JP2014116549A - Multiple quantum well semiconductor light-emitting element - Google Patents

Multiple quantum well semiconductor light-emitting element Download PDF

Info

Publication number
JP2014116549A
JP2014116549A JP2012271454A JP2012271454A JP2014116549A JP 2014116549 A JP2014116549 A JP 2014116549A JP 2012271454 A JP2012271454 A JP 2012271454A JP 2012271454 A JP2012271454 A JP 2012271454A JP 2014116549 A JP2014116549 A JP 2014116549A
Authority
JP
Japan
Prior art keywords
layer
well
light
quantum well
well structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012271454A
Other languages
Japanese (ja)
Other versions
JP6190585B2 (en
Inventor
Mitsuyasu Kumagai
光恭 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2012271454A priority Critical patent/JP6190585B2/en
Publication of JP2014116549A publication Critical patent/JP2014116549A/en
Application granted granted Critical
Publication of JP6190585B2 publication Critical patent/JP6190585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-performance semiconductor light-emitting element with high optical output power, which improves a light extraction efficiency.SOLUTION: The semiconductor light-emitting element comprises: a first semiconductor layer 11 formed on a reflection layer 17; a light-emitting layer 12 including a first quantum well structure formed on the first semiconductor layer and a second quantum well structure formed on the first quantum well structure; and a second semiconductor layer 13 having a conductivity type opposite to that of the first semiconductor layer, formed on the light-emitting layer and defining the surface thereof as a light extraction plane 13A. A band gap of the first quantum well structure is smaller than that of the second quantum well structure, one well layer in the first quantum well structure is defined as a reference well layer of a phase matching position, and an interval between the reference well layer and a reflection plane is determined so as to match phases in the case where directly emitted light from the reference well layer and reflection light emitted from the reference well layer and reflected by the reflection plane are advanced towards the light extraction plane.

Description

本発明は、多重量子井戸(MQW)構造の発光層を有する半導体発光素子、特に、MQW発光層を有する発光ダイオード(LED)に関する。   The present invention relates to a semiconductor light emitting device having a light emitting layer having a multiple quantum well (MQW) structure, and more particularly to a light emitting diode (LED) having an MQW light emitting layer.

発光ダイオード(LED:Light Emitting Diode)や半導体レーザ等の半導体発光素子の発光効率や性能を高めるために、発光層に多重量子井戸(MQW:Multiple Quantum Well)構造を採用することが知られている。   In order to improve the light emission efficiency and performance of semiconductor light emitting devices such as light emitting diodes (LEDs) and semiconductor lasers, it is known to employ a multiple quantum well (MQW) structure in the light emitting layer. .

また、成長基板(又は仮基板)上にMOCVD(Metal-Organic Chemical Vapor Deposition)法などの気相成長法により成長した半導体発光積層体を、反射ミラーを介して導電性の支持基板(又は永久基板)貼り合わせ、その後、成長基板を除去して構成したLED(メタルボンディング(MB)構造又は貼り合わせ構造ともいう。)が開示されている(例えば、特許文献1)。かかる発光素子では、光取り出し面の反対側に反射ミラーを設け、外部への取り出し光出力の向上を図っている。また、量子井戸(QW)と反射ミラーとの間隔を最適化することで光出力を向上することが開示されている(例えば、非特許文献1)。   In addition, a semiconductor light-emitting laminated body grown on a growth substrate (or a temporary substrate) by a vapor phase growth method such as MOCVD (Metal-Organic Chemical Vapor Deposition) is used as a conductive support substrate (or a permanent substrate) via a reflection mirror. An LED (also referred to as a metal bonding (MB) structure or a bonded structure) configured by bonding and then removing the growth substrate is disclosed (for example, Patent Document 1). In such a light emitting element, a reflection mirror is provided on the side opposite to the light extraction surface to improve the output light output to the outside. In addition, it is disclosed that the light output is improved by optimizing the interval between the quantum well (QW) and the reflection mirror (for example, Non-Patent Document 1).

特開2009−10359号公報JP 2009-10359 A

Appl. Phys. Lett., vol. 82, No. 14, pp.2221-2223, 2003Appl. Phys. Lett., Vol. 82, No. 14, pp.2221-2223, 2003

本発明は、複数の量子井戸(QW)を有するMQW構造の発光層を用いた場合、各量子井戸(QW)と反射ミラーとの間隔はそれぞれ異なるため、井戸層から直接放出された光と反射ミラーからの反射光の位相が整合する条件は、各量子井戸層によって異なるとの観点に着目してなされた。   In the present invention, when a light emitting layer having an MQW structure having a plurality of quantum wells (QW) is used, the distance between each quantum well (QW) and the reflecting mirror is different, so that the light directly emitted from the well layer and the reflected light are reflected. The condition that the phase of the reflected light from the mirror is matched was made paying attention to the point that it differs depending on each quantum well layer.

本発明は、MQW発光層を用いた場合であっても、量子井戸(QW)からの直接放出された光と反射ミラーからの反射光の位相が整合し(すなわち、強め合い)、光取り出し効率が高く、高光出力の高性能な半導体発光素子を提供することを目的とする。   In the present invention, even when the MQW light emitting layer is used, the phase of the light directly emitted from the quantum well (QW) and the reflected light from the reflection mirror are matched (that is, strengthened), and the light extraction efficiency is improved. An object of the present invention is to provide a high-performance semiconductor light emitting device having a high optical output and a high optical output.

本発明の発光素子は、
反射面を有する反射層と、
反射層上に形成された第1の半導体層と、
第1の半導体層上に形成され、単一の井戸層又は同一のバンドギャップを有する複数の井戸層を含む第1の量子井戸構造と、第1の量子井戸構造上に形成され、単一の井戸層又は同一のバンドギャップを有する複数の井戸層を含む第2の量子井戸構造とを有する多重量子井戸構造の発光層と、
第1の半導体層と反対導電型を有し、発光層上に形成されてその表面を光取り出し面とする第2の半導体層と、を有し、
第1の量子井戸構造のバンドギャップは第2の量子井戸構造のバンドギャップよりも小さく、第1の量子井戸構造のうちの1の井戸層を位相整合位置の基準井戸層とし、基準井戸層と反射面との間隔は、基準井戸層からの直接放出光と基準井戸層から放出され反射面によって反射された反射光とが光取り出し面に向かって進む際に位相が揃うように定められていることを特徴としている。
The light emitting device of the present invention is
A reflective layer having a reflective surface;
A first semiconductor layer formed on the reflective layer;
A first quantum well structure formed on the first semiconductor layer and including a single well layer or a plurality of well layers having the same band gap, and a single quantum well structure formed on the first quantum well structure. A light emitting layer having a multiple quantum well structure having a well layer or a second quantum well structure including a plurality of well layers having the same band gap;
A second semiconductor layer having a conductivity type opposite to that of the first semiconductor layer, the second semiconductor layer being formed on the light emitting layer and having the surface as a light extraction surface;
The band gap of the first quantum well structure is smaller than the band gap of the second quantum well structure, and one well layer of the first quantum well structure is used as a reference well layer at a phase matching position. The distance from the reflection surface is determined so that the phase of the direct emission light from the reference well layer and the reflection light emitted from the reference well layer and reflected by the reflection surface are aligned when traveling toward the light extraction surface. It is characterized by that.

本発明の実施形態である発光ダイオード(LED)の構成並びに光取り出し効率向上の原理を模式的に説明する断面図である。It is sectional drawing which illustrates typically the structure of the light emitting diode (LED) which is embodiment of this invention, and the principle of light extraction efficiency improvement. (a)、(b)は、それぞれ実施例1であるLEDの構成及びバンド構造を示す断面図である。(A), (b) is sectional drawing which shows the structure of LED which is Example 1, and a band structure, respectively. (a)、(b)は、それぞれ実施例2であるLEDの構成及びバンド構造を示す断面図である。(A), (b) is sectional drawing which shows the structure and band structure of LED which are Example 2, respectively. 実施例4であるLEDの構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of LED which is Example 4. FIG. 実施例4の改変例であるLEDの構成を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing a configuration of an LED that is a modification example of Example 4.

本発明の多重量子井戸(MQW)構造の発光層を有する半導体発光ダイオード(LED)について以下に説明する。また、本発明の好適な実施例について説明するが、これらを適宜改変し、組合せてもよい。また、以下の説明及び添付図面において、実質的に同一又は等価な部分には同一の参照符を付して説明する。   A semiconductor light emitting diode (LED) having a light emitting layer having a multiple quantum well (MQW) structure according to the present invention will be described below. Moreover, although the preferable Example of this invention is described, these may be changed suitably and may be combined. In the following description and the accompanying drawings, substantially the same or equivalent parts will be described with the same reference numerals.

