JP2014118512A - Method for manufacturing amphoteric ion exchange resin - Google Patents

Method for manufacturing amphoteric ion exchange resin Download PDF

Info

Publication number
JP2014118512A
JP2014118512A JP2012275757A JP2012275757A JP2014118512A JP 2014118512 A JP2014118512 A JP 2014118512A JP 2012275757 A JP2012275757 A JP 2012275757A JP 2012275757 A JP2012275757 A JP 2012275757A JP 2014118512 A JP2014118512 A JP 2014118512A
Authority
JP
Japan
Prior art keywords
resin
ion exchange
weight
amphoteric ion
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012275757A
Other languages
Japanese (ja)
Inventor
Shinji Sato
真治 佐藤
Yoshimitsu Tada
芳光 多田
Miyuki Sako
幸 酒匂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2012275757A priority Critical patent/JP2014118512A/en
Publication of JP2014118512A publication Critical patent/JP2014118512A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simple method for manufacturing an amphoteric ion exchange resin applicable to a wide range of resin particles.SOLUTION: The problem is solved with a method for manufacturing an amphoteric ion exchange resin by reacting a polymerizable monomer having an amphoteric ion exchange group with a resin made by polymerizing a polymerizable monomer having a carbon-hydrogen bond.

Description

本発明は、炭素−水素結合を有する重合性単量体が重合した樹脂(重合体)に対し、両イオン性官能基導入剤を反応させることを含む、陽イオン性官能基及び陰イオン性官能基を有する樹脂(両性イオン交換樹脂)の製造方法に関するものである。   The present invention relates to a cationic functional group and an anionic functional group comprising reacting a resin (polymer) obtained by polymerizing a polymerizable monomer having a carbon-hydrogen bond with an amphoteric functional group introducing agent. The present invention relates to a method for producing a group-containing resin (amphoteric ion exchange resin).

両性イオン交換樹脂は、クロマトグラフィー用充填剤(特許文献1及び特許文献2)、レオロジーコントロール剤、艶消し剤等の塗料、インク及び接着剤等の化学分野、LCDスペーサー、銀塩フィルム用表面改質剤、磁気テープ用フィルム改質剤及び感熱紙走行安定剤等の電子工業分野、免疫測定を利用した体外診断薬用微粒子等の医療分野、滑り剤及び体質顔料等の化粧品分野、そして、不飽和ポリエステル等の樹脂用低収縮化剤、紙、歯科材料、アンチブロッキング剤、光拡散剤、マット化剤及び樹脂改質剤等の一般工業分野で使用されている。   Amphoteric ion-exchange resins are used in chromatography fields (Patent Document 1 and Patent Document 2), rheology control agents, paints such as matting agents, chemical fields such as inks and adhesives, LCD spacers, surface modification for silver salt films. Electronic industry such as pesticides, film modifiers for magnetic tapes and thermal paper running stabilizers, medical fields such as fine particles for in vitro diagnostics using immunoassay, cosmetics such as slip agents and extender pigments, and unsaturated It is used in general industrial fields such as low shrinkage agents for resins such as polyester, paper, dental materials, antiblocking agents, light diffusing agents, matting agents, and resin modifiers.

両性イオン交換樹脂は、その表面に陰イオン性官能基と陽イオン性官能基が化学結合により導入されたものである。従来、両性イオン交換樹脂は、単量体を重合して製造した樹脂にハロゲン化アルキルを導入後、2級アミンによるアミノ化を経てアルキルスルトンを反応させる方法(特許文献3)、導入した官能基(ハロゲン化アルキル)に更にアミノ酸エステルを導入後加水分解する方法(特許文献4)、樹脂にアゾ基を導入後、両性イオン交換基を有する重合性単量体をグラフト重合させる方法(特許文献5)によって製造されている。   The amphoteric ion exchange resin has an anionic functional group and a cationic functional group introduced on its surface by chemical bonding. Conventionally, an amphoteric ion exchange resin is a method in which an alkyl halide is introduced into a resin produced by polymerizing a monomer and then reacted with an alkyl sultone through amination with a secondary amine (Patent Document 3), and the introduced functional group. A method in which an amino acid ester is further introduced into (halogenated alkyl) and then hydrolyzed (Patent Document 4), and an azo group is introduced into a resin and then a polymerizable monomer having an amphoteric ion exchange group is graft-polymerized (Patent Document 5). ).

上述した従来技術のうち、陽イオン性官能基と陰イオン性官能基を分けて導入する製造方法は、工程数が多いため、製造に要する時間が長く、しかも煩雑である。また陽イオン性官能基の導入量と陰イオン性官能基の導入量のバランスを取ることも難しく、電気的に中性な(正電荷と負電荷が等量である)両性イオン交換樹脂を製造することが困難である。電気的な中性が保たれていない両性イオン交換樹脂は、例えばクロマトグラフィー用充填剤として使用した場合、陽イオン性又は陰イオン性交換体として分離、分析対象物質の特異的な吸着現象を引き起こしてしまう。一方、両性イオン交換基を有する重合性単量体を重合させる方法でも、グラフト重合という重合工程の反応を律するパラメーターが多岐にわたるため、特に大量の両性イオン交換体を製造する場合、再現性を維持することが困難になり、製造される両性イオン交換樹脂の性能が製造ロット毎に変動しやすい。   Among the above-described conventional techniques, the production method in which a cationic functional group and an anionic functional group are introduced separately requires a large number of steps, and thus requires a long time for production and is complicated. In addition, it is difficult to balance the amount of cationic functional group introduced and the amount of anionic functional group introduced, producing an amphoteric ion exchange resin that is electrically neutral (equal positive and negative charges). Difficult to do. Amphoteric ion exchange resins that are not electrically neutral can be separated as cationic or anionic exchangers when used as, for example, chromatographic packing materials, causing specific adsorption of analytes. End up. On the other hand, even in the method of polymerizing a polymerizable monomer having an amphoteric ion exchange group, reproducibility is maintained especially when a large amount of the zwitterion exchanger is produced because there are various parameters governing the reaction of the polymerization process called graft polymerization. And the performance of the amphoteric ion exchange resin produced tends to vary from production lot to production lot.

