JP7341434B2 - Separation materials for metabolome analysis and columns for metabolome analysis - Google Patents

Separation materials for metabolome analysis and columns for metabolome analysis Download PDF

Info

Publication number
JP7341434B2
JP7341434B2 JP2020555651A JP2020555651A JP7341434B2 JP 7341434 B2 JP7341434 B2 JP 7341434B2 JP 2020555651 A JP2020555651 A JP 2020555651A JP 2020555651 A JP2020555651 A JP 2020555651A JP 7341434 B2 JP7341434 B2 JP 7341434B2
Authority
JP
Japan
Prior art keywords
meth
acrylate
group
separation material
polymer particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020555651A
Other languages
Japanese (ja)
Other versions
JPWO2020096056A1 (en
Inventor
惠太 櫻井
道男 佛願
健史 馬場
自泰 和泉
航太 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Showa Denko Materials Techno Service Co Ltd
Original Assignee
Kyushu University NUC
Showa Denko Materials Techno Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Showa Denko Materials Techno Service Co Ltd filed Critical Kyushu University NUC
Publication of JPWO2020096056A1 publication Critical patent/JPWO2020096056A1/en
Application granted granted Critical
Publication of JP7341434B2 publication Critical patent/JP7341434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、メタボローム分析用分離材及びメタボローム分析用カラムに関する。 The present invention relates to a separation material for metabolome analysis and a column for metabolome analysis.

メタボロミクスとは、病気の診断等に応用されている研究領域であり、細胞の代謝産物総体であるメタボロームを網羅的に分析し生命現象を理解することを目的とする研究領域である。メタボロームの分析手法としては、ガスクロマトグラフィー/質量分析法(GC/MS)、液体クロマトグラフィー/質量分析法(LC/MS)、キャピラリー電気泳動/質量分析法(CE/MS)等が用いられている(非特許文献1参照)。 Metabolomics is a research field that is applied to disease diagnosis, etc., and aims to comprehensively analyze the metabolome, which is the total body of cellular metabolites, and to understand biological phenomena. Gas chromatography/mass spectrometry (GC/MS), liquid chromatography/mass spectrometry (LC/MS), capillary electrophoresis/mass spectrometry (CE/MS), etc. are used as metabolome analysis methods. (See Non-Patent Document 1).

GC/MSは、芳香族化合物等の揮発性代謝物の測定に適している。しかし、不揮発性代謝物質を測定する場合には誘導体化が必要であり、定量性に問題が生じる場合がある。また、代謝物の多くが不揮発性であるため、GCの最大メリットである揮発性物質の測定は有機酸等に限定される傾向がある。 GC/MS is suitable for measuring volatile metabolites such as aromatic compounds. However, when measuring nonvolatile metabolites, derivatization is necessary, which may cause problems in quantitative performance. Furthermore, since many metabolites are nonvolatile, measurement of volatile substances, which is the greatest advantage of GC, tends to be limited to organic acids and the like.

LC/MSは、幅広い化学物質の代謝物の測定が可能であり、メタボローム研究で頻繁に利用されている。しかし、溶媒選択が複雑であること、イオン性代謝物質分析において、MSと適合性を有しないこと等に課題がある。 LC/MS is capable of measuring metabolites of a wide range of chemical substances and is frequently used in metabolome research. However, there are problems such as the complexity of solvent selection and the lack of compatibility with MS in ionic metabolite analysis.

CE/MSは、アミノ酸、核酸代謝等に含まれる代謝中間体のほとんどがイオン性を有するので有用な分析法である。しかし、GC/MS及びLC/MSと比較して、濃度感度が劣ること、扱いが難しくユーザーが使用し難いこと等の問題がある。 CE/MS is a useful analytical method because most metabolic intermediates included in amino acid, nucleic acid metabolism, etc. have ionicity. However, compared to GC/MS and LC/MS, there are problems such as inferior concentration sensitivity and difficulty in handling and use by users.

近年、LC法におけるイオン交換等の分離方法においてもメタボローム成分の測定が検討されており、例えば、イオン交換でヌクレオチドを分離する例が報告されている(例えば、特許文献1参照)。しかし、イオン性を有しない成分の分離が不充分であること、溶離液に有機溶剤を多く含んでしまうと、分離材の膨潤、収縮が発生して、カラムが破損し測定再現が確認できないこと等が問題点として懸念される。 In recent years, the measurement of metabolome components has been studied in separation methods such as ion exchange in LC methods, and for example, an example of separating nucleotides by ion exchange has been reported (see, for example, Patent Document 1). However, the separation of non-ionic components is insufficient, and if the eluent contains too much organic solvent, the separation material will swell and contract, damaging the column and making it impossible to confirm measurement reproducibility. These are concerns as issues.

特開2015-129775号公報Japanese Patent Application Publication No. 2015-129775

平山明由,和泉自泰,松田史生,石川貴正,杉浦悠毅,鈴木隆著、メタボロミクスにおける親水性代謝物解析、日本質量分析学会誌、Vol.65,No5,2017Akiyoshi Hirayama, Jiyasu Izumi, Fumio Matsuda, Takamasa Ishikawa, Yuki Sugiura, Takashi Suzuki, Hydrophilic Metabolite Analysis in Metabolomics, Journal of the Mass Spectrometry Society of Japan, Vol. 65, No5, 2017

メタボローム解析が対象とする生体成分は高親水性成分が多く、LC法で一般的に用いられるODSカラム(オクタデシルシリカカラム)では、これら成分を保持することが困難となる傾向にある。このような傾向は、特に塩基性条件下において顕著である。 Many of the biological components targeted by metabolomic analysis are highly hydrophilic, and it tends to be difficult to retain these components with ODS columns (octadecyl silica columns) commonly used in LC methods. Such a tendency is particularly noticeable under basic conditions.

そこで、本発明は、塩基性条件下で使用した場合においても、メタボロームを含む試料からメタボロームを分離することが可能なメタボローム分析用分離材を提供することを主な目的とする。 Therefore, the main object of the present invention is to provide a separation material for metabolome analysis that is capable of separating metabolomes from a sample containing metabolomes even when used under basic conditions.

本発明者らが鋭意検討したところ、ポリマー粒子において、特定の基を導入することによって、上記課題が解決されることを見出し、本発明を完成するに至った。すなわち、本発明は、以下の[1]~[4]に記載のメタボローム分析用分離材、及び以下の[5]に記載のメタボローム分析用カラムを提供する。 As a result of intensive studies, the present inventors have found that the above-mentioned problems can be solved by introducing a specific group into polymer particles, and have completed the present invention. That is, the present invention provides separation materials for metabolome analysis described in [1] to [4] below, and columns for metabolome analysis described in [5] below.

[1]ポリマー粒子と、ポリマー粒子に結合した、第四級アンモニウム基を含む有機基とを有する、メタボローム分析用分離材。
[2]ポリマー粒子が、(メタ)アクリル酸エステルに由来する構造単位を有するポリマーを含む、[1]に記載のメタボローム分析用分離材。
[3]分離材の平均粒子径が、2~5μmである、[1]又は[2]に記載のメタボローム分析用分離材。
[4]分離材の第四級アンモニウム基量が、10~500μeq/gである、[1]~[3]のいずれかに記載のメタボローム分析用分離材。
[5][1]~[4]のいずれかに記載のメタボローム分析用分離材を備える、メタボローム分析用カラム。
[1] A separation material for metabolomic analysis, comprising polymer particles and an organic group containing a quaternary ammonium group bonded to the polymer particles.
[2] The separation material for metabolome analysis according to [1], wherein the polymer particles include a polymer having a structural unit derived from a (meth)acrylic acid ester.
[3] The separation material for metabolome analysis according to [1] or [2], wherein the separation material has an average particle diameter of 2 to 5 μm.
[4] The separation material for metabolome analysis according to any one of [1] to [3], wherein the separation material has a quaternary ammonium group content of 10 to 500 μeq/g.
[5] A column for metabolome analysis, comprising the separation material for metabolome analysis according to any one of [1] to [4].

本発明によれば、塩基性条件下で使用した場合においても、メタボロームを含む試料からメタボロームを分離することが可能なメタボローム分析用分離材が提供される。また、本発明によれば、このようなメタボローム分析用分離材を用いたメタボローム分析用カラムが提供される。 According to the present invention, there is provided a separation material for metabolome analysis that is capable of separating metabolomes from a sample containing metabolomes even when used under basic conditions. Further, according to the present invention, a column for metabolome analysis using such a separation material for metabolome analysis is provided.

実施例のカラム評価におけるHPLCのグラジエント条件を示すグラフである。It is a graph showing HPLC gradient conditions in column evaluation of Examples. 実施例のカラム評価の結果を示すクロマトグラムのスコア表である。2 is a chromatogram score table showing the results of column evaluation in Examples. (a)は、実施例1のカラムを用いたときの塩基性条件下のアデニンのクロマトグラムであり、(b)は、実施例2のカラムを用いたときの塩基性条件下のアデニンのクロマトグラムである。(a) is a chromatogram of adenine under basic conditions when using the column of Example 1, and (b) is a chromatogram of adenine under basic conditions when using the column of Example 2. Gram. (a)は、実施例1のカラムを用いたときの塩基性条件下のアデノシンのクロマトグラムであり、(b)は、実施例2のカラムを用いたときの塩基性条件下のアデノシンのクロマトグラムである。(a) is a chromatogram of adenosine under basic conditions when using the column of Example 1, and (b) is a chromatogram of adenosine under basic conditions when using the column of Example 2. Gram.

以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。なお、本明細書において、「(メタ)アクリル酸」とは、「アクリル酸」又はこれに対応する「メタクリル酸」を意味し、「(メタ)アクリレート」等の他の類似の記載についても同様である。 Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In addition, in this specification, "(meth)acrylic acid" means "acrylic acid" or the corresponding "methacrylic acid", and the same applies to other similar descriptions such as "(meth)acrylate". It is.

<メタボローム分析用分離材>
本実施形態に係るメタボローム分析用分離材は、ポリマー粒子と、ポリマー粒子に結合した、第四級アンモニウム基を含む有機基とを有する。メタボローム分析用分離材は、塩基性条件下で使用した場合においても、メタボロームを含む試料からメタボロームを分離することが可能となる。
<Separation material for metabolome analysis>
The separation material for metabolome analysis according to this embodiment has polymer particles and an organic group containing a quaternary ammonium group bonded to the polymer particles. Even when the separation material for metabolome analysis is used under basic conditions, it is possible to separate the metabolome from a sample containing the metabolome.

メタボローム分析用分離材は、例えば、ポリマー粒子を作製する工程(ポリマー粒子作製工程)と、作製したポリマー粒子に、第四級アンモニウム基を含む有機基を導入する工程(有機基導入工程)とを備える方法によって製造することができる。 The separation material for metabolome analysis, for example, includes a process of producing polymer particles (polymer particle production process) and a process of introducing an organic group containing a quaternary ammonium group into the produced polymer particles (organic group introduction process). It can be manufactured by a method of preparing.

(ポリマー粒子)
ポリマー粒子は、一般的に、シリカと比較し、耐塩基性に優れると考えられる。したがって、本実施形態に係るメタボローム分析用分離材は、ODSを基材とする分離材と比較して、耐塩基性に優れると考えられる。
(polymer particles)
Polymer particles are generally considered to have superior base resistance compared to silica. Therefore, it is considered that the separation material for metabolome analysis according to the present embodiment has excellent base resistance compared to a separation material using ODS as a base material.