発光層としてMQW構造層を用い、MQW構造層からの発光を反射させて光を取り出す発光素子の場合、各井戸層と反射面との間の間隔が各量子井戸層によって異なることに起因して光取り出し方向(順方向)の光と反射光の位相がずれ、打ち消し合って光強度が弱くなってしまう。本願発明者はかかる点に気付き、本発明は、井戸層から直接放出された光と反射ミラーからの反射光の位相が整合する条件は、各量子井戸層によって異なるとの観点に着目してなされたものである。 図1は、本発明の実施形態である半導体発光素子(発光ダイオード:LED)10の構成並びに光取り出し効率向上の原理を模式的に説明する断面図である。図1に示すように、第1の半導体層11、多重量子井戸(MQW)構造の発光層(以下、MQW発光層という。)12、第1の半導体層とは反対導電型の第2の半導体層13がこの順で順次積層されて半導体構造層15が構成されている。また、第1の半導体層11上には、MQW発光層からの放出光を反射する光反射層(以下、単に反射層という。)17が設けられ、LED10の発光は第2の半導体層13の表面(光取り出し面ともいう。)13Aから取り出される。また、第1の半導体層11及び第2の半導体層13上には、それぞれ第1の電極21及び第2の電極22が設けられている。   In the case of a light emitting device that uses an MQW structure layer as a light emitting layer and extracts light by reflecting light emitted from the MQW structure layer, the distance between each well layer and the reflecting surface is different depending on each quantum well layer. The phases of light in the light extraction direction (forward direction) and reflected light are out of phase, canceling each other, and reducing the light intensity. The inventor of the present application has noticed such a point, and the present invention is made by paying attention to the point that the condition that the phase of the light directly emitted from the well layer and the reflected light from the reflection mirror is matched differs depending on each quantum well layer. It is a thing. FIG. 1 is a cross-sectional view schematically illustrating the configuration of a semiconductor light emitting element (light emitting diode: LED) 10 according to an embodiment of the present invention and the principle of improving light extraction efficiency. As shown in FIG. 1, a first semiconductor layer 11, a light emitting layer having a multiple quantum well (MQW) structure (hereinafter referred to as MQW light emitting layer) 12, and a second semiconductor having a conductivity type opposite to that of the first semiconductor layer. The layer 13 is sequentially laminated in this order to form the semiconductor structure layer 15. Further, on the first semiconductor layer 11, a light reflection layer (hereinafter simply referred to as a reflection layer) 17 that reflects light emitted from the MQW light emission layer is provided, and the light emitted from the LED 10 is emitted from the second semiconductor layer 13. Extracted from the surface (also referred to as a light extraction surface) 13A. A first electrode 21 and a second electrode 22 are provided on the first semiconductor layer 11 and the second semiconductor layer 13, respectively.

MQW発光層12は、一般に複数の量子井戸(QW)層から構成されていてよいが、以下においては、5層の量子井戸層(以下、単に井戸層又はウエル層ともいう。)からなる場合を例に説明する。より詳細には、MQW発光層12は、第1の半導体層11の側から順に第1の井戸層群W1を含む第1の量子井戸構造、第2の井戸層群W2を含む第2の量子井戸構造が順次積層されて構成されている。さらに、第1の井戸層群W1は、第1の半導体層11の側から順に第1の井戸層W11、第2の井戸層W12からなり、第2の井戸層群W2は、第1の半導体層11の側から順に第1の井戸層W21、第2の井戸層W22、第3の井戸層W23からなる。各井戸層W11、W12、W21、W22、W23の間には障壁層(以下、バリア層ともいう。)BLが設けられている。なお、第1の半導体層11と第1の井戸層群W1との間及び第2の井戸層群W2と第2の半導体層13との間にも障壁層BL(図示しない)が設けられているが、説明及び理解の容易さのため、第1の半導体層11、第2の半導体層13、障壁層BLが同一組成の半導体結晶からなる場合について説明する。また、以下においては、第1の井戸層群W1及び第1の井戸層群W1の各井戸層間及び両端の障壁層BLを含めて第1の量子井戸構造12Aと称し、第2の井戸層群W2及び第2の井戸層群W2の各井戸層間及び両端の障壁層BLを含めて第2の量子井戸構造12Bと称する。また、説明及び理解の容易さのため、障壁層BLが、第1の半導体層11及び第2の半導体層13と同一組成の半導体層からなる場合を例に説明する。なお、MQW発光層12の障壁層として、第1の半導体層11及び第2の半導体層13とはバンドギャップの異なる組成の半導体層を用いることができる。   The MQW light-emitting layer 12 may generally be composed of a plurality of quantum well (QW) layers, but in the following, it is composed of five quantum well layers (hereinafter also simply referred to as well layers or well layers). Explained as an example. More specifically, the MQW light-emitting layer 12 includes a first quantum well structure including the first well layer group W1 and a second quantum layer including the second well layer group W2 in order from the first semiconductor layer 11 side. Well structures are sequentially stacked. Further, the first well layer group W1 includes a first well layer W11 and a second well layer W12 in order from the first semiconductor layer 11 side, and the second well layer group W2 includes the first semiconductor layer W1. The first well layer W21, the second well layer W22, and the third well layer W23 are sequentially formed from the layer 11 side. A barrier layer (hereinafter also referred to as a barrier layer) BL is provided between the well layers W11, W12, W21, W22, and W23. A barrier layer BL (not shown) is also provided between the first semiconductor layer 11 and the first well layer group W1 and between the second well layer group W2 and the second semiconductor layer 13. However, for ease of explanation and understanding, the case where the first semiconductor layer 11, the second semiconductor layer 13, and the barrier layer BL are made of semiconductor crystals having the same composition will be described. In the following, the first well layer group W1 and the first well layer group W1 including the well layers and the barrier layers BL at both ends are referred to as the first quantum well structure 12A, and the second well layer group W2 and the second well layer group W2 are referred to as a second quantum well structure 12B including the well layers and the barrier layers BL at both ends. For ease of explanation and understanding, a case where the barrier layer BL is formed of a semiconductor layer having the same composition as the first semiconductor layer 11 and the second semiconductor layer 13 will be described as an example. As the barrier layer of the MQW light emitting layer 12, a semiconductor layer having a composition different from that of the first semiconductor layer 11 and the second semiconductor layer 13 can be used.

第1の井戸層群W1の井戸層W11、W12は同一の発光波長で発光するように構成されている。換言すれば、井戸層W11、W12における正孔及び電子の量子準位間のエネルギー(バンドギャップ)Eg1が同一であるように構成されている。また、同様に、第2の井戸層群W2の井戸層W21、W22、W23は同一の発光波長で発光するように構成されている。換言すれば、井戸層W21、W22、W23における量子準位間のエネルギー(以下、量子井戸のバンドギャップという。)Eg2が同一であるように構成されている。そして、第2の井戸層群W2の井戸層W21、W22、W23のバンドギャップEg2は第1の井戸層群W1の井戸層W11、W12のバンドギャップEg1よりも大である(Eg1<Eg2)ように構成されている。すなわち、第2の井戸層群W2の井戸層W21、W22、W23の発光波長は第1の井戸層群W1の井戸層W11、W12の発光波長よりも短波長である(λ1>λ2)ように構成されている。   The well layers W11 and W12 of the first well layer group W1 are configured to emit light at the same emission wavelength. In other words, the energy (band gap) Eg1 between the hole and electron quantum levels in the well layers W11 and W12 is the same. Similarly, the well layers W21, W22, W23 of the second well layer group W2 are configured to emit light at the same emission wavelength. In other words, the energy between the quantum levels in the well layers W21, W22, and W23 (hereinafter referred to as the quantum well band gap) Eg2 is configured to be the same. The band gap Eg2 of the well layers W21, W22, W23 of the second well layer group W2 is larger than the band gap Eg1 of the well layers W11, W12 of the first well layer group W1 (Eg1 <Eg2). It is configured. That is, the emission wavelengths of the well layers W21, W22, W23 of the second well layer group W2 are shorter than the emission wavelengths of the well layers W11, W12 of the first well layer group W1 (λ1> λ2). It is configured.

[各井戸層からの放出光及び位相]
図1に示すように、第1の井戸層群W1の井戸層W11及びW12から光取り出し面13Aに向かう方向(以下、順方向ともいう。)にそれぞれ井戸層W11及びW12のバンドギャップ(Eg1)に対応した波長の光(波長λ1)L11、L12が放出される。
[Emission light and phase from each well layer]
As shown in FIG. 1, the band gaps (Eg1) of the well layers W11 and W12 in the direction from the well layers W11 and W12 of the first well layer group W1 to the light extraction surface 13A (hereinafter also referred to as forward direction), respectively. Light (wavelength λ1) L11 and L12 having a wavelength corresponding to is emitted.