特開2010−71707号公報(20頁)JP 2010-71707 A (page 20) 特開平6−229994号公報(19頁)JP-A-6-229994 (page 19) 特表2002−529714号公報(46頁)JP 2002-529714 A (page 46) 特開2000−126617号公報(5頁)JP 2000-126617 A (page 5) 特開2001−141710号公報(7頁)JP 2001-141710 A (page 7)

本発明は、従来技術の課題に鑑みなされたものであり、その目的は、樹脂に対し、陽イオン性官能基及び陰イオン性官能基を同時かつ簡便に導入することが可能な両イオン性官能基導入剤を使用する、制御が比較的な容易な化学反応によって樹脂に対し陽イオン性官能基及び陰イオン性官能基を同時に導入する両性イオン交換樹脂の製造方法を提供することにある。   The present invention has been made in view of the problems of the prior art, and the purpose thereof is an amphoteric functional group capable of simultaneously and simply introducing a cationic functional group and an anionic functional group into a resin. It is an object of the present invention to provide a method for producing an amphoteric ion exchange resin, wherein a cationic functional group and an anionic functional group are simultaneously introduced into a resin by a chemical reaction that is relatively easy to control using a group introducing agent.

本発明は、前記目的を達成すべく成されたものであり、炭素−水素結合を有する重合性単量体が重合した樹脂を一般式(式中、R1はH又はCH、AはO又はNH、X−はSO 又はCOO、R2及びR3はそれぞれ独立して水素原子又は炭素数1から4のアルキル基を表し、さらにm、nは1から30の整数を表す。)で示される両イオン性官能基導入剤(以下、「式1化合物」と記載することがある)と反応させることを特徴とする、両性イオン交換樹脂の製造方法である。以下、本発明を詳細に説明する。 The present invention has been made to achieve the above object, and a resin in which a polymerizable monomer having a carbon-hydrogen bond is polymerized is represented by the general formula (wherein R1 is H or CH 3 , A is O or NH, X- represents SO 3 or COO , R 2 and R 3 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and m and n represent an integer of 1 to 30). This is a method for producing an amphoteric ion exchange resin characterized by reacting with a zwitterionic functional group-introducing agent (hereinafter sometimes referred to as “compound of formula 1”). Hereinafter, the present invention will be described in detail.

Figure 2014118512
式1化合物は、前記一般式で表されるものであるが、前記一般式中、R、Rにおいて、炭素数1から4のアルキル基は、例えばメチル、エチル、n−プロピル、イソプロピル、ブチル等である。またm、nは1から30の整数であるが、大きくなると製造される両性イオン交換樹脂の疎水性が増大し、両性イオン交換基に由来した静電的効果を低減させることから、1から10であることが特に好ましい。
Figure 2014118512
The compound represented by formula 1 is represented by the above general formula. In the above general formula, in R 2 and R 3 , the alkyl group having 1 to 4 carbon atoms is, for example, methyl, ethyl, n-propyl, isopropyl, Butyl and the like. Further, m and n are integers of 1 to 30, but when they are increased, the hydrophobicity of the produced amphoteric ion exchange resin increases, and the electrostatic effect derived from the amphoteric ion exchange groups is reduced. It is particularly preferred that

式1化合物を炭素−水素結合を有する重合性単量体が重合した樹脂と反応させることにより、両性イオン交換樹脂を製造することができる。本発明において炭素−水素結合を有する重合性単量体が重合した樹脂とは、少なくとも当該樹脂の表面の一部に炭素−水素結合を有する重合性単量体の重合成分を含む樹脂を意味し、例えば炭素−水素結合を有する重合性単量体のみを重合した樹脂であっても良いし、いわゆるシード重合法により任意の単量体を重合した樹脂に炭素−水素結合を有する重合性単量体を吸収させ重合させた樹脂のように、樹脂の表面の一部に炭素−水素結合を有する重合性単量体の重合成分を含む樹脂であっても良い。   By reacting the compound of Formula 1 with a resin obtained by polymerizing a polymerizable monomer having a carbon-hydrogen bond, an amphoteric ion exchange resin can be produced. In the present invention, the resin in which a polymerizable monomer having a carbon-hydrogen bond is polymerized means a resin containing a polymerization component of a polymerizable monomer having a carbon-hydrogen bond on at least a part of the surface of the resin. For example, it may be a resin obtained by polymerizing only a polymerizable monomer having a carbon-hydrogen bond, or a polymerizable monomer having a carbon-hydrogen bond in a resin obtained by polymerizing any monomer by a so-called seed polymerization method. A resin containing a polymerization component of a polymerizable monomer having a carbon-hydrogen bond in a part of the surface of the resin, such as a resin that has been absorbed and polymerized, may be used.