ポリマー粒子は、特に制限はされないが、耐塩基性がさらに向上することから、例えば、メタクリル酸エステル又はアクリル酸エステル((メタ)アクリル酸エステル)に由来する構造単位を有するポリマー((メタ)アクリレート系ポリマー)を含んでいてよい。上記(メタ)アクリル酸エステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸n-オクチル、アクリル酸ドデシル、アクリル酸ラウリル、アクリル酸ステアリル、アクリル酸2-クロロエチル、アクリル酸フェニル、α-クロロアクリル酸メチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸n-オクチル、メタクリル酸ドデシル、メタクリル酸ラウリル、メタクリル酸ステアリル等の直鎖状又は分岐状のアルキル基を有する単官能(メタ)アクリル酸エステル、グリセロールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジアクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,7-ヘプタンジオールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の多官能(メタ)アクリル酸エステルなどが挙げられる。これらの(メタ)アクリル酸エステルは、1種を単独で又は2種以上を組み合わせて用いてもよい。 Although the polymer particles are not particularly limited, for example, polymers having structural units derived from methacrylic esters or acrylic esters ((meth)acrylic esters) can further improve base resistance. polymers). Examples of the (meth)acrylate ester include methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, Dodecyl acrylate, lauryl acrylate, stearyl acrylate, 2-chloroethyl acrylate, phenyl acrylate, methyl α-chloroacrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate , monofunctional (meth)acrylic acid esters having a linear or branched alkyl group such as hexyl methacrylate, 2-ethylhexyl methacrylate, n-octyl methacrylate, dodecyl methacrylate, lauryl methacrylate, and stearyl methacrylate; Glycerol di(meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, 1,3-butanediol diacrylate, 1,4-butanediol di(meth)acrylate Acrylate, 1,5-pentanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,7-heptanediol di(meth)acrylate, 1,8-octanediol di(meth)acrylate, 3-Methyl-1,5-pentanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, polyethylene Examples include polyfunctional (meth)acrylic acid esters such as glycol di(meth)acrylate and pentaerythritol tri(meth)acrylate. These (meth)acrylic esters may be used alone or in combination of two or more.

ポリマー粒子は、メタボロームの分離のさらなる向上の観点から、水酸基等の親水性基を有するポリマーを含むことが好ましく、ポリマー粒子は、親水性ポリマー粒子であることがより好ましい。すなわち、(メタ)アクリル酸エステルに由来する構造単位は、水酸基等の親水性基を有する(メタ)アクリル酸エステルに由来する構造単位を含むことが好ましい。 The polymer particles preferably contain a polymer having a hydrophilic group such as a hydroxyl group, and more preferably the polymer particles are hydrophilic polymer particles, from the viewpoint of further improving the separation of metabolomes. That is, the structural unit derived from a (meth)acrylic ester preferably includes a structural unit derived from a (meth)acrylic ester having a hydrophilic group such as a hydroxyl group.

(ポリマー粒子作製工程)
ポリマー粒子は、特に制限されないが、シード重合法を用いて製造することが好ましい。
(Polymer particle production process)
Although the polymer particles are not particularly limited, it is preferable to manufacture them using a seed polymerization method.

カラムの理論段数は、ポリマー粒子の粒子径が小さいほど大きくなると考えられる。一般的に、ポリマー粒子はシリカに比較して粒子径が小さい粒子を形成し難い傾向にあるが、シード重合法で形成されるポリマー粒子は、粒子径が小さい粒子を形成し易く、高い理論段数の分離材が得られ易い傾向にある。 It is considered that the number of theoretical plates in a column increases as the particle diameter of the polymer particles becomes smaller. In general, polymer particles tend to have a tendency to form particles with a smaller particle size than silica, but polymer particles formed by seed polymerization tend to form particles with a small particle size and have a high theoretical plate number. separation material tends to be easily obtained.

シード重合法は、公知の方法に従って行うことができる。以下にシード重合法の一般的な方法を一例として説明するが、シード重合法はこの方法に限定されるものではない。 The seed polymerization method can be performed according to a known method. A general method of seed polymerization will be described below as an example, but the seed polymerization method is not limited to this method.

シード重合法は、例えば、シード粒子を作製し、当該シード粒子を、重合性モノマーを含む乳化液中で膨潤させた後(シード粒子に重合性モノマーを吸収させた後)、重合性モノマーを重合させる方法であってよい。すなわち、ポリマー粒子は、例えば、シード粒子に重合性モノマーを吸収させた後、上記重合性モノマーを重合して得られる粒子であってよい。ポリマー粒子は、例えば、シード粒子と、シード粒子の表面上に形成された、重合性モノマーに由来する構造単位を有するポリマーとを有するポリマー粒子であってよい。 In the seed polymerization method, for example, seed particles are prepared, the seed particles are swollen in an emulsion containing a polymerizable monomer (after the seed particles absorb the polymerizable monomer), and then the polymerizable monomer is polymerized. It may be a method of That is, the polymer particles may be particles obtained by, for example, making seed particles absorb a polymerizable monomer and then polymerizing the polymerizable monomer. The polymer particles may be, for example, polymer particles having a seed particle and a polymer having a structural unit derived from a polymerizable monomer formed on the surface of the seed particle.

シード粒子は、例えば、乳化重合法、ソープフリー乳化重合法、分散重合法等の公知の方法で作製することができる。 Seed particles can be produced, for example, by a known method such as an emulsion polymerization method, a soap-free emulsion polymerization method, or a dispersion polymerization method.

シード粒子は、例えば、(メタ)アクリル酸エステルを含むモノマーを重合して得られる粒子であってよい。すなわち、シード粒子は、(メタ)アクリル酸エステルに由来する構造単位を有するポリマーを含むものであってよい。シード粒子は、(メタ)アクリル酸エステルに由来する構造単位を有するポリマーからなるものであってもよい。 The seed particles may be particles obtained by polymerizing a monomer containing a (meth)acrylic acid ester, for example. That is, the seed particles may contain a polymer having a structural unit derived from (meth)acrylic acid ester. The seed particles may be made of a polymer having a structural unit derived from a (meth)acrylic acid ester.

シード粒子の作製に用いられる(メタ)アクリル酸エステルとしては、例えば、上述のポリマー粒子の(メタ)アクリル酸エステルで例示した単官能(メタ)アクリル酸エステル等が挙げられる。これらの(メタ)アクリル酸エステルは、1種を単独で又は2種以上を組み合わせて用いてもよい。 Examples of the (meth)acrylic ester used for producing the seed particles include monofunctional (meth)acrylic esters exemplified by the (meth)acrylic ester of the above-mentioned polymer particles. These (meth)acrylic esters may be used alone or in combination of two or more.

シード粒子の平均粒子径は、得られるポリマー粒子の設計粒子径に応じて調整することができる。シード粒子の平均粒子径は、重合性モノマーの吸収時間を短縮できることから、例えば、2.0μm以下又は1.5μm以下であってよい。シード粒子の平均粒子径は、均一かつ真球に近いシード粒子が得られ易いことから、例えば、0.1μm以上又は0.5μm以上であってよい。これらの観点から、シード粒子の平均粒子径は、0.1~2.0μm、0.5~2.0μm、又は0.5~1.5μmであってもよい。 The average particle diameter of the seed particles can be adjusted depending on the designed particle diameter of the resulting polymer particles. The average particle diameter of the seed particles may be, for example, 2.0 μm or less or 1.5 μm or less, since the absorption time of the polymerizable monomer can be shortened. The average particle diameter of the seed particles may be, for example, 0.1 μm or more or 0.5 μm or more, since uniform and nearly perfectly spherical seed particles can be easily obtained. From these viewpoints, the average particle diameter of the seed particles may be 0.1 to 2.0 μm, 0.5 to 2.0 μm, or 0.5 to 1.5 μm.

シード粒子の粒子径(直径)の変動係数(CV)は、得られるポリマー粒子の均一性が低下し難いことから、10%以下又は7%以下であってよい。 The coefficient of variation (CV) of the particle size (diameter) of the seed particles may be 10% or less or 7% or less, since the uniformity of the obtained polymer particles is unlikely to deteriorate.

シード粒子、ポリマー粒子、及び分離材の平均粒子径及び粒子径のCV(変動係数)は、以下の測定法により求めることができる。
(1)粒子を、超音波分散装置を使用して水に分散させ、1質量%の粒子を含む分散液を調製する。
(2)粒度分布計(MT-3300EX II、マイクロトラック・ベル株式会社製)を用いて、上記分散液を測定し平均粒子径及び粒子径のCVを算出する。
The average particle diameter and CV (coefficient of variation) of the particle diameter of the seed particles, polymer particles, and separation material can be determined by the following measurement method.
(1) Particles are dispersed in water using an ultrasonic dispersion device to prepare a dispersion containing 1% by mass of particles.
(2) Using a particle size distribution analyzer (MT-3300EX II, manufactured by Microtrac Bell Co., Ltd.), the above dispersion is measured and the average particle diameter and CV of the particle diameter are calculated.

シード粒子と重合性モノマーから形成されるポリマーとの相互作用が充分になることから、シード粒子の粒子径に対する最終的に得られるポリマー粒子の粒子径の比は、3~10倍、3~7倍、又は4~6倍となるように調整することが好ましい。 Since the interaction between the seed particles and the polymer formed from the polymerizable monomer is sufficient, the ratio of the particle size of the finally obtained polymer particles to the particle size of the seed particles is 3 to 10 times, 3 to 7 times. It is preferable to adjust the amount to 4 times or 4 to 6 times.

以下、重合性モノマーをシード粒子に吸収させ、次いで重合性モノマーを重合させる方法の一例を具体的に説明する。 Hereinafter, an example of a method for absorbing a polymerizable monomer into seed particles and then polymerizing the polymerizable monomer will be specifically described.

まず、重合性モノマーと水性媒体とを含む乳化液を作製し、当該乳化液にシード粒子を添加する。 First, an emulsion containing a polymerizable monomer and an aqueous medium is prepared, and seed particles are added to the emulsion.

乳化液は、公知の方法に従って作製できる。例えば、重合性モノマーを水性媒体に添加して、ホモジナイザー、超音波処理機、ナノマイザー等の微細乳化機によって水性媒体に分散させることで、乳化液を得ることができる。乳化液は、必要に応じて重合開始剤を含んでいてよい。重合開始剤の添加は、使用される重合性モノマーの種類によって適宜設定することができる。得られた乳化液中の重合性モノマー液滴の粒子径は、シード粒子の粒子径よりも小さいと、重合性モノマーがシード粒子に効率よく吸収され易くなる傾向にある。 An emulsion can be produced according to a known method. For example, an emulsion can be obtained by adding a polymerizable monomer to an aqueous medium and dispersing it in the aqueous medium using a microemulsifier such as a homogenizer, an ultrasonicator, or a nanomizer. The emulsion may contain a polymerization initiator if necessary. The addition of the polymerization initiator can be appropriately determined depending on the type of polymerizable monomer used. When the particle size of the polymerizable monomer droplets in the obtained emulsion is smaller than the particle size of the seed particles, the polymerizable monomer tends to be easily absorbed into the seed particles efficiently.

シード粒子を乳化液に添加する方法は、特に制限されず、乳化液に直接シード粒子を添加する方法であってもよく、シード粒子を水性分散体に分散させて分散液とし、当該分散液を乳化液に添加する方法であってもよい。 The method of adding the seed particles to the emulsion is not particularly limited, and may be a method of directly adding the seed particles to the emulsion, or a method of dispersing the seed particles in an aqueous dispersion to form a dispersion, and then adding the seed particles to the emulsion. It may also be added to an emulsion.

シード粒子を乳化液へ添加した後、シード粒子を膨潤させて重合性モノマーを吸収させる。重合性モノマーの吸収は、通常、シード粒子を添加した後の乳化液を、室温(25℃)で0.5~24時間撹拌することによって行うことができる。また、乳化液を30~50℃程度に加温することによって重合性モノマーの吸収を促進することができる。 After adding the seed particles to the emulsion, the seed particles are allowed to swell and absorb the polymerizable monomer. Absorption of the polymerizable monomer can usually be carried out by stirring the emulsion after adding the seed particles at room temperature (25° C.) for 0.5 to 24 hours. Furthermore, absorption of the polymerizable monomer can be promoted by heating the emulsion to about 30 to 50°C.