一方、第2の井戸層群W2の井戸層W21、W22、W23から反射層17に向かう方向(以下、逆方向ともいう。)に放出された波長λ2の放出光E2(すなわち、それぞれE21、E22、E23)は、その一部は第1の井戸層群W1の井戸層W12に吸収され、当該井戸層W12を励起する。また、井戸層W21、W22、W23からの逆方向の放出光E21、E22、E23のうち井戸層W12に吸収されなかった光の一部は井戸層W11に吸収され、当該井戸層W11を励起する。すなわち、第2の井戸層群W2の井戸層からの光は第1の井戸層群W1の井戸層に吸収され、第1の井戸層群W1の井戸層を励起することで、第1の井戸層群W1の井戸層と同じ波長の光が同じ位相で発せられることになる。従って、後述するように、MQW構造の発光層であっても、順方向の光の位相を整合させることができ、光取り出し効率を増大することができる。   On the other hand, emitted light E2 of wavelength λ2 emitted in the direction from the well layers W21, W22, W23 of the second well layer group W2 toward the reflective layer 17 (hereinafter also referred to as the reverse direction) (that is, E21, E22, respectively). , E23) are partly absorbed in the well layer W12 of the first well layer group W1 and excite the well layer W12. In addition, a part of the light emitted in the reverse direction from the well layers W21, W22, and W23 that is not absorbed by the well layer W12 is absorbed by the well layer W11 and excites the well layer W11. . That is, light from the well layer of the second well layer group W2 is absorbed by the well layer of the first well layer group W1, and the first well layer group W1 is excited to excite the first well layer group W1. Light having the same wavelength as that of the well layer of the layer group W1 is emitted in the same phase. Therefore, as will be described later, even in the light emitting layer having the MQW structure, the phase of light in the forward direction can be matched, and the light extraction efficiency can be increased.

まず、井戸層W11からは、井戸層W11のバンドギャップ(Eg1)に対応した波長の光(波長λ1)が放出される。井戸層W11から反射層17に向けて放出された当該放出光(図中、E11と表記する)は反射層17によって反射され、光取り出し面13Aに向けて進行する(反射光R11)。なお、反射層17による反射によって、反射光R11は放出光E11に対して位相がπだけ変化している。また、井戸層W12からは、井戸層W12のバンドギャップ(Eg1)に対応した波長の光(波長λ1)が放出される。井戸層W12から反射層17に向けて放出された逆方向の放出光(図中、E12と表記する)は反射層17によって反射され、光取り出し面13Aに向けて進行する(反射光R12)。なお、反射層17による反射によって、反射光R12は放出光E12に対して位相がπだけ変化している。   First, light (wavelength λ1) having a wavelength corresponding to the band gap (Eg1) of the well layer W11 is emitted from the well layer W11. The emitted light (denoted as E11 in the figure) emitted from the well layer W11 toward the reflective layer 17 is reflected by the reflective layer 17 and travels toward the light extraction surface 13A (reflected light R11). The phase of the reflected light R11 is changed by π with respect to the emitted light E11 due to reflection by the reflective layer 17. Further, light (wavelength λ1) having a wavelength corresponding to the band gap (Eg1) of the well layer W12 is emitted from the well layer W12. Emission light in the reverse direction (denoted as E12 in the figure) emitted from the well layer W12 toward the reflection layer 17 is reflected by the reflection layer 17 and travels toward the light extraction surface 13A (reflection light R12). The phase of the reflected light R12 is changed by π with respect to the emitted light E12 due to reflection by the reflective layer 17.

[反射層と第1の井戸層群W1の井戸層との間隔]
反射層17と第1の井戸層群W1の井戸層との間隔Dは、第1の井戸層群W1のうちの1の井戸層(以下、基準井戸層ともいう。)から直接放出された順方向の光と、当該基準井戸層から放出され反射面(反射層17の表面)によって反射された反射光とが光取り出し面に向かって進む際に強め合う(すなわち、位相が揃う)ように決定される。
[Distance between the reflective layer and the well layer of the first well layer group W1]
The distance D between the reflective layer 17 and the well layer of the first well layer group W1 is the order of direct emission from one well layer (hereinafter also referred to as a reference well layer) of the first well layer group W1. The direction light and the reflected light emitted from the reference well layer and reflected by the reflection surface (the surface of the reflection layer 17) are determined so as to be strengthened (that is, the phases are aligned) when traveling toward the light extraction surface. Is done.

上記したように、反射層17からの反射光は反射層17への入射光に対して位相がπだけずれているので、第1の井戸層群W1の井戸層からの順方向の直接放出光と、当該井戸層から放出され、反射層17によって反射された反射光とが強め合う条件は、以下の式で表される。   As described above, since the reflected light from the reflective layer 17 is shifted in phase by π with respect to the incident light to the reflective layer 17, the forward direct emission light from the well layer of the first well layer group W1. And the condition where the reflected light emitted from the well layer and reflected by the reflective layer 17 is intensified is expressed by the following equation.

2D・n=λ(m+1/2) ・・・・式(1)
ここで、nは反射層17と当該井戸層との間の物質の屈折率であり、mは整数である。
2D · n d = λ (m + 1/2) (1)
Here, nd is the refractive index of the substance between the reflective layer 17 and the well layer, and m is an integer.

例えば、図1を参照して説明すると、井戸層W11を基準井戸層とし、井戸層W11からの直接放出光L11と反射層17からの反射光R11とが強め合うように、あるいは、井戸層W12を基準井戸層とし、井戸層W12からの直接放出光L12と反射層17からの反射光R12とが強め合うように定めることができる。   For example, referring to FIG. 1, the well layer W11 is used as a reference well layer so that the directly emitted light L11 from the well layer W11 and the reflected light R11 from the reflective layer 17 are intensified, or the well layer W12. Can be determined so that the directly emitted light L12 from the well layer W12 and the reflected light R12 from the reflective layer 17 intensify each other.

なお、当該基準井戸層としては、第1の井戸層群W1のうちのいずれか1の井戸層とすることができるが、第1の半導体層11(すなわち反射層17)に最も近い井戸層W11とすることが好ましい。以下においては、反射層17と井戸層W11とが上記の式(1)を満たす間隔Dで配されているものとして説明する。なお、より詳細には、間隔(距離)Dは、基準井戸層内の特定の位置を基準とした間隔で良いが、例えば基準井戸層及びこれに隣接する半導体層間の界面と、反射層の表面(反射面)との間の間隔とする。   The reference well layer can be any one well layer of the first well layer group W1, but the well layer W11 closest to the first semiconductor layer 11 (that is, the reflective layer 17). It is preferable that In the following description, it is assumed that the reflective layer 17 and the well layer W11 are arranged at a distance D that satisfies the above formula (1). More specifically, the interval (distance) D may be an interval based on a specific position in the reference well layer. For example, the interface between the reference well layer and the semiconductor layer adjacent to the reference well layer and the surface of the reflective layer The distance to the (reflecting surface).

具体的には、本実施形態では、説明及び理解の容易さのため、第1の井戸層群W1の障壁層が第1の半導体層11と同一組成の半導体からなる場合、すなわち第1の井戸層群W1の障壁層と同一組成の第1の半導体層11が障壁層を兼ねている場合について説明するが、これに限らない。すなわち、第1の半導体層11が、井戸層W11との間に設けられた障壁層と、障壁層とは異なる組成の半導体層とからなっていてもよい。また、第1の半導体層11が、互いに異なる組成を有する複数の半導体層からなっていてもよい。これらのような場合、井戸層W11と反射層17との間に設けられた複数の半導体層の井戸層W11からの発光に対する等価屈折率(すなわち、各層の層厚による重み付けをした屈折率n)又は光路長を求めて、井戸層W11からの放出光と反射層17による反射光とが強め合う条件を決定することができる。なお、第1の井戸層群W1の他の井戸層(例えばW12)を基準井戸層として当該基準井戸層からの放出光に対して位相整合条件を求める場合であっても、同様に基準井戸層と反射層との間の光路長を求めることによって位相整合条件を決定することができる。 Specifically, in the present embodiment, for ease of explanation and understanding, when the barrier layer of the first well layer group W1 is made of a semiconductor having the same composition as the first semiconductor layer 11, that is, the first well. Although the case where the first semiconductor layer 11 having the same composition as that of the barrier layer of the layer group W1 also serves as the barrier layer will be described, the present invention is not limited thereto. That is, the first semiconductor layer 11 may include a barrier layer provided between the well layer W11 and a semiconductor layer having a composition different from that of the barrier layer. Further, the first semiconductor layer 11 may be composed of a plurality of semiconductor layers having different compositions. In such cases, the equivalent refractive index for light emission from the well layer W11 of the plurality of semiconductor layers provided between the well layer W11 and the reflective layer 17 (that is, the refractive index nd weighted by the layer thickness of each layer ). ) Or the optical path length can be obtained, and the conditions under which the light emitted from the well layer W11 and the light reflected by the reflective layer 17 are intensified can be determined. Even when the other well layer (for example, W12) of the first well layer group W1 is used as the reference well layer and the phase matching condition is obtained for the light emitted from the reference well layer, the reference well layer is similarly used. The phase matching condition can be determined by obtaining the optical path length between the reflecting layer and the reflective layer.