炭素−水素結合を有する重合性単量体としては、スチレン、α−メチルスチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−エチルスチレン、2,4−ジメチルスチレン、p−n−ブチルスチレン、p−tert−ブチルスチレン、p−n−ヘキシルスチレン、p−n−オクチルスチレン、p−n−ノニルスチレン、p−n−デシルスチレン、p−n−ドデシルスチレン、メトキシスチレン、p−フェニルスチレン、p−クロロスチレン,3,4−ジクロロスチレン及びクロロメチルスチレン等スチレン誘導体、塩化ビニル、塩化ビニリデン、臭化ビニル、弗化ビニル等のハロゲン化ビニル類、酢酸ビニル、プロピオン酸ビニル及び酪酸ビニル等のビニルエステル類、アクリロニトリル等の不飽和ニトリル類、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸n=オクチル、(メタ)アクリル酸2−クロロエチル、(メタ)アクリル酸フェニル、α−クロロアクリル酸メチル等の(メタ)アクリル酸エステル、ブタジエン、イソプレン等の共役ジエン類、ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテル等のビニルエーテル類、ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトン類、N−ビニルピロール、N−ビニルカルバゾール、N−ビニルインドール等を重合した樹脂を例示することができる。これら重合性単量体は、各種の官能基を有していても良く、また、単独で用いても、二種以上を併用しても良い。重合条件は、従来公知の条件に従えば良く、本発明において特別の条件はない。いわゆるシード重合法を使用する場合も同様である。   Examples of the polymerizable monomer having a carbon-hydrogen bond include styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, p-ethylstyrene, 2,4-dimethylstyrene, p- n-butyl styrene, p-tert-butyl styrene, pn-hexyl styrene, pn-octyl styrene, pn-nonyl styrene, pn-decyl styrene, pn-dodecyl styrene, methoxy styrene, Styrene derivatives such as p-phenylstyrene, p-chlorostyrene, 3,4-dichlorostyrene and chloromethylstyrene, vinyl halides such as vinyl chloride, vinylidene chloride, vinyl bromide and vinyl fluoride, vinyl acetate, vinyl propionate And vinyl esters such as vinyl butyrate, unsaturated nitriles such as acrylonitrile, ( T) methyl acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth) acrylic acid (Meth) acrylates such as dodecyl, stearyl (meth) acrylate, n = octyl (meth) acrylate, 2-chloroethyl (meth) acrylate, phenyl (meth) acrylate, methyl α-chloroacrylate, butadiene Conjugated dienes such as isoprene, vinyl ethers such as vinyl methyl ether, vinyl ethyl ether and vinyl isobutyl ether, vinyl methyl ketone, vinyl hexyl ketone, methyl isopropenyl ketone, N-vinyl pyrrole, N-vinyl carbazole, N- Trees polymerized with vinylindole It can be exemplified. These polymerizable monomers may have various functional groups, and may be used alone or in combination of two or more. The polymerization conditions may follow conventionally known conditions, and there are no special conditions in the present invention. The same applies when using a so-called seed polymerization method.

上記した重合性単量体を重合するに際しては、必要に応じて架橋性単量体を添加することができる。架橋性単量体としては、ジビニルベンゼン、ジビニルナフタレン、トリメチロールプロパンジアクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールプロパンテトラ(メタ)アクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールトリアクリレート、N,N−ジビニルアニリン、ジビニルエーテル及びジビニルサルファイト等の多官能性単量体を例示することができる。これら架橋性単量体は、単独で用いても、二種以上を併用しても良い。重合性単量体に対する架橋性単量体の添加量に特別の制限はない。   In polymerizing the polymerizable monomer described above, a crosslinkable monomer can be added as necessary. Crosslinkable monomers include divinylbenzene, divinylnaphthalene, trimethylolpropane diacrylate, trimethylolpropane tri (meth) acrylate, tetramethylolpropane tetra (meth) acrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and triethylene glycol. Polyfunctional monomers such as triacrylate, N, N-divinylaniline, divinyl ether and divinyl sulfite can be exemplified. These crosslinkable monomers may be used alone or in combination of two or more. There is no special restriction | limiting in the addition amount of the crosslinkable monomer with respect to a polymerizable monomer.

重合性単量体を重合するに際しては、例えば(メタ)アクリル酸、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル、(メタ)アクリロニトリル、(メタ)アクリルアミド、(メタ)アクリル酸2−ヒドロキシエチル及び(メタ)アクリル酸2−ヒドロキシプロピル等の(メタ)アクリル酸やその酸誘導体、マレイン酸、フマル酸及びN−ビニルピロリドン等のN−ビニル化合物、ビニルナフタレン塩等の親水性単量体を併用することもできる。なお上記例示において「(メタ)アクリ」とは、「アクリ又はメタクリ」を意味する。   In polymerizing the polymerizable monomer, for example, (meth) acrylic acid, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, (meth) acrylonitrile, (meth) acrylamide, (meth) acrylic acid Hydrophilic properties such as (meth) acrylic acid such as 2-hydroxyethyl and 2-hydroxypropyl (meth) acrylate and acid derivatives thereof, N-vinyl compounds such as maleic acid, fumaric acid and N-vinylpyrrolidone, and vinyl naphthalene salts A monomer can also be used in combination. In the above examples, “(meth) acryl” means “acrylic or methacrylic”.

本発明は、以上の樹脂と式1化合物を反応させることにより両性イオン交換樹脂を製造するものであるが、樹脂の形状や寸法に特別の制限はない。製造した両性イオン交換樹脂を例えば液体クロマトグラフィー用充填剤として使用するのであれば、任意直径の粒子の形状とした樹脂を反応に供することが例示できる。   Although this invention manufactures an amphoteric ion exchange resin by making the above resin and Formula 1 compound react, there is no special restriction | limiting in the shape and dimension of resin. If the produced amphoteric ion exchange resin is used as a filler for liquid chromatography, for example, it can be exemplified that a resin in the form of particles having an arbitrary diameter is subjected to the reaction.