シード粒子は、重合性モノマーの吸収によって膨潤する。シード粒子に対する重合性モノマーの混合比率が小さ過ぎると、形成されるポリマー粒子の粒子径の増加率が小さくなるため、ポリマー粒子の生産性が低下する傾向にある。一方、重合性モノマーの混合比率が大きくなり過ぎると、シード粒子に吸収されないで、水性媒体中で重合性モノマー自体が懸濁重合してしまい、目的とする粒子径以外の粒子が生成する場合がある。なお、重合性モノマーの吸収は、例えば、光学顕微鏡を用いてシード粒子を観察して粒子径の拡大から確認することができ、重合性モノマーの吸収を終了するか継続するかを判断することができる。 The seed particles swell due to absorption of the polymerizable monomer. If the mixing ratio of the polymerizable monomer to the seed particles is too small, the rate of increase in the particle diameter of the formed polymer particles will be small, and the productivity of the polymer particles will tend to decrease. On the other hand, if the mixing ratio of the polymerizable monomer becomes too large, the polymerizable monomer itself will be suspended and polymerized in the aqueous medium without being absorbed by the seed particles, and particles with a particle size other than the desired size may be generated. be. In addition, the absorption of the polymerizable monomer can be confirmed by observing the seed particles using an optical microscope and observing the enlargement of the particle size, and it is possible to determine whether the absorption of the polymerizable monomer is to be terminated or continued. can.

重合性モノマーとしては、重合性官能基を有するモノマーであれば特に制限されないが、例えば、上述のポリマー粒子の(メタ)アクリル酸エステルで例示した単官能(メタ)アクリル酸エステル、多官能(メタ)アクリル酸エステル等が挙げられる。重合性モノマーは、1種を単独で又は2種以上を組み合わせて用いてもよい。 The polymerizable monomer is not particularly limited as long as it has a polymerizable functional group, but examples include monofunctional (meth)acrylic esters and polyfunctional (meth)acrylic esters exemplified in the (meth)acrylic ester of polymer particles mentioned above. ) acrylic esters, etc. The polymerizable monomers may be used alone or in combination of two or more.

単官能(メタ)アクリル酸エステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸n-オクチル、アクリル酸ドデシル、アクリル酸ラウリル、アクリル酸ステアリル、アクリル酸2-クロロエチル、アクリル酸フェニル、α-クロロアクリル酸メチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸n-オクチル、メタクリル酸ドデシル、メタクリル酸ラウリル、メタクリル酸ステアリル等が挙げられる。 Examples of monofunctional (meth)acrylic esters include methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, and n-octyl acrylate. , dodecyl acrylate, lauryl acrylate, stearyl acrylate, 2-chloroethyl acrylate, phenyl acrylate, methyl α-chloroacrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, methacrylic acid Examples include isobutyl, hexyl methacrylate, 2-ethylhexyl methacrylate, n-octyl methacrylate, dodecyl methacrylate, lauryl methacrylate, and stearyl methacrylate.

多官能(メタ)アクリル酸エステルとしては、例えば、アルカンジオールジ(メタ)アクリレート等の(メタ)アクリロイル基を2つ有するジ(メタ)アクリレート化合物が挙げられる。 Examples of the polyfunctional (meth)acrylic ester include di(meth)acrylate compounds having two (meth)acryloyl groups, such as alkanediol di(meth)acrylate.

ジ(メタ)アクリレート化合物は、例えば、下記式(1)で表される化合物であってよい。 The di(meth)acrylate compound may be, for example, a compound represented by the following formula (1).

Figure 0007341434000001
Figure 0007341434000001

式(1)中、R及びRはそれぞれ独立に水素原子又はメチル基を示し、Lはアルキレン基を示す。当該アルキレン基の炭素数は、例えば、1~5であってもよい。アルキレン基は、例えば、置換基で置換されていてもよい。置換基としては、例えば、水酸基が挙げられる。また、アルキレン基は、直鎖状、分岐状、又は環状であってもよい。In formula (1), R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and L 1 represents an alkylene group. The alkylene group may have, for example, 1 to 5 carbon atoms. The alkylene group may be substituted with a substituent, for example. Examples of the substituent include hydroxyl group. Further, the alkylene group may be linear, branched, or cyclic.

式(1)で表されるジ(メタ)アクリレート化合物としては、例えば、グリセロールジ(メタ)アクリレート、1,3-ブタンジオールジアクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,7-ヘプタンジオールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート等が挙げられる。 Examples of the di(meth)acrylate compound represented by formula (1) include glycerol di(meth)acrylate, 1,3-butanediol diacrylate, 1,4-butanediol di(meth)acrylate, 1,5 -Pentanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,7-heptanediol di(meth)acrylate, 1,8-octanediol di(meth)acrylate, 3-methyl-1 , 5-pentanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate and the like.

ジ(メタ)アクリレート化合物は、例えば、エトキシ化ビスフェノールA系ジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールA系ジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、1,1,1-トリスヒドロキシメチルエタンジ(メタ)アクリレート、エトキシ化シクロヘキサンジメタノールジ(メタ)アクリレート等のジ(メタ)アクリレート;(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート等の(ポリ)アルキレングリコール系ジ(メタ)アクリレートであってもよい。 Di(meth)acrylate compounds include, for example, ethoxylated bisphenol A-based di(meth)acrylate, propoxylated ethoxylated bisphenol A-based di(meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, 1,1,1 - Di(meth)acrylates such as trishydroxymethylethane di(meth)acrylate, ethoxylated cyclohexanedimethanol di(meth)acrylate; (poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate , (poly)alkylene glycol di(meth)acrylate such as (poly)tetramethylene glycol di(meth)acrylate.

ジ(メタ)アクリレート化合物以外の多官能(メタ)アクリル酸エステルとしては、例えば、3官能以上の(メタ)アクリレートが挙げられる。3官能以上の(メタ)アクリレートとしては、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、1,1,1-トリスヒドロキシメチルエタントリ(メタ)アクリレート、1,1,1-トリスヒドロキシメチルプロパントリ(メタ)アクリレート等が挙げられる。3官能以上の(メタ)アクリレートの市販品としては、例えば、新中村化学工業株式会社製のNKエステル(A-TMPT-6P0、A-TMPT-3E0、A-TMM-3LMN、A-GLYシリーズ、A-9300、AD-TMP、AD-TMP-4CL、ATM-4E、A-DPH)等が挙げられる。 Examples of polyfunctional (meth)acrylic esters other than di(meth)acrylate compounds include trifunctional or higher functional (meth)acrylates. Examples of trifunctional or higher functional (meth)acrylates include trimethylolpropane tri(meth)acrylate, tetramethylolmethane tri(meth)acrylate, tetramethylolpropane tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, 1,1, Examples include 1-trishydroxymethylethane tri(meth)acrylate, 1,1,1-trishydroxymethylpropane tri(meth)acrylate, and the like. Commercially available trifunctional or higher functional (meth)acrylates include, for example, NK esters (A-TMPT-6P0, A-TMPT-3E0, A-TMM-3LMN, A-GLY series, manufactured by Shin-Nakamura Chemical Co., Ltd.). A-9300, AD-TMP, AD-TMP-4CL, ATM-4E, A-DPH), etc.

重合性モノマーは、単官能(メタ)アクリル酸エステル及び多官能(メタ)アクリル酸エステルであってよいが、これらに加えて、他の単官能モノマー又は多官能モノマーを含んでいてもよい。 The polymerizable monomer may be a monofunctional (meth)acrylic ester or a polyfunctional (meth)acrylic ester, but may also contain other monofunctional monomers or polyfunctional monomers.

単官能モノマーとしては、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン、2,4-ジメチルスチレン、p-n-ブチルスチレン、p-t-ブチルスチレン、p-n-ヘキシルスチレン、p-n-オクチルスチレン、p-n-ノニルスチレン、p-n-デシルスチレン、p-n-ドデシルスチレン、p-メトキシスチレン、p-フェニルスチレン、p-クロロスチレン、3,4-ジクロロスチレン等のスチレン及びその誘導体;酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル、酪酸ビニル等のビニルエステル;N-ビニルピロール、N-ビニルカルバゾール、N-ビニルインドール、N-ビニルピロリドン等のN-ビニル化合物;フッ化ビニル、フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレン、アクリル酸トリフルオロエチル、アクリル酸テトラフルオロプロピル等の含フッ素化モノマー;ブタジエン、イソプレン等の共役ジエンが挙げられる。これらの単官能モノマーは、1種を単独で又は2種以上を組み合わせて用いてもよい。ただし、単官能モノマーが、スチレン等の疎水性の高い単官能モノマーである場合、当該単官能モノマーの含有量は、親水性ポリマー粒子が得られ易く、分析対象成分との疎水吸着が生じ難いことから、重合性モノマーの全質量を基準として、20質量%以下であることが好ましい。 Examples of monofunctional monomers include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene, and 2,4-dimethyl. Styrene, pn-butylstyrene, pn-butylstyrene, pn-hexylstyrene, pn-octylstyrene, pn-nonylstyrene, pn-decylstyrene, pn-dodecylstyrene , p-methoxystyrene, p-phenylstyrene, p-chlorostyrene, 3,4-dichlorostyrene, and other styrenes and their derivatives; vinyl esters such as vinyl acetate, vinyl propionate, vinyl benzoate, and vinyl butyrate; N-vinyl N-vinyl compounds such as pyrrole, N-vinylcarbazole, N-vinylindole, N-vinylpyrrolidone; vinyl fluoride, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, trifluoroethyl acrylate, tetrafluoropropyl acrylate and conjugated dienes such as butadiene and isoprene. These monofunctional monomers may be used alone or in combination of two or more. However, when the monofunctional monomer is a highly hydrophobic monofunctional monomer such as styrene, the content of the monofunctional monomer is such that hydrophilic polymer particles are easily obtained and hydrophobic adsorption with the target component is difficult to occur. Therefore, it is preferably 20% by mass or less based on the total mass of the polymerizable monomer.

多官能モノマーとしては、例えば、ジビニルベンゼン、ジビニルビフェニル、ジビニルナフタレン等のジビニル化合物;ジアリルフタレート及びその異性体;トリアリルイソシアヌレート及びその誘導体などが挙げられる。これらの多官能性モノマーは、1種を単独で又は2種以上を組み合わせて用いてもよい。 Examples of the polyfunctional monomer include divinyl compounds such as divinylbenzene, divinylbiphenyl, and divinylnaphthalene; diallyl phthalate and its isomers; triallyl isocyanurate and its derivatives. These polyfunctional monomers may be used alone or in combination of two or more.

重合性モノマーは、(メタ)アクリル酸エステルを含むことが好ましく、グリセロールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジアクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,7-ヘプタンジオールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、及びペンタエリスリトールトリ(メタ)アクリレートからなる群より選ばれる少なくとも一種を含むことがより好ましい。 The polymerizable monomer preferably contains (meth)acrylic acid ester, such as glycerol di(meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, 1, 3-butanediol diacrylate, 1,4-butanediol di(meth)acrylate, 1,5-pentanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,7-heptanediol di(meth)acrylate (meth)acrylate, 1,8-octanediol di(meth)acrylate, 3-methyl-1,5-pentanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decane More preferably, it contains at least one selected from the group consisting of diol di(meth)acrylate, neopentyl glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, and pentaerythritol tri(meth)acrylate.

水性媒体としては、水、水と水溶性溶媒(例えば、低級アルコール)との混合媒体等が挙げられる。水性媒体には、界面活性剤が含まれていてよい。界面活性剤は、アニオン系、カチオン系、ノニオン系、及び両性イオン系の界面活性剤のいずれかを用いることができる。 Examples of the aqueous medium include water, a mixed medium of water and a water-soluble solvent (eg, lower alcohol), and the like. The aqueous medium may contain a surfactant. As the surfactant, any one of anionic, cationic, nonionic, and amphoteric surfactants can be used.

アニオン系界面活性剤としては、例えば、オレイン酸ナトリウム、ヒマシ油カリ等の脂肪酸油、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム、ラウリル硫酸トリエタノールアミン等のアルキル硫酸エステル塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、ジオクチルスルホコハク酸ナトリウム等のジアルキルスルホコハク酸塩、アルケルニルコハク酸塩(ジカリウム塩)、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンラウリルエーテル硫酸ナトリウム等のポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキル硫酸エステル塩等が挙げられる。 Examples of anionic surfactants include fatty acid oils such as sodium oleate and potassium castor oil, alkyl sulfate ester salts such as sodium lauryl sulfate, ammonium lauryl sulfate, and triethanolamine lauryl sulfate, and alkylbenzene sulfones such as sodium dodecylbenzenesulfonate. acid salts, alkylnaphthalene sulfonates, alkanesulfonates, dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate, alkenyl succinates (dipotassium salts), alkyl phosphate ester salts, naphthalene sulfonic acid formalin condensates, polyoxy Examples include polyoxyethylene alkyl ether sulfates such as ethylene alkyl phenyl ether sulfate, polyoxyethylene lauryl ether sodium sulfate, and polyoxyethylene alkyl sulfate.