あるいは、反射層17が反射金属層と、反射金属層及び第1の半導体層間に設けられた透明導電体層からなり、反射金属層の表面(すなわち、反射金属層及び透明導電体層間の界面)が反射面となっていてもよい。この場合、第1の半導体層に加えて透明導電体層中の光路長を考慮して井戸層W11からの放出光と反射金属層による反射光とが強め合う条件を決定することができる。   Alternatively, the reflective layer 17 includes a reflective metal layer and a transparent conductive layer provided between the reflective metal layer and the first semiconductor layer, and the surface of the reflective metal layer (that is, the interface between the reflective metal layer and the transparent conductive layer). May be a reflective surface. In this case, in addition to the first semiconductor layer, the light path length in the transparent conductor layer can be taken into consideration to determine the conditions for strengthening the light emitted from the well layer W11 and the light reflected by the reflective metal layer.

[光取り出し効率の向上]
本発明の光取り出し効率向上のメカニズムについて以下に説明する。半導体発光素子の発光波長は発光層に用いる井戸層のバンドギャップによって決まる。当該井戸層か放出され光は全方向に放出されるため、光取り出し面の方向以外の光は反射・吸収される。このとき反射した光の一部は光取り出し方向(順方向)に向かうが、順方向の光と反射光は反射面との距離によって光の位相が変化する。位相が揃う場合は光が強めあうが、位相がずれてしまうと光が打ち消しあい、光強度が低下する。
[Improvement of light extraction efficiency]
The mechanism for improving the light extraction efficiency of the present invention will be described below. The emission wavelength of the semiconductor light emitting element is determined by the band gap of the well layer used for the light emitting layer. Since the light emitted from the well layer is emitted in all directions, light other than the direction of the light extraction surface is reflected and absorbed. At this time, part of the reflected light is directed in the light extraction direction (forward direction), but the phase of the light in the forward direction and the reflected light changes depending on the distance from the reflection surface. When the phases are aligned, the light is intensified, but when the phases are shifted, the lights cancel each other and the light intensity decreases.

本発明では、上記した基準井戸層から発する順方向の光と反射光の位相が揃うように、基準井戸層及び反射面間の間隔、すなわち基準井戸層からの放出光に対する光路長が決定される。このとき、基準井戸層以外の井戸層からの放出光に関しては、井戸層と反射面との間の間隔が基準井戸層の場合とは異なることに起因して順方向の光と反射光の位相がずれ、打ち消しあう条件となるため、光強度が弱くなってしまう。そこで、反射面から遠い側にある井戸層群(すなわち、第2の井戸層群W2)のバンドギャップを大きくし、つまりは短波長の光を発生させ、基準井戸層(又は第1の井戸層群W1)に吸収させ、励起する。これにより発生する光は反射光と位相が揃うため強めあい、結果として光強度は大きくなる。なお、極度に短波長になると、全体の光の半値幅が広がってしまう問題が発生するため、その波長は基準となる井戸層からの光の波長から-10nmの範囲とすることが好ましい。   In the present invention, the distance between the reference well layer and the reflecting surface, that is, the optical path length for the light emitted from the reference well layer is determined so that the phases of the forward light and the reflected light emitted from the reference well layer are aligned. . At this time, with respect to the light emitted from the well layers other than the reference well layer, the phase between the forward light and the reflected light is attributed to the fact that the interval between the well layer and the reflecting surface is different from that of the reference well layer. The light intensity is weakened because it is a condition that shifts and cancels. Therefore, the band gap of the well layer group (that is, the second well layer group W2) on the side far from the reflecting surface is increased, that is, light having a short wavelength is generated, and the reference well layer (or the first well layer) is generated. Absorb and excite the group W1). The light generated thereby is strengthened because the phase is the same as that of the reflected light, and as a result, the light intensity increases. When the wavelength is extremely short, there is a problem that the full width at half maximum of the light is widened. Therefore, the wavelength is preferably in the range of −10 nm from the wavelength of the light from the reference well layer.

上記したように、本発明によれば、反射面から遠い側にある井戸層群(第2の量子井戸構造)の発光波長を短波長化し、当該短波長の光によって反射面に近い側の井戸層群(第1の量子井戸構造)の井戸層を励起することによって、MQW発光層から位相が揃った発光が反射面に向かって放射される。従って、光取り出し方向に向かう光と反射面からの反射光の位相が強め合い、光取り出し効率が高く、高光出力の高性能な半導体発光素子を提供することができる。   As described above, according to the present invention, the emission wavelength of the well layer group (second quantum well structure) on the side far from the reflecting surface is shortened, and the well on the side close to the reflecting surface by the short wavelength light. By exciting the well layers of the layer group (first quantum well structure), the MQW light emitting layer emits light having a uniform phase toward the reflecting surface. Therefore, it is possible to provide a high-performance semiconductor light emitting device with high light output efficiency, in which the phases of the light traveling in the light extraction direction and the reflected light from the reflecting surface are intensified.

以下に、本発明の実施例1について説明する。図2(a)、(b)は、実施例1である発光ダイオード(LED)10の構成及びバンド構造を示す断面図である。LED10がGaN(窒化ガリウム)系半導体からなる場合について説明するが、結晶系はこれに限定されない。   Example 1 of the present invention will be described below. 2A and 2B are cross-sectional views showing the configuration and band structure of a light-emitting diode (LED) 10 that is Example 1. FIG. The case where the LED 10 is made of a GaN (gallium nitride) based semiconductor will be described, but the crystal system is not limited to this.

図2(a)に示すように、第1の半導体層11は、p−GaN層11A(層厚、75nm)及びp−GaN層11A上に形成されたp−AlGaN層11B(層厚、40nm)からなる。p−AlGaN層11B上に、MQW発光層12が設けられている。MQW発光層12として、p−AlGaN層11B上に、第1の井戸層群W1及び第1の井戸層群W1の各井戸層間及び両端の障壁層BLからなる第1の量子井戸構造12Aと、第2の井戸層群W2及び第2の井戸層群W2の各井戸層間及び両端の障壁層BLからなる第1の量子井戸構造12Bと、が順次積層されている。第1の井戸層群W1は単一の井戸層W11からなり、第2の井戸層群W2は4層の量子井戸層からなり、第1の半導体層11の側から順に第1、第2、第3、第4の井戸層W21、W22、W23、W24からなる。MQW発光層12上には、第2の半導体層としてn−GaN層(層厚、4μm)13が設けられている。また、各井戸層W11、W21、W22、W23、W24の間、井戸層W11とp−AlGaN層11Bとの間、井戸層W24とn−GaN層13との間には障壁層BLが設けられている。   As shown in FIG. 2A, the first semiconductor layer 11 includes a p-GaN layer 11A (layer thickness, 75 nm) and a p-AlGaN layer 11B (layer thickness, 40 nm) formed on the p-GaN layer 11A. ). An MQW light emitting layer 12 is provided on the p-AlGaN layer 11B. As the MQW light emitting layer 12, on the p-AlGaN layer 11B, a first quantum well structure 12A composed of the first well layer group W1 and the well layers of the first well layer group W1 and the barrier layers BL at both ends, The first quantum well structure 12B composed of the well layers of the second well layer group W2 and the second well layer group W2 and the barrier layers BL at both ends are sequentially stacked. The first well layer group W1 is composed of a single well layer W11, the second well layer group W2 is composed of four quantum well layers, and the first, second, It consists of third and fourth well layers W21, W22, W23 and W24. On the MQW light emitting layer 12, an n-GaN layer (layer thickness: 4 μm) 13 is provided as a second semiconductor layer. Further, barrier layers BL are provided between the well layers W11, W21, W22, W23, W24, between the well layer W11 and the p-AlGaN layer 11B, and between the well layer W24 and the n-GaN layer 13. ing.

