JP2014119271A - Water - Google Patents

Water Download PDF

Info

Publication number
JP2014119271A
JP2014119271A JP2012272354A JP2012272354A JP2014119271A JP 2014119271 A JP2014119271 A JP 2014119271A JP 2012272354 A JP2012272354 A JP 2012272354A JP 2012272354 A JP2012272354 A JP 2012272354A JP 2014119271 A JP2014119271 A JP 2014119271A
Authority
JP
Japan
Prior art keywords
water
absorbance
drinking water
iodine solution
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012272354A
Other languages
Japanese (ja)
Inventor
Yoshihiro Suzuki
良博 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FRESH KK
Original Assignee
FRESH KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FRESH KK filed Critical FRESH KK
Priority to JP2012272354A priority Critical patent/JP2014119271A/en
Publication of JP2014119271A publication Critical patent/JP2014119271A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide water excellent in temporal stability of reduction force.SOLUTION: Following procedures (a)-(c) are carried out: (a) preparing iodine solution containing 70 mg of Japanese Pharmacopoeia povidone-isodine per 1 mL; (b) preparing a sample by adding and mixing 0.75 mL of the iodine solution to 100 mL of water; and (c) performing spectrometry for absorbance on wavelength of 396 nm of the sample on condition that optical path length is 10 mm. According to the measurement, the absorbance is one or less.

Description

本発明は、水に関する。   The present invention relates to water.

還元水は、五臓六腑、すなわち体に良い影響を及ぼすことが知られている。具体的には、当該還元水を飲むことで、免疫力を向上させることができたり、生活習慣病、疲労または老化等を予防することができる。これは、還元水の還元力(抗酸化能)により及ぼされる効果であるとされている。   Reduced water is known to have a good influence on the body, that is, the body. Specifically, by drinking the reduced water, immunity can be improved, lifestyle diseases, fatigue or aging can be prevented. This is an effect exerted by the reducing power (antioxidant ability) of the reduced water.

特許文献1〜3には、このような体質改善機能を有する水が提案されている。   Patent Documents 1 to 3 propose water having such a constitution improving function.

特許文献1には、溶存酸素量が3.0ppm以下であり、かつ酸化還元電位が−300mV以下のアルカリ性電解水が開示されている。こうすることで、医療的効果が十分に期待できると記載されている。   Patent Document 1 discloses alkaline electrolyzed water having a dissolved oxygen amount of 3.0 ppm or less and a redox potential of −300 mV or less. It is described that the medical effect can be sufficiently expected by doing so.

特許文献2には、pH8未満のときの酸化還元電位が−100mV以下の還元性電解水が開示されている。こうすることで、還元性能に優れた水とすることができると記載されている。   Patent Document 2 discloses reducing electrolyzed water having an oxidation-reduction potential of -100 mV or less when the pH is less than 8. By doing so, it is described that water having excellent reduction performance can be obtained.

特許文献3には、常圧下で酸化還元電位が−10mV以下−2000mV以上の清涼飲料水が開示されている。こうすることで、十分な還元性を有し、日常的に摂取することができると記載されている。   Patent Document 3 discloses a soft drink having an oxidation-reduction potential of −10 mV or less and −2000 mV or more under normal pressure. By doing this, it is described that it has sufficient reducing properties and can be taken on a daily basis.

特開平9−99287号公報JP-A-9-99287 特開2000−33377号公報JP 2000-33377 A 特開2004−344862号公報JP 2004-344862 A 特開2011−25217号公報JP 2011-25217 A

しかしながら、引用文献1〜3に記載の水では、製造されてから消費者が喫飲するまでの、ペットボトルなどの容器に充填する際、およびその後の輸送中等の流通・保存時に、還元力が低下することがある。   However, the water described in the cited documents 1 to 3 has a reducing power when it is filled into a container such as a plastic bottle until it is consumed by a consumer and during distribution / storage such as subsequent transportation. May decrease.

そこで、本発明は、還元力の経時安定性に優れる水を提供する。   Therefore, the present invention provides water that is excellent in reducing power stability over time.

本発明者らは、製造されてから消費者が喫飲するまでの流通・保存時に、水の還元力が低下する原因について検討した。その結果、これまでの水の還元力は、例えば、充填された容器中に徐々に浸透してくる空気と接触することによって、徐々に低下してしまうという知見を得た。   The present inventors have examined the cause of the reduction of water reducing power during distribution and storage from production to consumption by consumers. As a result, it has been found that the reducing power of water so far is gradually reduced by, for example, coming into contact with air gradually penetrating into the filled container.

