as possible, so that tension was applied to the completed dye-sensitized solar cell 100 as described later. Even in the case (a state in which the elongation is given), the metal oxide 141 is less likely to drop off from the second electrode 140, and the reduction in power generation efficiency can be reduced. The dispersion liquid can be applied to the second electrode 140 only on the surface of the second electrode 140 on the second film material 120 side (that is, the surface irradiated with light such as sunlight). It is also possible to apply the dispersion liquid on both surfaces of the second electrode 140 or on the entire surface of the vertical and horizontal lines included in the second electrode 140, so that the power generation efficiency can be increased. Even when tension is applied to the dye-sensitized solar cell 100 after completion as described later, the metal oxide 141 is less likely to be detached from the second electrode 140. This means that a decrease in power generation efficiency can be reduced even in a state where the elongation is given. In this embodiment, the dispersion liquid was applied to the entire surface of the vertical and horizontal lines included in the second electrode 140.

なお、この実施形態では、スプレー法と、スクリーン印刷法を用いて、第2電極140に金属酸化物141の塗布を行った。
スプレー法では、第2電極140に、低温成膜用酸化チタンペースト(品番:PECC−C01−06、ペクセル・テクノロジーズ株式会社製)を、1−プロパノールで容積比にて50%に希釈したものをスプレーガンで、第2電極140から凡そ30cm離れたところからスプレーすることにより均一に塗布し、その後乾燥させるという工程を12回繰り返した後に焼成することにより、第2電極140に金属酸化物を固定させた。
他方、スクリーン印刷法では、スプレー法で用いたのと同様の第2電極140に対して、チタニアナノペースト(品番:PST−18NR、触媒化成工業株式会社製)を、250メッシュのスクリーン板を用いてスクリーン印刷法で塗布した後、乾燥させ、その後再度スクリーン印刷法で前記ペーストを塗布し、乾燥させた後に、焼成することによって金属製メッシュ体に金属酸化物を固定させ、その後、金属製メッシュ体に固定した金属酸化物に色素を吸着させた。
In this embodiment, the metal oxide 141 is applied to the second electrode 140 using a spray method and a screen printing method.
In the spray method, a titanium oxide paste for low temperature film formation (product number: PECC-C01-06, manufactured by Pexel Technologies Co., Ltd.) diluted to 50% by volume with 1-propanol is used for the second electrode 140. The metal oxide is fixed to the second electrode 140 by firing after repeating the process of applying uniformly by spraying from a position approximately 30 cm away from the second electrode 140 with a spray gun and then drying it 12 times. I let you.
On the other hand, in the screen printing method, a titania nano paste (product number: PST-18NR, manufactured by Catalyst Kasei Kogyo Co., Ltd.) and a 250 mesh screen plate are used for the second electrode 140 similar to that used in the spray method. After applying by screen printing method, drying, and then applying the paste again by screen printing method, drying, and then fixing the metal oxide to the metal mesh body by firing, then the metal mesh The dye was adsorbed on the metal oxide fixed on the body.

次いで、第1膜材110に第1電極130を固定し、第2膜材120に第2電極140を固定した。
第1電極130の第1膜材110に対する固定は、第1膜材110の上に、全体として第1膜材110と略同じ大きさ、形状の第1電極130を重ね、第1膜材110を構成する樹脂又はゴム113の融点以上の温度に第1膜材110を加熱し、その後冷却することにより行った。なお、樹脂又はゴム113を加熱するときに、第1電極130を第1膜材110に押し付けるようにしてもよい。これにより、第1電極130は、その縦線と横線が幾らか第1膜材110にめり込んだ状態で、第1膜材110に固定される。
同様にして、第2電極140を第2膜材120に固定する。
Next, the first electrode 130 was fixed to the first film material 110, and the second electrode 140 was fixed to the second film material 120.
The first electrode 130 is fixed to the first film material 110 by superimposing the first electrode 130 having substantially the same size and shape as the first film material 110 on the first film material 110 as a whole. The first film material 110 was heated to a temperature equal to or higher than the melting point of the resin or rubber 113 constituting the film, and then cooled. Note that the first electrode 130 may be pressed against the first film material 110 when the resin or rubber 113 is heated. As a result, the first electrode 130 is fixed to the first film material 110 in a state in which the vertical lines and horizontal lines are somewhat recessed into the first film material 110.
Similarly, the second electrode 140 is fixed to the second film material 120.