MQW発光層12は、InGaN/GaN量子井戸構造を有する。図2(b)はMQW発光層12のバンドダイヤグラムであり、図中、CBは伝導帯を、VBは価電子帯を示している。図2(b)に示すように、井戸層W11は、層厚(Lz)が約4.0nmのInxGa1-xN層であり、第1〜第4の井戸層W21〜W24は、井戸層W11と同じ層厚(Lz)を有する約4.0nmのInyGa1-yN層である。井戸層W21〜W24のIn組成(y)は、井戸層W11のIn組成(x)よりも小さい(すなわち、y<x)。また、第1の量子井戸構造12A及び第2の量子井戸構造12Bにおける障壁層BLは、全て同一組成である。すなわち、井戸層W21〜W24(第2の量子井戸構造)は同一の構造(組成及び層厚)を有し、同一のバンドギャップ(Eg2)を有している。そして井戸層W21〜W24のバンドギャップ(Eg2)は井戸層W11(第1の量子井戸構造)のバンドギャップ(Eg1)よりも大きい。換言すれば、井戸層W21〜W24の発光波長λ2は井戸層W11の発光波長λ1よりも短波長である(λ2<λ1)ように構成されている。障壁層BLは、例えば約5.0nmの層厚を有するGaN層である。また、井戸層W11の発光波長(λ1)は、例えば445nmであり、井戸層W21〜W24の発光波長λ2はそれよりも、例えば10nm短波長である。 The MQW light emitting layer 12 has an InGaN / GaN quantum well structure. FIG. 2B is a band diagram of the MQW light-emitting layer 12, in which CB indicates a conduction band and VB indicates a valence band. As shown in FIG. 2B, the well layer W11 is an In x Ga 1-x N layer having a layer thickness (Lz) of about 4.0 nm, and the first to fourth well layers W21 to W24 are This is an In y Ga 1-y N layer of about 4.0 nm having the same layer thickness (Lz) as the well layer W11. The In composition (y) of the well layers W21 to W24 is smaller than the In composition (x) of the well layer W11 (that is, y <x). Moreover, all the barrier layers BL in the first quantum well structure 12A and the second quantum well structure 12B have the same composition. That is, the well layers W21 to W24 (second quantum well structure) have the same structure (composition and layer thickness) and the same band gap (Eg2). The band gap (Eg2) of the well layers W21 to W24 is larger than the band gap (Eg1) of the well layer W11 (first quantum well structure). In other words, the light emission wavelength λ2 of the well layers W21 to W24 is configured to be shorter than the light emission wavelength λ1 of the well layer W11 (λ2 <λ1). The barrier layer BL is a GaN layer having a layer thickness of about 5.0 nm, for example. The emission wavelength (λ1) of the well layer W11 is, for example, 445 nm, and the emission wavelength λ2 of the well layers W21 to W24 is, for example, 10 nm shorter.

つまり、第1の量子井戸構造の井戸層W11の結晶組成と第2の量子井戸構造の井戸層W21〜W24の結晶組成とを互いに異ならせて、井戸層W21〜W24のバンドギャップ(Eg2)が井戸層W11のバンドギャップ(Eg1)よりも大きくなるように構成している。換言すれば、井戸層W21〜W24の発光波長λ2が井戸層W11の発光波長λ1よりも短波長である(λ2<λ1)ように構成されている。   That is, the crystal composition of the well layer W11 having the first quantum well structure and the crystal composition of the well layers W21 to W24 having the second quantum well structure are made different from each other, so that the band gap (Eg2) of the well layers W21 to W24 is different. The well layer W11 is configured to be larger than the band gap (Eg1). In other words, the light emission wavelength λ2 of the well layers W21 to W24 is configured to be shorter than the light emission wavelength λ1 of the well layer W11 (λ2 <λ1).

また、p−GaN層11A上には、MQW発光層12からの放出光を反射する反射層17が設けられ、LED10の発光はn−GaN層13の表面(光取り出し面)13Aから取り出される。反射層17はp−GaN層11A上に形成された透明導電体(ITO:Indium Tin Oxide)層17A、ITO層17A上に形成された金属(Ag)層17Bからなる。金属(Ag)層17B上にはp電極21が形成されている。また、n−GaN層13上には部分的にn電極22が設けられている。   In addition, a reflective layer 17 that reflects light emitted from the MQW light emitting layer 12 is provided on the p-GaN layer 11A, and light emitted from the LED 10 is extracted from the surface (light extraction surface) 13A of the n-GaN layer 13. The reflective layer 17 includes a transparent conductor (ITO: Indium Tin Oxide) layer 17A formed on the p-GaN layer 11A and a metal (Ag) layer 17B formed on the ITO layer 17A. A p-electrode 21 is formed on the metal (Ag) layer 17B. An n electrode 22 is partially provided on the n-GaN layer 13.

この場合、第1の量子井戸構造の井戸層W11から金属(Ag)層17Bまでの厚さ(距離)は、これらの層の間に含まれる層の厚さを基準の屈折率を持つ物質に合わせたものに換算し、これらを足し合わせ、換算されたDを求めることで式(1)を適用することができる。具体的には、実施例1の場合では、換算の対象層である障壁層BL、p−AlGaN層11B、p−GaN層11A及びITO層17Aの層厚をそれぞれ基準の屈折率を持つ物質の厚さに換算することでDを算出することができる。対象層の層厚を当該基準の屈折率を持つ物質の厚さに換算するには、以下のような式を用いることができる。すなわち、対象層の層厚をt、当該基準の屈折率をnd、対象層の屈折率をntとしたとき、当該対象層の換算された層厚Dtは以下の式で表される。
t=t×(nt/nd) ・・・・式(1’)
In this case, the thickness (distance) from the well layer W11 of the first quantum well structure to the metal (Ag) layer 17B is a material having a refractive index based on the thickness of the layers included between these layers. Formula (1) can be applied by converting to a combined one, adding these, and calculating the converted D. Specifically, in the case of Example 1, the barrier layers BL, p-AlGaN layer 11B, p-GaN layer 11A, and ITO layer 17A, which are conversion target layers, are made of materials having a reference refractive index. D can be calculated by converting the thickness. In order to convert the layer thickness of the target layer into the thickness of the substance having the reference refractive index, the following formula can be used. That is, when the layer thickness of the target layer is t, the reference refractive index is n d , and the refractive index of the target layer is n t , the converted layer thickness D t of the target layer is expressed by the following equation. .
D t = t × (n t / n d )... Formula (1 ′)

なお、第1の半導体層及び第2の半導体層には、キャリアブロック層や電流拡散層などの組成やキャリア濃度の異なる種々の半導体層、あるいはアンドープ層などが含まれていても良い。また、本実施例のLED10は、いわゆるシンフィルム構造(又は貼り合わせ構造)を有している。従って、金属(Ag)層17B側には接合金属層を介して支持基板(図示しない)が設けられていてもよい。   Note that the first semiconductor layer and the second semiconductor layer may include various semiconductor layers having different compositions and carrier concentrations, such as a carrier block layer and a current diffusion layer, or an undoped layer. Moreover, LED10 of a present Example has what is called a thin film structure (or bonding structure). Accordingly, a support substrate (not shown) may be provided on the metal (Ag) layer 17B side via the bonding metal layer.

本発明の実施例2について、以下に説明する。図3(a)、(b)は、実施例2である発光ダイオード(LED)10の構成及びバンド構造を示す断面図である。本実施例は、以下の点において実施例1と異なっている以外、実施例1と同一の構造を有する。   Example 2 of the present invention will be described below. 3A and 3B are cross-sectional views showing the configuration and band structure of a light-emitting diode (LED) 10 that is Example 2. FIG. This embodiment has the same structure as that of the first embodiment except that the first embodiment is different from the first embodiment in the following points.

発光層12は、InGaN/GaN量子井戸構造を有する。図2(b)はMQW発光層12のバンドダイヤグラムである。具体的には、第1の量子井戸構造12Aの単一の井戸層W11は、層厚(Lz1)が約4.0nmのInyGa1-yN層であり、第2の量子井戸構造12Bの第1〜第4の井戸層W21〜W24は、井戸層W11と同じIn組成(x)を有するInGaN層であるが、層厚(Lz2)が約3.5nmであり、井戸層W11に比べて小さい(すなわち、Lz2<Lz1)。 The light emitting layer 12 has an InGaN / GaN quantum well structure. FIG. 2B is a band diagram of the MQW light emitting layer 12. Specifically, the single well layer W11 of the first quantum well structure 12A is an In y Ga 1-y N layer having a layer thickness (Lz1) of about 4.0 nm, and the second quantum well structure 12B. The first to fourth well layers W21 to W24 are InGaN layers having the same In composition (x) as the well layer W11, but the layer thickness (Lz2) is about 3.5 nm, which is compared with the well layer W11. (Ie, Lz2 <Lz1).

つまり、第1の量子井戸構造の井戸層W11の層厚と第2の量子井戸構造の井戸層W21〜W24の層厚とを互いに異ならせて、井戸層W21〜W24のバンドギャップ(Eg2)が井戸層W11のバンドギャップ(Eg1)よりも大きくなるように構成している。換言すれば、井戸層W21〜W24の発光波長λ2が井戸層W11の発光波長λ1よりも短波長である(λ2<λ1)ように構成されている。   That is, the layer thickness of the well layer W11 having the first quantum well structure and the layer thickness of the well layers W21 to W24 having the second quantum well structure are made different from each other, so that the band gap (Eg2) of the well layers W21 to W24 is The well layer W11 is configured to be larger than the band gap (Eg1). In other words, the light emission wavelength λ2 of the well layers W21 to W24 is configured to be shorter than the light emission wavelength λ1 of the well layer W11 (λ2 <λ1).

本発明の実施例3について、以下に説明する。上記したように、実施例1においては、井戸層W11と井戸層W21〜W24の結晶組成を異ならせて、また、実施例2においては、井戸層W11と井戸層W21〜W24の層厚を異ならせて、井戸層W21〜W24の発光波長λ2が井戸層W11の発光波長λ1よりも短波長である(λ2<λ1)ように構成した。   Example 3 of the present invention will be described below. As described above, in Example 1, the crystal compositions of the well layer W11 and the well layers W21 to W24 are made different. In Example 2, the thicknesses of the well layer W11 and the well layers W21 to W24 are made different. Thus, the light emission wavelength λ2 of the well layers W21 to W24 is configured to be shorter than the light emission wavelength λ1 of the well layer W11 (λ2 <λ1).