カチオン系界面活性剤としては、例えば、ラウリルアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩、ラウリルトリメチルアンモニウムクロライド等の第四級アンモニウム塩などが挙げられる。 Examples of the cationic surfactant include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride.

ノニオン系界面活性剤としては、例えば、ポリエチレングリコールアルキルエーテル類、ポリエチレングリコールアルキルアリールエーテル類、ポリエチレングリコールエステル類、ポリエチレングリコールソルビタンエステル類、ポリアルキレングリコールアルキルアミン又はアミド類等の炭化水素系ノニオン界面活性剤、シリコンのポリエチレンオキサイド付加物類、ポリプロピレンオキサイド付加物類等のポリエーテル変性シリコン系ノニオン界面活性剤、パーフルオロアルキルグリコール類等のフッ素系ノニオン界面活性剤などが挙げられる。 Examples of nonionic surfactants include hydrocarbon nonionic surfactants such as polyethylene glycol alkyl ethers, polyethylene glycol alkylaryl ethers, polyethylene glycol esters, polyethylene glycol sorbitan esters, polyalkylene glycol alkyl amines, or amides. Examples include polyether-modified silicone-based nonionic surfactants such as polyethylene oxide adducts of silicone and polypropylene oxide adducts, and fluorine-based nonionic surfactants such as perfluoroalkyl glycols.

両性イオン系界面活性剤としては、例えば、ラウリルジメチルアミンオキサイド等の炭化水素界面活性剤、リン酸エステル系界面活性剤、亜リン酸エステル系界面活性剤などが挙げられる。 Examples of the amphoteric surfactant include hydrocarbon surfactants such as lauryl dimethylamine oxide, phosphate ester surfactants, and phosphite ester surfactants.

界面活性剤は、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、重合性モノマーの重合時の分散安定性の観点から、界面活性剤は、アニオン系界面活性剤が好ましい。 The surfactants may be used alone or in combination of two or more. Among these, the surfactant is preferably an anionic surfactant from the viewpoint of dispersion stability during polymerization of the polymerizable monomer.

必要に応じて添加される重合開始剤としては、例えば、過酸化ベンゾイル、過酸化ラウロイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、ジ-t-ブチルパーオキサイド等の有機過酸化物;2,2’-アゾビスイソブチロニトリル、1,1’-アゾビスシクロヘキサンカルボニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ系化合物などが挙げられる。重合開始剤の含有量は、重合性モノマー総量100質量部に対して、0.1~7.0質量部であってよい。 Examples of the polymerization initiator added as necessary include benzoyl peroxide, lauroyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, and t-butyl peroxide. Organic peroxides such as oxy-2-ethylhexanoate and di-t-butyl peroxide; 2,2'-azobisisobutyronitrile, 1,1'-azobiscyclohexanecarbonitrile, 2,2' Examples include azo compounds such as -azobis(2,4-dimethylvaleronitrile). The content of the polymerization initiator may be 0.1 to 7.0 parts by weight based on 100 parts by weight of the total amount of polymerizable monomers.

次に、シード粒子に吸収させた重合性モノマーを重合させることによって、単分散性のポリマー粒子を得ることができる。 Next, monodisperse polymer particles can be obtained by polymerizing the polymerizable monomer absorbed into the seed particles.

重合温度は、重合性モノマー及び重合開始剤の種類に応じて、適宜設定することができる。重合温度は、25~110℃又は50~100℃であってよい。重合反応は、シード粒子が充分に膨潤し、重合性モノマー及び任意の重合開始剤が充分に吸収された後に、昇温させて行うことが好ましい。 The polymerization temperature can be appropriately set depending on the types of polymerizable monomer and polymerization initiator. The polymerization temperature may be 25-110°C or 50-100°C. The polymerization reaction is preferably carried out by raising the temperature after the seed particles have sufficiently swollen and the polymerizable monomer and any polymerization initiator have been sufficiently absorbed.

ポリマー粒子は、必要に応じて重合液から遠心分離又はろ過によって水性媒体を除去し、水及び溶剤で洗浄した後、乾燥することで単離することができる。 Polymer particles can be isolated by removing the aqueous medium from the polymerization solution by centrifugation or filtration, washing with water and a solvent, and drying, if necessary.

上記重合工程において、シード粒子の分散安定性を向上させる観点から、乳化液に高分子分散安定剤を添加してもよい。 In the above polymerization step, a polymer dispersion stabilizer may be added to the emulsion from the viewpoint of improving the dispersion stability of the seed particles.

高分子分散安定剤としては、例えば、ポリビニルアルコール、ポリカルボン酸、セルロース類(ヒドロキシエチルセルロース、カルボキシメチルセルロース等)、ポリビニルピロリドンなどが挙げられる。高分子分散安定剤は、トリポリリン酸ナトリウム等の無機系水溶性高分子化合物を併用してもよい。これらの中でも、高分子分散安定剤は、ポリビニルアルコール又はポリビニルピロリドンを含むことが好ましい。高分子分散安定剤の含有量は、重合性モノマー総量100質量部に対して1~10質量部であってよい。 Examples of the polymer dispersion stabilizer include polyvinyl alcohol, polycarboxylic acids, celluloses (hydroxyethyl cellulose, carboxymethyl cellulose, etc.), polyvinylpyrrolidone, and the like. The polymer dispersion stabilizer may be used in combination with an inorganic water-soluble polymer compound such as sodium tripolyphosphate. Among these, the polymer dispersion stabilizer preferably contains polyvinyl alcohol or polyvinylpyrrolidone. The content of the polymer dispersion stabilizer may be 1 to 10 parts by weight based on 100 parts by weight of the total amount of polymerizable monomers.

水中で重合性モノマー自体が単独で乳化重合することを抑制するために、亜硝酸塩類、亜硫酸塩類、ハイドロキノン類、アスコルビン酸類、水溶性ビタミンB類、クエン酸、ポリフェノール類等の水溶性の重合禁止剤を用いてもよい。 In order to suppress emulsion polymerization of polymerizable monomers themselves in water, water-soluble polymerization of nitrites, sulfites, hydroquinones, ascorbic acids, water-soluble vitamin B, citric acid, polyphenols, etc. is prohibited. Agents may also be used.

ポリマー粒子は、耐塩基性がさらに向上することから、メタクリル酸メチルに由来する構造単位を有するシード粒子と、シード粒子の表面上に形成された、グリセロールジ(メタ)アクリレートに由来する構造単位を有するポリマーとを有するポリマー粒子であってよい。 In order to further improve base resistance, the polymer particles contain seed particles having structural units derived from methyl methacrylate and structural units derived from glycerol di(meth)acrylate formed on the surface of the seed particles. It may be a polymer particle having a polymer having a

ポリマー粒子の平均粒子径は、高い理論段数が得られ易いことから、例えば、6μm以下、5μm以下、又は4μm以下であってよい。 The average particle diameter of the polymer particles may be, for example, 6 μm or less, 5 μm or less, or 4 μm or less, since a high number of theoretical plates can be easily obtained.

ポリマー粒子の粒子径(直径)の変動係数は、高い理論段数が得られ易いことから、例えば、25%以下、20%以下、15%以下、又は10%以下であってよい。 The coefficient of variation of the particle size (diameter) of the polymer particles may be, for example, 25% or less, 20% or less, 15% or less, or 10% or less, since it is easy to obtain a high number of theoretical plates.

ポリマー粒子は、例えば、多孔構造を有する粒子(多孔質ポリマー粒子)であってもよい。 The polymer particles may be, for example, particles having a porous structure (porous polymer particles).

(有機基導入工程)
次いで、作製したポリマー粒子に、第四級アンモニウム基を含む有機基を導入する。ポリマー粒子がシード重合法を用いて製造された場合、第四級アンモニウム基を含む有機基は、重合性モノマーに由来する構造単位を有するポリマーに導入され得る。第四級アンモニウム基を含む有機基は、スルホン酸基、リン酸基等のイオン性基をさらに含んでいてもよい。第四級アンモニウム基を含む有機基は、第四級アンモニウム基を含むアルキル基又は第四級アンモニウム基を含むアルコキシ基であってよく、これらのアルキル基又はアルコキシ基はリン酸基、スルホン酸基等のイオン性基をさらに有していてもよい。
(Organic group introduction step)
Next, an organic group containing a quaternary ammonium group is introduced into the produced polymer particles. When the polymer particles are produced using a seed polymerization method, organic groups containing quaternary ammonium groups can be introduced into the polymer having structural units derived from polymerizable monomers. The organic group containing a quaternary ammonium group may further contain an ionic group such as a sulfonic acid group or a phosphoric acid group. The organic group containing a quaternary ammonium group may be an alkyl group containing a quaternary ammonium group or an alkoxy group containing a quaternary ammonium group, and these alkyl groups or alkoxy groups may be phosphoric acid groups, sulfonic acid groups. It may further have an ionic group such as.

第四級アンモニウム基を含む有機基をポリマー粒子に導入する方法としては、特に制限されないが、例えば、ポリマー粒子とエポキシ基を有する化合物とを反応させてエポキシ基を導入し、エポキシ基を有するポリマー粒子と第三級アミンとを反応させる方法、ポリマー粒子にオキソジオキソホスホリル基を有する化合物とを反応させてオキソジオキソホスホリル基を導入し、オキソジオキソホスホリル基を有するポリマー粒子と第三級アミンとを反応させる方法、2-クロロエチル(メタ)アクリレート等のハロゲン化アルキル基を有する(メタ)アクリレートを共重合させて得られるハロゲン化アルキル基を有するポリマー粒子に第三級アミンを反応させる方法、2-ジメチルアミノエチル(メタ)アクリレート等の第三級アミノ基を有する(メタ)アクリレートを共重合させて得られる第三級アミノ基を有するポリマー粒子にヨウ化メチル等のハロゲン化アルキルを反応させる方法等が挙げられる。ここで、有機基は、ポリマー粒子と反応させるエポキシ基を有する化合物、オキソジオキソホスホリル基を有する化合物、ハロゲン化アルキル基を有する(メタ)アクリレート、第三級アミノ基を有する(メタ)アクリレート等に由来する基であり得る。 The method for introducing an organic group containing a quaternary ammonium group into a polymer particle is not particularly limited, but for example, a polymer particle and a compound having an epoxy group are reacted to introduce an epoxy group, and a polymer having an epoxy group is introduced into the polymer particle. A method of reacting particles with a tertiary amine, reacting a polymer particle with a compound having an oxodioxophosphoryl group to introduce an oxodioxophosphoryl group, and reacting the polymer particle with a tertiary amine having an oxodioxophosphoryl group. A method of reacting a tertiary amine with polymer particles having a halogenated alkyl group obtained by copolymerizing a (meth)acrylate having a halogenated alkyl group such as 2-chloroethyl (meth)acrylate. , 2-dimethylaminoethyl (meth)acrylate and other tertiary amino group-containing polymer particles obtained by copolymerizing (meth)acrylates having a tertiary amino group are reacted with an alkyl halide such as methyl iodide. For example, the method of Here, the organic group is a compound having an epoxy group to be reacted with polymer particles, a compound having an oxodioxophosphoryl group, a (meth)acrylate having a halogenated alkyl group, a (meth)acrylate having a tertiary amino group, etc. It can be a group derived from.

エポキシ基を導入する方法としては、例えば、水酸基等を有するポリマー粒子に、エピクロルヒドリン等のハロゲン基含有グリシジル化合物を反応させる方法などが挙げられる。 Examples of methods for introducing epoxy groups include a method in which polymer particles having hydroxyl groups and the like are reacted with a halogen group-containing glycidyl compound such as epichlorohydrin.