次いで、第1電極130が固定された第1膜材110と、第2電極140が固定された第2膜材120とを、第1電極130と第2電極140とが互いに対向するように重ね合わせ、図4に示したように、その縁部190を水密に融着させる。第1膜材110と、第2膜材120の融着は、公知の方法を用いて、例えば、第1膜材110と第2膜材120を構成する両樹脂の融点よりも高い温度で第1膜材110と第2膜材120を加熱しながら両者を押圧し合い、その後冷却することで第1膜材110と第2膜材120を融着させる。
ただし、この実施形態では、縁部190の一部を融着せずに開口部191として残す。
Next, the first film material 110 to which the first electrode 130 is fixed and the second film material 120 to which the second electrode 140 is fixed are overlapped so that the first electrode 130 and the second electrode 140 face each other. At the same time, as shown in FIG. 4, the edge 190 is fused in a watertight manner. The first film material 110 and the second film material 120 are fused using a known method, for example, at a temperature higher than the melting point of both resins constituting the first film material 110 and the second film material 120. The first film material 110 and the second film material 120 are pressed together while being heated, and then cooled to fuse the first film material 110 and the second film material 120.
However, in this embodiment, a part of the edge 190 is left as the opening 191 without being fused.

次いで、上述の開口部191から電解液を、第1膜材110と第2膜材120の間の空隙に流しこむ。
電解液は、上述した電解質のうちの適当なものを、上述した溶媒の適当なものに溶かして作成する。
電解液は、例えば、その先端を上述の開口部191から第1膜材110と第2膜材120の間の空隙に差し込んだチューブを介して、第1膜材110と第2膜材120の間の空隙に流しこむ。融着された第1膜材110と第2膜材120の開口部191の位置を少し高くしてやるか、開口部191とチューブの間の隙間をなくしてやれば、電解液が開口部191から漏れだすこともない。
その後、チューブを開口部191から引き抜いて、開口部191の部分も第1膜材110と第2膜材120を水密に融着する。
これにより、第1膜材110と第2膜材120の間の空隙に電解液が水密に閉じ込められる。
Next, the electrolytic solution is poured into the gap between the first film material 110 and the second film material 120 from the opening 191 described above.
The electrolytic solution is prepared by dissolving an appropriate one of the above-described electrolytes in an appropriate one of the above-described solvents.
For example, the electrolytic solution is formed between the first film material 110 and the second film material 120 through a tube whose tip is inserted into the gap between the first film material 110 and the second film material 120 from the opening 191 described above. Pour into the gap between them. If the position of the opening 191 of the fused first film material 110 and the second film material 120 is slightly increased or the gap between the opening 191 and the tube is eliminated, the electrolyte leaks from the opening 191. There is nothing.
Thereafter, the tube is pulled out from the opening 191, and the first film material 110 and the second film material 120 are also water-tightly fused at the opening 191.
As a result, the electrolytic solution is watertightly confined in the gap between the first film material 110 and the second film material 120.

そして、この工程は、もっと先に行なっても良いが、第1電極130に接続線135を接続し、第2電極140に接続線145を接続する。
以上により、色素増感型太陽電池100が完成する。
This step may be performed earlier, but the connection line 135 is connected to the first electrode 130 and the connection line 145 is connected to the second electrode 140.
Thus, the dye-sensitized solar cell 100 is completed.