そこで、本発明者らは、還元力の経時安定性に優れる水を提供すべく、鋭意検討した。その結果、100mLの水に対し、0.75mLのヨウ素溶液を添加混合した溶液の、光路長10mmかつ波長396nmにおける吸光度という尺度が、水の還元力の経時安定性を評価するための設計指針として有効であることを見出し、本発明に至った。ここで、ヨウ素溶液とは、当該ヨウ素溶液1mL中に、日局ポピドンヨード70mgを含む溶液である。   Therefore, the present inventors diligently studied to provide water having excellent reducing power stability over time. As a result, a measure of absorbance at an optical path length of 10 mm and a wavelength of 396 nm of a solution obtained by adding 0.75 mL of iodine solution to 100 mL of water is a design guideline for evaluating the temporal stability of the reducing power of water. As a result, the present invention was found. Here, the iodine solution is a solution containing 70 mg of JP popidone iodine in 1 mL of the iodine solution.

本発明によれば、以下の手順(a)〜(c)
(a)1mL中に日局ポピドンヨード70mgを含むヨウ素溶液を準備し、
(b)水100mLに対し、0.75mLの前記ヨウ素溶液を添加混合して試料を調製し、
(c)前記試料の波長396nmにおける吸光度を、光路長10mmの条件で吸光度測定を行う、
により測定した前記吸光度が1以下である、水が提供される。
According to the present invention, the following procedures (a) to (c)
(A) Prepare an iodine solution containing 70 mg of JP popidone iodine in 1 mL;
(B) A sample is prepared by adding and mixing 0.75 mL of the iodine solution to 100 mL of water,
(C) The absorbance at a wavelength of 396 nm of the sample is measured under the condition of an optical path length of 10 mm.
Water having the absorbance measured by 1 is 1 or less.

本発明によれば、還元力の経時安定性に優れる水を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the water which is excellent in the temporal stability of reducing power can be provided.

本実施形態に係る水は、以下の手順(a)〜(c)
(a)1mL中に日局ポピドンヨード70mgを含むヨウ素溶液を準備し、
(b)当該水100mLに対し、0.75mLの前記ヨウ素溶液を添加混合して試料を調製し、
(c)前記試料の波長396nmにおける吸光度を、光路長10mmの条件で吸光度測定を行う、
により測定した吸光度が1以下となる構成となっている。こうすることで、経時的な還元力の安定性に優れた水を得ることができる。なお、吸光度測定の測定温度は、特に限定されないが、例えば、25℃という測定条件において実施される。また、吸光度測定に用いるセルとしては、例えば、石英セルを用いる。
The water according to this embodiment includes the following procedures (a) to (c).
(A) Prepare an iodine solution containing 70 mg of JP popidone iodine in 1 mL;
(B) A sample is prepared by adding and mixing 0.75 mL of the iodine solution to 100 mL of the water,
(C) The absorbance at a wavelength of 396 nm of the sample is measured under the condition of an optical path length of 10 mm.
The absorbance measured by 1 is 1 or less. By doing so, it is possible to obtain water excellent in reducing power stability over time. In addition, although the measurement temperature of an absorbance measurement is not specifically limited, For example, it implements on the measurement conditions of 25 degreeC. As a cell used for absorbance measurement, for example, a quartz cell is used.

ここで、ヨウ素溶液とは、当該ヨウ素溶液1mL中に、日局ポピドンヨード70mgを含む溶液である。また、特に限定されるものではないが、このヨウ素溶液には、有効ヨウ素7mgが含まれていてもよい。なお、ヨウ素溶液のpHは、例えば、5程度である。   Here, the iodine solution is a solution containing 70 mg of JP popidone iodine in 1 mL of the iodine solution. Moreover, although not specifically limited, 7 mg of effective iodine may be contained in this iodine solution. The pH of the iodine solution is about 5, for example.

本実施形態に係る水は、体内から体に良い影響を与える飲料水であってもよいし、体外から体に良い影響を与える化粧水であってもよい。すなわち、本実施形態に係る水によれば、体内および体外のどちらからでも体に良い影響を与えることができる。
以下、本発明の実施形態について、ペットボトル詰め飲料水を例に挙げて説明する。
The water which concerns on this embodiment may be the drinking water which has a good influence on a body from the body, and the lotion which has a good influence on a body from the outside. That is, according to the water according to the present embodiment, the body can be positively influenced from both inside and outside the body.
Hereinafter, an embodiment of the present invention will be described by taking PET bottled drinking water as an example.