エポキシ基と反応させる第三級アミンとしては、例えば、トリメチルアミン、トリエチルアミン、分岐状のポリエチレンイミン等が挙げられる。ポリエチレンイミンの市販品としては、例えば、ポリエチレンイミン(重量平均分子量600)、ポリエチレンイミン(重量平均分子量1800)(和光純薬工業株式会社製、商品名)等が挙げられる。第3級アミンは、スルホン酸基、リン酸基等のイオン性基をさらに有していてもよい。例えば、エポキシ基を有するポリマー粒子とスルホン酸基を有する第三級アミンとを反応させることによって、第四級アンモニウム基及びスルホン酸基を含む有機基を有する分離材を得ることができる。 Examples of the tertiary amine to be reacted with the epoxy group include trimethylamine, triethylamine, and branched polyethyleneimine. Commercially available products of polyethyleneimine include, for example, polyethyleneimine (weight average molecular weight 600), polyethyleneimine (weight average molecular weight 1800) (manufactured by Wako Pure Chemical Industries, Ltd., trade name), and the like. The tertiary amine may further have an ionic group such as a sulfonic acid group or a phosphoric acid group. For example, by reacting polymer particles having an epoxy group with a tertiary amine having a sulfonic acid group, a separation material having an organic group containing a quaternary ammonium group and a sulfonic acid group can be obtained.

第三級アミンと反応させた後に、例えば、未反応のエポキシ基を開環するために、硫酸洗浄等の処理を施してもよい。 After the reaction with the tertiary amine, a treatment such as washing with sulfuric acid may be performed, for example, in order to open the unreacted epoxy groups.

オキソジオキソホスホリル基を導入する方法としては、例えば、水酸基等を有するポリマー粒子に、2-クロロ-オキソ-1,3,2-ジオキサホスホラン等のハロゲン基含有ジオキサホスホラン化合物を反応させる方法などが挙げられる。 As a method for introducing an oxodioxophosphoryl group, for example, a halogen group-containing dioxaphosphorane compound such as 2-chloro-oxo-1,3,2-dioxaphosphorane is reacted with polymer particles having a hydroxyl group, etc. For example, how to

オキソジオキソホスホリル基と反応させる第三級アミンとしては、例えば、エポキシ基と反応させる第三級アミンで例示したものと同様のものが挙げられる。オキソジオキソホスホリル基を有するポリマー粒子と第三級アミンとを反応させることによって、第四級アンモニウム基及びリン酸基を含む有機基を有する分離材を得ることができる。 Examples of the tertiary amine to be reacted with the oxodioxophosphoryl group include those similar to those exemplified as the tertiary amine to be reacted with the epoxy group. A separation material having an organic group containing a quaternary ammonium group and a phosphoric acid group can be obtained by reacting a polymer particle having an oxodioxophosphoryl group with a tertiary amine.

このようにして得られるメタボローム分析用分離材は、ポリマー粒子と、ポリマー粒子に結合した、第四級アンモニウム基を含む有機基とを有する。有機基は、第四級アンモニウム基以外に、スルホン酸基、リン酸基等のイオン性基をさらに含んでいてもよいが、メタボロームに対して高い分離性を有し、クロマトグラムにおいてよりシャープなピークが得られる観点から、第四級アンモニウム基以外のイオン性基を含まないことが好ましい。 The separation material for metabolomic analysis obtained in this way has polymer particles and an organic group containing a quaternary ammonium group bonded to the polymer particles. The organic group may further contain an ionic group such as a sulfonic acid group or a phosphoric acid group in addition to the quaternary ammonium group, but it has high separability with respect to the metabolome and has a sharper chromatogram. From the viewpoint of obtaining a peak, it is preferable that ionic groups other than quaternary ammonium groups are not included.

メタボローム分析用分離材の平均粒子径は、高い理論段数が得られ易いことから、例えば、2~5μm以下であってよい。分離材の平均粒子径は、2.5μm以上、3μm以上、又は3.2μm以上であってもよく、4.5μm以下、4μm以下、又は3.8μm以下であってもよい。 The average particle diameter of the separation material for metabolome analysis may be, for example, 2 to 5 μm or less, since it is easy to obtain a high number of theoretical plates. The average particle diameter of the separation material may be 2.5 μm or more, 3 μm or more, or 3.2 μm or more, or 4.5 μm or less, 4 μm or less, or 3.8 μm or less.

メタボローム分析用分離材の粒子径(直径)の変動係数は、高い理論段数が得られ易いことから、例えば、25%以下、20%以下、15%以下、又は10%以下であってよい。 The coefficient of variation of the particle size (diameter) of the separation material for metabolome analysis may be, for example, 25% or less, 20% or less, 15% or less, or 10% or less, since it is easy to obtain a high number of theoretical plates.

メタボローム分析用分離材の第四級アンモニウム基量(中性塩分解容量)は、イオン性化合物に対するより高い分離性を示すことから、10~500μeq/gであってよい。分離材の第四級アンモニウム基量(中性塩分解容量)は、10μeq/g以上、30μeq/g以上、又は60μeq/g以上であってもよく、500μeq/g以下、300μeq/g以下、又は100μeq/g以下であってもよい。 The amount of quaternary ammonium groups (neutral salt decomposition capacity) of the separation material for metabolome analysis may be 10 to 500 μeq/g since it shows higher separation performance for ionic compounds. The amount of quaternary ammonium groups (neutral salt decomposition capacity) of the separation material may be 10 μeq/g or more, 30 μeq/g or more, or 60 μeq/g or more, and 500 μeq/g or less, 300 μeq/g or less, or It may be 100 μeq/g or less.

メタボローム分析用分離材は、メタボロームを含む試料からメタボロームを分離するための分離材である。 A separation material for metabolome analysis is a separation material for separating metabolome from a sample containing metabolome.

メタボロームは、アミノ酸、核酸塩基、ヌクレオシド、ヌクレオチド、及び有機酸からなる群より選ばれる少なくとも1種であってよい。 The metabolome may be at least one selected from the group consisting of amino acids, nucleobases, nucleosides, nucleotides, and organic acids.

アミノ酸としては、例えば、グリシン(Gly)、アラニン(Ala)、セリン(Ser)、トレオニン(Thr)、システイン(Cys)、バリン(Val)、イソロイシン(Ile)、メチオニン(Met)、プロリン(Pro)、フェニルアラニン(Phe)、チロシン、トリプトファン(Trp)、アスパラギン酸(Asp)、グルタミン酸(Glu)、アスパラギン(Asn)、グルタミン(Gln)、ヒスチジン(His)、リシン(Lys)、アルギニン(Arg)、グルタチオン(GSH)、及び酸性型グルタチオン(GSSG)からなる群より選ばれる少なくとも1種が挙げられる。アミノ酸は、より好ましくはアラニン(Ala)、トレオニン(Thr)、バリン(Val)、ロイシン(Leu)、イソロイシン(Ile)、メチオニン(Met)、プロリン(Pro)、フェニルアラニン(Phe)、チロシン(Tyr)、トリプトファン(Trp)、アスパラギン酸(Asp)、アスパラギン(Asn)、及びアルギニン(Arg)からなる群より選ばれる少なくとも1種である。 Examples of amino acids include glycine (Gly), alanine (Ala), serine (Ser), threonine (Thr), cysteine (Cys), valine (Val), isoleucine (Ile), methionine (Met), and proline (Pro). , phenylalanine (Phe), tyrosine, tryptophan (Trp), aspartic acid (Asp), glutamic acid (Glu), asparagine (Asn), glutamine (Gln), histidine (His), lysine (Lys), arginine (Arg), glutathione (GSH) and acidic glutathione (GSSG). Amino acids are more preferably alanine (Ala), threonine (Thr), valine (Val), leucine (Leu), isoleucine (Ile), methionine (Met), proline (Pro), phenylalanine (Phe), and tyrosine (Tyr). , tryptophan (Trp), aspartic acid (Asp), asparagine (Asn), and arginine (Arg).

核酸塩基としては、例えば、アデニン(Adenine)、グアニン(Guanine)、チミン(Thymine)、ウラシル(Uracil)、及びシトシン(Cytosine)からなる群より選ばれる少なくとも1種が挙げられる。 Examples of the nucleobase include at least one selected from the group consisting of adenine, guanine, thymine, uracil, and cytosine.

ヌクレオシドとしては、例えば、アデノシン(Adenosine)、グアノシン(Guanosine)、チミジン(Thymidine)、ウリジン(Uridine)、及びシチジン(Cytidine)からなる群より選ばれる少なくとも1種が挙げられる。 Examples of the nucleoside include at least one selected from the group consisting of adenosine, guanosine, thymidine, uridine, and cytidine.

ヌクレオチドとしては、例えば、アデノシン-1-リン酸(AMP)、グアノシン-1-リン酸(GMP)、チミジン-1-リン酸(TMP)、ウリジン-1-リン酸(UMP)、及びシチジン-1-リン酸(CMP)からなる群より選ばれる少なくとも1種が挙げられる。 Examples of nucleotides include adenosine-1-phosphate (AMP), guanosine-1-phosphate (GMP), thymidine-1-phosphate (TMP), uridine-1-phosphate (UMP), and cytidine-1-phosphate. - Phosphoric acid (CMP).

有機酸としては、例えば、クエン酸(Cit)、イソクエン酸(IsoCit)、フマル酸(Fum)、マレイン酸(Mal)、及びコハク酸(Suc)からなる群より選ばれる少なくとも1種が挙げられる。 Examples of the organic acid include at least one selected from the group consisting of citric acid (Cit), isocitric acid (IsoCit), fumaric acid (Fum), maleic acid (Mal), and succinic acid (Suc).

本実施形態に係るメタボローム分析用分離材は、カラムクロマトグラフィー(例えば、液体クロマトグラフィー)の充填剤として好適に用いることができる。 The separation material for metabolome analysis according to this embodiment can be suitably used as a packing material for column chromatography (for example, liquid chromatography).

<メタボローム分析用カラム>
本実施形態に係るメタボローム分析用カラムは、上術のメタボローム分析用分離材を備える。メタボローム分析用カラムは、例えば、メタボローム分析用分離材を充填することによって製造できる。カラムに分離材を充填する方法は特に制限されず、公知の方法を適宜採用することができる。メタボローム分析用カラムは、塩基性条件下でも好適に用いることができる。
<Column for metabolome analysis>
The column for metabolome analysis according to this embodiment includes the separation material for metabolome analysis described above. A column for metabolome analysis can be manufactured, for example, by filling it with a separation material for metabolome analysis. The method of filling the column with the separation material is not particularly limited, and any known method can be employed as appropriate. The column for metabolome analysis can be suitably used even under basic conditions.

以下、本発明について実施例を挙げてより具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to these examples.

[メタボローム分析用分離材の作製]
(実施例1:第四級アンモニウム基を含む有機基を有する分離材)
<シード粒子の作製>
500mLのセパラブルフラスコに、メタクリル酸メチル70g、オクタンチオール2.1g、及びイオン交換水370gを加え、窒素でバブリングするとともに、撹拌羽根で撹拌しながら30℃で1時間保温した。その後、ペルオキソ二硫酸カリウム0.875g及びイオン交換水30gを加え、70℃で6時間反応させ、シード粒子を含む反応液を得た。得られた反応液を冷却した後、反応液中の塊状物及び微粒子を除去して、シード粒子のスラリー(固形分濃度:3.5質量%)を得た。ここで、塊状物は、目開き150μmの篩を用いて取り除いた。また、微粒子は、塊状物を取り除いた後の反応液(篩を通過したスラリー)を遠心脱水機で処理し、デカンテーションで上澄み液を廃棄することによって取り除いた。得られたスラリー中のシード粒子の平均粒子径及び粒子径のCV(変動係数)を、粒度分布測定機(マイクロトラック・ベル株式会社製(MT-3300EX II)で粒度分布を測定することによって算出した。シード粒子の平均粒子径は750nmであり、CVは6.4%であった。
[Preparation of separation material for metabolome analysis]
(Example 1: Separation material having an organic group containing a quaternary ammonium group)
<Preparation of seed particles>
70 g of methyl methacrylate, 2.1 g of octanethiol, and 370 g of ion-exchanged water were added to a 500 mL separable flask, and the mixture was kept at 30° C. for 1 hour while bubbling with nitrogen and stirring with a stirring blade. Thereafter, 0.875 g of potassium peroxodisulfate and 30 g of ion-exchanged water were added and reacted at 70° C. for 6 hours to obtain a reaction solution containing seed particles. After cooling the obtained reaction liquid, lumps and fine particles in the reaction liquid were removed to obtain a slurry of seed particles (solid content concentration: 3.5% by mass). Here, the lumps were removed using a sieve with an opening of 150 μm. Furthermore, fine particles were removed by treating the reaction solution (slurry that passed through the sieve) with a centrifugal dehydrator after removing the lumps, and discarding the supernatant liquid by decantation. The average particle diameter and CV (coefficient of variation) of the particle diameter of the seed particles in the obtained slurry were calculated by measuring the particle size distribution with a particle size distribution analyzer (Microtrac Bell Co., Ltd. (MT-3300EX II)). The average particle diameter of the seed particles was 750 nm, and the CV was 6.4%.