<色素増感型太陽電池の施工方法>
この実施形態の色素増感型太陽電池100は、例えば、図5に示したように施工される。
この実施形態では、シート状の色素増感型太陽電池100を、その両端部を支える平行で同じ高さの2つの壁1の間にわたした状態に施工する。矩形形状の色素増感型太陽電池100はその両短辺をそれぞれ、壁1の上端部に固定される。
このとき、色素増感型太陽電池100の壁1に固定された短辺部分では、公知の適当な方法で、色素増感型太陽電池100に、長辺に沿う方向で初期張力を与える。
このようにして、色素増感型太陽電池100の施工が終わる。
その後色素増感型太陽電池100が使用されているときに、風雨や、降雪などにより色素増感型太陽電池100に張力がかかることがあり得る。
初期張力も、風雨や降雪などによって使用中に色素増感型太陽電池100にかかる張力も、図5で、矢印Yで示したような矩形の色素増感型太陽電池100の長辺方向に沿う方向で色素増感型太陽電池100にかかる。つまり、矢印Yは、施工後の色素増感型太陽電池100に張力の入る方向として予定されている方向に沿うものであり、それに沿う方向が、本願発明でいう基準線となる。
ここで、基準線である矢印Yで示された方向は、基準辺である上述した矩形形状の色素増感型太陽電池100の長辺の方向と一致する。したがって、第1電極130、第2電極140に含まれる縦線と横線は、上述したように、色素増感型太陽電池100の長辺となす角のうち小さい方の角が、30°〜60°となるようになっているのであるから、上述の施工方法では、色素増感型太陽電池100が持つ第1電極130、第2電極140に含まれる縦線及び横線と、基準線とがなす角のうち小さい方の角は、30°〜60°となっている。
このように施工された色素増感型太陽電池100は、基準線の方向に伸びたとしても、その第1電極130と第2電極140に、第1電極130が第1膜材110から外れるとか、第2電極140が第2膜材120から外れるとか、第1電極130又は第2電極140に含まれる縦線又は横線が破断するとか、の不具合が発生しにくい。
<Dye-sensitized solar cell construction method>
The dye-sensitized solar cell 100 of this embodiment is constructed as shown in FIG. 5, for example.
In this embodiment, the sheet-like dye-sensitized solar cell 100 is applied in a state of being laid between two parallel, equal-level walls 1 that support both end portions thereof. In the rectangular dye-sensitized solar cell 100, both short sides thereof are fixed to the upper end portion of the wall 1, respectively.
At this time, in the short side portion fixed to the wall 1 of the dye-sensitized solar cell 100, initial tension is applied to the dye-sensitized solar cell 100 in a direction along the long side by a known appropriate method.
In this way, the construction of the dye-sensitized solar cell 100 is finished.
Thereafter, when the dye-sensitized solar cell 100 is being used, tension may be applied to the dye-sensitized solar cell 100 due to wind and rain, snowfall, or the like.
Both the initial tension and the tension applied to the dye-sensitized solar cell 100 during use due to wind and rain, snowfall, and the like are along the long side direction of the rectangular dye-sensitized solar cell 100 as indicated by the arrow Y in FIG. It is applied to the dye-sensitized solar cell 100 in the direction. That is, the arrow Y is along a direction planned as a direction in which the tension is applied to the dye-sensitized solar cell 100 after the construction, and the direction along the direction is a reference line in the present invention.
Here, the direction indicated by the arrow Y that is the reference line coincides with the direction of the long side of the above-described rectangular dye-sensitized solar cell 100 that is the reference side. Therefore, the vertical line and the horizontal line included in the first electrode 130 and the second electrode 140 have a smaller angle of 30 ° to 60 of the angles formed with the long side of the dye-sensitized solar cell 100 as described above. Therefore, in the construction method described above, the vertical line and horizontal line included in the first electrode 130 and the second electrode 140 of the dye-sensitized solar cell 100 and the reference line are formed. The smaller one of the angles is 30 ° to 60 °.
Even if the dye-sensitized solar cell 100 thus constructed extends in the direction of the reference line, the first electrode 130 and the second electrode 140 are separated from the first film material 110 by the first electrode 130 and the second electrode 140. In addition, problems such as the second electrode 140 being detached from the second film material 120 or the vertical or horizontal lines included in the first electrode 130 or the second electrode 140 being broken are unlikely to occur.

<実験例>
第1電極130、第2電極140に含まれる縦線及び横線と、基準線とがなす角のうち小さい方の角が45°である色素増感型太陽電池100に対して、基準線の方向に下記表1の条件で引張を行う引張試験を行った。なお、引張試験の対象とした色素増感型太陽電池100は、上述のスプレー法で第2電極140に金属酸化物141を塗布したものと、上述のスクリーン印刷法で第2電極140に金属酸化物141を塗布したものの2種類である。両色素増感型太陽電池100に含まれる第1電極130と第2電極140はともに、ステンレス製、線径18μm、平織、目開き33μm、開口率41.9%のものであった。
[表1]引張試験条件
試験片幅 :20mm
つかみ間隔:70mm
引張速度 :20mm/min
初期張力 :0.4N
<Experimental example>
The direction of the reference line with respect to the dye-sensitized solar cell 100 in which the smaller one of the angles formed by the vertical and horizontal lines included in the first electrode 130 and the second electrode 140 and the reference line is 45 ° A tensile test was performed in which tension was performed under the conditions shown in Table 1 below. Note that the dye-sensitized solar cell 100 subjected to the tensile test includes the metal oxide 141 applied to the second electrode 140 by the spray method described above and the metal oxide applied to the second electrode 140 by the screen print method described above. There are two types to which the object 141 is applied. Both the first electrode 130 and the second electrode 140 included in both dye-sensitized solar cells 100 were made of stainless steel, had a wire diameter of 18 μm, a plain weave, an aperture of 33 μm, and an aperture ratio of 41.9%.
[Table 1] Tensile test condition test piece width: 20 mm
Grasp interval: 70mm
Tensile speed: 20 mm / min
Initial tension: 0.4N