<飲料水>
まず、本実施形態と従来の飲料水の違いについて以下に説明する。
<Drinking water>
First, the difference between this embodiment and conventional drinking water will be described below.

従来、身体に良い飲料水として知られている還元水は、200mV以下の酸化還元電位(標準水素電極(SHE)基準:以下、同じ。)を有する水のことを示している(例えば、特許文献4)。   Conventionally, reduced water known as a good drinking water is water having an oxidation-reduction potential of 200 mV or less (standard hydrogen electrode (SHE) standard: the same applies hereinafter) (for example, Patent Documents). 4).

しかしながら従来の飲料水の還元力は、上記発明が解決しようとする課題の項で説明したように、製造されてから消費者が喫飲するまでの、ペットボトルなどの容器に充填する際、およびその後の輸送中等の流通・保存時に、低下してしまう。この原因としては、たとえば、上記流通・保存時において、容器と蓋との隙間及び容器の表面と蓋の表面から入り込んだ微量の空気が、製造された飲料水と接触することによって、酸化還元反応を生じることが考えられる。すなわち、流通・保存時に容器内に入り込んだ空気が、飲料水と接触することによって、当該飲料水の還元力を低下させているものと考えられる。   However, as described in the section of the problem to be solved by the present invention, the conventional drinking water reducing power is filled in a container such as a plastic bottle after being manufactured and consumed by a consumer, and It will drop during distribution and storage during subsequent transportation. This may be caused by, for example, the oxidation-reduction reaction caused by the contact between the gap between the container and the lid and the minute amount of air that has entered from the surface of the container and the lid in contact with the produced drinking water during distribution and storage. It is conceivable that That is, it is considered that the reducing power of the drinking water is reduced by the air that has entered the container during distribution / storage contacting the drinking water.

これに対し、本実施形態の飲料水によれば、100mLの飲料水に対し、0.75mLのヨウ素溶液を添加混合した溶液(以下、「検査溶液」ともいう。)の、光路長10mmかつ波長396nmにおける吸光度が上記特定の条件を満たすため、還元力の経時安定性に優れた飲料水を得ることができる。この理由は必ずしも明らかではないが、ヨウ素溶液を添加混合した検査溶液の、光路長10mmかつ波長396nmにおける吸光度を特定の範囲とすることによって、流通・保存時に容器内に入り込んだ空気が、当該飲料水と接触して還元力の低下が生じたとしても、十分な還元力を有することができるものと考えられる。   On the other hand, according to the drinking water of this embodiment, the optical path length of 10 mm and the wavelength of a solution (hereinafter also referred to as “test solution”) obtained by adding and mixing 0.75 mL of iodine solution to 100 mL of drinking water. Since the absorbance at 396 nm satisfies the above-mentioned specific condition, it is possible to obtain drinking water with excellent reducing power stability over time. The reason for this is not necessarily clear, but by setting the absorbance at a wavelength of 396 nm and the optical path length of 10 mm of the test solution to which the iodine solution is added and mixed, the air that has entered the container at the time of distribution / storage is the beverage Even if the reduction power is reduced due to contact with water, it is considered that the reduction power can be sufficient.

本実施形態において、ヨウ素溶液を添加混合した検査溶液の、光路長10mmかつ波長396nmにおける吸光度は、好ましくは1以下であり、さらに好ましくは0.5以下である。こうすることにより、より一層還元力の経時安定性に優れた飲料水を得ることができる。また、本実施形態に係る飲料水のpHは、7以上であるとよい。   In the present embodiment, the absorbance at an optical path length of 10 mm and a wavelength of 396 nm of a test solution to which an iodine solution is added and mixed is preferably 1 or less, and more preferably 0.5 or less. By doing so, it is possible to obtain drinking water that is further excellent in the temporal stability of the reducing power. Moreover, the pH of the drinking water which concerns on this embodiment is good in it being 7 or more.