式1化合物は反応系即ち樹脂を分散した分散液に直接添加すれば良いが、水やアルコール等の溶剤に溶解した状態で添加してもよい。式1化合物の使用量としては、樹脂100重量部に対し0.1から200重量部、好ましくは1から100重量部とすることが例示できる。式1化合物の使用量が樹脂100重量部に対して0.1重量部より少ない場合、陽イオン性官能基及び陰イオン性官能基の導入量が少なくなって両性イオン交換樹脂としての静電的効果が不十分となり易く、逆に200重量部より多く使用しても、樹脂に導入されるイオン性官能基の量は使用量に見合って増加しないからである。また式1化合物の使用量が増加すると製造される両性イオン交換樹脂は軟質化するが、液体クロマトグラフィー用充填剤として使用する場合、軟質化した樹脂ではクロマトグラフィーの操作性が低下することからも上記範囲の使用量が特に好ましい。   The compound of formula 1 may be added directly to the reaction system, that is, the dispersion in which the resin is dispersed, but may be added in a state dissolved in a solvent such as water or alcohol. Examples of the amount of the compound of formula 1 used include 0.1 to 200 parts by weight, preferably 1 to 100 parts by weight, based on 100 parts by weight of the resin. When the amount of the compound of Formula 1 used is less than 0.1 parts by weight with respect to 100 parts by weight of the resin, the introduction amount of the cationic functional group and the anionic functional group is reduced, and the electrostatic as a zwitterion exchange resin This is because the effect tends to be insufficient, and the amount of ionic functional groups introduced into the resin does not increase corresponding to the amount of use even if the amount is more than 200 parts by weight. In addition, the amphoteric ion exchange resin produced becomes softer when the amount of the compound of formula 1 is increased. However, when used as a packing material for liquid chromatography, the operability of chromatography decreases with the softened resin. The use amount within the above range is particularly preferred.

樹脂と式1化合物を反応させる際には、その反応系にラジカル発生剤を共存させる。
反応系に共存させるラジカル発生剤は従来公知のもので良く、樹脂の種類や選択した反応温度に応じて適宜選択すれば良い。例えば過酸化ベンゾイル、過酸化ラウロイル、過酸化オクタノイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、3,5,5−トリメチルヘキサノイルパーオキサイド、メチルエチルケトンパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、ジ−t−ブチルパーオキサイド、ジイソプロピルパ−オキシジカーボネート、キュメンハイドロパーオキサイド、シクロヘキサノンパーオキサイド、t−ブチルハイドロパーオキサイド及びジイソプロピルベンゼンハイドロパーオキサイド等の有機過酸化物、アゾビスイソブチロニトリル、アゾビスシクロヘキサカルボニトリル、2,2‘−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2,3−ジメチルブチロニトリル)、2,2‘−アゾビス(2−メチルブチロニトリル)、2,2’−アゾビス(2,3,3−トリメチルブチロニトリル)、2,2‘−アゾビス(2−イソプロピルブチロニトリル)、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2‘−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2−(カルバモイルアゾ)イソブチロニトリル、4,4’−アジビス(4−シアノバレリン酸)及びジメチル−2,2‘−アゾビスイソブチレート等のアゾ系化合物等を例示することができる。
When the resin and the compound of formula 1 are reacted, a radical generator is allowed to coexist in the reaction system.
The radical generator coexisting in the reaction system may be a conventionally known one, and may be appropriately selected according to the type of resin and the selected reaction temperature. For example, benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, methyl ethyl ketone peroxide, t-butylperoxy-2-ethylhexa Organic peroxides such as noate, di-t-butyl peroxide, diisopropyl peroxydicarbonate, cumene hydroperoxide, cyclohexanone peroxide, t-butyl hydroperoxide and diisopropylbenzene hydroperoxide, azobisisobuty Ronitrile, azobiscyclohexacarbonitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2,3-dimethylbutyronitrile), 2,2′- Zobis (2-methylbutyronitrile), 2,2'-azobis (2,3,3-trimethylbutyronitrile), 2,2'-azobis (2-isopropylbutyronitrile), 1,1'-azobis (Cyclohexane-1-carbonitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2- (carbamoylazo) isobutyronitrile, 4,4′-azibis (4-cyanovalerin) Acid) and azo compounds such as dimethyl-2,2′-azobisisobutyrate.

樹脂、式1化合物及びラジカル発生剤は、例えば反応液からロータリーエバポレータ等を使用して溶媒を除去し、真空条件下で加熱後、製造された樹脂を水に混和可能な有機溶剤中に分散させて水及び有機溶剤で洗浄、乾燥することで、両性イオン交換樹脂を製造することが例示できる。加熱は樹脂の変形を防ぐ等の目的から、25から120℃とすることが好ましく、50から100℃とすることがより好ましい。また真空条件とすること以外に、例えば反応液が入った反応フラスコ等の容器内を窒素、アルゴン、ヘリウム等の不活性ガスへ置換し、加熱してもよい。この場合、加熱温度は25から100℃が好ましく、より好ましくは50から80℃である。   The resin, the compound of formula 1 and the radical generator are removed from the reaction solution using a rotary evaporator, for example, and heated under vacuum conditions, and then the produced resin is dispersed in an organic solvent miscible with water. It can be exemplified that the amphoteric ion exchange resin is produced by washing and drying with water and an organic solvent. For the purpose of preventing deformation of the resin, the heating is preferably 25 to 120 ° C, more preferably 50 to 100 ° C. In addition to the vacuum conditions, for example, the inside of a vessel such as a reaction flask containing a reaction solution may be replaced with an inert gas such as nitrogen, argon, or helium and heated. In this case, the heating temperature is preferably 25 to 100 ° C, more preferably 50 to 80 ° C.