試験結果は、表2に示した通りである。
縦軸の変化率は、横軸で示せれた色素増感型太陽電池100の伸びに対して、第2電極140に塗布されていた金属酸化物141がどれだけ残っているか、つまり、伸度を変化させた場合における塗布された金属酸化物141の脱落によって生じる第2電極の重量変化率を示している。即ち、伸度が大きくなっても、重量変化率の小さい方が、色素増感太陽電池100が伸びても金属酸化物141の脱落が少ないことを示している。金属酸化物141の脱落が少ないということはもちろん、発電効率の低下も少ないことを意味する。
表2において、スクリーンと記載されたダイヤ型のマークで示された数値は、スクリーン印刷法で第2電極140に金属酸化物141を塗布した色素増感型太陽電池100の場合であり、スプレーと記載された正方形のマークで示された数値は、スプレー法で第2電極140に金属酸化物141を塗布した色素増感型太陽電池100の場合である。
上述したように、スクリーン法で第2電極140に金属酸化物141を塗布した場合に較べ、スプレー法で第2電極140に金属酸化物141を塗布した色素増感型太陽電池100では、第2電極140からの金属酸化物141の脱落は少なく、特に伸率が5%を超えた辺りからその差は顕著である。
なお、いずれの色素増感型太陽電池100でも、伸びが20%に達したときでも、第1電極130と第2電極140に、断線は見られなかった。
The test results are as shown in Table 2.
The rate of change on the vertical axis indicates how much metal oxide 141 applied to the second electrode 140 remains with respect to the elongation of the dye-sensitized solar cell 100 shown on the horizontal axis, that is, the elongation. The weight change rate of the 2nd electrode produced by the drop-off | omission of the apply | coated metal oxide 141 at the time of changing is shown. That is, even when the elongation increases, a smaller weight change rate indicates that the metal oxide 141 is less dropped even when the dye-sensitized solar cell 100 is extended. This means that the metal oxide 141 is not easily dropped off, and the power generation efficiency is not significantly lowered.
In Table 2, the numerical value indicated by the diamond-shaped mark described as the screen is the case of the dye-sensitized solar cell 100 in which the metal oxide 141 is applied to the second electrode 140 by the screen printing method. The numerical value indicated by the described square mark is the case of the dye-sensitized solar cell 100 in which the metal oxide 141 is applied to the second electrode 140 by the spray method.
As described above, in the dye-sensitized solar cell 100 in which the metal oxide 141 is applied to the second electrode 140 by the spray method, compared with the case where the metal oxide 141 is applied to the second electrode 140 by the screen method, the second The drop of the metal oxide 141 from the electrode 140 is small, and the difference is particularly remarkable when the elongation exceeds 5%.
In any of the dye-sensitized solar cells 100, no disconnection was observed in the first electrode 130 and the second electrode 140 even when the elongation reached 20%.

110 第1膜材
120 第2膜材
130 第1電極
131 縦線
132 横線
140 第2電極
110 First film material 120 Second film material 130 First electrode 131 Vertical line 132 Horizontal line 140 Second electrode

Claims (12)