しかしながら、実施例1と実施例2とを組み合わせても良い。すなわち、第1の量子井戸構造の井戸層の結晶組成と第2の量子井戸構造の井戸層の結晶組成とを互いに異ならせて、及び/又は、第1の量子井戸構造の井戸層の層厚と第2の量子井戸構造の井戸層の層厚とを互いに異ならせて、第1の量子井戸構造のバンドギャップが第2の量子井戸構造のバンドギャップよりも小さくなるようにしてもよい。   However, the first embodiment and the second embodiment may be combined. That is, the crystal composition of the well layer of the first quantum well structure and the crystal composition of the well layer of the second quantum well structure are different from each other and / or the layer thickness of the well layer of the first quantum well structure And the thickness of the well layer of the second quantum well structure may be different from each other so that the band gap of the first quantum well structure is smaller than the band gap of the second quantum well structure.

例えば、井戸層W11と井戸層W21〜W24とが、結晶組成及び層厚の両者が異なるようにし、井戸層W21〜W24の発光波長λ2が井戸層W11の発光波長λ1よりも短波長である(λ2<λ1)ように構成してもよい。   For example, the well layer W11 and the well layers W21 to W24 are made to have different crystal compositions and layer thicknesses, and the emission wavelength λ2 of the well layers W21 to W24 is shorter than the emission wavelength λ1 of the well layer W11 ( (λ2 <λ1) may be configured.

図4は、実施例4である発光ダイオード(LED)10の構成を模式的に示す断面図である。なお、第1の電極21及び第2の電極22については記載を省略している。   FIG. 4 is a cross-sectional view schematically showing a configuration of a light emitting diode (LED) 10 according to the fourth embodiment. Note that the description of the first electrode 21 and the second electrode 22 is omitted.

図4に示すように、p−GaN層11上に、MQW発光層12として、障壁層BL、第1の井戸層群W1、第2の井戸層群W2が順次積層されている。実施例1の場合と同様に、第1の井戸層群W1は単一の井戸層W11からなり、第2の井戸層群W2は4層の量子井戸層からなり、第1の半導体層11の側から順に第1、第2、第3、第4の井戸層W21、W22、W23、W24からなる。MQW発光層12上には、n−GaN層13が設けられている。また、各井戸層W11、W21、W22、W23、W24の間、井戸層W11とp−AlGaN層11との間、井戸層W24とn−GaN層13との間にはGaNからなる障壁層BLが設けられている。   As shown in FIG. 4, a barrier layer BL, a first well layer group W <b> 1, and a second well layer group W <b> 2 are sequentially stacked on the p-GaN layer 11 as the MQW light emitting layer 12. As in the case of the first embodiment, the first well layer group W1 includes a single well layer W11, the second well layer group W2 includes four quantum well layers, and the first semiconductor layer 11 includes The first, second, third, and fourth well layers W21, W22, W23, and W24 are sequentially formed from the side. An n-GaN layer 13 is provided on the MQW light emitting layer 12. Further, a barrier layer BL made of GaN is formed between each well layer W11, W21, W22, W23, W24, between the well layer W11 and the p-AlGaN layer 11, and between the well layer W24 and the n-GaN layer 13. Is provided.

MQW発光層12は、InGaN/GaN量子井戸構造を有する。より詳細には、井戸層W11は、InxGa1-xN層であり、第1〜第4の井戸層W21〜W24は、井戸層W11と同じ層厚を有するInyGa1-yN層である。ここで、井戸層W21〜W24のIn組成(y)は、井戸層W11のIn組成(x)よりも小さい(y<x)。すなわち、井戸層W21〜W24のバンドギャップ(Eg2)は井戸層W11のバンドギャップ(Eg1)よりも大きい。換言すれば、井戸層W21〜W24の発光波長λ2は井戸層W11の発光波長λ1よりも短波長である(λ2<λ1)ように構成されている。 また、本実施例においては、基準井戸層である井戸層W11の両側に、障壁層BL(GaN層)と井戸層W11のIn組成との中間のIn組成を有するInGa1−zNからなる反射緩和層(すなわち、0<z<x)31、32が設けられている。 The MQW light emitting layer 12 has an InGaN / GaN quantum well structure. More specifically, the well layer W11 is an In x Ga 1-x N layer, and the first to fourth well layers W21 to W24 are In y Ga 1-y N having the same layer thickness as the well layer W11. Is a layer. Here, the In composition (y) of the well layers W21 to W24 is smaller than the In composition (x) of the well layer W11 (y <x). That is, the band gap (Eg2) of the well layers W21 to W24 is larger than the band gap (Eg1) of the well layer W11. In other words, the light emission wavelength λ2 of the well layers W21 to W24 is configured to be shorter than the light emission wavelength λ1 of the well layer W11 (λ2 <λ1). In this embodiment, the In z Ga 1-z N having an intermediate In composition between the barrier layer BL (GaN layer) and the In composition of the well layer W11 is formed on both sides of the well layer W11 which is the reference well layer. The reflection relaxation layers (that is, 0 <z <x) 31 and 32 are provided.

より詳細には、井戸層に用いられるInGaNはGaNに比べて屈折率が高く、InGaN/GaN界面で光の反射が生じる。本実施例のように井戸層と障壁層との間に、これらの中間組成のInGaN層を設けることにより井戸層及び障壁層間の界面での反射を軽減することができる。   More specifically, InGaN used for the well layer has a higher refractive index than GaN, and light is reflected at the InGaN / GaN interface. By providing an InGaN layer having an intermediate composition between the well layer and the barrier layer as in this embodiment, reflection at the interface between the well layer and the barrier layer can be reduced.

具体的には、GaNの屈折率をn1、井戸層のInGaNの屈折率をn2、反射緩和層の屈折率をn3とすると、それらの関係は、n1<n3<n2である。また、反射率Rは、
R=(n1−n2)/(n1+n2) ・・・・式(2)
で表すことができる。
Specifically, assuming that the refractive index of GaN is n1, the refractive index of InGaN of the well layer is n2, and the refractive index of the reflection relaxation layer is n3, these relationships are n1 <n3 <n2. The reflectance R is
R = (n1−n2) 2 / (n1 + n2) 2 ... Formula (2)
Can be expressed as

また、井戸層及び障壁層間の反射率をR1(%)、井戸層及び反射緩和層間の反射率をR2(%)、反射緩和層及び障壁層間の反射率をR3(%)とすると、それらの関係は、R2<R1、R3<R1である。また、反射緩和層を設けない場合の光取り出しは、(100−R1)[%]で、反射緩和層を設けた場合の光取り出しは、(100−R2)×(100−R3)[%]で表すことができる。   Further, assuming that the reflectance between the well layer and the barrier layer is R1 (%), the reflectance between the well layer and the reflection relaxation layer is R2 (%), and the reflectance between the reflection relaxation layer and the barrier layer is R3 (%), The relationship is R2 <R1, R3 <R1. The light extraction when the reflection relaxation layer is not provided is (100−R1) [%], and the light extraction when the reflection relaxation layer is provided is (100−R2) × (100−R3) [%]. Can be expressed as

これらの差をとると、
(100−R2)×(100−R3)−(100−R1)
=R1−(R2+R3)+R2・R3/100 > 0 ・・・式(3)
となる。なお、ここで、GaN及びInGaNの屈折率からの計算範囲では、R1>R2+R3である。従って、本実施例のように反射緩和層を設けることにより、光取り出し効率は増大することが確認された。
Taking these differences,
(100-R2) × (100-R3)-(100-R1)
= R1− (R2 + R3) + R2 · R3 / 100> 0 Formula (3)
It becomes. Here, in the calculation range from the refractive indexes of GaN and InGaN, R1> R2 + R3. Therefore, it was confirmed that the light extraction efficiency is increased by providing the reflection relaxation layer as in this example.

すなわち、第2の井戸層群の井戸層W21〜W24からの当該界面での反射が軽減されるので、第2の井戸層群から第1の井戸層群への入射光(励起光)を増大させることができる。また、第1の井戸層群からの順方向(光取り出し方向)の光取り出し効率、及び反射層からの反射光の光取り出し効率を増大させることができる。第1の井戸層群が複数の井戸層からなる場合には、当該複数の井戸層の全てに、且つ各層の両側に反射緩和層を設けるのが好ましい。あるいは、これらのうち少なくとも1つに設けるようにしてもよいが、この場合、第1の井戸層群の他の井戸層とバンドギャップ(発光波長)が同じになるようにする。   That is, since reflection at the interface from the well layers W21 to W24 of the second well layer group is reduced, incident light (excitation light) from the second well layer group to the first well layer group is increased. Can be made. Further, the light extraction efficiency in the forward direction (light extraction direction) from the first well layer group and the light extraction efficiency of the reflected light from the reflection layer can be increased. When the first well layer group is composed of a plurality of well layers, it is preferable to provide a reflection relaxation layer on all of the plurality of well layers and on both sides of each layer. Alternatively, at least one of them may be provided. In this case, the band gap (emission wavelength) is made the same as the other well layers of the first well layer group.