本発明によれば、炭素−水素結合を有する一般的な樹脂粒子に対し、一段階の反応にて陰イオン性官能基と陽イオン性官能基の両方を導入することが可能である。しかも両イオン性官能基を導入する反応は、真空又は不活性ガス雰囲気下、工業的生産の過程で通常採用される範囲の温度に加熱するという、操作及び制御が簡便なものであり、両イオン性イオン交換体の大量製造に容易に対応可能である。この結果、本発明によれば、製造ロット間差のない、均一な両性イオン交換体を安価かつ大量に製造することが可能である。加えて本発明では、両イオン性官能基を一対の陽イオン性官能基と陰イオン性官能基を有する導入剤を用いて導入することから、正電荷と負電荷がバランスした両性イオン交換対を製造することが可能である。   According to the present invention, it is possible to introduce both an anionic functional group and a cationic functional group into a general resin particle having a carbon-hydrogen bond by a one-step reaction. Moreover, the reaction for introducing the zwitterionic functional group is simple in operation and control, in which the reaction is carried out in a vacuum or an inert gas atmosphere to a temperature in a range usually employed in the process of industrial production. It is possible to easily deal with mass production of the active ion exchanger. As a result, according to the present invention, it is possible to produce a uniform amphoteric ion exchanger with no difference between production lots at low cost and in large quantities. In addition, in the present invention, since the zwitterionic functional group is introduced using an introducing agent having a pair of cationic functional group and anionic functional group, a zwitterion exchange pair in which a positive charge and a negative charge are balanced is obtained. It is possible to manufacture.

このように本発明は、均一性に優れ、正電荷と負電荷がバランスしており、しかも簡便かつ大量に両性イオン交換樹脂を製造可能とするものであり、クロマトグラフィー用充填剤、レオロジーコントロール剤、艶消し剤等の塗料、インク及び接着剤等の化学分野、LCDスペーサー、銀塩フィルム用表面改質剤、磁気テープ用フィルム改質剤及び感熱紙走行安定剤等の電子工業分野、免疫測定を利用した体外診断薬用微粒子等の医療分野、滑り剤及び体質顔料等の化粧品分野、そして、不飽和ポリエステル等の樹脂用低収縮化剤、紙、歯科材料、アンチブロッキング剤、光拡散剤、マット化剤及び樹脂改質剤等の一般工業分野において有用な技術である。   Thus, the present invention is excellent in uniformity, has a balance between positive charge and negative charge, and enables easy and large-scale production of amphoteric ion exchange resins. Paints such as matting agents, chemical fields such as inks and adhesives, LCD spacers, surface modifiers for silver salt films, film modifiers for magnetic tapes, thermal paper running stabilizers, and other electronic industries, immunoassays For medical use such as fine particles for in-vitro diagnostic drugs, cosmetics such as slip agents and extender pigments, and low shrinkage agents for resins such as unsaturated polyester, paper, dental materials, anti-blocking agents, light diffusing agents, mats This is a technique useful in general industrial fields such as an agent and a resin modifier.

図1は、実施例1において製造された樹脂粒子を使用して得られた液体クロマトグラフィーの結果(クロマトグラム)を示すものであり、図中1はトルエン、2はウラシル、そして3はシトシンの溶出を示すものである。FIG. 1 shows the results (chromatogram) of liquid chromatography obtained using the resin particles produced in Example 1, wherein 1 is toluene, 2 is uracil, and 3 is cytosine. It shows elution.

以下、本発明を更に詳細に説明するために実施例を記載するが、本発明はこれら実施例に限定されるものではない。なお、実施例及び比較例では、以下に説明する親水性相互作用クロマトグラフィーを実施して極性化合物の保持力を比較することにより、製造した両性イオン交換体を評価した。   Hereinafter, examples will be described to describe the present invention in more detail, but the present invention is not limited to these examples. In Examples and Comparative Examples, the manufactured zwitterion exchanger was evaluated by carrying out hydrophilic interaction chromatography described below and comparing the retention of polar compounds.

すなわち、製造した樹脂を内径4.6mm、長さ100mmのステンレス製カラムに充填し、評価用カラムとした。評価用カラムをHPLCシステム(東ソー(株)製、商品名CCP&8020シリーズ)に接続し、それぞれトルエン,ウラシル,シトシンを溶解した溶離液(0.1mol/Lギ酸アンモニウムとアセトニトリルを9対1(体積比)で混合した液)を流速0.5mL/minで40℃に維持したカラムに通液し、分離された各成分を254nmの吸光度測定により検出して比較した。疎水性のトルエンに対し、極性が高いウラシル,シトシンが強く(長く)保持されるほど両性イオン交換樹脂の表面極性が高いこと、すなわち、陽イオン性官能基と陰イオン性官能基が多く導入されていることを示す。   That is, the manufactured resin was packed in a stainless steel column having an inner diameter of 4.6 mm and a length of 100 mm to obtain an evaluation column. The column for evaluation was connected to an HPLC system (trade name CCP & 8020 series, manufactured by Tosoh Corporation), and eluents (0.1 mol / L ammonium formate and acetonitrile, 9: 1 (volume ratio) dissolved in toluene, uracil, and cytosine, respectively. ) Was passed through a column maintained at 40 ° C. at a flow rate of 0.5 mL / min, and the separated components were detected and measured by absorbance measurement at 254 nm. The hydrophobic polarity of uracil and cytosine, which are highly polar, is stronger (longer) and the surface polarity of the amphoteric ion exchange resin is higher, that is, more cationic and anionic functional groups are introduced. Indicates that