所定の範囲の伸びが許容された膜材である第1膜材と、
所定の範囲の伸びが許容された、前記第1膜材と所定の間隔を空けて配された、透明又は半透明の膜材である第2膜材と、
それらのいずれもが導電性を有する多数の縦線及び多数の横線を含む、前記第1膜材の前記第2膜材に臨む面に前記第1膜材と平行に固定された、メッシュ状の第1電極と、
それらの表面に色素を吸着させた金属酸化物が塗布され、且つそれらのいずれもが導電性を有する多数の縦線及び多数の横線を含む、前記第2膜材の前記第1膜材に臨む面に前記第2膜材と平行に固定された、メッシュ状の第2電極と、
光を受けて励起して、前記第2電極から外部に供給される電子を放出した前記色素に対して電子を供給するとともに、前記第1電極から電子の供給を受ける機能を有する電解質を含んでいる、前記第1膜材と、前記第2膜材との間に、前記第1電極、及び前記第2電極と接触するようにして水密に封止された電解液と、
を含む、全体としてシート状とされた色素増感型太陽電池の施工方法であって、
施工時における色素増感型太陽電池の向きを、施工後に張力の入る方向として予定されている方向に沿う線である基準線と、前記第1電極中の縦線及び横線がなす角のうちの小さい方がいずれも30°〜60°であり、且つ前記基準線と、前記第2電極中の縦線及び横線がなす角のうちの小さい方がいずれも30°〜60°となるようにする、
色素増感型太陽電池の施工方法。
A first film material that is a film material allowed to stretch in a predetermined range;
A second film material that is a transparent or translucent film material, which is allowed to extend in a predetermined range and is arranged at a predetermined interval from the first film material;
Each of them includes a large number of vertical lines and a large number of horizontal lines having electrical conductivity, and is fixed in parallel to the first film material on the surface of the first film material facing the second film material. A first electrode;
A metal oxide having a dye adsorbed on the surface thereof is applied, and all of them face the first film material of the second film material including a plurality of conductive vertical lines and a large number of horizontal lines. A mesh-like second electrode fixed to the surface in parallel with the second film material;
Including an electrolyte that is excited by receiving light to supply electrons to the dye that has emitted electrons supplied from the second electrode to the outside and also receives electrons from the first electrode. Between the first film material and the second film material, the electrolyte solution sealed in a watertight manner so as to be in contact with the first electrode and the second electrode;
A method for constructing a dye-sensitized solar cell that is generally sheet-shaped,
The direction of the dye-sensitized solar cell at the time of construction is selected from the angles formed by the reference line, which is a line along the direction in which tension is applied after construction, and the vertical and horizontal lines in the first electrode. The smaller one is 30 ° to 60 °, and the smaller one of the angles formed by the reference line and the vertical and horizontal lines in the second electrode is 30 ° to 60 °. ,
A method for constructing a dye-sensitized solar cell.
前記基準線に沿う方向に張力を入れて前記色素増感型太陽電池を施工する、
請求項1記載の色素増感型太陽電池の施工方法。
Applying the tension in the direction along the reference line to construct the dye-sensitized solar cell,
The construction method of the dye-sensitized solar cell of Claim 1.
前記色素増感型太陽電池として、前記基準線に沿う方向の前記第1膜材、及び前記第2膜材の破断伸度が3%以上のものを用いる、
請求項1記載の色素増感型太陽電池の施工方法。
As the dye-sensitized solar cell, the first film material in the direction along the reference line, and the second film material having a breaking elongation of 3% or more are used.
The construction method of the dye-sensitized solar cell of Claim 1.
所定の範囲の伸びが許容された膜材である第1膜材と、
所定の範囲の伸びが許容された、前記第1膜材と所定の間隔を空けて配された、透明又は半透明の膜材である第2膜材と、
それらのいずれもが導電性を有する多数の縦線及び多数の横線を含む、前記第1膜材の前記第2膜材に臨む面に前記第1膜材と平行に固定された、メッシュ状の第1電極と、
それらの表面に色素を吸着させた金属酸化物が塗布され、且つそれらのいずれもが導電性を有する多数の縦線及び多数の横線を含む、前記第2膜材の前記第1膜材に臨む面に前記第2膜材と平行に固定された、メッシュ状の第2電極と、
光を受けて励起して、前記第2電極から外部に供給される電子を放出した前記色素に対して電子を供給するとともに、前記第1電極から電子の供給を受ける機能を有する電解質を含んでいる、前記第1膜材と、前記第2膜材との間に、前記第1電極、及び前記第2電極と接触するようにして水密に封止された電解液と、
を含む、全体として矩形のシート状とされた色素増感型太陽電池であって、
前記色素増感型太陽電池の矩形形状の一辺である基準辺と、前記第1電極中の縦線及び横線がなす角のうちの小さい方がいずれも30°〜60°であり、且つ前記基準辺と、前記第2電極中の縦線及び横線がなす角のうちの小さい方がいずれも30°〜60°となっている、
色素増感型太陽電池。
A first film material that is a film material allowed to stretch in a predetermined range;
A second film material that is a transparent or translucent film material, which is allowed to extend in a predetermined range and is arranged at a predetermined interval from the first film material;
Each of them includes a large number of vertical lines and a large number of horizontal lines having electrical conductivity, and is fixed in parallel to the first film material on the surface of the first film material facing the second film material. A first electrode;
A metal oxide having a dye adsorbed on the surface thereof is applied, and all of them face the first film material of the second film material including a plurality of conductive vertical lines and a large number of horizontal lines. A mesh-like second electrode fixed to the surface in parallel with the second film material;
Including an electrolyte that is excited by receiving light to supply electrons to the dye that has emitted electrons supplied from the second electrode to the outside and also receives electrons from the first electrode. Between the first film material and the second film material, the electrolyte solution sealed in a watertight manner so as to be in contact with the first electrode and the second electrode;
A dye-sensitized solar cell in the form of a rectangular sheet as a whole,
The smaller one of the angles formed by the reference side which is one side of the rectangular shape of the dye-sensitized solar cell and the vertical line and the horizontal line in the first electrode is 30 ° to 60 °, and the reference The smaller one of the angles formed by the side and the vertical and horizontal lines in the second electrode is 30 ° to 60 °.
Dye-sensitized solar cell.