図5に示すように、実施例4の改変例として、第2の井戸層群の井戸層W21〜W24の全てに、且つ各層の両側に反射緩和層33、34を設けても反射軽減効果がある。あるいは、これらのうち少なくとも1つの井戸層に関して設けるようにしてもよい。この場合、第2の井戸層群の他の井戸層とバンドギャップ(発光波長)が同じになるようにする点は上記した通りである。また、実施例4及び上記改変例を組み合わせてもよい。   As shown in FIG. 5, as a modified example of the fourth embodiment, even if the reflection relaxation layers 33 and 34 are provided on all the well layers W21 to W24 of the second well layer group and on both sides of each layer, the reflection reduction effect is obtained. is there. Or you may make it provide regarding at least 1 well layer among these. In this case, as described above, the band gap (emission wavelength) is made the same as the other well layers of the second well layer group. Further, Example 4 and the above modification examples may be combined.

なお、第1の井戸層群及び第2の井戸層群のバンドギャップ(発光波長)の違いを、In組成の差で得る場合、すなわち井戸層W11のIn組成(x)が、井戸層W21〜W24のIn組成(y)よりも大となるように構成した場合では(y<x)、第1の井戸層群(井戸層W11)での反射が第2の井戸層群での反射よりも大きくなるため、第1の井戸層群(井戸層W11)に反射緩和層を設ける方がより有効である。   When the difference in band gap (emission wavelength) between the first well layer group and the second well layer group is obtained by the difference in In composition, that is, the In composition (x) of the well layer W11 is the well layer W21- In the case where it is configured to be larger than the In composition (y) of W24 (y <x), the reflection at the first well layer group (well layer W11) is more than the reflection at the second well layer group. Therefore, it is more effective to provide a reflection relaxation layer in the first well layer group (well layer W11).

以上、説明したように、従来のMQW発光層を用いた場合、各井戸層と反射面との間の間隔が各量子井戸層によって異なることに起因して光取り出し方向(順方向)の光と反射光の位相がずれ、打ち消し合って光強度が弱くなってしまう。しかしながら、本発明によれば、反射面から遠い側にある井戸層群の井戸層発光波長を短波長化し、当該短波長の光によって反射面に近い側の井戸層群の井戸層を励起することによって、MQW発光層から位相が揃った発光が反射面に向かって放射される。従って、光取り出し方向に向かう光と反射面からの反射光の位相が強め合い、光取り出し効率が高く、高光出力の高性能な半導体発光素子を提供することができる。   As described above, when the conventional MQW light emitting layer is used, light in the light extraction direction (forward direction) is caused by the fact that the interval between each well layer and the reflecting surface varies depending on each quantum well layer. The reflected light is out of phase and cancels each other, reducing the light intensity. However, according to the present invention, the well layer emission wavelength of the well layer group on the side far from the reflecting surface is shortened, and the well layer of the well layer group on the side close to the reflecting surface is excited by the light having the short wavelength. As a result, emitted light having a uniform phase is emitted from the MQW light emitting layer toward the reflecting surface. Therefore, it is possible to provide a high-performance semiconductor light emitting device with high light output efficiency, in which the phases of the light traveling in the light extraction direction and the reflected light from the reflecting surface are intensified.

なお、発光ダイオード(LED)を例に説明したが、他の半導体発光素子にも適用が可能である。すなわち、多重量子井戸層からなる発光層と、量子井戸層に対向する反射面を有するように構成された発光素子にも適用が可能である。   The light emitting diode (LED) has been described as an example, but can be applied to other semiconductor light emitting elements. That is, the present invention can also be applied to a light emitting element configured to have a light emitting layer composed of a multiple quantum well layer and a reflecting surface facing the quantum well layer.

また、上記した実施例における、数値や材料、例えば、半導体層の組成や層厚、MQW発光層の井戸層数、発光波長、導電体及び金属層の材料、層厚などは例示に過ぎず、適宜改変することができる。また、上記した実施例を適宜、改変及び組合せてもよい。   In addition, the numerical values and materials in the above-described examples, for example, the composition and layer thickness of the semiconductor layer, the number of well layers of the MQW light emitting layer, the emission wavelength, the material of the conductor and the metal layer, the layer thickness, etc. are merely examples, It can be modified appropriately. Further, the above-described embodiments may be appropriately modified and combined.

10 半導体発光素子 11 第1の半導体層
12 多重量子井戸(MQW)構造の発光層
12A 第1の量子井戸構造
12B 第2の量子井戸構造
13 第2の半導体層
13A 光取り出し面
15 半導体構造層
17 光反射層
W1 第1の井戸層群
W2 第2の井戸層群
DESCRIPTION OF SYMBOLS 10 Semiconductor light emitting element 11 1st semiconductor layer 12 Light emitting layer of multiple quantum well (MQW) structure 12A 1st quantum well structure 12B 2nd quantum well structure 13 2nd semiconductor layer 13A Light extraction surface 15 Semiconductor structure layer 17 Light reflecting layer W1 First well layer group W2 Second well layer group

Claims (8)

反射面を有する反射層と、
前記反射層上に形成された第1の半導体層と、
前記第1の半導体層上に形成され、単一の井戸層又は同一のバンドギャップを有する複数の井戸層を含む第1の量子井戸構造と、前記第1の量子井戸構造上に形成され、単一の井戸層又は同一のバンドギャップを有する複数の井戸層を含む第2の量子井戸構造とを有する多重量子井戸構造の発光層と、
前記第1の半導体層と反対導電型を有し、前記発光層上に形成されてその表面を光取り出し面とする第2の半導体層と、を有し、
前記第1の量子井戸構造のバンドギャップは前記第2の量子井戸構造のバンドギャップよりも小さく、
前記第1の量子井戸構造のうちの1の井戸層を位相整合位置の基準井戸層とし、前記基準井戸層と前記反射面との間隔は、前記基準井戸層からの直接放出光と前記基準井戸層から放出され前記反射面によって反射された反射光とが前記光取り出し面に向かって進む際に位相が揃うように定められていることを特徴とする発光素子。
A reflective layer having a reflective surface;
A first semiconductor layer formed on the reflective layer;
A first quantum well structure formed on the first semiconductor layer and including a single well layer or a plurality of well layers having the same band gap; and a single quantum well structure formed on the first quantum well structure. A light emitting layer having a multiple quantum well structure having one well layer or a second quantum well structure including a plurality of well layers having the same band gap;
A second semiconductor layer having a conductivity type opposite to that of the first semiconductor layer, the second semiconductor layer being formed on the light emitting layer and having the surface as a light extraction surface;
The band gap of the first quantum well structure is smaller than the band gap of the second quantum well structure,
One well layer of the first quantum well structure is used as a reference well layer at a phase matching position, and the distance between the reference well layer and the reflecting surface is determined by direct emission light from the reference well layer and the reference well. A light emitting device characterized in that the phase of the reflected light emitted from the layer and reflected by the reflecting surface is aligned when traveling toward the light extraction surface.
前記第1の量子井戸構造の井戸層の結晶組成と前記第2の量子井戸構造の井戸層の結晶組成とが互いに異なること、及び/又は、前記第1の量子井戸構造の井戸層の層厚と前記第2の量子井戸構造の井戸層の層厚とが互いに異なること、によって前記第1の量子井戸構造のバンドギャップが前記第2の量子井戸構造のバンドギャップよりも小さくされていることを特徴とする請求項1に記載の発光素子。   The crystal composition of the well layer of the first quantum well structure and the crystal composition of the well layer of the second quantum well structure are different from each other, and / or the layer thickness of the well layer of the first quantum well structure And the thickness of the well layer of the second quantum well structure are different from each other, whereby the band gap of the first quantum well structure is made smaller than the band gap of the second quantum well structure. The light emitting device according to claim 1, wherein 前記第1の量子井戸構造は複数の井戸層を含み、前記基準井戸層は前記複数の井戸層のうち前記第1の半導体層に最も近い井戸層であることを特徴とする請求項1に記載の発光素子。   The first quantum well structure includes a plurality of well layers, and the reference well layer is a well layer closest to the first semiconductor layer among the plurality of well layers. Light emitting element. 前記第1の量子井戸構造は単一の井戸層からなることを特徴とする請求項1に記載の発光素子。   The light emitting device according to claim 1, wherein the first quantum well structure includes a single well layer. 前記第1の量子井戸構造の井戸層及び障壁層の間に前記井戸層及び前記障壁層の中間結晶組成の半導体層が設けられていることを特徴とする請求項1ないし4のいずれか1項に記載の発光素子。   5. The semiconductor layer according to claim 1, wherein a semiconductor layer having an intermediate crystal composition of the well layer and the barrier layer is provided between the well layer and the barrier layer of the first quantum well structure. The light emitting element as described in. 前記第2の量子井戸構造の井戸層及び障壁層の間に前記井戸層及び前記障壁層の中間結晶組成の半導体層が設けられていることを特徴とする請求項1ないし5のいずれか1項に記載の発光素子。   6. The semiconductor layer according to claim 1, wherein a semiconductor layer having an intermediate crystal composition of the well layer and the barrier layer is provided between the well layer and the barrier layer of the second quantum well structure. The light emitting element as described in. 前記第1の量子井戸構造及び前記第2の量子井戸構造はInGaN/GaN量子井戸構造からなることを特徴とする請求項1ないし6のいずれか1項に記載の発光素子。   The light emitting device according to claim 1, wherein the first quantum well structure and the second quantum well structure are InGaN / GaN quantum well structures. 前記反射層は、反射金属層と前記反射金属層及び前記第1の半導体層との間に設けられた透明導電体層からなり、前記反射面は前記反射金属層及び前記透明導電体層間の界面であることを特徴とする請求項1ないし7のいずれか1項に記載の発光素子。   The reflective layer includes a reflective metal layer and a transparent conductor layer provided between the reflective metal layer and the first semiconductor layer, and the reflective surface is an interface between the reflective metal layer and the transparent conductor layer. The light-emitting element according to claim 1, wherein the light-emitting element is a light-emitting element.
JP2012271454A 2012-12-12 2012-12-12 Multiple quantum well semiconductor light emitting device Active JP6190585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012271454A JP6190585B2 (en) 2012-12-12 2012-12-12 Multiple quantum well semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012271454A JP6190585B2 (en) 2012-12-12 2012-12-12 Multiple quantum well semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2014116549A true JP2014116549A (en) 2014-06-26
JP6190585B2 JP6190585B2 (en) 2017-08-30