<ポリマー粒子の作製>
3Lのセパラブルフラスコに、グリセロールジ(メタ)アクリレート80.6g、酢酸ブチル72.5g、及びイソアミルアルコール48.4gを加え、さらに、2,2’-アゾビスイソブチロニトリル0.4gを加えて、溶解させた。次いで、セパラブルフラスコに、ラウリル硫酸トリエタノールアミンを40質量%含む水溶液11.6g及びイオン交換水1529.7gをさらに加え、超音波ホーンで10分間超音波分散させて乳化液を得た。得られた乳化液に、撹拌羽根で撹拌しながら、上記で作製したシード粒子のスラリー14.0g及びイオン交換水122gを加え、30℃(フラスコ内の温度)で1時間保温して、シード粒子にグリセロールジ(メタ)アクリレートを吸収させた。次いで、ポリビニルアルコール水溶液(ポリビニルアルコール濃度:6質量%)121gを加え、窒素でバブリングしながら78℃(フラスコ内の温度)で5時間重合させ、冷却した。重合によって生成した粒子を、イオン交換水、イオン交換水/メタノール混合液、メタノールの順で洗浄した後、目開き5μmの篩で湿式分級して凝集物を除去した。凝集物除去後のスラリーから、重合によって生成した粒子をろ別し乾燥することによって、ポリマー粒子を得た。得られたポリマー粒子の平均粒子径及び粒子径のCV(変動係数)を、粒度分布測定機(マイクロトラック・ベル株式会社製(MT-3300EX II)で粒度分布を測定することによって算出した。ポリマー粒子の平均粒子径は3.5μmであり、CVは6.8%であった。
<Preparation of polymer particles>
In a 3 L separable flask, add 80.6 g of glycerol di(meth)acrylate, 72.5 g of butyl acetate, and 48.4 g of isoamyl alcohol, and further add 0.4 g of 2,2'-azobisisobutyronitrile. and dissolved. Next, 11.6 g of an aqueous solution containing 40% by mass of triethanolamine lauryl sulfate and 1529.7 g of ion-exchanged water were further added to the separable flask, and the mixture was ultrasonically dispersed for 10 minutes using an ultrasonic horn to obtain an emulsion. To the obtained emulsion, while stirring with a stirring blade, 14.0 g of the seed particle slurry prepared above and 122 g of ion-exchanged water were added, and the mixture was kept at 30°C (temperature inside the flask) for 1 hour to form seed particles. was allowed to absorb glycerol di(meth)acrylate. Next, 121 g of a polyvinyl alcohol aqueous solution (polyvinyl alcohol concentration: 6% by mass) was added, polymerized at 78° C. (temperature inside the flask) for 5 hours while bubbling with nitrogen, and cooled. The particles produced by polymerization were washed with ion-exchanged water, an ion-exchanged water/methanol mixture, and methanol in this order, and then subjected to wet classification using a 5-μm sieve to remove aggregates. Polymer particles were obtained by filtering and drying particles generated by polymerization from the slurry after removing the aggregates. The average particle diameter and CV (coefficient of variation) of the particle diameter of the obtained polymer particles were calculated by measuring the particle size distribution with a particle size distribution analyzer (Microtrac Bell Co., Ltd. (MT-3300EX II). The average particle diameter of the particles was 3.5 μm, and the CV was 6.8%.

<エポキシ基を有するポリマー粒子の作製>
300mLの三口フラスコに、乾燥したポリマー粒子15g、イオン交換水112.5g、クロロメチルオキシラン22.5g、及び水酸化ナトリウム水溶液(水酸化ナトリウム濃度:30質量%)8.8gを1分間超音波分散させ、撹拌羽根で撹拌しながら30℃で1時間反応させた。反応後のポリマー粒子をろ別し、イオン交換水、メタノールの順で洗浄し、エポキシ基を有するポリマー粒子を得た。
<Preparation of polymer particles having epoxy groups>
In a 300 mL three-necked flask, 15 g of dried polymer particles, 112.5 g of ion-exchanged water, 22.5 g of chloromethyloxirane, and 8.8 g of an aqueous sodium hydroxide solution (sodium hydroxide concentration: 30% by mass) were ultrasonically dispersed for 1 minute. The mixture was allowed to react at 30° C. for 1 hour while being stirred with a stirring blade. The polymer particles after the reaction were filtered and washed with ion-exchanged water and methanol in that order to obtain polymer particles having epoxy groups.

<メタボローム分析用分離材の作製>
2Lのセパラブルフラスコに、上記で作製したエポキシ基を有するポリマー粒子全量、イオン交換水300g、及び分岐状のポリエチレンイミン(重量平均分子量1800、和光純薬工業株式会社製)750gを加え、撹拌羽根で撹拌しながら、30℃(フラスコ内の温度)で3時間反応させた。反応後のポリマー粒子をろ別し、イオン交換水、メタノールの順で洗浄してから、反応後のポリマー粒子、イオン交換水300g、及び硫酸水溶液(硫酸濃度:47質量%)1.2gを加え、撹拌羽根で撹拌しながら、40℃(フラスコ内の温度)で3時間洗浄した。洗浄後のポリマー粒子をろ別し、イオン交換水、メタノールの順で洗浄し、ポリマー粒子を乾燥することによって、第四級アンモニウム基を含む有機基を有する分離材を得た。得られた分離材の平均粒子径を、粒度分布測定機(マイクロトラック・ベル株式会社製(MT-3300EX II)で粒度分布を測定することによって算出した。平均粒子径は3.58μmであった。
<Preparation of separation material for metabolome analysis>
Add the entire amount of the polymer particles having epoxy groups prepared above, 300 g of ion-exchanged water, and 750 g of branched polyethyleneimine (weight average molecular weight 1800, manufactured by Wako Pure Chemical Industries, Ltd.) to a 2 L separable flask, and stir with a stirring blade. The mixture was reacted at 30°C (temperature inside the flask) for 3 hours while stirring. After the reaction polymer particles were filtered and washed with ion-exchanged water and methanol in that order, the reaction polymer particles, 300 g of ion-exchange water, and 1.2 g of a sulfuric acid aqueous solution (sulfuric acid concentration: 47% by mass) were added. The mixture was washed at 40° C. (temperature inside the flask) for 3 hours while stirring with a stirring blade. The washed polymer particles were filtered, washed with ion-exchanged water and methanol in that order, and the polymer particles were dried to obtain a separation material having an organic group containing a quaternary ammonium group. The average particle size of the obtained separation material was calculated by measuring the particle size distribution with a particle size distribution analyzer (manufactured by Microtrac Bell Co., Ltd. (MT-3300EX II). The average particle size was 3.58 μm. .

<イオン交換容量の測定>
得られた分離材のイオン交換容量を以下の方法によって測定した。100mLビーカーに、分離材1gを秤量し、1mol/Lの水酸化ナトリウム水溶液を加えて撹拌し、分離材をロートで吸引ろ過によってろ別した。ろ別した粒子をイオン交換水に分散させ、ロートで吸引ろ過によってろ別し、ろ液が中性になるまでイオン交換水で分離材を洗浄した。100mLビーカーに、洗浄した分離材を移し、0.1mol/Lの塩酸水溶液を加えて撹拌し、分離材をロートで吸引ろ過によってろ別した。ろ別した粒子をイオン交換水に分散させ、ロートで吸引ろ過によってろ別し、ろ液が中性になるまでイオン交換水で分離材を洗浄した。このときに得られたろ液(洗浄に用いたイオン交換水を含む)を500mLビーカーに移し、0.1mol/Lの水酸化ナトリウム水溶液で滴定することによって、イオン交換容量を測定した。分離材のイオン交換容量は1.7meq/gであった。
<Measurement of ion exchange capacity>
The ion exchange capacity of the obtained separation material was measured by the following method. 1 g of the separation material was weighed into a 100 mL beaker, 1 mol/L aqueous sodium hydroxide solution was added thereto and stirred, and the separation material was filtered out by suction filtration using a funnel. The filtered particles were dispersed in ion-exchanged water, filtered through a funnel through suction filtration, and the separation material was washed with ion-exchanged water until the filtrate became neutral. The washed separation material was transferred to a 100 mL beaker, 0.1 mol/L hydrochloric acid aqueous solution was added thereto and stirred, and the separation material was filtered out by suction filtration using a funnel. The filtered particles were dispersed in ion-exchanged water, filtered through a funnel through suction filtration, and the separation material was washed with ion-exchanged water until the filtrate became neutral. The filtrate obtained at this time (including the ion exchange water used for washing) was transferred to a 500 mL beaker, and the ion exchange capacity was measured by titrating with a 0.1 mol/L aqueous sodium hydroxide solution. The ion exchange capacity of the separation material was 1.7 meq/g.

<第四級アンモニウム基量(中性塩分解容量)の測定>
得られた分離材の第四級アンモニウム基量(中性塩分解容量)を以下の方法によって測定した。100mLビーカーに、分離材1gを秤量し、1mol/Lの水酸化ナトリウム水溶液を加えて撹拌し、分離材をロートで吸引ろ過によってろ別した。ろ別した粒子をイオン交換水に分散させ、ロートで吸引ろ過によってろ別し、ろ液が中性になるまでイオン交換水で分離材を洗浄した。100mLビーカーに、洗浄した分離材を移し、1mol/Lの塩化ナトリウム水溶液を加えて撹拌し、分離材をロートで吸引ろ過によってろ別した。ろ別した粒子をイオン交換水に分散させ、ロートで吸引ろ過によってろ別し、ろ液が中性になるまでイオン交換水で分離材を洗浄した。このときに得られたろ液(洗浄に用いたイオン交換水を含む)を500mLビーカーに移し、0.1mol/Lの塩酸水溶液で滴定することによって、第四級アンモニウム基量(中性塩分解容量)を測定した。分離材の第四級アンモニウム基量(中性塩分解容量)は70μeq/gであった。
<Measurement of quaternary ammonium group amount (neutral salt decomposition capacity)>
The amount of quaternary ammonium groups (neutral salt decomposition capacity) of the obtained separation material was measured by the following method. 1 g of the separation material was weighed into a 100 mL beaker, 1 mol/L aqueous sodium hydroxide solution was added thereto and stirred, and the separation material was filtered out by suction filtration using a funnel. The filtered particles were dispersed in ion-exchanged water, filtered through a funnel through suction filtration, and the separation material was washed with ion-exchanged water until the filtrate became neutral. The washed separation material was transferred to a 100 mL beaker, 1 mol/L aqueous sodium chloride solution was added and stirred, and the separation material was filtered out by suction filtration using a funnel. The filtered particles were dispersed in ion-exchanged water, filtered through a funnel through suction filtration, and the separation material was washed with ion-exchanged water until the filtrate became neutral. The filtrate obtained at this time (including the ion-exchanged water used for washing) was transferred to a 500 mL beaker and titrated with a 0.1 mol/L hydrochloric acid aqueous solution to determine the amount of quaternary ammonium groups (neutral salt decomposition capacity). ) was measured. The amount of quaternary ammonium groups (neutral salt decomposition capacity) of the separation material was 70 μeq/g.