前記第1電極中の縦線及び横線が直交しており、且つ前記第2電極中の縦線及び横線が直交している、
請求項4記載の色素増感型太陽電池。
The vertical and horizontal lines in the first electrode are orthogonal, and the vertical and horizontal lines in the second electrode are orthogonal.
The dye-sensitized solar cell according to claim 4.
前記色素増感型太陽電池の矩形形状の隣接する2辺に沿う方向の前記第1膜材、及び前記第2膜材の破断伸度が3%以上である、
請求項4記載の色素増感型太陽電池。
The elongation at break of the first film material in the direction along two adjacent sides of the rectangular shape of the dye-sensitized solar cell and the second film material is 3% or more,
The dye-sensitized solar cell according to claim 4.
前記第1電極中の縦線及び横線がいずれも、その略全長にわたって前記第1膜材に固定されており、且つ前記第2電極中の縦線及び横線がいずれも、その略全長にわたって前記第2膜材に固定されている、
請求項4記載の色素増感型太陽電池。
Both the vertical and horizontal lines in the first electrode are fixed to the first film material over substantially the entire length, and the vertical and horizontal lines in the second electrode are both over the substantially entire length. Fixed to two membrane materials,
The dye-sensitized solar cell according to claim 4.
前記第1膜材は、樹脂又はゴム製である、
請求項4記載の色素増感型太陽電池。
The first film material is made of resin or rubber.
The dye-sensitized solar cell according to claim 4.
前記第1膜材は、繊維により形成された織物又は編物である膜基材の少なくとも一方の面を、樹脂又はゴムで被覆したものである、
請求項4記載の色素増感型太陽電池。
The first membrane material is obtained by coating at least one surface of a membrane substrate that is a woven or knitted fabric formed of fibers with a resin or rubber.
The dye-sensitized solar cell according to claim 4.
所定の範囲の伸びが許容された膜材である第1膜材の一方の面に、それらのいずれもが導電性を有する多数の縦線及び多数の横線を含む、メッシュ状の第1電極を、前記第1膜材と平行に固定する過程、
所定の範囲の伸びが許容された透明又は半透明の膜材である第2膜材の一方の面に、それらの表面に色素を吸着させた金属酸化物が塗布され、且つそれらのいずれもが導電性を有する多数の縦線及び多数の横線を含む、メッシュ状の第2電極を、前記第2膜材と平行に固定する過程、
前記第1電極が固定された前記第1膜材の周縁部と、前記第2電極が固定された前記第2膜材の周縁部とを、前記第1電極が固定された側の面と、前記第2電極が固定された側の面とを対向させた状態で、一部を除いて水密に接続する接続過程、
前記接続過程において前記第1膜材と前記第2膜材が接続されなかった部分から、前記第1膜材と前記第2膜材の間の空間に、光を受けて励起して、前記第2電極から外部に供給される電子を放出した前記色素に対して電子を供給するとともに、前記第1電極から電子の供給を受ける機能を有する電解質を含んでいる電解液を供給し、その後前記接続過程において前記第1膜材と前記第2膜材が接続されなかった部分を水密に接続する過程、
を含む、
色素増感型太陽電池の製造方法。
A mesh-shaped first electrode including a large number of vertical lines and a large number of horizontal lines, all of which are electrically conductive, on one surface of a first film material, which is a film material allowed to stretch in a predetermined range. , The process of fixing in parallel with the first film material,
One surface of the second film material, which is a transparent or translucent film material allowed to elongate within a predetermined range, is coated with a metal oxide having a dye adsorbed on the surface thereof, and both of them are Fixing a mesh-like second electrode including a plurality of conductive vertical lines and a plurality of horizontal lines in parallel with the second film material;
A peripheral portion of the first film material to which the first electrode is fixed and a peripheral portion of the second film material to which the second electrode is fixed; a surface on the side on which the first electrode is fixed; A connection process in which a part of the second electrode is fixed in a state of facing the surface, and a watertight connection is made except for a part thereof;
The first film material and the second film material are not connected in the connection process, and the light is excited in the space between the first film material and the second film material by receiving light. Electrons are supplied to the dye that has emitted electrons supplied from two electrodes to the outside, and an electrolyte containing an electrolyte having a function of receiving electrons from the first electrode is supplied, and then the connection A process of watertightly connecting a portion where the first film material and the second film material are not connected in the process;
including,
A method for producing a dye-sensitized solar cell.
前記第1膜材の一方の面に、前記第1電極を固定する過程では、前記第1電極中の縦線及び横線のいずれをも、その略全長にわたって前記第1膜材に固定し、
前記第2膜材の一方の面に、前記第2電極を固定する過程では、前記第2電極中の縦線及び横線のいずれをも、その略全長にわたって前記第2膜材に固定する、
請求項10記載の色素増感型太陽電池の製造方法。
In the process of fixing the first electrode to one surface of the first film material, both the vertical and horizontal lines in the first electrode are fixed to the first film material over substantially the entire length thereof,
In the process of fixing the second electrode to one surface of the second film material, both the vertical and horizontal lines in the second electrode are fixed to the second film material over substantially the entire length thereof.
The manufacturing method of the dye-sensitized solar cell of Claim 10.
前記第2電極に、前記金属酸化物を含む溶液をスプレーにより塗布し、その後前記溶液を乾燥させ、その後焼成することで、前記第2電極を作製する過程を更に含む、
請求項11記載の色素増感型太陽電池の製造方法。
The method further includes the step of applying the solution containing the metal oxide to the second electrode by spraying, then drying the solution, and then firing the second electrode to produce the second electrode.
The manufacturing method of the dye-sensitized solar cell of Claim 11.
JP2012273327A 2012-12-14 2012-12-14 Dye-sensitized solar cell, manufacturing method thereof, and construction method thereof Expired - Fee Related JP6112545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012273327A JP6112545B2 (en) 2012-12-14 2012-12-14 Dye-sensitized solar cell, manufacturing method thereof, and construction method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012273327A JP6112545B2 (en) 2012-12-14 2012-12-14 Dye-sensitized solar cell, manufacturing method thereof, and construction method thereof