また、本実施形態に係る飲料水の酸化還元電位は、200mV以下であることが好ましく、80mV以下であるとさらに好ましい。こうすることにより、より一層還元力の経時安定性に優れたものとすることができるとともに、味という観点において優れた飲料水を得ることができる。なお、本実施形態に係る酸化還元電位は、標準水素電極を用いて測定した値を基準としている。   Moreover, it is preferable that the oxidation-reduction potential of the drinking water which concerns on this embodiment is 200 mV or less, and it is further more preferable in it being 80 mV or less. By doing so, it is possible to further improve the temporal stability of the reducing power, and it is possible to obtain drinking water that is excellent in terms of taste. The redox potential according to the present embodiment is based on a value measured using a standard hydrogen electrode.

また、本実施形態に係る飲料水の硬度は、好ましくは、15mg/L以上であり、さらに好ましくは30mg/L以上である。こうすることにより、より一層還元力の経時安定性に優れたものとすることができるとともに、飲みやすさという観点において優れた飲料水を得ることができる。なお、上限値については、好ましくは、1000mg/L以下であり、さらに好ましくは、500mg/L以下である。こうすることにより、より一層還元力の経時安定性に優れたものとすることができるとともに、飲みやすさという観点において優れた飲料水を得ることができる。なお、本実施形態において水の硬度は、WHO(世界保健機関)の基準によるものであり、水中のマグネシウムイオンとカルシウムイオンの含有量を表す。本実施形態において水の硬度は、水中のマグネシウムイオン濃度およびカルシウムイオン濃度を炭酸カルシウム濃度に換算したものであり、下記式により算出される。
硬度=(Caイオン濃度×2.5+Mgイオン濃度×4)mg/L
また、水中のマグネシウムイオン濃度およびカルシウムイオン濃度は、たとえばEDTA法により測定される。
Moreover, the hardness of the drinking water according to this embodiment is preferably 15 mg / L or more, and more preferably 30 mg / L or more. By doing so, it is possible to further improve the temporal stability of the reducing power, and it is possible to obtain excellent drinking water from the viewpoint of ease of drinking. In addition, about an upper limit, Preferably, it is 1000 mg / L or less, More preferably, it is 500 mg / L or less. By doing so, it is possible to further improve the temporal stability of the reducing power, and it is possible to obtain excellent drinking water from the viewpoint of ease of drinking. In addition, in this embodiment, the hardness of water is based on a WHO (World Health Organization) standard, and represents the content of magnesium ions and calcium ions in water. In this embodiment, the hardness of water is obtained by converting the magnesium ion concentration and calcium ion concentration in water into calcium carbonate concentration, and is calculated by the following equation.
Hardness = (Ca ion concentration × 2.5 + Mg ion concentration × 4) mg / L
Further, the magnesium ion concentration and the calcium ion concentration in water are measured by, for example, the EDTA method.

また、本実施形態において、製造後360日後の飲料水100mLに対し、0.75mLのヨウ素溶液を添加混合した検査溶液の、光路長10mmかつ波長396nmにおける吸光度は、好ましくは1.0以下であり、さらに好ましくは0.5以下である。こうすることにより、より一層経時安定性に優れた還元力を有する飲料水を得ることができる。   In this embodiment, the absorbance at an optical path length of 10 mm and a wavelength of 396 nm of a test solution obtained by adding and mixing 0.75 mL of iodine solution to 100 mL of drinking water 360 days after production is preferably 1.0 or less. More preferably, it is 0.5 or less. By doing so, it is possible to obtain drinking water having a reducing power that is more excellent in stability over time.

<水の製造方法>
次に、本実施形態に係る水の製造方法について説明する。
本実施形態に係る水は、たとえば、還元剤を用いて作製することができる。還元剤を用いて水を作製すること自体は従来技術においても行われてきた。しかし、本実施形態に係る水は、還元剤の材料、形態等の各因子を高度に制御することで初めて得ることができる。本実施形態に係る還元力の経時安定性に優れ、かつヨウ素溶液を混合した際に吸光度の小さい水を得るためには、これらの因子を高度に制御することが特に重要となる。
以下、本実施形態に係る水の製造方法の一例を示す。ただし、本実施形態の水の製造方法は、以下の例に限定されない。
<Water production method>
Next, a method for producing water according to the present embodiment will be described.
The water which concerns on this embodiment can be produced using a reducing agent, for example. The production of water using a reducing agent itself has also been performed in the prior art. However, the water according to the present embodiment can be obtained for the first time by highly controlling each factor such as the material and form of the reducing agent. In order to obtain water with low absorbance when mixing iodine solution with excellent reduction power over time according to the present embodiment, it is particularly important to highly control these factors.
Hereinafter, an example of the manufacturing method of the water which concerns on this embodiment is shown. However, the water production method of the present embodiment is not limited to the following example.