(実施例2:第四級アンモニウム基及びスルホン酸基を含む有機基を有する分離材)
<2-ジメチルアミノエタンスルホン酸(DMAES)の合成>
250mLのフラスコに、2-臭化エチルスルホン酸のNa塩10.9gを加え、これに水100mLを加えて溶解させた。さらにジメチルアミン12.4gを加えて、室温で45分間放置し、得られた混合液を加熱還流下、70~80℃で18時間反応させた。反応後、反応液を40℃まで冷却し、活性炭約2gを加えてから15分間煮沸した。その後、反応液を室温まで冷却し、活性炭を沈降させ、反応液の上澄みを吸引ろ過によってろ過した。水/エタノールで2回再結晶を行い、真空オーブンで50℃、24時間乾燥させることによって、DMAESを得た。
(Example 2: Separation material having an organic group containing a quaternary ammonium group and a sulfonic acid group)
<Synthesis of 2-dimethylaminoethanesulfonic acid (DMAES)>
10.9 g of Na salt of 2-ethylbromide sulfonic acid was added to a 250 mL flask, and 100 mL of water was added thereto to dissolve it. Furthermore, 12.4 g of dimethylamine was added, and the mixture was allowed to stand at room temperature for 45 minutes, and the resulting mixture was reacted at 70 to 80° C. for 18 hours under heating and reflux. After the reaction, the reaction solution was cooled to 40° C., about 2 g of activated carbon was added, and then boiled for 15 minutes. Thereafter, the reaction solution was cooled to room temperature, the activated carbon was precipitated, and the supernatant of the reaction solution was filtered by suction filtration. DMAES was obtained by recrystallizing twice with water/ethanol and drying in a vacuum oven at 50° C. for 24 hours.

<メタボローム分析用分離材の作製>
500mLセパラブルフラスコに、実施例1の条件で作製したエポキシ基を有するポリマー粒子全量、DMAES16g、及び0.2mMリン酸緩衝液(pH8)200mLを加え、撹拌羽根で撹拌しながら、内温50℃、90時間反応させた。反応後のポリマー粒子をろ別し、イオン交換水、メタノールの順で洗浄してから、反応後のポリマー粒子、イオン交換水300g、及び硫酸水溶液(硫酸濃度:47質量%)1.2gを加え、撹拌羽根で撹拌しながら、40℃(フラスコ内の温度)で3時間洗浄した。洗浄後ポリマー粒子をろ過し、イオン交換水、メタノールの順で洗浄し、ポリマー粒子を乾燥することによって、第四級アンモニウム基及びスルホン酸基を含む有機基を有する分離材を得た。得られた分離材の平均粒子径を、粒度分布測定機(マイクロトラック・ベル株式会社製(MT-3300EX II)で粒度分布を測定することによって算出した。平均粒子径は3.6μmであった。実施例1と同様の方法で、第四級アンモニウム基量を測定したところ、分離材の第四級アンモニウム基量(中性塩分解容量)は50μeq/gであった。また、硫黄元素含有量から求めたスルホン酸基量は50μeq/gであった。
<Preparation of separation material for metabolome analysis>
Into a 500 mL separable flask, add the entire amount of the polymer particles having epoxy groups produced under the conditions of Example 1, 16 g of DMAES, and 200 mL of 0.2 mM phosphate buffer (pH 8), and while stirring with a stirring blade, increase the internal temperature to 50°C. , and reacted for 90 hours. After the reaction polymer particles were filtered and washed with ion-exchanged water and methanol in that order, the reaction polymer particles, 300 g of ion-exchange water, and 1.2 g of a sulfuric acid aqueous solution (sulfuric acid concentration: 47% by mass) were added. The mixture was washed at 40° C. (temperature inside the flask) for 3 hours while stirring with a stirring blade. After washing, the polymer particles were filtered, washed with ion-exchanged water and methanol in that order, and the polymer particles were dried to obtain a separation material having an organic group containing a quaternary ammonium group and a sulfonic acid group. The average particle size of the obtained separation material was calculated by measuring the particle size distribution with a particle size distribution analyzer (manufactured by Microtrac Bell Co., Ltd. (MT-3300EX II). The average particle size was 3.6 μm. When the amount of quaternary ammonium groups was measured in the same manner as in Example 1, the amount of quaternary ammonium groups (neutral salt decomposition capacity) of the separation material was 50 μeq/g. The amount of sulfonic acid groups determined from the amount was 50 μeq/g.

(実施例3:第四級アンモニウム基及びリン酸基を含む有機基を有する分離材)
<メタボローム分析用分離材の作製>
500mL三口フラスコに、実施例1の条件で作製したポリマー粒子15g及び乾燥テトラヒドロフラン200mLを加え、撹拌しながら窒素雰囲気下-5℃に冷却させた。これに撹拌しながら、2-クロロ-オキソ-1,3,2-ジオキサホスホラン100gを1時間かけて窒素雰囲気下で滴下し、5℃で48時間反応させ、テトラヒドロフランを5℃以下の条件で減圧下留去した。トリエチルアミン70gとテトラヒドロフラン200mLとを混合してトリエチルアミンのテトラヒドロフラン溶液を調製し、留去後の残さに時間をかけないように加えて、40℃で24時間反応させた。反応後のポリマー粒子をろ別し、イオン交換水、メタノールの順で洗浄することによって、第四級アンモニウム基及びリン酸基を含む有機基を有する分離材を得た。得られた分離材の平均粒子径を、粒度分布測定機(マイクロトラック・ベル株式会社製(MT-3300EX II)で粒度分布を測定することによって算出した。平均粒子径は3.6μmであった。実施例1と同様の方法で、第四級アンモニウム基量を測定したところ、分離材の第四級アンモニウム基量(中性塩分解容量)は40μeq/gであった。また、リン元素含有量から求めたリン酸基量は40μeq/gであった。
(Example 3: Separation material having an organic group containing a quaternary ammonium group and a phosphoric acid group)
<Preparation of separation material for metabolome analysis>
15 g of the polymer particles produced under the conditions of Example 1 and 200 mL of dry tetrahydrofuran were added to a 500 mL three-necked flask, and the mixture was cooled to -5° C. under a nitrogen atmosphere while stirring. While stirring, 100 g of 2-chloro-oxo-1,3,2-dioxaphosphorane was added dropwise in a nitrogen atmosphere over 1 hour, and the mixture was reacted at 5°C for 48 hours. The residue was distilled off under reduced pressure. A tetrahydrofuran solution of triethylamine was prepared by mixing 70 g of triethylamine and 200 mL of tetrahydrofuran, and the solution was quickly added to the residue after distillation, and reacted at 40° C. for 24 hours. The polymer particles after the reaction were filtered and washed with ion-exchanged water and then methanol to obtain a separation material having an organic group containing a quaternary ammonium group and a phosphoric acid group. The average particle size of the obtained separation material was calculated by measuring the particle size distribution with a particle size distribution analyzer (manufactured by Microtrac Bell Co., Ltd. (MT-3300EX II). The average particle size was 3.6 μm. When the amount of quaternary ammonium groups was measured in the same manner as in Example 1, the amount of quaternary ammonium groups (neutral salt decomposition capacity) of the separation material was 40 μeq/g. The amount of phosphoric acid groups determined from the amount was 40 μeq/g.

[カラム評価]
<メタボローム分析用カラムの作製(メタボローム分析用分離材の充填)>
実施例1~3の分離材を用いて、カラムを作製した。100mLビーカーに、分離材0.8gと超純水及びアセトニトリルの25:75(容量比)の混合液とを加え、超音波を当てながら分散混合することによって充填スラリーを調製した。その後、2.1mmφ×150mmのステンレスカラム(株式会社杉山商事製)を取り付けたステンレスパッカーに充填スラリーを流し込んで密閉し、プランジャー式充填ポンプ(ユニフローズ株式会社製、uf-20020SZWP2ポンプ)で加圧充填した。充填後、0.1mol/Lの水酸化ナトリウム水溶液を0.1mL/分、3時間通液しカラム内を塩基性に置換した。水酸化ナトリウム水溶液を通液した後、超純水及びアセトニトリルの25:75(容量比)の混合液を通液し、過剰の塩基性成分(水酸化ナトリウム水溶液)を洗い落とすことによって、カラムを作製した。
[Column evaluation]
<Preparation of column for metabolome analysis (packing of separation material for metabolome analysis)>
Columns were prepared using the separation materials of Examples 1 to 3. A filling slurry was prepared by adding 0.8 g of the separation material and a 25:75 (volume ratio) mixture of ultrapure water and acetonitrile to a 100 mL beaker, and dispersing and mixing while applying ultrasound. After that, the filling slurry was poured into a stainless steel packer equipped with a 2.1 mmφ x 150 mm stainless steel column (manufactured by Sugiyama Shoji Co., Ltd.), sealed, and pressurized with a plunger-type filling pump (uf-20020SZWP2 pump, manufactured by Uniflows Co., Ltd.). Filled. After filling, a 0.1 mol/L aqueous sodium hydroxide solution was passed through the column at a rate of 0.1 mL/min for 3 hours to make the inside of the column basic. After passing a sodium hydroxide aqueous solution through the column, a 25:75 (volume ratio) mixture of ultrapure water and acetonitrile was passed through the column to wash off excess basic components (sodium hydroxide aqueous solution) to create a column. did.

<カラム評価>
作製した実施例1~3のカラムを用いて、液体クロマトグラフィー(HPLC)に取り付けて、酸性条件、中性条件、及び塩基性条件下で、メタボロームを含む試料からメタボロームの分離によってカラム評価を行った。
<Column evaluation>
Using the prepared columns of Examples 1 to 3, the columns were attached to liquid chromatography (HPLC) and column evaluation was performed by separating metabolome from samples containing metabolome under acidic, neutral, and basic conditions. Ta.

(HPLC条件(酸性))
検出:LC/MS/MS(株式会社島津製作所製、Nexera UHPLC/HPLC System超高速トリプル四重極型LC/MS/MSシステムLCMS-8060)
移動相A:5mM重炭酸アンモニウム水溶液95体積%-アセトニトリル5体積%(酢酸でpH3.6に調整)
移動相B:5mM重炭酸アンモニウム水溶液5体積%-アセトニトリル95体積%
流量:0~15分、0.25mL/分、25~35分、0.40mL/分
グラジエント条件:図1
(HPLC conditions (acidic))
Detection: LC/MS/MS (Nexera UHPLC/HPLC System ultra-high speed triple quadrupole LC/MS/MS system LCMS-8060, manufactured by Shimadzu Corporation)
Mobile phase A: 95% by volume of 5mM ammonium bicarbonate aqueous solution - 5% by volume of acetonitrile (adjusted to pH 3.6 with acetic acid)
Mobile phase B: 5% by volume of 5mM ammonium bicarbonate aqueous solution - 95% by volume of acetonitrile
Flow rate: 0 to 15 minutes, 0.25 mL/min, 25 to 35 minutes, 0.40 mL/min Gradient conditions: Figure 1

(HPLC条件(中性))
温度:40℃
検出:LC/MS/MS(株式会社島津製作所製、Nexera UHPLC/HPLC System超高速トリプル四重極型LC/MS/MSシステムLCMS-8060)
移動相A:5mM重炭酸アンモニウム水溶液95体積%-アセトニトリル5体積%(酢酸でpH6.8に調整)
移動相B:5mM重炭酸アンモニウム水溶液5体積%-アセトニトリル95体積%
流量:0~15分、0.25mL/分、25~35分、0.40mL/分
グラジエント条件:図1
(HPLC conditions (neutral))
Temperature: 40℃
Detection: LC/MS/MS (Nexera UHPLC/HPLC System ultra-high speed triple quadrupole LC/MS/MS system LCMS-8060, manufactured by Shimadzu Corporation)
Mobile phase A: 95% by volume of 5mM ammonium bicarbonate aqueous solution - 5% by volume of acetonitrile (adjusted to pH 6.8 with acetic acid)
Mobile phase B: 5% by volume of 5mM ammonium bicarbonate aqueous solution - 95% by volume of acetonitrile
Flow rate: 0 to 15 minutes, 0.25 mL/min, 25 to 35 minutes, 0.40 mL/min Gradient conditions: Figure 1

(HPLC条件(塩基性))
温度:40℃
検出:LC/MS/MS(株式会社島津製作所製、Nexera UHPLC/HPLC System超高速トリプル四重極型LC/MS/MSシステムLCMS-8060)
移動相A:5mM重炭酸アンモニウム水溶液95体積%-アセトニトリル5体積%(アンモニアでpH9.8に調整)
移動相B:5mM重炭酸アンモニウム水溶液5体積%-アセトニトリル95体積%
流量:0~15分、0.25mL/分、25~35分、0.40mL/分
グラジエント条件:図1
(HPLC conditions (basic))
Temperature: 40℃
Detection: LC/MS/MS (Nexera UHPLC/HPLC System ultra-high speed triple quadrupole LC/MS/MS system LCMS-8060, manufactured by Shimadzu Corporation)
Mobile phase A: 5mM ammonium bicarbonate aqueous solution 95% by volume-acetonitrile 5% by volume (adjusted to pH 9.8 with ammonia)
Mobile phase B: 5% by volume of 5mM ammonium bicarbonate aqueous solution - 95% by volume of acetonitrile
Flow rate: 0 to 15 minutes, 0.25 mL/min, 25 to 35 minutes, 0.40 mL/min Gradient conditions: Figure 1

(試料の調製)
下記メタボロームの1種と超純水とを混合して、10μM(バリン、アデノシンは1μM)のメタボロームを含む試料を28種類作製した。
(Sample preparation)
One of the following metabolomes was mixed with ultrapure water to prepare 28 types of samples containing 10 μM of metabolome (1 μM for valine and adenosine).