実施例1
撹拌器、コンデンサー、温度計、窒素ガス導入管を備えた反応容器に水220.0重量部、メタクリル酸ベンジル30.0重量部及びチオグリコール酸2−エチルヘキシル1.50重量部を入れて混和後、容器内を窒素雰囲気へ置換した。この溶液に過硫酸カリウム1.20重量部を水25.0重量部に溶解させた水溶液を添加し、70℃へ加熱して16時間の重合反応を行った。放冷後、固形分濃度9.7重量%の球状重合体粒子(シード粒子)を得た。得られたシード粒子はその平均粒子径が0.68μmであり、変動係数は5.2%であった。
Example 1
After mixing 220.0 parts by weight of water, 30.0 parts by weight of benzyl methacrylate and 1.50 parts by weight of 2-ethylhexyl thioglycolate in a reaction vessel equipped with a stirrer, condenser, thermometer and nitrogen gas introduction tube The inside of the container was replaced with a nitrogen atmosphere. An aqueous solution in which 1.20 parts by weight of potassium persulfate was dissolved in 25.0 parts by weight of water was added to this solution, and heated to 70 ° C. to conduct a polymerization reaction for 16 hours. After cooling, spherical polymer particles (seed particles) having a solid content concentration of 9.7% by weight were obtained. The obtained seed particles had an average particle size of 0.68 μm and a coefficient of variation of 5.2%.

重合性単量体として95重量%ジビニルベンゼン160.1重量部を用い、これにトルエン252.9重量部、2,2’−アゾビス−2,4−ジメチルバレロニトリル1.80重量部、ドデシル硫酸ナトリウム1.50重量部及びイオン交換水416.3重量部とを混合し、超音波ホモジナイザーにて処理し、乳化液を得た。   As the polymerizable monomer, 160.1 parts by weight of 95% by weight divinylbenzene was used, and 252.9 parts by weight of toluene, 1.80 parts by weight of 2,2′-azobis-2,4-dimethylvaleronitrile, dodecyl sulfate 1.50 parts by weight of sodium and 416.3 parts by weight of ion-exchanged water were mixed and treated with an ultrasonic homogenizer to obtain an emulsion.

次いで2重量%のポリビニルアルコール(クラレ(株)製、商品名ポバール224)水溶液1200重量部にシード粒子の分散液37.5重量部を加えて分散させた後、上記で調製した乳化液を加え、室温にて添加し16時間撹拌を行い、乳化液中の油滴をシード粒子に吸収させた。   Next, after adding 37.5 parts by weight of a dispersion of seed particles to 1200 parts by weight of a 2% by weight aqueous solution of polyvinyl alcohol (Kuraray Co., Ltd., trade name POVAL 224), the emulsion prepared above was added. The mixture was added at room temperature and stirred for 16 hours, and oil droplets in the emulsion were absorbed by the seed particles.

その後、撹拌しながら70℃加熱して8時間重合反応を行い、樹脂粒子を得た。この樹脂粒子を単離後、1,4−ジオキサン1000重量部中に分散し、超音波浴中で1時間撹拌し、シード粒子由来の重合物を抽出、除去して、樹脂粒子を単離した。   Then, it heated at 70 degreeC, stirring, and performed the polymerization reaction for 8 hours, and obtained the resin particle. After the resin particles were isolated, the resin particles were dispersed in 1000 parts by weight of 1,4-dioxane, stirred for 1 hour in an ultrasonic bath, and the polymer derived from the seed particles was extracted and removed to isolate the resin particles. .

得られた樹脂粒子の粒度分布をコールターカウンター(コールター社製)で測定したところ、平均粒子径は3.3μmであった。   When the particle size distribution of the obtained resin particles was measured with a Coulter counter (manufactured by Coulter Co., Ltd.), the average particle size was 3.3 μm.

反応容器へ過酸化ベンゾイル4.1重量部、アセトン20重量部を入れ、溶解させた後、カルボキシベタインモノマー(大阪有機化学工業(株)製,商品名GLBT)の5%メタノール溶液240重量部及び上記で得られた樹脂粒子10.0重量部(乾燥重量)を入れ、均一なスラリーにした後、反応容器をロータリーエバポレータに取付け、アスピレータで減圧しながら溶媒を除去した。反応容器を真空乾燥器へ入れ、真空状態で90℃にて16時間加熱を行った。放冷後、メタノール洗浄,水洗浄を行い単離し、樹脂粒子を得た。   After 4.1 parts by weight of benzoyl peroxide and 20 parts by weight of acetone were dissolved in a reaction vessel and dissolved, 240 parts by weight of a 5% methanol solution of carboxybetaine monomer (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name GLBT) and After 10.0 parts by weight (dry weight) of the resin particles obtained above were put into a uniform slurry, the reaction vessel was attached to a rotary evaporator, and the solvent was removed while reducing the pressure with an aspirator. The reaction vessel was put into a vacuum dryer and heated at 90 ° C. for 16 hours in a vacuum state. After standing to cool, it was isolated by washing with methanol and washing with water to obtain resin particles.

上記のようにして製造した両性イオン交換樹脂の表面極性を評価した結果を表1に示す。また得られたクロマトグラムを図1に示す。   The results of evaluating the surface polarity of the amphoteric ion exchange resin produced as described above are shown in Table 1. The obtained chromatogram is shown in FIG.

比較例1
式1化合物(ジビニルベンゼン)を使用しないこと以外は実施例1と同様にして樹脂粒子を得た。このようにして製造した樹脂の表面極性を評価した結果を表1に示す。
Comparative Example 1
Resin particles were obtained in the same manner as in Example 1 except that the compound of formula 1 (divinylbenzene) was not used. The results of evaluating the surface polarity of the resin thus produced are shown in Table 1.