以下に説明する水の製造方法は、カキ殻等の貝殻類と天然ゼオライトとを特殊な熱処理と粉体の水温処理により形成された還元剤を用いるものである。   The water production method described below uses a reducing agent formed by special heat treatment and powder water temperature treatment of shellfish such as oyster shells and natural zeolite.

還元剤としては、例えば、カキ殻等の貝殻類と天然ゼオライトとをそれぞれ熱処理して得られる粉体を、混合した後、イオン交換、乾燥、そして焼成したものを用いる。   As the reducing agent, for example, powder obtained by heat-treating shellfish such as oyster shell and natural zeolite is mixed, ion-exchanged, dried and calcined.

さらに具体的には、例えば、以下の方法を用いて得られた還元剤を用いる。
まず、カキ殻等の二枚貝類よりなる貝殻を、電気炉を用いて焼成する。例えば、550℃で3時間焼成した後、700℃で5時間焼成し、さらに840℃で8時間加熱焼成する。次に、焼成して得られたものを回転ドラム等によって、10ミクロン程度の貝殻の粉体が得られる。
More specifically, for example, a reducing agent obtained by the following method is used.
First, shells made of bivalves such as oyster shells are fired using an electric furnace. For example, after baking at 550 ° C. for 3 hours, baking at 700 ° C. for 5 hours, and further heating and baking at 840 ° C. for 8 hours. Next, a shell powder of about 10 microns is obtained by baking the product obtained by baking.

一方、天然ゼオライトを、熱処理する。例えば、250℃で2時間熱処理した後、750℃で5時間熱処理する。その後、得られたものを加工することによって、10ミクロン程度のゼオライト粉体が得られる。   On the other hand, natural zeolite is heat-treated. For example, after heat treatment at 250 ° C. for 2 hours, heat treatment is performed at 750 ° C. for 5 hours. Thereafter, the obtained product is processed to obtain a zeolite powder of about 10 microns.

次に、得られた貝殻の粉体とゼオライト粉体を、混合する。このとき、貝殻とゼオライトの混合比率は、特に限定されないが、例えば、貝殻を総量の90%、ゼオライトを総量の10%とする。   Next, the obtained shell powder and zeolite powder are mixed. At this time, the mixing ratio of the shell and zeolite is not particularly limited. For example, the shell is 90% of the total amount and the zeolite is 10% of the total amount.

次に、得られた混合物を水温90℃で平衡温度を維持したまま、8時間イオン交換させる。その後、イオン交換した混合物を、含水比3%になるまで乾燥し、電気炉で840℃、5時間焼成する。以上の手順により還元剤が得られる。   Next, the obtained mixture is subjected to ion exchange for 8 hours while maintaining an equilibrium temperature at a water temperature of 90 ° C. Thereafter, the ion-exchanged mixture is dried to a water content ratio of 3% and baked in an electric furnace at 840 ° C. for 5 hours. A reducing agent is obtained by the above procedure.

また、還元剤は、上記方法で得られたものに限定されるものではなく、例えば、カキ殻等の貝殻類と天然ゼオライトとをそれぞれ熱処理して得られる粉体を、混合した後、イオン交換、乾燥、そして焼成したものであればよい。   Further, the reducing agent is not limited to those obtained by the above-mentioned method. For example, powders obtained by heat-treating shellfish such as oyster shells and natural zeolite are mixed and then ion-exchanged. Any material that has been dried, fired, and so on may be used.

次に、得られた還元剤を、水に添加する。具体的には、以下の方法を用いる。
まず、粉末状の還元剤を水に一定の配合で添加した後、撹拌する。こうすることにより、還元剤が水との接触面積を最大限に大きくすることができる。また、その撹拌時間内に還元剤と水の間でイオン交換が行われ、水に還元力を移行させることができる。
こうすることによって、本実施形態に係る水は、製造される。
Next, the obtained reducing agent is added to water. Specifically, the following method is used.
First, a powdery reducing agent is added to water in a certain formulation and then stirred. By doing so, the reducing agent can maximize the contact area with water. Moreover, ion exchange is performed between the reducing agent and water within the stirring time, and the reducing power can be transferred to water.
By doing so, the water according to the present embodiment is manufactured.

以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。   As mentioned above, although embodiment of this invention was described, these are illustrations of this invention and various structures other than the above are also employable.