1.アミノ酸
アラニン(Ala)、トレオニン(Thr)、バリン(Val)、ロイシン(Leu)、イソロイシン(Ile)、メチオニン(Met)、プロリン(Pro)、フェニルアラニン(Phe)、チロシン(Tyr)、トリプトファン(Trp)、アスパラギン酸(Asp)、アスパラギン(Asn)、アルギニン(Arg)
1. Amino acids Alanine (Ala), Threonine (Thr), Valine (Val), Leucine (Leu), Isoleucine (Ile), Methionine (Met), Proline (Pro), Phenylalanine (Phe), Tyrosine (Tyr), Tryptophan (Trp) , aspartic acid (Asp), asparagine (Asn), arginine (Arg)

2.核酸塩基
アデニン(Adenine)、グアニン(Guanine)、チミン(Thymine)、ウラシル(Uracil)、シトシン(Cytosine)
2. Nucleic acid bases Adenine, Guanine, Thymine, Uracil, Cytosine

3.ヌクレオシド
アデノシン(Adenosine)、グアノシン(Guanosine)、チミジン(Thymidine)、ウリジン(Uridine)、シチジン(Cytidine)
3. Nucleosides Adenosine, Guanosine, Thymidine, Uridine, Cytidine

4.ヌクレオチド
アデノシン-1-リン酸(AMP)、グアノシン-1-リン酸(GMP)、ウリジン-1-リン酸(UMP)、シチジン-1-リン酸(CMP)
4. Nucleotides Adenosine-1-phosphate (AMP), Guanosine-1-phosphate (GMP), Uridine-1-phosphate (UMP), Cytidine-1-phosphate (CMP)

5.有機酸
フマル酸(Fum)
5. Organic acid fumaric acid (Fum)

なお、ヌクレオチド及び有機酸については、HPLC条件(塩基性)のみの検討を行った。 Note that for nucleotides and organic acids, only HPLC conditions (basic) were investigated.

(評価基準)
以下の基準でメタボロームごとに得られたクロマトグラムをスコア化した。+1点以上を結果が良好であると評価した。
(1)ボイドボリューム域(1.88又は2.06分)で保持される +1点
(2)5分以上保持される +1点
(3)ピーク幅が1分以下である +1点
(4)ピーク幅が3分以上5分未満である -1点
(5)ピーク幅が5分以上である -1点
(Evaluation criteria)
The chromatograms obtained for each metabolome were scored using the following criteria. A score of +1 or more was evaluated as a good result.
(1) Retained in the void volume region (1.88 or 2.06 minutes) +1 point (2) Retained for more than 5 minutes +1 point (3) Peak width less than 1 minute +1 point (4) Peak Peak width is 3 minutes or more and less than 5 minutes -1 point (5) Peak width is 5 minutes or more -1 point

図2は、実施例のカラム評価の結果を示すクロマトグラムのスコア表である。図2に示すとおり、実施例のメタボローム分析用カラムは、塩基性条件下で使用した場合においても、良好な結果を示した。 FIG. 2 is a chromatogram score table showing the results of column evaluation in Examples. As shown in FIG. 2, the metabolome analysis column of the example showed good results even when used under basic conditions.

図3(a)は、実施例1のカラムを用いたときの塩基性条件下のアデニンのクロマトグラムであり、図3(b)は、実施例2のカラムを用いたときの塩基性条件下のアデニンのクロマトグラムである。図4(a)は、実施例1のカラムを用いたときの塩基性条件下のアデノシンのクロマトグラムであり、図4(b)は、実施例2のカラムを用いたときの塩基性条件下のアデノシンのクロマトグラムである。図3及び図4に示すとおり、実施例1のカラムは、実施例2のカラムよりもシャープなピークを与えることが判明した。 Figure 3(a) is a chromatogram of adenine under basic conditions using the column of Example 1, and Figure 3(b) is a chromatogram of adenine under basic conditions using the column of Example 2. This is a chromatogram of adenine. FIG. 4(a) is a chromatogram of adenosine under basic conditions using the column of Example 1, and FIG. 4(b) is a chromatogram of adenosine under basic conditions using the column of Example 2. This is a chromatogram of adenosine. As shown in FIGS. 3 and 4, it was found that the column of Example 1 gave a sharper peak than the column of Example 2.

これらの結果が示すように、本発明のメタボローム分析用分離材が、塩基性条件下で使用した場合においても、メタボロームを分離することが可能であることが確認された。 As shown by these results, it was confirmed that the separation material for metabolome analysis of the present invention is capable of separating metabolomes even when used under basic conditions.

Claims (4)

ポリマー粒子と、
前記ポリマー粒子に結合した、第四級アンモニウム基及びイオン性基を含む有機基と、
を有し、
前記イオン性基が、スルホン酸基又はリン酸基であり、
平均粒子径が、2~5μmである、メタボローム分析用分離材。
polymer particles;
an organic group containing a quaternary ammonium group and an ionic group , bonded to the polymer particle;
has
the ionic group is a sulfonic acid group or a phosphoric acid group,
A separation material for metabolome analysis having an average particle diameter of 2 to 5 μm .
前記ポリマー粒子が、(メタ)アクリル酸エステルに由来する構造単位を有するポリマーを含む、請求項1に記載のメタボローム分析用分離材。 The separation material for metabolome analysis according to claim 1, wherein the polymer particles include a polymer having a structural unit derived from a (meth)acrylic acid ester. 前記分離材の第四級アンモニウム基量が、10~500μeq/gである、請求項1又は2に記載のメタボローム分析用分離材。 The separation material for metabolome analysis according to claim 1 or 2 , wherein the separation material has a quaternary ammonium group content of 10 to 500 μeq/g. 請求項1~のいずれか一項に記載のメタボローム分析用分離材を備える、メタボローム分析用カラム。 A column for metabolome analysis, comprising the separation material for metabolome analysis according to any one of claims 1 to 3 .
JP2020555651A 2018-11-08 2019-11-08 Separation materials for metabolome analysis and columns for metabolome analysis Active JP7341434B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018210643 2018-11-08
JP2018210643 2018-11-08
PCT/JP2019/043995 WO2020096056A1 (en) 2018-11-08 2019-11-08 Separation material for metabolome analysis and column for metabolome analysis

Publications (2)

Publication Number Publication Date
JPWO2020096056A1 JPWO2020096056A1 (en) 2021-09-30
JP7341434B2 true JP7341434B2 (en) 2023-09-11

Family

ID=70612255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020555651A Active JP7341434B2 (en) 2018-11-08 2019-11-08 Separation materials for metabolome analysis and columns for metabolome analysis

Country Status (2)

Country Link
JP (1) JP7341434B2 (en)
WO (1) WO2020096056A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240165588A1 (en) * 2021-03-25 2024-05-23 Jsr Corporation Method for producing carrier for chromatographic use, method for producing chromatography column, and carrier for chromatographic use
WO2022202466A1 (en) * 2021-03-25 2022-09-29 Jsr株式会社 Method for producing chromatographic carrier, method for producing chromatography column, and chromatographic carrier
CN115260383B (en) * 2022-08-26 2023-11-24 核工业北京化工冶金研究院 Acrylic acid skeleton adsorption resin and production method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121041A1 (en) 2011-03-04 2012-09-13 株式会社糖鎖工学研究所 Method for producing sialic-acid-containing sugar chain
JP2017211352A (en) 2016-05-27 2017-11-30 日立化成テクノサービス株式会社 Separation material and column

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432392A (en) * 1977-08-17 1979-03-09 Mitsubishi Chem Ind Filler for liquidchromatography and analysis of physiological material
JPS58177140A (en) * 1982-04-12 1983-10-17 Showa Denko Kk Porous packing material for liquid chromatography and preparation thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121041A1 (en) 2011-03-04 2012-09-13 株式会社糖鎖工学研究所 Method for producing sialic-acid-containing sugar chain
JP2017211352A (en) 2016-05-27 2017-11-30 日立化成テクノサービス株式会社 Separation material and column

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TSUKAMOTO, T. et al.,Synthesis of Novel Sulfobetaine-Type Adsorbents and Characteristics of Their Adsorption of Polar Solutes in Hydrophilic SPE,Chromatographia,2009年,Vol.70, No.11-12,Page.1525-1530
水野昌子 他,高速液体クロマトグラフィー用多孔質ポリマー充てん剤の微粒化による性能向上,分析化学,1987年,Vol.36, No.9,Page.557-560

Also Published As

Publication number Publication date
WO2020096056A1 (en) 2020-05-14
JPWO2020096056A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP7341434B2 (en) Separation materials for metabolome analysis and columns for metabolome analysis
JP6757598B2 (en) Separator and column
JP6428844B2 (en) Column packing material
US12092618B2 (en) Extract recovery method and analysis method using polymer beads in a trap when using supercritical extraction
JP2018189449A (en) Separation method and analysis method
WO2022253175A1 (en) Synthetic polymeric porous medium with hierarchical multiple layer structure, its design, synthesis, modification, and liquid chromatographic applications
JP6606974B2 (en) Separating material and method for producing the same
JP6926597B2 (en) Separator and column
JP7341435B2 (en) Metabolome separation method
JP6834129B2 (en) Separator and column
JP4261403B2 (en) Method for producing porous resin particles
US7540962B2 (en) Method of preparing spheroid polymer particles having a narrow size distribution by dispersion polymerization, particles obtainable by the method and use of these particles
US11731106B2 (en) Column packing material for supercritical fluid chromatography, column for supercritical fluid chromatography and preparation method therefor
JP6476887B2 (en) Separation material
JP6863816B2 (en) Column packing material for supercritical fluid chromatography, column for supercritical fluid chromatography and their manufacturing method
JP6627514B2 (en) Separation material, column, and method for producing separation material
EP3427819A1 (en) Separation material, column provided with said separation material, and method for producing separation material
JP6729041B2 (en) Separation material and column
WO2022252071A1 (en) A synthetic polymeric porous medium with hierarchical multiple layer structure, its design, synthesis, modification, and liquid chromatographic applications
JP6834128B2 (en) Separator and column
JP6395184B2 (en) Zwitterion-introduced resin with cation exchange capacity
JP6610266B2 (en) Separation material and column
JP6746915B2 (en) Separation material and column
JP6395183B2 (en) Zwitterion-introduced resin that exhibits anion exchange capacity
Kip A HILIC stationary phase fuctionalized with glutathione by thiol-ene chemistry on monodisperse-porous polymer microparticles

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230822

R150 Certificate of patent or registration of utility model

Ref document number: 7341434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150