実施例2
式1化合物として2−ヒドロキシルエチルメタクリレート12.5重量部とジエチレングリコールジメタクリレート77.5重量部を用い、これにクロロベンゼン90.0重量部、2,2’−アゾビス−2,4−ジメチルバレロニトリル0.60重量部、ドデシル硫酸ナトリウム0.50重量部及びイオン交換水181.0重量部とを混合し、超音波ホモジナイザーにて処理し、乳化液を得た。
Example 2
As a compound of formula 1, 12.5 parts by weight of 2-hydroxylethyl methacrylate and 77.5 parts by weight of diethylene glycol dimethacrylate were used, and 90.0 parts by weight of chlorobenzene, 2,2′-azobis-2,4-dimethylvaleronitrile 0 60 parts by weight, 0.50 parts by weight of sodium dodecyl sulfate, and 181.0 parts by weight of ion-exchanged water were mixed and treated with an ultrasonic homogenizer to obtain an emulsion.

次いで2重量%のポリビニルアルコール(クラレ(株)製、商品名ポバール224)水溶液400重量部に実施例1で得たシード粒子の分散液20.3重量部を加えて分散させた後、上記で調製した乳化液を加え、室温にて添加し16時間撹拌を行い、乳化液中の油滴をシード粒子に吸収させた。   Next, after adding 20.3 parts by weight of the dispersion of seed particles obtained in Example 1 to 400 parts by weight of an aqueous solution of 2% by weight of polyvinyl alcohol (trade name POVAL 224, manufactured by Kuraray Co., Ltd.), The prepared emulsion was added, added at room temperature and stirred for 16 hours, and oil droplets in the emulsion were absorbed by the seed particles.

その後、撹拌しながら70℃に加熱して8時間重合反応を行い、樹脂粒子を得た。この樹脂粒子を単離後、1,4−ジオキサン1000重量部中に分散し、超音波浴中で1時間撹拌し、シード粒子由来の重合物を抽出、除去して、樹脂粒子を単離した。   Then, it heated at 70 degreeC, stirring, and performed the polymerization reaction for 8 hours, and obtained the resin particle. After the resin particles were isolated, the resin particles were dispersed in 1000 parts by weight of 1,4-dioxane, stirred for 1 hour in an ultrasonic bath, and the polymer derived from the seed particles was extracted and removed to isolate the resin particles. .

得られた樹脂粒子の粒度分布をコールターカウンター(コールター社製)で測定したところ、平均粒子径は3.5μmであった。   When the particle size distribution of the obtained resin particles was measured with a Coulter counter (manufactured by Coulter, Inc.), the average particle size was 3.5 μm.

反応容器へ過酸化ベンゾイル4.1重量部、アセトン20重量部を入れ、溶解させた後、カルボキシベタインモノマー(大阪有機化学工業製、商品名:GLBT)の5%メタノール溶液240重量部及び上記で得られた樹脂粒子10.0重量部(乾燥重量)を入れ、均一なスラリーにした後、反応容器をロータリーエバポレータに取付け、アスピレータで減圧しながら溶媒を除去した。反応容器を真空乾燥器へ入れ、真空状態で70℃にて24時間加熱を行った。放冷後、メタノール洗浄,水洗浄を行い単離し、樹脂粒子を得た。   After 4.1 parts by weight of benzoyl peroxide and 20 parts by weight of acetone were dissolved in a reaction vessel and dissolved, 240 parts by weight of a 5% methanol solution of carboxybetaine monomer (manufactured by Osaka Organic Chemical Industry, trade name: GLBT) and the above After 10.0 parts by weight (dry weight) of the obtained resin particles were put into a uniform slurry, the reaction vessel was attached to a rotary evaporator, and the solvent was removed while reducing the pressure with an aspirator. The reaction vessel was put into a vacuum dryer and heated at 70 ° C. for 24 hours in a vacuum state. After standing to cool, it was isolated by washing with methanol and washing with water to obtain resin particles.

上記のようにして製造した両性イオン交換樹脂の表面極性を評価した結果を表1に示す。   The results of evaluating the surface polarity of the amphoteric ion exchange resin produced as described above are shown in Table 1.

実施例3
カルボキシベタインモノマーの代わりに2−メタクリロイルオキシエチルジメチル−3−スルホプロピルアンモニウムヒドロキシド(シグマアルドリッチ社製、商品名スルホベタインモノマー)の5%メタノール溶液240重量部を使用した以外は実施例2と同様にして樹脂粒子を得た。
Example 3
Example 2 except that 240 parts by weight of a 5% methanol solution of 2-methacryloyloxyethyldimethyl-3-sulfopropylammonium hydroxide (manufactured by Sigma-Aldrich, trade name sulfobetaine monomer) was used instead of the carboxybetaine monomer. Thus, resin particles were obtained.

上記のようにして製造した両性イオン交換樹脂の表面極性を評価した結果を表1に示す。   The results of evaluating the surface polarity of the amphoteric ion exchange resin produced as described above are shown in Table 1.

比較例2
式1化合物(カルボキシベタインモノマー、大阪有機化学工業製、商品名GLBT)を使用しないこと以外は実施例2と同様にして樹脂粒子を得た。このようにして製造した樹脂の表面極性を評価した結果を表1に示す。
Comparative Example 2
Resin particles were obtained in the same manner as in Example 2 except that the compound of formula 1 (carboxybetaine monomer, manufactured by Osaka Organic Chemical Industry, trade name GLBT) was not used. The results of evaluating the surface polarity of the resin thus produced are shown in Table 1.