以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。なお、本実施例では、以下、飲料水を例に挙げて説明する。   Hereinafter, although an example and a comparative example explain the present invention, the present invention is not limited to these. In the present embodiment, hereinafter, drinking water will be described as an example.

(実施例)
まず、粉末状の還元剤を以下に説明する方法で調製した。
カキ殻等の二枚貝類よりなる貝殻を、電気炉を用いて、550℃で3時間焼成した後、700℃で5時間焼成し、さらに840℃で8時間加熱焼成した。次に、焼成して得られたものを回転ドラムによって加工することで、10ミクロン程度の貝殻の粉体として得た。
(Example)
First, a powdery reducing agent was prepared by the method described below.
Shells made of bivalves such as oyster shells were fired at 550 ° C. for 3 hours using an electric furnace, then fired at 700 ° C. for 5 hours, and further heated and fired at 840 ° C. for 8 hours. Next, what was obtained by baking was processed with a rotating drum to obtain shell powder of about 10 microns.

また、天然ゼオライトを、250℃で2時間熱処理した後、750℃で5時間熱処理した。次に、得られたものを回転ドラムによって加工することで、10ミクロン程度のゼオライト粉体として得た。   The natural zeolite was heat treated at 250 ° C. for 2 hours and then heat treated at 750 ° C. for 5 hours. Next, the obtained product was processed with a rotating drum to obtain a zeolite powder of about 10 microns.

次に、得られた貝殻の粉体とゼオライト粉体を、混合した。このとき、貝殻とゼオライトの混合比率は貝殻を総量の90%、ゼオライトを総量の10%とした。   Next, the obtained shell powder and zeolite powder were mixed. At this time, the mixing ratio of the shell and the zeolite was 90% of the total amount of the shell and 10% of the total amount of the zeolite.

次に、得られた混合物を水温90℃で平衡温度を維持したまま、8時間イオン交換させた。次に、イオン交換した混合物を、含水比3%になるまで乾燥し、電気炉で840℃、5時間焼成することにより還元剤を得た。   Next, the obtained mixture was subjected to ion exchange for 8 hours while maintaining an equilibrium temperature at a water temperature of 90 ° C. Next, the ion-exchanged mixture was dried to a water content ratio of 3% and baked in an electric furnace at 840 ° C. for 5 hours to obtain a reducing agent.

粉末状の還元剤を水1000mlに対して0.5g添加し、1時間撹拌を行った。その後、還元剤を除去(ろ過)して実施例に記述した飲料水を得た。
以下に示す測定及び評価では、この飲料水を30日間保存したものを用いた。
0.5 g of powdery reducing agent was added to 1000 ml of water and stirred for 1 hour. Thereafter, the reducing agent was removed (filtered) to obtain the drinking water described in the examples.
In the measurement and evaluation shown below, this drinking water was stored for 30 days.

(比較例1〜9)
比較例に用いた飲料水は、市販されている飲料水を用いた(市販飲料水1〜9)。
(Comparative Examples 1-9)
The drinking water used for the comparative example used the drinking water marketed (commercial drinking water 1-9).

実施例および比較例の飲料水に対し、以下に示す測定及び評価を行った。   The measurement and evaluation shown below were performed on the drinking water of Examples and Comparative Examples.

(評価項目)
吸光度滴定:飲料水100mLに対し、0.75mLのヨウ素溶液を添加混合した溶液の、光路長10mmかつ波長396nmにおける吸光度を測定した。なお、ヨウ素溶液としては、イソジンガーグル(明治製菓社製,ヨウ素溶液1mL中に日局ポピドンヨード70mg(有効ヨウ素7mg)含有)を用いた。なお、このヨウ素溶液には、エタノール、1−メントールおよびサッカリンNa香料などの添加物がさらに含まれている。吸光度測定は、分光光度計として「UV−1800」(島津製作所(株)社製)を用いた。なお、吸光度測定は、石英セルを用いて25℃という測定条件において実施された。
(Evaluation item)
Absorbance titration: The absorbance of a solution obtained by adding and mixing 0.75 mL of iodine solution to 100 mL of drinking water was measured at an optical path length of 10 mm and a wavelength of 396 nm. As the iodine solution, isodinger gargle (manufactured by Meiji Seika Co., Ltd., containing 70 mg of Japanese popidone iodine (effective iodine 7 mg) in 1 mL of iodine solution) was used. The iodine solution further contains additives such as ethanol, 1-menthol and saccharin Na fragrance. In the absorbance measurement, “UV-1800” (manufactured by Shimadzu Corporation) was used as a spectrophotometer. The absorbance measurement was performed using a quartz cell under measurement conditions of 25 ° C.