Family

ID=51172231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012271454A Active JP6190585B2 (en) 2012-12-12 2012-12-12 Multiple quantum well semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP6190585B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019146737A1 (en) * 2018-01-26 2021-01-07 丸文株式会社 Deep UV LED and its manufacturing method
JP2022172792A (en) * 2021-05-07 2022-11-17 日機装株式会社 Nitride semiconductor light emitting device

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027945A (en) * 1996-07-11 1998-01-27 Daido Steel Co Ltd Surface light-emitting device
JP2002083999A (en) * 2000-06-21 2002-03-22 Sharp Corp Light emitting semiconductor element
JP2003528421A (en) * 1999-06-02 2003-09-24 セイコーエプソン株式会社 Multi-wavelength light emitting device, electronic device and interference mirror
JP2004022969A (en) * 2002-06-19 2004-01-22 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting device
JP2004056010A (en) * 2002-07-23 2004-02-19 Toyota Central Res & Dev Lab Inc Nitride semiconductor light emitting device
JP2004153271A (en) * 2002-10-28 2004-05-27 Kyoshin Kagi Kofun Yugenkoshi White light-emitting device and manufacturing method therefor
JP2004214647A (en) * 2003-01-03 2004-07-29 Kyoshin Kagi Kofun Yugenkoshi Vertical light-emitting apparatus structure and manufacturing method therefor
JP2004356256A (en) * 2003-05-28 2004-12-16 Sharp Corp Nitride semiconductor light-emitting element and its manufacturing method
JP2006140234A (en) * 2004-11-10 2006-06-01 Sony Corp Semiconductor light emitting element and its manufacturing method
JP2006157024A (en) * 2004-11-30 2006-06-15 Osram Opto Semiconductors Gmbh Light emission semiconductor element
JP2006295132A (en) * 2005-03-14 2006-10-26 Toshiba Corp Light emitting device
JP2007142426A (en) * 2005-11-19 2007-06-07 Samsung Electro Mech Co Ltd Nitride semiconductor light-emitting device
JP2007533143A (en) * 2004-04-14 2007-11-15 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Light emitting diode chip
JP2010541217A (en) * 2007-09-28 2010-12-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Semiconductor body for radiation emission
JP2011510512A (en) * 2008-01-21 2011-03-31 エルジー イノテック カンパニー リミテッド Light emitting element
JP2012044231A (en) * 2011-11-30 2012-03-01 Toshiba Corp Semiconductor light emitting element
JP2012182440A (en) * 2011-02-09 2012-09-20 Showa Denko Kk Semiconductor light-emitting element and semiconductor light-emitting device

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027945A (en) * 1996-07-11 1998-01-27 Daido Steel Co Ltd Surface light-emitting device
JP2003528421A (en) * 1999-06-02 2003-09-24 セイコーエプソン株式会社 Multi-wavelength light emitting device, electronic device and interference mirror
JP2002083999A (en) * 2000-06-21 2002-03-22 Sharp Corp Light emitting semiconductor element
JP2004022969A (en) * 2002-06-19 2004-01-22 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting device
JP2004056010A (en) * 2002-07-23 2004-02-19 Toyota Central Res & Dev Lab Inc Nitride semiconductor light emitting device
JP2004153271A (en) * 2002-10-28 2004-05-27 Kyoshin Kagi Kofun Yugenkoshi White light-emitting device and manufacturing method therefor
JP2004214647A (en) * 2003-01-03 2004-07-29 Kyoshin Kagi Kofun Yugenkoshi Vertical light-emitting apparatus structure and manufacturing method therefor
JP2004356256A (en) * 2003-05-28 2004-12-16 Sharp Corp Nitride semiconductor light-emitting element and its manufacturing method
JP2007533143A (en) * 2004-04-14 2007-11-15 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Light emitting diode chip
JP2006140234A (en) * 2004-11-10 2006-06-01 Sony Corp Semiconductor light emitting element and its manufacturing method
JP2006157024A (en) * 2004-11-30 2006-06-15 Osram Opto Semiconductors Gmbh Light emission semiconductor element
JP2006295132A (en) * 2005-03-14 2006-10-26 Toshiba Corp Light emitting device
JP2007142426A (en) * 2005-11-19 2007-06-07 Samsung Electro Mech Co Ltd Nitride semiconductor light-emitting device
JP2010541217A (en) * 2007-09-28 2010-12-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Semiconductor body for radiation emission
JP2011510512A (en) * 2008-01-21 2011-03-31 エルジー イノテック カンパニー リミテッド Light emitting element
JP2012182440A (en) * 2011-02-09 2012-09-20 Showa Denko Kk Semiconductor light-emitting element and semiconductor light-emitting device
JP2012044231A (en) * 2011-11-30 2012-03-01 Toshiba Corp Semiconductor light emitting element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019146737A1 (en) * 2018-01-26 2021-01-07 丸文株式会社 Deep UV LED and its manufacturing method
JP2022172792A (en) * 2021-05-07 2022-11-17 日機装株式会社 Nitride semiconductor light emitting device

Also Published As

Publication number Publication date
JP6190585B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
US20110037049A1 (en) Nitride semiconductor light-emitting device
WO2019130804A1 (en) Nitride semiconductor light-emitting element
JP5355599B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2015509669A (en) Light emitting diode with low refractive index material layer to reduce guided light effect
KR20150108315A (en) Semiconductor light emitting element
JP2004179428A (en) Semiconductor light emitting element
WO2012123997A1 (en) Semiconductor light emitting element and light emitting device using same
JP2005268601A (en) Compound semiconductor light-emitting device
JP2007258277A (en) Semiconductor light emitting device
JP2009152297A (en) Semiconductor light-emitting device
JP2016527721A (en) Optoelectronic semiconductor chip with multiple quantum wells having at least one high barrier layer
JP4873930B2 (en) REFLECTIVE ELECTRODE AND COMPOUND SEMICONDUCTOR LIGHT EMITTING DEVICE EQUIPPED WITH THE SAME
JP6190585B2 (en) Multiple quantum well semiconductor light emitting device
JP2005276899A (en) Light-emitting element
JP2014103240A (en) Semiconductor light-emitting element
US8581236B2 (en) Electrically pumped optoelectronic semiconductor chip
JP6456414B2 (en) Semiconductor light emitting device
JP2009070929A (en) Surface emitting diode
JP2019517133A (en) Light emitting diode comprising at least one wide band gap interlayer arranged in at least one barrier layer of the light emitting region
JP2009158807A (en) Semiconductor laser diode
JP2008159626A (en) Semiconductor light-emitting element
JP2005136033A (en) Semiconductor light emitting element
JPWO2018020793A1 (en) Semiconductor light emitting device and method of manufacturing semiconductor light emitting device
TW200921954A (en) Semiconductor chip emitting polarized radiation
JP2006253180A (en) Semiconductor light emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170807

R150 Certificate of patent or registration of utility model

Ref document number: 6190585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250