Figure 2014118512
表1において、比較例1及び比較例2で製造した樹脂粒子(式1化合物を使用しないことにより、陽イオン交換性官能基及び陰イオン性官能基のいずれも導入していない樹脂粒子)を充填したカラムでは、極性が異なるにもかかわらずウラシルとシトシンの保持時間はほぼ同一であった。また疎水性の高いトルエンが樹脂粒子と強く相互作用し、極性化合物であるウラシルやシトシンよりも長く保持された。一方、実施例1から実施例3で製造した本発明の樹脂粒子を充填したカラムでは、ウラシル、シトシンの保持時間がその極性に応じて長くなり、またその強い疎水性にもかかわらずトルエンの保持時間はウラシルやシトシンよりも短かった。この結果から、実施例1から実施例3で製造した樹脂粒子は、式1化合物を使用することによって陽イオン交換性官能基と陰イオン性官能基が一度に導入され、粒子の表面極性が増大する一方、疎水性が低下していることが分かる。
Figure 2014118512
In Table 1, filled with resin particles produced in Comparative Example 1 and Comparative Example 2 (resin particles in which neither a cation-exchange functional group nor an anionic functional group has been introduced by not using the compound of Formula 1) The uracil and cytosine retention times were almost the same for the columns that differed in polarity. In addition, highly hydrophobic toluene interacted strongly with the resin particles and was retained longer than polar compounds such as uracil and cytosine. On the other hand, in the column packed with the resin particles of the present invention produced in Examples 1 to 3, the retention time of uracil and cytosine becomes longer depending on the polarity, and the retention of toluene despite its strong hydrophobicity. The time was shorter than uracil and cytosine. From this result, the resin particles produced in Example 1 to Example 3 were introduced with a cation-exchange functional group and an anionic functional group at a time by using the compound of formula 1, and the surface polarity of the particles was increased. On the other hand, it can be seen that the hydrophobicity is lowered.

Claims (1)

炭素−水素結合を有する重合性単量体が重合した樹脂を、下記一般式(式中、R1はH又はCH、AはO又はNH、X−はSO 又はCOO、R2及びR3はそれぞれ独立して水素原子又は炭素数1から4のアルキル基を表し、さらにm、nは1から30の整数を表す。)で示される両イオン性官能基導入剤と反応させることを特徴とする、両性イオン交換樹脂の製造方法。
Figure 2014118512
Carbon - a resin polymerizable monomer is polymerized with hydrogen bonds, the following general formula (wherein, R1 is H or CH 3, A is O or NH, X- is SO 3 - or COO -, R2 and R3 Each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and m and n each represents an integer of 1 to 30). A method for producing an amphoteric ion exchange resin.
Figure 2014118512
JP2012275757A 2012-12-18 2012-12-18 Method for manufacturing amphoteric ion exchange resin Pending JP2014118512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012275757A JP2014118512A (en) 2012-12-18 2012-12-18 Method for manufacturing amphoteric ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012275757A JP2014118512A (en) 2012-12-18 2012-12-18 Method for manufacturing amphoteric ion exchange resin

Publications (1)

Publication Number Publication Date
JP2014118512A true JP2014118512A (en) 2014-06-30

Family

ID=51173640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012275757A Pending JP2014118512A (en) 2012-12-18 2012-12-18 Method for manufacturing amphoteric ion exchange resin

Country Status (1)

Country Link
JP (1) JP2014118512A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016140771A (en) * 2015-01-29 2016-08-08 京都府公立大学法人 Amphoteric ion-introduced resin exhibiting anion exchangeability
JP2016140772A (en) * 2015-01-29 2016-08-08 京都府公立大学法人 Amphoteric ion-introduced resin exhibiting cation exchangeability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016140771A (en) * 2015-01-29 2016-08-08 京都府公立大学法人 Amphoteric ion-introduced resin exhibiting anion exchangeability
JP2016140772A (en) * 2015-01-29 2016-08-08 京都府公立大学法人 Amphoteric ion-introduced resin exhibiting cation exchangeability

Similar Documents

Publication Publication Date Title
Li et al. Hydrophilic hollow molecularly imprinted polymer microparticles with photo-and thermoresponsive template binding and release properties in aqueous media
Unsal et al. Preparation of an ion-exchange chromatographic support by a “grafting from” strategy based on atom transfer radical polymerization
JP6757598B2 (en) Separator and column
JPH04349941A (en) Anion exchanger
JP7341434B2 (en) Separation materials for metabolome analysis and columns for metabolome analysis
JP2014118512A (en) Method for manufacturing amphoteric ion exchange resin
JP5592735B2 (en) Method for producing hydrophilic polymer particles and hydrophilic polymer particles
JP4261403B2 (en) Method for producing porous resin particles
JPH07103206B2 (en) Method for producing crosslinked polymer particles
JP5398061B2 (en) Method for producing positively chargeable acrylic polymer particles
WO2013172266A1 (en) Method for producing polymer particles, polymer particles, filler for chromatography column, and chromatography column
JP4465294B2 (en) Method for producing resin particles
JP5360981B2 (en) Method for producing positively chargeable acrylic polymer particles and positively chargeable acrylic polymer particles obtained by the method
JP5433536B2 (en) Method for producing polymer particles
JP5421214B2 (en) Method for producing polymer particles
JP2012117014A (en) Method for producing hydrophilic resin
JP4917821B2 (en) Method for producing polymer particles
JPH01184034A (en) Production of microencapsulated fine particle
JP5660661B2 (en) Cationic polymer particles and method for producing the same
JP7341435B2 (en) Metabolome separation method
JP2008239637A (en) Method for producing polymer particle
JP5185040B2 (en) Method for producing polymer particles
JP6729041B2 (en) Separation material and column
JP2009029965A (en) Manufacturing method for monodisperse particle
JP5075441B2 (en) Method for producing resin particles