Publications (2)

Publication Number Publication Date
JP2014120263A true JP2014120263A (en) 2014-06-30
JP6112545B2 JP6112545B2 (en) 2017-04-12

Family

ID=51174952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012273327A Expired - Fee Related JP6112545B2 (en) 2012-12-14 2012-12-14 Dye-sensitized solar cell, manufacturing method thereof, and construction method thereof

Country Status (1)

Country Link
JP (1) JP6112545B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016003303A1 (en) 2015-03-24 2016-09-29 Fanuc Corporation Numerical control with maintenance function for data stored in a nonvolatile memory or the like

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04357670A (en) * 1991-01-29 1992-12-10 Hitachi Maxell Ltd Hydride secondary battery
JP2004119306A (en) * 2002-09-27 2004-04-15 Hitachi Maxell Ltd Photoelectric conversion element and its manufacturing method
US20070017568A1 (en) * 2005-07-12 2007-01-25 Howard Berke Methods of transferring photovoltaic cells
JP2010015830A (en) * 2008-07-03 2010-01-21 Fujikura Ltd Photoelectric conversion element
JP2010073416A (en) * 2008-09-17 2010-04-02 Fujimori Kogyo Co Ltd Dye-sensitized solar cell of double-side light reception
JP2011187270A (en) * 2010-03-08 2011-09-22 Panasonic Corp Method of manufacturing electrode for lithium secondary battery, and manufacturing method of lithium secondary battery
JP2011204674A (en) * 2010-03-04 2011-10-13 Toray Ind Inc Polyester film for battery outer packaging and element for battery outer packaging
JP2012059379A (en) * 2010-09-06 2012-03-22 Toray Advanced Film Co Ltd Laminate material for secondary battery container, and secondary battery container
JP2012507841A (en) * 2008-11-05 2012-03-29 ゼファー・アクチエンゲゼルシャフト Substrates for optoelectronic devices
JP2012204046A (en) * 2011-03-24 2012-10-22 Sony Corp Photoelectric conversion device and manufacturing method thereof
JP2012221814A (en) * 2011-04-11 2012-11-12 Dainippon Printing Co Ltd Mesh electrode substrate, organic solar cell element, and organic solar cell element module

