JP2014116407A - Variable capacitance element module - Google Patents

Variable capacitance element module Download PDF

Info

Publication number
JP2014116407A
JP2014116407A JP2012268371A JP2012268371A JP2014116407A JP 2014116407 A JP2014116407 A JP 2014116407A JP 2012268371 A JP2012268371 A JP 2012268371A JP 2012268371 A JP2012268371 A JP 2012268371A JP 2014116407 A JP2014116407 A JP 2014116407A
Authority
JP
Japan
Prior art keywords
variable capacitance
substrate
capacitance element
input
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012268371A
Other languages
Japanese (ja)
Other versions
JP5978969B2 (en
Inventor
Noboru Kato
登 加藤
Noriyuki Ueki
紀行 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2012268371A priority Critical patent/JP5978969B2/en
Priority to CN201320800242.XU priority patent/CN203631543U/en
Publication of JP2014116407A publication Critical patent/JP2014116407A/en
Application granted granted Critical
Publication of JP5978969B2 publication Critical patent/JP5978969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/20Structure, shape, material or disposition of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48111Disposition the wire connector extending above another semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • H01L2924/30111Impedance matching

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a variable capacitance element module with a high ESD resistance property.SOLUTION: A substrate 30 is formed in a shape of a rectangular parallelepiped plate having a first side BS1 and a second side BS2 opposing each other with a variable capacitance element 14 interposed therebetween. A first substrate-side input/output terminal EP1 to connect a first input/output terminal P1 of the variable capacitance element 14 thereto and a second substrate-side input/output terminal EP2 to connect a second input/output terminal P2 of the variable capacitance element 14 thereto are disposed at positions along the first side BS1, and a substrate-side control voltage input terminal EVt to connect a control voltage input terminal Vt of the variable capacitance element 14 thereto and a substrate-side ground terminal EG to connect a ground terminal GND of the variable capacitance element 14 thereto are disposed at positions along the second side BS2. A first ESD protection element 17A is disposed between the first substrate-side input/output terminal EP1 and the substrate-side control voltage input terminal EVt, and a second ESD protection element 17B is disposed between the second substrate-side input/output terminal EP2 and the substrate-side ground terminal EG.

Description

本発明は、例えばRFID(Radio Frequency Identification)システムや近距離無線通信(NFC:Near Field Communication)システム等の通信装置に用いられる可変容量素子モジュールに関するものである。   The present invention relates to a variable capacitance element module used in a communication device such as an RFID (Radio Frequency Identification) system or a near field communication (NFC) system.

従来、特許文献1,2などにおいて、制御電圧の印加により誘電率が変化する可変容量素子が提案されている。これらの可変容量素子は、金属、強誘電体材料、金属の積層構造(MIM構造)をとり、低電圧で大きな容量変化量が得られるように薄膜の強誘電体を備えている。   Conventionally, in Patent Documents 1 and 2 and the like, variable capacitance elements whose permittivity changes by application of a control voltage have been proposed. These variable capacitance elements have a laminated structure (MIM structure) of metal, a ferroelectric material, and a metal, and are provided with a thin film ferroelectric so that a large capacitance change amount can be obtained at a low voltage.

特許第4502609号公報Japanese Patent No. 4502609 特許第5000660号公報Japanese Patent No. 550660

強誘電体膜を備える可変容量素子は、MEMSによる可変容量素子や可変容量ダイオードのような半導体の可変容量素子に比べて、耐ESD(Electro-Static Discharge)特性が低いことがその欠点とされてきた。   A variable capacitance element having a ferroelectric film has been considered to have a low ESD (Electro-Static Discharge) characteristic compared to a semiconductor variable capacitance element such as a MEMS variable capacitance element or a variable capacitance diode. It was.

強誘電体膜の膜厚を薄くすると制御感度(制御電圧変化に対する容量値変化の比)が高まるが、強誘電体膜の薄膜化に伴い、耐ESD特性が劣化する。すなわち耐ESD特性を超えるESDが生じると、そのサージが強誘電体膜にかかって、強誘電体膜が絶縁破壊される。そのため、耐ESDの観点から、強誘電体膜の薄膜化には制約が生じ、したがって、制御感度もその制限を受ける。   When the thickness of the ferroelectric film is reduced, control sensitivity (ratio of change in capacitance value with respect to change in control voltage) increases. However, as the ferroelectric film is made thinner, the ESD resistance is deteriorated. That is, when ESD exceeding the ESD resistance characteristic occurs, the surge is applied to the ferroelectric film, and the ferroelectric film is dielectrically broken down. For this reason, from the viewpoint of ESD resistance, there is a restriction on the thinning of the ferroelectric film, and thus the control sensitivity is also restricted.

本発明の目的は、耐ESD特性の高い可変容量素子モジュールを提供することにある。   An object of the present invention is to provide a variable capacitance element module having high ESD resistance.

本発明の可変容量素子モジュールは次のように構成する。   The variable capacitance element module of the present invention is configured as follows.

(1)可変容量素子、第1のESD保護素子、第2のESD保護素子、およびこれらが実装される共通の基板を備え、
前記可変容量素子は、電界によって誘電率が変化する強誘電体膜と、この強誘電体膜を挟んで電圧を印加するキャパシタ電極と、第1の入出力端子と、第2の入出力端子と、制御電圧入力端子と、グランド端子とを備え、
前記第1のESD保護素子は、第1端が前記第1の入出力端子に接続され、第2端が前記グランド端子に接続されていて、
前記第2のESD保護素子は、第1端が前記第2の入出力端子に接続され、第2端が前記グランド端子に接続されていることを特徴とする。
(1) A variable capacitance element, a first ESD protection element, a second ESD protection element, and a common substrate on which these are mounted,
The variable capacitance element includes a ferroelectric film whose dielectric constant is changed by an electric field, a capacitor electrode for applying a voltage across the ferroelectric film, a first input / output terminal, and a second input / output terminal. A control voltage input terminal and a ground terminal,
The first ESD protection element has a first end connected to the first input / output terminal and a second end connected to the ground terminal;
The second ESD protection element has a first end connected to the second input / output terminal and a second end connected to the ground terminal.

上記構成により、可変容量素子の入出力端とグランドとの間にESD保護素子が接続されているので、外部から可変容量素子の入出力端にESDによるサージが入っても、サージ電流はESD保護素子へ導かれる。そのため、可変容量素子に過電圧が印加されず破壊されにくくなる。また、可変容量素子と2つのESD保護素子とを別体で配線基板に実装した構成に比べて、可変容量素子とESD保護素子との間の配線距離を短くできるので、その配線にESDが入り込みにくくなり、その点でも高い耐ESD特性が得られる。   With the above configuration, an ESD protection element is connected between the input / output end of the variable capacitance element and the ground, so even if an ESD surge enters the input / output end of the variable capacitance element from the outside, the surge current is protected against ESD. Guided to the element. Therefore, an overvoltage is not applied to the variable capacitance element and it is difficult to be destroyed. Also, compared to a configuration in which the variable capacitance element and the two ESD protection elements are separately mounted on the wiring board, the wiring distance between the variable capacitance element and the ESD protection element can be shortened, so that ESD enters the wiring. In this respect, high ESD resistance can be obtained.

(2)前記第1のESD保護素子および前記第2のESD保護素子は前記可変容量素子を介する対称位置に配置されていることが好ましい。この構造により、熱負荷によって、基板に対する可変容量素子の実装位置に生じる機械的歪みと、基板に対する2つのESD保護素子の実装位置に生じる機械的歪みとが対称に分散されて、熱負荷に対する耐性が高い。 (2) It is preferable that the first ESD protection element and the second ESD protection element are arranged at symmetrical positions via the variable capacitance element. With this structure, the mechanical strain generated at the mounting position of the variable capacitance element with respect to the substrate by the thermal load and the mechanical strain generated at the mounting position of the two ESD protection elements with respect to the substrate are symmetrically distributed, thereby being resistant to the thermal load. Is expensive.

(3)前記基板は前記可変容量素子を介して対向する第1辺および第2辺を有する直方体板状であり、第1辺に沿った位置に、前記可変容量素子の第1の入出力端子が接続される第1の基板側入出力端子、および前記可変容量素子の第2の入出力端子が接続される第2の基板側入出力端子が配置され、第2辺に沿った位置に、前記可変容量素子の制御電圧入力端子が接続される基板側制御電圧入力端子、および前記可変容量素子のグランド端子が接続される基板側グランド端子が配置され、
前記第1のESD保護素子は前記第1の基板側入出力端子と前記基板側制御電圧入力端子との間に配置され、前記第2のESD保護素子は前記第2の基板側入出力端子と前記基板側グランド端子との間に配置されていることが好ましい。
(3) The substrate has a rectangular parallelepiped plate shape having a first side and a second side facing each other with the variable capacitance element interposed therebetween, and the first input / output terminal of the variable capacitance element is positioned along the first side. Are connected to the first substrate side input / output terminal and the second substrate side input / output terminal to which the second input / output terminal of the variable capacitance element is connected, and at a position along the second side, A substrate side control voltage input terminal to which the control voltage input terminal of the variable capacitance element is connected, and a substrate side ground terminal to which the ground terminal of the variable capacitance element is connected are arranged.
The first ESD protection element is disposed between the first substrate-side input / output terminal and the substrate-side control voltage input terminal, and the second ESD protection element is connected to the second substrate-side input / output terminal. It is preferable to be disposed between the substrate-side ground terminals.

上記構成により、第1・第2の入出力端子の近傍に、ESD保護素子をそれぞれ配置できるので、可変容量素子とESD保護素子との配線長が短く、ESD保護効果が大きい。   With the above configuration, since the ESD protection elements can be arranged in the vicinity of the first and second input / output terminals, the wiring length between the variable capacitance element and the ESD protection element is short, and the ESD protection effect is large.

(4)(3)において、前記可変容量素子は、前記制御電圧入力端子と前記可変容量素子のキャパシタ電極との間に接続されたチョーク抵抗を備え、
前記可変容量素子は互いに対向する第1辺および第2辺を有する直方体板状であり、第1辺に沿って前記第1の入出力端子および前記第2の入出力端子が配置され、第2辺に沿って前記制御電圧入力端子および前記グランド端子が配置され、
前記可変容量素子は、その第1辺が前記基板の第1辺寄りで、且つ第2辺が前記基板の第2辺寄りとなるように前記基板に実装されていることが好ましい。
(4) In (3), the variable capacitance element includes a choke resistor connected between the control voltage input terminal and a capacitor electrode of the variable capacitance element,
The variable capacitance element has a rectangular parallelepiped plate shape having a first side and a second side facing each other, and the first input / output terminal and the second input / output terminal are arranged along the first side, The control voltage input terminal and the ground terminal are arranged along a side,
The variable capacitance element is preferably mounted on the substrate such that the first side is closer to the first side of the substrate and the second side is closer to the second side of the substrate.

上記の構成により、一方のESD保護素子と基板側グランド端子との接続経路が可変容量素子の制御電圧入力端子付近を通ることになる。この接続経路にESD電流が流れても、制御電圧入力端子と可変容量素子の強誘電体膜との間にはチョーク抵抗が挿入されているので、ESD保護素子による保護効果の低下は小さい。   With the above configuration, the connection path between one ESD protection element and the substrate-side ground terminal passes through the vicinity of the control voltage input terminal of the variable capacitance element. Even if an ESD current flows through this connection path, since the choke resistor is inserted between the control voltage input terminal and the ferroelectric film of the variable capacitance element, the degradation of the protection effect by the ESD protection element is small.

(5)(1)において、前記基板は前記可変容量素子を介して対向する第1辺および第2辺を有する直方体板状であり、第1辺に沿った位置に、前記可変容量素子の第1の入出力端子が接続される第1の基板側入出力端子、および前記可変容量素子の第2の入出力端子が接続される第2の基板側入出力端子が配置され、第2辺に沿った位置に、前記可変容量素子の制御電圧入力端子が接続される基板側制御電圧入力端子、および前記可変容量素子のグランド端子が接続される基板側グランド端子が配置され、
前記第1・第2のESD保護素子は、単一のESD保護チップ部品として構成されていて、
第1の基板側入出力端子と基板側グランド端子との間に前記ESD保護チップ部品が配置されていることが好ましい。
(5) In (1), the substrate has a rectangular parallelepiped plate shape having a first side and a second side that are opposed to each other with the variable capacitance element interposed therebetween. A first substrate-side input / output terminal to which one input / output terminal is connected, and a second substrate-side input / output terminal to which the second input / output terminal of the variable capacitance element is connected are arranged on the second side. A board-side control voltage input terminal to which the control voltage input terminal of the variable capacitance element is connected and a substrate-side ground terminal to which the ground terminal of the variable capacitance element is connected are disposed along the position,
The first and second ESD protection elements are configured as a single ESD protection chip component,
It is preferable that the ESD protection chip component is disposed between the first substrate side input / output terminal and the substrate side ground terminal.

上記構成により、基板への実装素子数が2つになり、全体に小型化できる。   With the above configuration, the number of elements mounted on the substrate is two, and the overall size can be reduced.

本発明によれば、制御感度が高く、耐ESD特性の高い可変容量素子モジュールが得られる。   According to the present invention, a variable capacitance element module having high control sensitivity and high ESD resistance can be obtained.

図1は第1の実施形態に係る可変容量素子モジュール91の回路図である。FIG. 1 is a circuit diagram of the variable capacitance element module 91 according to the first embodiment. 図2は可変容量素子14の主要部の断面図である。FIG. 2 is a cross-sectional view of the main part of the variable capacitance element 14. 図3は可変容量素子14の抵抗膜パターンの例を示す図である。FIG. 3 is a diagram illustrating an example of a resistive film pattern of the variable capacitance element 14. 図4は可変容量素子モジュール91の主要部の分解斜視図である。FIG. 4 is an exploded perspective view of the main part of the variable capacitance element module 91. 図5は可変容量素子モジュール91の平面図である。FIG. 5 is a plan view of the variable capacitance element module 91. 図6は可変容量素子モジュール91の断面図である。FIG. 6 is a cross-sectional view of the variable capacitance element module 91. 図7は第2の実施形態に係る可変容量素子モジュール92の分解斜視図である。FIG. 7 is an exploded perspective view of the variable capacitance element module 92 according to the second embodiment. 図8は第2の実施形態の可変容量素子モジュール92の断面図である。FIG. 8 is a cross-sectional view of the variable capacitance element module 92 according to the second embodiment. 図9は第3の実施形態に係る可変容量素子モジュール93の分解斜視図である。FIG. 9 is an exploded perspective view of the variable capacitance element module 93 according to the third embodiment. 図10は第4の実施形態に係る可変容量素子モジュール94の分解斜視図である。FIG. 10 is an exploded perspective view of the variable capacitance element module 94 according to the fourth embodiment. 図11は、可変容量素子モジュールを備える通信回路の回路図である。FIG. 11 is a circuit diagram of a communication circuit including a variable capacitance element module.

《第1の実施形態》
図1は第1の実施形態に係る可変容量素子モジュール91の回路図である。この可変容量素子モジュール91は可変容量素子14と2つのESD保護素子17A,17Bとを含んでいる。
<< First Embodiment >>
FIG. 1 is a circuit diagram of the variable capacitance element module 91 according to the first embodiment. The variable capacitance element module 91 includes a variable capacitance element 14 and two ESD protection elements 17A and 17B.

可変容量素子14は、制御電圧入力端子Vtとグランド端子GND間に印加される制御電圧に応じて第1の入出力端子P1−第2の入出力端子P2間の容量値が定まる。   The variable capacitance element 14 has a capacitance value between the first input / output terminal P1 and the second input / output terminal P2 according to a control voltage applied between the control voltage input terminal Vt and the ground terminal GND.

可変容量素子14は、複数の容量素子C1〜C6および抵抗R11〜R19を備えている。容量素子C1〜C6のそれぞれは、電界によって誘電率が変化する強誘電体膜と、この強誘電体膜を挟んで電圧を印加するキャパシタ電極とで構成される強誘電体キャパシタである。強誘電体膜は印加される電界の強度に応じて分極量が変化して、見かけ上の誘電率が変化するので、制御電圧によって容量値を定められる。各キャパシタ電極にはRF抵抗素子R11〜R19を介して制御電圧が印加される。RF抵抗素子R11〜R19の抵抗値は等しい。これらのRF抵抗素子R11〜R19は、容量素子C1〜C6のそれぞれに制御電圧を印加するとともに、端子P1−P2間に印加されるRF信号が制御電圧入力端子Vtおよびグランド端子GNDへ漏れるのを抑制するチョーク抵抗として作用する。   The variable capacitance element 14 includes a plurality of capacitance elements C1 to C6 and resistors R11 to R19. Each of the capacitive elements C1 to C6 is a ferroelectric capacitor composed of a ferroelectric film whose dielectric constant changes with an electric field and a capacitor electrode to which a voltage is applied across the ferroelectric film. Since the amount of polarization of the ferroelectric film changes according to the strength of the applied electric field and the apparent dielectric constant changes, the capacitance value can be determined by the control voltage. A control voltage is applied to each capacitor electrode via RF resistance elements R11 to R19. The resistance values of the RF resistance elements R11 to R19 are equal. These RF resistance elements R11 to R19 apply a control voltage to the capacitive elements C1 to C6, respectively, and prevent an RF signal applied between the terminals P1 and P2 from leaking to the control voltage input terminal Vt and the ground terminal GND. Acts as a choke resistor to suppress.

第1の入出力端子P1とグランド端子GNDとの間にはESD保護素子17Aが接続されていて、第2の入出力端子P2とグランド端子GNDとの間にはESD保護素子17Bが接続されている。外部から可変容量素子14の入出力端子P1,P2にESDによるサージが入っても、ESDの電流はESD保護素子17A,17Bを通ってグランドへ落ちる。そのため、可変容量素子14の容量素子C1〜C6に過電圧が印加されず、容量素子C1〜C6は保護される。   An ESD protection element 17A is connected between the first input / output terminal P1 and the ground terminal GND, and an ESD protection element 17B is connected between the second input / output terminal P2 and the ground terminal GND. Yes. Even if an ESD surge is applied to the input / output terminals P1 and P2 of the variable capacitance element 14 from the outside, the ESD current falls to the ground through the ESD protection elements 17A and 17B. Therefore, no overvoltage is applied to the capacitive elements C1 to C6 of the variable capacitive element 14, and the capacitive elements C1 to C6 are protected.

図2は可変容量素子14の主要部の断面図である。図2において基板SIは表面にSiO2膜が形成されたSi基板である。この基板SI上に強誘電体膜FS1、キャパシタ電極PT1、強誘電体膜FS2、キャパシタ電極PT2、強誘電体膜FS3が順に形成されている。 FIG. 2 is a cross-sectional view of the main part of the variable capacitance element 14. In FIG. 2, the substrate SI is a Si substrate having a SiO 2 film formed on the surface. A ferroelectric film FS1, a capacitor electrode PT1, a ferroelectric film FS2, a capacitor electrode PT2, and a ferroelectric film FS3 are sequentially formed on the substrate SI.

これらの強誘電体膜FS1,FS2,FS3およびキャパシタ電極PT1,PT2の積層膜の上部には耐湿保護膜PC1が被覆されている。この耐湿保護膜PC1の上部には更に有機保護膜PC2が形成されている。   A moisture-resistant protective film PC1 is coated on top of the laminated film of these ferroelectric films FS1, FS2, FS3 and capacitor electrodes PT1, PT2. An organic protective film PC2 is further formed on the moisture-resistant protective film PC1.

有機保護膜PC2の上部には配線膜TI1が形成されている。また、この配線膜TI1はコンタクトホールを介してキャパシタ電極PT1,PT2の所定箇所に接続されている。さらに、配線膜TI1は、耐湿保護膜PC1および有機保護膜PC2の周囲を覆うように形成されている。   A wiring film TI1 is formed on the organic protective film PC2. Further, the wiring film TI1 is connected to a predetermined portion of the capacitor electrodes PT1, PT2 through a contact hole. Further, the wiring film TI1 is formed so as to cover the periphery of the moisture-resistant protective film PC1 and the organic protective film PC2.

配線膜TI1の表面には層間絶縁膜SR1が形成されている。この層間絶縁膜SR1の表面に抵抗膜パターンRE1が形成されている。この抵抗膜パターンRE1の表面は層間絶縁膜SR2で被覆されている。   An interlayer insulating film SR1 is formed on the surface of the wiring film TI1. A resistance film pattern RE1 is formed on the surface of the interlayer insulating film SR1. The surface of the resistance film pattern RE1 is covered with an interlayer insulating film SR2.

抵抗膜パターンRE1は、薄膜プロセス(フォトリソグラフィおよびエッチング技術を利用したプロセス)または厚膜プロセス(スクリーン印刷等の印刷技術を利用したプロセス)で形成されている。各抵抗素子の抵抗値は、抵抗膜パターンの幅、長さおよび厚みによって定められる。   The resistive film pattern RE1 is formed by a thin film process (a process using photolithography and etching techniques) or a thick film process (a process using printing techniques such as screen printing). The resistance value of each resistive element is determined by the width, length and thickness of the resistive film pattern.

層間絶縁膜SR2の表面には配線膜TI2が形成されている。また、この配線膜TI2は、層間絶縁膜SR1,SR2に形成されたコンタクトホールを介して配線膜TI1に接続されている。   A wiring film TI2 is formed on the surface of the interlayer insulating film SR2. The wiring film TI2 is connected to the wiring film TI1 through a contact hole formed in the interlayer insulating films SR1 and SR2.

層間絶縁膜SR2の表面にはソルダーレジスト膜SR4が被覆されている。そして、このソルダーレジスト膜SR4の開口で且つ配線膜TI2の表面には外部接続電極EEが形成されている。   The surface of the interlayer insulating film SR2 is covered with a solder resist film SR4. An external connection electrode EE is formed in the opening of the solder resist film SR4 and on the surface of the wiring film TI2.

前記強誘電体膜FS1は基板SIおよび耐湿保護膜PC1に対する密着用・拡散防止用の絶縁膜である。また、強誘電体膜FS3は耐湿保護膜PC1に対する密着用の絶縁膜である。前記キャパシタ電極PT1,PT2に使用される導電性材料には、導電性が良好で耐酸化性に優れた高融点の貴金属材料、例えば、Pt,Auを用いることができる。   The ferroelectric film FS1 is an insulating film for adhesion and diffusion prevention with respect to the substrate SI and the moisture-resistant protective film PC1. The ferroelectric film FS3 is an insulating film for adhesion to the moisture resistant protective film PC1. As the conductive material used for the capacitor electrodes PT1 and PT2, a high melting point noble metal material having good conductivity and excellent oxidation resistance, for example, Pt and Au can be used.

また、前記強誘電体膜FS1,FS2,FS3に使用される薄膜材料には、高誘電率を有する誘電体材料が使用される。例えばペロブスカイト化合物やビスマス層状化合物等を使用することができる。   In addition, a dielectric material having a high dielectric constant is used as a thin film material used for the ferroelectric films FS1, FS2, and FS3. For example, a perovskite compound or a bismuth layered compound can be used.

また、配線膜TI1,TI2は、Ti/Cu/Tiの三層からなる。また、外部接続電極EEは、Au/Niの二層からなる。   The wiring films TI1 and TI2 are composed of three layers of Ti / Cu / Ti. The external connection electrode EE is composed of two layers of Au / Ni.

前記耐湿保護膜PC1は有機保護膜PC2から放出される水分がキャパシタ部に浸入するのを防止する。また、有機保護膜PC2は外部からの機械的応力を吸収する。   The moisture-resistant protective film PC1 prevents moisture released from the organic protective film PC2 from entering the capacitor portion. The organic protective film PC2 absorbs mechanical stress from the outside.

前記抵抗膜パターンRE1の抵抗材料は例えばニクロムである。   The resistance material of the resistance film pattern RE1 is, for example, nichrome.

図3は可変容量素子14の抵抗膜パターンの例を示す図である。図3において、入出力端子P1,P2、制御電圧入力端子Vt、グランド端子GND、および抵抗膜パターンR11〜R19は図1において同一符号で表したものに対応する。   FIG. 3 is a diagram illustrating an example of a resistive film pattern of the variable capacitance element 14. In FIG. 3, input / output terminals P1, P2, control voltage input terminal Vt, ground terminal GND, and resistive film patterns R11 to R19 correspond to those denoted by the same reference numerals in FIG.

図4は可変容量素子モジュール91の主要部の分解斜視図、図5は可変容量素子モジュール91の平面図である。図4・図5中の回路記号は回路と各端子との関係を概念的に表すものである。   4 is an exploded perspective view of the main part of the variable capacitance element module 91, and FIG. 5 is a plan view of the variable capacitance element module 91. The circuit symbols in FIGS. 4 and 5 conceptually represent the relationship between the circuit and each terminal.

基板30は複数の基材の積層体である。基板30は可変容量素子を介して対向する第1辺BS1および第2辺BS2を有する直方体板状であり、第1辺BS1に沿った位置に、可変容量素子14の第1の入出力端子P1が接続される第1の基板側入出力端子EP1、および可変容量素子14の第2の入出力端子P2が接続される第2の基板側入出力端子EP2が配置され、第2辺BS2に沿った位置に、可変容量素子14の制御電圧入力端子Vtが接続される基板側制御電圧入力端子EVt、および可変容量素子14のグランド端子GNDが接続される基板側グランド端子EGが配置されている。   The substrate 30 is a laminate of a plurality of base materials. The substrate 30 has a rectangular parallelepiped plate shape having a first side BS1 and a second side BS2 that are opposed to each other with the variable capacitance element interposed therebetween, and the first input / output terminal P1 of the variable capacitance element 14 is positioned along the first side BS1. Are connected to the first substrate-side input / output terminal EP1 to which the second capacitor I / O is connected, and the second substrate-side input / output terminal EP2 to which the second input / output terminal P2 of the variable capacitance element 14 is connected, along the second side BS2. The board side control voltage input terminal EVt to which the control voltage input terminal Vt of the variable capacitance element 14 is connected and the board side ground terminal EG to which the ground terminal GND of the variable capacitance element 14 is connected are arranged at the positions.

第1のESD保護素子17Aは第1の基板側入出力端子EP1と基板側制御電圧入力端子EVtとの間に配置され、第2のESD保護素子17Bは第2の基板側入出力端子EP2と基板側グランド端子EGとの間に配置(実装)されている。また、第1のESD保護素子17Aおよび第2のESD保護素子17Bは可変容量素子14を介する対称位置(を挟む位置)に配置されている。   The first ESD protection element 17A is disposed between the first substrate side input / output terminal EP1 and the substrate side control voltage input terminal EVt, and the second ESD protection element 17B is connected to the second substrate side input / output terminal EP2. It is arranged (mounted) between the substrate side ground terminal EG. In addition, the first ESD protection element 17A and the second ESD protection element 17B are arranged at symmetrical positions (positions sandwiching them) with the variable capacitance element 14 in between.

また、可変容量素子14は、互いに対向する第1辺CS1および第2辺CS2を有する直方体板状であり、第1辺CS1に沿って第1の入出力端子P1および第2の入出力端子P2が配置され、第2辺CS2に沿って制御電圧入力端子Vtおよびグランド端子GNDが配置されている。そして、可変容量素子14は、その第1辺CS1が基板30の第1辺BS1寄りで、且つ第2辺CS2が基板30の第2辺BS2寄りとなるように、基板30に実装されている。   The variable capacitance element 14 has a rectangular parallelepiped plate shape having a first side CS1 and a second side CS2 facing each other, and the first input / output terminal P1 and the second input / output terminal P2 along the first side CS1. Are arranged, and the control voltage input terminal Vt and the ground terminal GND are arranged along the second side CS2. The variable capacitance element 14 is mounted on the substrate 30 such that the first side CS1 is closer to the first side BS1 of the substrate 30 and the second side CS2 is closer to the second side BS2 of the substrate 30. .

ESD保護素子17A,17Bはバリスタ、ダイオード、ツェナーダイオード等のシリコンESDデバイスや、放電ギャップをセラミック基板内に内蔵したセラミックESDデバイスである。   The ESD protection elements 17A and 17B are silicon ESD devices such as varistors, diodes, and Zener diodes, and ceramic ESD devices in which a discharge gap is built in a ceramic substrate.

図6は可変容量素子モジュール91の断面図である。図4、図5に示した基板30上に可変容量素子14およびESD保護素子17A,17Bがダイボンディングされ、これらの素子の端子と基板上の端子とがワイヤーボンディングされ、その後、図6に示すようにカバー40が被覆される。カバー40は基板30の周辺に対して接着される。可変容量素子14の基材と、ESD保護素子17A,17Bの基材は同じであるか、または線膨張係数が±40%以内で等しいものである。例えばシリコン基板、サファイア基板、GaAs基板等である。これにより、基板30に対する熱的膨張収縮が面方向で均一となるので、熱負荷によって可変容量素子とESD保護素子との間で機械的なひずみが生じにくく、クラックの発生が抑制できる。また、基板30およびカバー40はいずれも樹脂製であるが、これらの線膨張係数についても、可変容量素子14およびESD保護素子17A,17Bの基材の線膨張係数に対して±40%以内で等しいことが好ましい。そのことにより、基板の反りが抑えられ、平坦性を保てる。   FIG. 6 is a cross-sectional view of the variable capacitance element module 91. The variable capacitance element 14 and the ESD protection elements 17A and 17B are die-bonded on the substrate 30 shown in FIGS. 4 and 5, the terminals of these elements and the terminals on the substrate are wire-bonded, and then shown in FIG. Thus, the cover 40 is covered. The cover 40 is bonded to the periphery of the substrate 30. The base material of the variable capacitance element 14 and the base material of the ESD protection elements 17A and 17B are the same, or the linear expansion coefficients are equal within ± 40%. For example, a silicon substrate, a sapphire substrate, a GaAs substrate, or the like. Thereby, the thermal expansion and contraction with respect to the substrate 30 becomes uniform in the surface direction, so that mechanical strain hardly occurs between the variable capacitance element and the ESD protection element due to the thermal load, and the generation of cracks can be suppressed. The substrate 30 and the cover 40 are both made of resin, but their linear expansion coefficients are also within ± 40% with respect to the linear expansion coefficients of the base material of the variable capacitance element 14 and the ESD protection elements 17A and 17B. Preferably equal. Thereby, the warpage of the substrate can be suppressed and the flatness can be maintained.

図4、図5に表れているように、可変容量素子14の第1辺CS1に沿って第1の入出力端子P1および第2の入出力端子P2が配置され、第2辺CS2に沿って制御電圧入力端子Vtおよびグランド端子GNDが配置されていて、可変容量素子14は、その第1辺CS1が基板30の第1辺BS1寄りで、且つ第2辺CS2が基板30の第2辺BS2寄りとなるように、基板30に実装されているので、下記の利点がある。   As shown in FIGS. 4 and 5, the first input / output terminal P1 and the second input / output terminal P2 are arranged along the first side CS1 of the variable capacitance element 14, and along the second side CS2. The control voltage input terminal Vt and the ground terminal GND are arranged. The variable capacitor 14 has a first side CS1 closer to the first side BS1 of the substrate 30 and a second side CS2 of the second side BS2 of the substrate 30. Since it is mounted on the substrate 30 so as to be closer, there are the following advantages.

図5において、例えば第1の基板側入出力端子EP1からESDが入ると、矢印Aで示すように、ESD保護素子17Aを介する電流はワイヤーW1を通って、矢印Bで示すように基板側グランド端子EGへ流れる(抜ける)。可変容量素子14の制御電圧入力端子Vtと基板側制御電圧入力端子EVtとの間を接続するワイヤーW2は上記ワイヤーW1と交差するかたちで近接する。そのため、ワイヤーW1とW2は電磁界結合して、ワイヤーW1に流れるサージ電流でワイヤーW2にも矢印Cで示すようにサージ電流が誘導される場合がある。このワイヤーW2を介するサージは可変容量素子14の制御電圧入力端子Vtへ印加されるが、この可変容量素子14の端子Vtと、可変容量素子14内の強誘電体膜との間、および強誘電体膜とグランド端子との間にはチョーク抵抗(図1中のR11〜R19参照)が存在するので、直接強誘電体膜には高電圧が印加されることはなく、強誘電体膜はESDによる破壊から免れる。   In FIG. 5, for example, when an ESD enters from the first board side input / output terminal EP1, the current through the ESD protection element 17A passes through the wire W1 as shown by the arrow A and the board side ground as shown by the arrow B. It flows (exits) to the terminal EG. A wire W2 connecting the control voltage input terminal Vt and the substrate side control voltage input terminal EVt of the variable capacitance element 14 comes close to the wire W1 in a crossing manner. Therefore, the wires W1 and W2 are electromagnetically coupled, and a surge current may be induced in the wire W2 as indicated by an arrow C due to the surge current flowing in the wire W1. The surge through the wire W2 is applied to the control voltage input terminal Vt of the variable capacitance element 14, and it is between the terminal Vt of the variable capacitance element 14 and the ferroelectric film in the variable capacitance element 14, and the ferroelectric. Since a choke resistor (see R11 to R19 in FIG. 1) exists between the body film and the ground terminal, a high voltage is not directly applied to the ferroelectric film, and the ferroelectric film is an ESD. Escape from destruction by.

《第2の実施形態》
図7は第2の実施形態に係る可変容量素子モジュール92の分解斜視図である。図7中の回路記号は回路と各端子との関係を概念的に表すものである。この第2の実施形態では、基板30上に対する各素子の実装構造が第1の実施形態とは異なる。可変容量素子14およびESD保護素子17A,17Bの下面には、いずれもフリップチップボンディングするためのバンプが形成されている。そして、基板30上には可変容量素子14、ESD保護素子17A,17Bの実装用電極および配線パターンが形成されている。
<< Second Embodiment >>
FIG. 7 is an exploded perspective view of the variable capacitance element module 92 according to the second embodiment. The circuit symbol in FIG. 7 conceptually represents the relationship between the circuit and each terminal. In the second embodiment, the mounting structure of each element on the substrate 30 is different from that of the first embodiment. Bumps for flip chip bonding are formed on the lower surfaces of the variable capacitance element 14 and the ESD protection elements 17A and 17B. On the substrate 30, mounting electrodes and wiring patterns for the variable capacitance element 14 and the ESD protection elements 17A and 17B are formed.

図8は第2の実施形態の可変容量素子モジュール92の断面図である。このように、基板30に可変容量素子14およびESD保護素子17A,17Bがフリップチップボンディングされ、基板30上の全面が封止樹脂41で封止される。   FIG. 8 is a cross-sectional view of the variable capacitance element module 92 according to the second embodiment. Thus, the variable capacitance element 14 and the ESD protection elements 17A and 17B are flip-chip bonded to the substrate 30 and the entire surface of the substrate 30 is sealed with the sealing resin 41.

《第3の実施形態》
図9は第3の実施形態に係る可変容量素子モジュール93の分解斜視図である。図9中の回路記号は回路と各端子との関係を概念的に表すものである。この第3の実施形態では、基板30上に対する各素子の実装構造が第1・第2の実施形態とは異なる。基板30上には、第1の基板側入出力端子EP1、第2の基板側入出力端子EP2、基板側制御電圧入力端子EVt、基板側グランド端子EGおよび配線パターンが形成されている。基板30上には可変容量素子14およびESD保護素子17A,17Bがダイボンディングされていて、これらの素子の端子と基板上の端子とがワイヤーボンディングされている。
<< Third Embodiment >>
FIG. 9 is an exploded perspective view of the variable capacitance element module 93 according to the third embodiment. The circuit symbols in FIG. 9 conceptually represent the relationship between the circuit and each terminal. In the third embodiment, the mounting structure of each element on the substrate 30 is different from the first and second embodiments. On the substrate 30, a first substrate side input / output terminal EP1, a second substrate side input / output terminal EP2, a substrate side control voltage input terminal EVt, a substrate side ground terminal EG, and a wiring pattern are formed. On the substrate 30, the variable capacitance element 14 and the ESD protection elements 17A and 17B are die-bonded, and the terminals of these elements and the terminals on the substrate are wire-bonded.

この構造によれば、図5に示したワイヤーW1,W2のように、ワイヤーがクロスする箇所が生じないので、製造が容易となる。   According to this structure, unlike the wires W1 and W2 shown in FIG.

《第4の実施形態》
図10は第4の実施形態に係る可変容量素子モジュール94の分解斜視図である。図10中の回路記号は回路と各端子との関係を概念的に表すものである。この第4の実施形態では、2つのESD保護素子が単一のESD保護チップ部品として構成されたものを用いている。基板30上には、ESD保護チップ部品17および可変容量素子14がダイボンディングされ、これらの素子の端子と基板上の端子とがワイヤーボンディングされている。
<< Fourth Embodiment >>
FIG. 10 is an exploded perspective view of the variable capacitance element module 94 according to the fourth embodiment. The circuit symbols in FIG. 10 conceptually represent the relationship between the circuit and each terminal. In the fourth embodiment, two ESD protection elements configured as a single ESD protection chip component are used. On the substrate 30, the ESD protection chip component 17 and the variable capacitance element 14 are die-bonded, and the terminals of these elements and the terminals on the substrate are wire-bonded.

この構造によれば、基板上へ実装する素子数が少なく、モジュール全体を小型化できる。   According to this structure, the number of elements to be mounted on the substrate is small, and the entire module can be miniaturized.

《第5の実施形態》
図11は、可変容量素子モジュールを備える通信回路の回路図である。この通信回路はNFCモジュールの一例である。通信回路は、RFIC11、アンテナコイル13、および可変容量素子モジュール91を備えている。図11においてアンテナコイル13は、放射素子として機能するものであり、通信相手側コイルアンテナと磁界結合する。
<< Fifth Embodiment >>
FIG. 11 is a circuit diagram of a communication circuit including a variable capacitance element module. This communication circuit is an example of an NFC module. The communication circuit includes an RFIC 11, an antenna coil 13, and a variable capacitance element module 91. In FIG. 11, the antenna coil 13 functions as a radiating element, and is magnetically coupled to the communication counterpart coil antenna.

キャパシタC21,C22はRFIC11とアンテナコイル13との結合度調整用の素子である。また、インダクタL11,L12およびキャパシタC11,C12,C20は送信フィルタを構成している。例えば通信回路がカードモードで動作する場合、RFIC11はパッシブ動作するので、RX端子への入力信号から電源電圧を生成するとともに受信信号を読み取り、送信時にはTX端子に接続されている回路(負荷)を負荷変調する。また、例えば通信回路がリーダライタモードで動作する場合には、RFIC11はアクティブ動作するので、送信時にRX端子を開放してTX端子から送信信号を送信し、受信時にはTX端子を開放してRX端子から受信信号を入力する。RFIC11はDAコンバータ12を介して可変容量素子モジュール91へ制御電圧を与える。このように、通信回路は動作モードに応じて、RFIC11からアンテナコイル13側を見たインピーダンスが変化する。動作モードに応じてアンテナ回路の共振周波数が最適となるように、(RFIC11からアンテナコイル側を見たインピーダンスが整合するように、)可変容量素子モジュール91の容量値が制御される。   Capacitors C21 and C22 are elements for adjusting the degree of coupling between the RFIC 11 and the antenna coil 13. The inductors L11 and L12 and the capacitors C11, C12, and C20 constitute a transmission filter. For example, when the communication circuit operates in the card mode, the RFIC 11 operates passively. Therefore, the power supply voltage is generated from the input signal to the RX terminal, the received signal is read, and a circuit (load) connected to the TX terminal is transmitted during transmission. Modulate the load. For example, when the communication circuit operates in the reader / writer mode, the RFIC 11 operates in an active manner. Therefore, the RX terminal is opened at the time of transmission to transmit a transmission signal from the TX terminal, and the TX terminal is opened at the time of reception to receive the RX terminal. Input the received signal. The RFIC 11 supplies a control voltage to the variable capacitance element module 91 via the DA converter 12. As described above, the impedance of the communication circuit when the antenna coil 13 is viewed from the RFIC 11 changes according to the operation mode. The capacitance value of the variable capacitance element module 91 is controlled so that the resonance frequency of the antenna circuit is optimized in accordance with the operation mode (so that the impedance when the antenna coil side is viewed from the RFIC 11 is matched).

EP1…第1の基板側入出力端子
EP2…第2の基板側入出力端子
EVt…基板側制御電圧入力端子
FS1,FS2,FS3…強誘電体膜
GND…グランド端子
P1…第1の入出力端子
P2…第2の入出力端子
PT1,PT2…キャパシタ電極
R11〜R19…RF抵抗素子
Vt…制御電圧入力端子
W1,W2…ワイヤー
13…アンテナコイル
14…可変容量素子
17…ESD保護チップ部品
17A,17B…ESD保護素子
30…基板
40…カバー
41…封止樹脂
91〜94…可変容量素子モジュール
EP1 ... first substrate side input / output terminal EP2 ... second substrate side input / output terminal EVt ... substrate side control voltage input terminals FS1, FS2, FS3 ... ferroelectric film GND ... ground terminal P1 ... first input / output terminal P2 ... second input / output terminals PT1, PT2 ... capacitor electrodes R11-R19 ... RF resistance element Vt ... control voltage input terminals W1, W2 ... wire 13 ... antenna coil 14 ... variable capacitance element 17 ... ESD protection chip components 17A, 17B ... ESD protection element 30 ... Substrate 40 ... Cover 41 ... Sealing resins 91 to 94 ... Variable capacitance element module

Claims (5)

可変容量素子、第1のESD保護素子、第2のESD保護素子、およびこれらが実装される共通の基板を備え、
前記可変容量素子は、電界によって誘電率が変化する強誘電体膜と、この強誘電体膜を挟んで電圧を印加するキャパシタ電極と、第1の入出力端子と、第2の入出力端子と、制御電圧入力端子と、グランド端子とを備え、
前記第1のESD保護素子の第1端と前記第1の入出力端子とが接続され、前記第1のESD保護素子の第2端と前記グランド端子とが接続され、
前記第2のESD保護素子の第1端と前記第2の入出力端子とが接続され、前記第2のESD保護素子の第2端と前記グランド端子とが接続されていることを特徴とする可変容量素子モジュール。
A variable capacitance element, a first ESD protection element, a second ESD protection element, and a common substrate on which these are mounted;
The variable capacitance element includes a ferroelectric film whose dielectric constant is changed by an electric field, a capacitor electrode for applying a voltage across the ferroelectric film, a first input / output terminal, and a second input / output terminal. A control voltage input terminal and a ground terminal,
A first end of the first ESD protection element is connected to the first input / output terminal; a second end of the first ESD protection element is connected to the ground terminal;
A first end of the second ESD protection element is connected to the second input / output terminal, and a second end of the second ESD protection element is connected to the ground terminal. Variable capacitance element module.
前記第1のESD保護素子および前記第2のESD保護素子は前記可変容量素子を介する対称位置に配置されている、請求項1に記載の可変容量素子モジュール。   The variable capacitance element module according to claim 1, wherein the first ESD protection element and the second ESD protection element are arranged at symmetrical positions via the variable capacitance element. 前記基板は前記可変容量素子を介して対向する第1辺および第2辺を有する直方体板状であり、第1辺に沿った位置に、前記可変容量素子の第1の入出力端子が接続される第1の基板側入出力端子、および前記可変容量素子の第2の入出力端子が接続される第2の基板側入出力端子が配置され、第2辺に沿った位置に、前記可変容量素子の制御電圧入力端子が接続される基板側制御電圧入力端子、および前記可変容量素子のグランド端子が接続される基板側グランド端子が配置され、
前記第1のESD保護素子は前記第1の基板側入出力端子と前記基板側制御電圧入力端子との間に配置され、前記第2のESD保護素子は前記第2の基板側入出力端子と前記基板側グランド端子との間に配置された、請求項2に記載の可変容量素子モジュール。
The substrate has a rectangular parallelepiped plate shape having a first side and a second side facing each other with the variable capacitance element interposed therebetween, and a first input / output terminal of the variable capacitance element is connected to a position along the first side. A first substrate side input / output terminal and a second substrate side input / output terminal to which the second input / output terminal of the variable capacitance element is connected are disposed, and the variable capacitor is disposed at a position along the second side. A substrate-side control voltage input terminal to which the control voltage input terminal of the element is connected, and a substrate-side ground terminal to which the ground terminal of the variable capacitance element is connected;
The first ESD protection element is disposed between the first substrate-side input / output terminal and the substrate-side control voltage input terminal, and the second ESD protection element is connected to the second substrate-side input / output terminal. The variable capacitance element module according to claim 2, which is disposed between the substrate-side ground terminal.
前記可変容量素子は、前記制御電圧入力端子と前記可変容量素子のキャパシタ電極との間に接続されたチョーク抵抗を備え、
前記可変容量素子は互いに対向する第1辺および第2辺を有する直方体板状であり、第1辺に沿って前記第1の入出力端子および前記第2の入出力端子が配置され、第2辺に沿って前記制御電圧入力端子および前記グランド端子が配置され、
前記可変容量素子は、その第1辺が前記基板の第1辺寄りで、且つ第2辺が前記基板の第2辺寄りとなるように前記基板に実装されている、請求項3に記載の可変容量素子モジュール。
The variable capacitance element includes a choke resistor connected between the control voltage input terminal and a capacitor electrode of the variable capacitance element,
The variable capacitance element has a rectangular parallelepiped plate shape having a first side and a second side facing each other, and the first input / output terminal and the second input / output terminal are arranged along the first side, The control voltage input terminal and the ground terminal are arranged along a side,
4. The variable capacitance element according to claim 3, wherein the variable capacitance element is mounted on the substrate such that the first side is closer to the first side of the substrate and the second side is closer to the second side of the substrate. Variable capacitance element module.
前記基板は前記可変容量素子を介して対向する第1辺および第2辺を有する直方体板状であり、第1辺に沿った位置に、前記可変容量素子の第1の入出力端子が接続される第1の基板側入出力端子、および前記可変容量素子の第2の入出力端子が接続される第2の基板側入出力端子が配置され、第2辺に沿った位置に、前記可変容量素子の制御電圧入力端子が接続される基板側制御電圧入力端子、および前記可変容量素子のグランド端子が接続される基板側グランド端子が配置され、
前記第1・第2のESD保護素子は、単一のESD保護チップ部品として構成されていて、
第1の基板側入出力端子と基板側グランド端子との間に前記ESD保護チップ部品が配置された、請求項1に記載の可変容量素子モジュール。
The substrate has a rectangular parallelepiped plate shape having a first side and a second side facing each other with the variable capacitance element interposed therebetween, and a first input / output terminal of the variable capacitance element is connected to a position along the first side. A first substrate side input / output terminal and a second substrate side input / output terminal to which the second input / output terminal of the variable capacitance element is connected are disposed, and the variable capacitor is disposed at a position along the second side. A substrate-side control voltage input terminal to which the control voltage input terminal of the element is connected, and a substrate-side ground terminal to which the ground terminal of the variable capacitance element is connected;
The first and second ESD protection elements are configured as a single ESD protection chip component,
The variable capacitance element module according to claim 1, wherein the ESD protection chip component is disposed between a first substrate side input / output terminal and a substrate side ground terminal.
JP2012268371A 2012-12-07 2012-12-07 Variable capacitance element module Active JP5978969B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012268371A JP5978969B2 (en) 2012-12-07 2012-12-07 Variable capacitance element module
CN201320800242.XU CN203631543U (en) 2012-12-07 2013-12-06 Variable-capacitance element module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012268371A JP5978969B2 (en) 2012-12-07 2012-12-07 Variable capacitance element module

Publications (2)

Publication Number Publication Date
JP2014116407A true JP2014116407A (en) 2014-06-26
JP5978969B2 JP5978969B2 (en) 2016-08-24

Family

ID=50817994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012268371A Active JP5978969B2 (en) 2012-12-07 2012-12-07 Variable capacitance element module

Country Status (2)

Country Link
JP (1) JP5978969B2 (en)
CN (1) CN203631543U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016100384A (en) * 2014-11-19 2016-05-30 太陽誘電株式会社 Variable capacity device and antenna device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106575555B (en) * 2014-08-18 2018-11-23 株式会社村田制作所 The manufacturing method of electronic component and electronic component
JP6284859B2 (en) * 2014-08-29 2018-02-28 太陽誘電株式会社 Variable capacitance device and antenna device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111566A (en) * 1997-10-07 1999-04-23 Sharp Corp Impedance matching box
JP2002541681A (en) * 1999-04-07 2002-12-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Thin film capacitor element
JP2004063949A (en) * 2002-07-31 2004-02-26 Kyocera Corp Thin-film circuit component
JP2004241440A (en) * 2003-02-03 2004-08-26 Kyocera Corp Variable capacitance capacitor and high-frequency component using the same
JP2006164302A (en) * 2006-01-17 2006-06-22 Renesas Technology Corp Nonvolatile storage device
US20110186875A1 (en) * 2010-01-29 2011-08-04 Kabushiki Kaisha Toshiba Led package
JP5812234B1 (en) * 2014-04-03 2015-11-11 株式会社村田製作所 Variable capacity device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111566A (en) * 1997-10-07 1999-04-23 Sharp Corp Impedance matching box
JP2002541681A (en) * 1999-04-07 2002-12-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Thin film capacitor element
JP2004063949A (en) * 2002-07-31 2004-02-26 Kyocera Corp Thin-film circuit component
JP2004241440A (en) * 2003-02-03 2004-08-26 Kyocera Corp Variable capacitance capacitor and high-frequency component using the same
JP2006164302A (en) * 2006-01-17 2006-06-22 Renesas Technology Corp Nonvolatile storage device
US20110186875A1 (en) * 2010-01-29 2011-08-04 Kabushiki Kaisha Toshiba Led package
JP5812234B1 (en) * 2014-04-03 2015-11-11 株式会社村田製作所 Variable capacity device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016100384A (en) * 2014-11-19 2016-05-30 太陽誘電株式会社 Variable capacity device and antenna device

Also Published As

Publication number Publication date
JP5978969B2 (en) 2016-08-24
CN203631543U (en) 2014-06-04

Similar Documents

Publication Publication Date Title
US9960746B2 (en) LC composite component
JP5812234B1 (en) Variable capacity device
US7791900B2 (en) Galvanic isolator
KR100665217B1 (en) A semiconductor multi-chip package
US7649499B2 (en) High-frequency module
JP6363798B2 (en) Directional coupler and communication module
US8120164B2 (en) Semiconductor chip package, printed circuit board assembly including the same and manufacturing methods thereof
JP5154262B2 (en) Electronic components
US11875210B2 (en) Wireless communication device and method of manufacturing same
US9203358B2 (en) Radio frequency amplifier circuit
US20160173059A1 (en) Electrical Component Suitable For Miniaturization with Reduced Coupling
JP5978969B2 (en) Variable capacitance element module
US20080048315A1 (en) Electronic Device and Package Used for the Same
KR101588969B1 (en) Common mode filter and manufacturing method thereof
US9041169B2 (en) Semiconductor packaging container, semiconductor device, electronic device
WO2001008221A9 (en) High frequency module
KR20160024262A (en) Common mode filter and manufacturing method thereof
JP2014167987A (en) Semiconductor device
JP6591912B2 (en) Semiconductor device package and semiconductor device
US20220192026A1 (en) Electronic component module
JP2003101382A (en) Surface acoustic wave apparatus
KR20160024834A (en) Common mode filter and manufacturing method thereof
JP2005026437A (en) Method for manufacturing semiconductor device
JP2006270013A (en) Package for housing electronic part and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160711

R150 Certificate of patent or registration of utility model

Ref document number: 5978969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150