ヨウ素溶液滴定:飲料水100mLに対し、0.75mLのヨウ素溶液を添加混合した溶液の色を観察し、以下の基準に従い評価した。 Iodine solution titration: The color of a solution obtained by adding and mixing 0.75 mL of iodine solution to 100 mL of drinking water was observed and evaluated according to the following criteria.

◎:無色透明である。
×:ベージュあるいは薄い黄色である。
□:黄色である。
A: Colorless and transparent.
X: Beige or light yellow.
□: Yellow.

酸化還元電位測定:実施例および比較例1−3に係る飲料水100mL中に、ORP電極(HORIBA社製ORP電極9300−10D)を挿入してORP値を測定した。 Oxidation-reduction potential measurement: An ORP electrode (ORP electrode 9300-10D manufactured by HORIBA) was inserted into 100 mL of drinking water according to Examples and Comparative Examples 1-3, and ORP values were measured.

pH測定: 実施例および比較例1−9に係る飲料水100mL中に、pH測定装置(アズワン株式会社製 PH510型)の端子を挿入してpHを測定した。 pH measurement: A terminal of a pH measuring device (PH510 type, manufactured by ASONE Corporation) was inserted into 100 mL of drinking water according to Examples and Comparative Examples 1-9, and pH was measured.

硬度測定:水の硬度は、水中のマグネシウムイオン濃度およびカルシウムイオン濃度を炭酸カルシウム濃度に換算したものであり、下記式により算出した。なお、水中のマグネシウムイオン濃度およびカルシウムイオン濃度は、EDTA法により測定された結果を用いた。
硬度=(Caイオン濃度×2.5+Mgイオン濃度×4)mg/L
Hardness measurement: The hardness of water is calculated by converting the magnesium ion concentration and calcium ion concentration in water into calcium carbonate concentration, and was calculated by the following formula. In addition, the result measured by EDTA method was used for the magnesium ion concentration and calcium ion concentration in water.
Hardness = (Ca ion concentration × 2.5 + Mg ion concentration × 4) mg / L

上記評価項目に関する評価結果を、以下の表1および2に各飲料水の賞味期限と共に示す。   The evaluation results regarding the above evaluation items are shown in Tables 1 and 2 below together with the expiration date of each drinking water.

Figure 2014119271
Figure 2014119271

Figure 2014119271
Figure 2014119271

表1および2からも分かるように、実施例1の飲料水は、いずれも比較例の飲料水と比べて還元力の経時安定性に優れていた。   As can be seen from Tables 1 and 2, the drinking water of Example 1 was superior in the temporal stability of the reducing power as compared with the drinking water of the comparative example.

Claims (6)

以下の手順(a)〜(c)
(a)1mL中に日局ポピドンヨード70mgを含むヨウ素溶液を準備し、
(b)水100mLに対し、0.75mLの前記ヨウ素溶液を添加混合して試料を調製し、
(c)前記試料の波長396nmにおける吸光度を、光路長10mmの条件で吸光度測定を行う、
により測定した前記吸光度が1以下である、水。
The following procedures (a) to (c)
(A) Prepare an iodine solution containing 70 mg of JP popidone iodine in 1 mL;
(B) A sample is prepared by adding and mixing 0.75 mL of the iodine solution to 100 mL of water,
(C) The absorbance at a wavelength of 396 nm of the sample is measured under the condition of an optical path length of 10 mm.
Water whose absorbance measured by is 1 or less.
pHが7以上である、請求項1に記載の水。   The water according to claim 1, wherein the pH is 7 or more. 酸化還元電位が200mV以下である、請求項1または2に記載の水。   The water according to claim 1 or 2, wherein the redox potential is 200 mV or less. 硬度が15mg/L以上1000mg/L以下である、請求項1乃至3のいずれか一項に記載の水。   The water according to any one of claims 1 to 3, having a hardness of 15 mg / L or more and 1000 mg / L or less. 飲料水として用いられる、請求項1乃至4のいずれか一項に記載の水。   The water according to any one of claims 1 to 4, which is used as drinking water. 化粧水として用いられる、請求項1乃至4のいずれか一項に記載の水。   The water according to any one of claims 1 to 4, which is used as a skin lotion.
JP2012272354A 2012-12-13 2012-12-13 Water Pending JP2014119271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012272354A JP2014119271A (en) 2012-12-13 2012-12-13 Water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012272354A JP2014119271A (en) 2012-12-13 2012-12-13 Water

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018023923A Division JP2018091860A (en) 2018-02-14 2018-02-14 Manufacturing method of water

Publications (1)

Publication Number Publication Date
JP2014119271A true JP2014119271A (en) 2014-06-30

Family

ID=51174242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012272354A Pending JP2014119271A (en) 2012-12-13 2012-12-13 Water

Country Status (1)

Country Link
JP (1) JP2014119271A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258879A (en) * 1994-03-24 1995-10-09 Sumitomo Metal Mining Co Ltd Analyzer of additive in copper electrolyte
JP2002350420A (en) * 2001-05-29 2002-12-04 Nippon Torimu:Kk Detection method and quantitative analysis method of hydrogen radical
JP2003301288A (en) * 2002-04-10 2003-10-24 Nippon Torimu:Kk Electrolytically reduced water containing colloid and manufacturing method therefor
JP2004230370A (en) * 2002-12-05 2004-08-19 Wataru Murota Reduced water and manufacturing method therefor
JP2006122751A (en) * 2004-10-26 2006-05-18 Kenkoku Yu Method for producing negatively ionized water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258879A (en) * 1994-03-24 1995-10-09 Sumitomo Metal Mining Co Ltd Analyzer of additive in copper electrolyte
JP2002350420A (en) * 2001-05-29 2002-12-04 Nippon Torimu:Kk Detection method and quantitative analysis method of hydrogen radical
JP2003301288A (en) * 2002-04-10 2003-10-24 Nippon Torimu:Kk Electrolytically reduced water containing colloid and manufacturing method therefor
JP2004230370A (en) * 2002-12-05 2004-08-19 Wataru Murota Reduced water and manufacturing method therefor
JP2006122751A (en) * 2004-10-26 2006-05-18 Kenkoku Yu Method for producing negatively ionized water

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
数野千恵子、外2名: "「簡易検査キットによる電解水中の残留塩素の測定」", 工業用水, vol. 第469号, JPN6016028284, 20 October 1997 (1997-10-20), pages 44 - 47, ISSN: 0003764898 *

Similar Documents

Publication Publication Date Title
JP7265871B2 (en) Method for producing aqueous solution containing chlorous acid for use as disinfectant
CN110367275A (en) A kind of thimerosal and preparation method thereof
JP2015016408A (en) Acidic electrolyzed water, manufacturing method therefor, and cleanser and disinfectant containing said acidic electrolyzed water
JP2023171397A (en) Method for producing chlorous acid water using material obtained by salt electrolysis as raw material
CN112203632B (en) Stabilized redox compositions and methods of use
CN113272255B (en) Silicon ion complex organized with carboxylic acid, method for preparing the same, and product using the same
WO2009136610A1 (en) Processed tea product sustaining green coloration and method of producing the same
JP2018091860A (en) Manufacturing method of water
JP2014119271A (en) Water
TW200820908A (en) Manufacturing method for oxygen egg shell calcium powder
CN111658560A (en) Powerful private part killing lotion and preparation method thereof
CN116194567A (en) Composition having reducing property
WO2014037810A2 (en) Acidic electrolyzed water, and manufacturing method for same
KR20160134609A (en) The compositions for hydrogen emitting
CN105748372A (en) Persimmon leaf-containing emulsified type whitening cleaning cream
WO2006018990A1 (en) Dichloroisocyanuric acid salt composition with high storage stability
JP7082417B2 (en) Food composition
JP2021017418A (en) Vitamin c preparation that can remove residual chlorine in tap water
JP2001302530A (en) Reduction type antioxidant and method for producing the same
UA121752U (en) COMPOSITION OF INGREDIENTS FOR PREPARATION OF PROCESSING MIXERS IN CONFECTIONERY MANUFACTURING
UA110352U (en) COMPOSITION OF SYRUP FOR DETERMINATION OF CONFECTIONERY
JPS61247366A (en) Sterilization of non-heated food
US10259712B2 (en) Method of stabilizing compounds in water, water compositions thereby, and articles containing said water compositions
KR200379880Y1 (en) Nano silver contain aluminium foil
CN106118903A (en) A kind of Flos Rosae Rugosae liquid detergent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180214

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180221

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180323