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04357670A (en) * 1991-01-29 1992-12-10 Hitachi Maxell Ltd Hydride secondary battery
JP2004119306A (en) * 2002-09-27 2004-04-15 Hitachi Maxell Ltd Photoelectric conversion element and its manufacturing method
US20070017568A1 (en) * 2005-07-12 2007-01-25 Howard Berke Methods of transferring photovoltaic cells
JP2009501448A (en) * 2005-07-12 2009-01-15 コナルカ テクノロジーズ インコーポレイテッド Photovoltaic transfer method
JP2010015830A (en) * 2008-07-03 2010-01-21 Fujikura Ltd Photoelectric conversion element
JP2010073416A (en) * 2008-09-17 2010-04-02 Fujimori Kogyo Co Ltd Dye-sensitized solar cell of double-side light reception
JP2012507841A (en) * 2008-11-05 2012-03-29 ゼファー・アクチエンゲゼルシャフト Substrates for optoelectronic devices
JP2011204674A (en) * 2010-03-04 2011-10-13 Toray Ind Inc Polyester film for battery outer packaging and element for battery outer packaging
JP2011187270A (en) * 2010-03-08 2011-09-22 Panasonic Corp Method of manufacturing electrode for lithium secondary battery, and manufacturing method of lithium secondary battery
JP2012059379A (en) * 2010-09-06 2012-03-22 Toray Advanced Film Co Ltd Laminate material for secondary battery container, and secondary battery container
JP2012204046A (en) * 2011-03-24 2012-10-22 Sony Corp Photoelectric conversion device and manufacturing method thereof
JP2012221814A (en) * 2011-04-11 2012-11-12 Dainippon Printing Co Ltd Mesh electrode substrate, organic solar cell element, and organic solar cell element module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016003303A1 (en) 2015-03-24 2016-09-29 Fanuc Corporation Numerical control with maintenance function for data stored in a nonvolatile memory or the like

Also Published As

Publication number Publication date
JP6112545B2 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
KR101001547B1 (en) A fabric solar cell and a method for preparing the same
Sfaelou et al. BiOI solar cells
JP5324558B2 (en) Counter electrode and photoelectric conversion element having the counter electrode
JP2006049311A (en) Photoreactive layer containing macro-particles
TWI401811B (en) Dye-sensitized solar cells and manufacturing method for thereof
US20130025681A1 (en) Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell using the same
US20040201878A1 (en) Electrooptic devices
JP5550540B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
Xia et al. Bifacial quasi-solid-state dye-sensitized solar cell with metal selenide M0. 85Se (M= Co, Ni) as counter electrode
KR102303020B1 (en) Transparent self-photorechargeable electrochemical device
JP6112545B2 (en) Dye-sensitized solar cell, manufacturing method thereof, and construction method thereof
JP6222634B2 (en) Energy storage type dye-sensitized solar cell
TW200921963A (en) Dye-sensitized solar cell
JP2008311121A (en) Photoelectric transfer element
TW201133877A (en) Dye-sensitized solar cell electrode and dye-sensitized solar cell
JP5398441B2 (en) Dye-sensitized photoelectric conversion element
JP6148043B2 (en) Dye-sensitized solar cell and construction method thereof
EP2790197A2 (en) Electrolyte for dye sensitized solar cell and dye sensitized solar cell using the same
JP2006252914A (en) Dye-sensitized solar cell
JP2010015830A (en) Photoelectric conversion element
JP5125860B2 (en) Method for forming titanium oxide film
JP5460159B2 (en) Dye-sensitized photoelectric conversion element
JP2017050201A (en) Redox flow battery and redox flow battery system
US20110061707A1 (en) Dye-sensitized solar cells and mobile device including the same
JP5398498B2 (en) Dye-sensitized photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170308

R150 Certificate of patent or registration of utility model

Ref document number: 6112545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees