JP2014115101A - Chemical state measuring method - Google Patents

Chemical state measuring method Download PDF

Info

Publication number
JP2014115101A
JP2014115101A JP2012267387A JP2012267387A JP2014115101A JP 2014115101 A JP2014115101 A JP 2014115101A JP 2012267387 A JP2012267387 A JP 2012267387A JP 2012267387 A JP2012267387 A JP 2012267387A JP 2014115101 A JP2014115101 A JP 2014115101A
Authority
JP
Japan
Prior art keywords
rubber
chemical state
deterioration
rubber material
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012267387A
Other languages
Japanese (ja)
Other versions
JP5731467B2 (en
Inventor
Fusae Kaneko
房恵 金子
Hiromichi Kishimoto
浩通 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2012267387A priority Critical patent/JP5731467B2/en
Priority to CN201310429775.6A priority patent/CN103712999B/en
Priority to RU2013142709A priority patent/RU2639914C2/en
Priority to EP15183317.5A priority patent/EP2966437B1/en
Priority to US14/046,658 priority patent/US9128077B2/en
Priority to EP13187311.9A priority patent/EP2717039B1/en
Publication of JP2014115101A publication Critical patent/JP2014115101A/en
Application granted granted Critical
Publication of JP5731467B2 publication Critical patent/JP5731467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a chemical state measuring method which achieves accurate measurement of a chemical state of a surface of a rubber material, especially a change of the chemical state, which is caused from the surface, such as deterioration (deterioration state of the rubber material).SOLUTION: In a chemical state measuring method, a surface analysis method using an X-ray is applied after a bloomed material is removed from a surface of a rubber material, so that a chemical state of the surface of the rubber material is measured.

Description

本発明は、ゴム材料表面の化学状態、特に劣化などの表面から生じる化学状態の変化を正確に調べることが可能な化学状態測定方法に関する。 The present invention relates to a chemical state measurement method capable of accurately examining a chemical state of a rubber material surface, in particular, a change in chemical state resulting from the surface such as deterioration.

ジエン系ゴムなどのゴム成分を含むゴム材料の化学状態の変化、特に劣化などのゴム材料表面から生じる化学状態の変化を調べる方法として、X線光電子分光法(XPS法)、高輝度X線を用いて着目している特定元素の吸収端付近のX線吸収スペクトルを測定する方法(NEXAFS(吸収端近傍X線吸収微細構造、Near Edge X−ray Absorption Fine Structure)法)など、X線を使用する手法が知られている(特許文献1参照)。 X-ray photoelectron spectroscopy (XPS method), high-intensity X-rays are used as methods for examining changes in the chemical state of rubber materials containing rubber components such as diene rubber, especially changes in the chemical state arising from the rubber material surface such as deterioration. Using X-rays such as a method of measuring an X-ray absorption spectrum near the absorption edge of a specific element of interest (NEXAFS (Near Edge X-ray Absorption Fine Structure) method) There is a known technique (see Patent Document 1).

XPS法やNEXAFS法は、検出深度が表面〜数十nmである表面敏感な測定手法であり、例えば、ポリマーの化学状態を調べるためには、XPS法では炭素1s軌道付近のスペクトル、NEAXFS法では炭素K殻吸収端近傍のスペクトルのように、一般に炭素に着目した測定が実施される。 The XPS method and the NEXAFS method are surface-sensitive measurement methods having a detection depth of the surface to several tens of nanometers. For example, in order to investigate the chemical state of a polymer, the XPS method uses a spectrum near the carbon 1s orbit, and the NEAXFS method uses a As in the spectrum near the carbon K-shell absorption edge, generally measurement focusing on carbon is performed.

しかしながら、従来の評価方法では、劣化ゴム材料などの表面における化学状態の変化を正確に測定することが困難であるため、正確に表面状態の変化を測定できる評価方法を提供することが望まれている。 However, in the conventional evaluation method, it is difficult to accurately measure the change in the chemical state on the surface of the deteriorated rubber material or the like. Therefore, it is desired to provide an evaluation method that can accurately measure the change in the surface state. Yes.

特開2012−141278号公報JP 2012-141278 A

本発明は、前記課題を解決し、ゴム材料表面の化学状態、特に劣化などの表面から生じる化学状態の変化(ゴム材料の劣化状態)を正確に測定できる化学状態測定方法を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems and to provide a chemical state measuring method capable of accurately measuring a chemical state of a rubber material surface, in particular, a change in a chemical state (deterioration state of a rubber material) generated from the surface such as deterioration. And

本発明は、ゴム材料表面におけるブルーム物を除去した後、X線を用いた表面分析法を適用することにより、ゴム材料表面における化学状態を測定する化学状態測定方法に関する。 The present invention relates to a chemical state measuring method for measuring a chemical state on a rubber material surface by applying a surface analysis method using X-rays after removing a bloom on the rubber material surface.

前記化学状態測定方法は、ゴム材料の表面から生じる化学状態の変化を調べ、ゴム材料の劣化状態を測定する方法であることが好ましい。
また、前記化学状態測定方法は、溶媒を用いてゴム材料表面におけるブルーム物を除去する方法であることが好ましく、該溶媒としては、有機溶媒を好適に使用できる。
The chemical state measurement method is preferably a method of measuring a deterioration state of the rubber material by examining a change in the chemical state generated from the surface of the rubber material.
The chemical state measurement method is preferably a method of removing a bloom on the rubber material surface using a solvent, and an organic solvent can be suitably used as the solvent.

前記化学状態測定方法は、溶媒抽出法を用いてゴム材料表面におけるブルーム物を除去する方法であることが好ましい。 The chemical state measurement method is preferably a method of removing blooms on the rubber material surface using a solvent extraction method.

本発明によれば、ゴム材料表面におけるブルーム物を除去した後、X線を用いた表面分析法を適用することにより、ゴム材料表面における化学状態を測定する化学状態測定方法であるので、ゴム材料表面の正確な化学状態を測定できる。従って、特に劣化などの表面から生じる化学状態の変化を正確に測定でき、ゴム材料の劣化状態を評価できる。 According to the present invention, after removing a bloom on the surface of the rubber material, a chemical state measurement method for measuring the chemical state on the surface of the rubber material by applying a surface analysis method using X-rays. The exact chemical state of the surface can be measured. Therefore, it is possible to accurately measure changes in the chemical state caused by the surface such as deterioration, and to evaluate the deterioration state of the rubber material.

ゴム材料のC1sにおけるXPSスペクトル(拭き取り処理の有無)。XPS spectrum of C1s of rubber material (with or without wiping treatment). 炭素K殻吸収端近傍のNEXAFSスペクトル(実施例1及び比較例)。NEXAFS spectrum in the vicinity of the carbon K-shell absorption edge (Example 1 and Comparative Example).

本発明の化学状態測定方法は、ゴム材料表面におけるブルーム物を除去した後、X線を用いた表面分析法を適用することにより、ゴム材料表面における化学状態を測定する方法である。 The chemical state measurement method of the present invention is a method for measuring a chemical state on the surface of a rubber material by applying a surface analysis method using X-rays after removing a bloom on the surface of the rubber material.

ジエン系ゴムなどを含むゴム材料の表面状態を調べる方法として、XPS法やNEXAFS法などの表面敏感な手法を用いて炭素1s軌道付近のスペクトル、炭素K殻吸収端近傍のスペクトルなどを測定すること、すなわち、炭素に関するスペクトル測定が用いられているが、このようなゴム材料には、一般にワックスや老化防止剤などの薬品が配合されており、これらの薬品が表面に析出(ブルーム)することで劣化抑制作用が発揮されている。 As a method of examining the surface state of rubber materials including diene rubber, etc., the spectrum near the carbon 1s orbit, the spectrum near the carbon K shell absorption edge, etc. are measured using a surface sensitive technique such as XPS or NEXAFS. That is, spectrum measurement for carbon is used, but such rubber materials are generally blended with chemicals such as waxes and anti-aging agents, and these chemicals precipitate on the surface (bloom). Deterioration suppressing effect is exhibited.

ここで、ブルームするワックスは炭化水素で、ゴムと同様炭素から構成されているため、表面敏感な手法を用いて、劣化などで化学状態の変化が生じたゴム材料表面のゴムの正確な化学状態を調べるためには、スペクトルに悪影響を及ぼすと考えられるブルーム物(ワックスや老化防止剤などからなる表面析出物)を除去しておくこと、すなわち、予めゴム以外の他の炭素成分を除去することが必要であると推察される。 Here, the wax that blooms is a hydrocarbon, which is composed of carbon, just like rubber. Therefore, using the surface sensitive method, the chemical state of the rubber on the surface of the rubber material where the chemical state has changed due to deterioration, etc. In order to investigate the above, it is necessary to remove blooms (surface precipitates made of wax, anti-aging agents, etc.) that are considered to have an adverse effect on the spectrum, that is, to remove carbon components other than rubber in advance. Is presumed to be necessary.

これまでは、劣化などで化学状態が変化したゴム材料表面をXPS法などで調べる場合、測定に先立って、ゴム材料の表面を、キムワイプ(日本製紙クレシア(株)製)などの紙製のウエスをアセトンで湿らせたもので拭き取ること、等の前処理が実施されている。 Until now, when examining the surface of a rubber material whose chemical state has changed due to deterioration or the like using the XPS method, the surface of the rubber material is made of a paper waste such as Kimwipe (manufactured by Nippon Paper Crecia Co., Ltd.). A pretreatment such as wiping with a solution moistened with acetone is performed.

図1は、このようなゴム材料表面の拭き取り処理を行った試料と行っていない試料のC1sにおけるXPSスペクトルを示しており、これにより、拭き取りの有無によるスペクトルの違いを確認できるが、ここに示されているように、XPS法では、ワックスのC−C結合、C−H結合と、ゴムのC=C結合が同じピークで出現する。そのため、拭き取り処理の有無により、スペクトルの強度は変化するものの、その形状は変化しないため、ワックスなどのブルーム物を充分に除去できたか否かを正確に確認できることなく、測定しているのが実状である。 FIG. 1 shows XPS spectra in C1s of a sample subjected to such a wiping treatment on the surface of a rubber material and a sample not subjected to the wiping treatment. Thus, the difference in spectrum depending on the presence or absence of wiping can be confirmed. As described above, in the XPS method, the C—C bond and C—H bond of wax and the C═C bond of rubber appear in the same peak. Therefore, although the intensity of the spectrum changes depending on the presence or absence of the wiping treatment, the shape does not change, so it is actually possible to measure without being able to accurately confirm whether or not bloom such as wax has been sufficiently removed. It is.

このように、従来の手法では表面の正確な化学状態を測定できないのに対し、本発明の方法では、XPS法やNEXAFS法などの表面分析を実施する前に、予め溶媒などを用いてゴム表面のブルーム物を除去することで、ゴム以外のワックス等の炭素成分による影響をなくすことが可能となるため、ゴム材料表面の正確な化学状態を測定できる。従って、XPSスペクトルやNEXAFSスペクトルにより正確な化学状態を測定できるとともに、劣化前後のスペクトルを対比することで、劣化状態(劣化度合)も正確に測定可能である。 As described above, the conventional method cannot measure the accurate chemical state of the surface, but in the method of the present invention, before carrying out the surface analysis such as the XPS method or the NEXAFS method, the rubber surface is previously used using a solvent or the like. By removing the blooms, it is possible to eliminate the influence of carbon components such as waxes other than rubber, so that the accurate chemical state of the rubber material surface can be measured. Therefore, an accurate chemical state can be measured by the XPS spectrum or the NEXAFS spectrum, and the deterioration state (degree of deterioration) can also be accurately measured by comparing the spectra before and after the deterioration.

本発明では、先ず、ゴム材料の表面におけるブルーム物が除去される。
本発明に供するゴム材料としては特に限定されず、従来公知のゴム組成物を使用でき、例えば、ゴム成分、ワックス、老化防止剤などを含むゴム組成物などが挙げられる。
In the present invention, first, the bloom on the surface of the rubber material is removed.
The rubber material used in the present invention is not particularly limited, and a conventionally known rubber composition can be used, and examples thereof include a rubber composition containing a rubber component, a wax, an antiaging agent, and the like.

ゴム成分としては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(X−IIR)、スチレンイソプレンブタジエンゴム(SIBR)などのジエン系ゴムなどが挙げられる。また、ゴム成分は、水酸基、アミノ基などの変性基を1つ以上含むものでもよい。 As rubber components, natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR), butyl rubber (IIR), halogenated Examples thereof include diene rubbers such as butyl rubber (X-IIR) and styrene isoprene butadiene rubber (SIBR). The rubber component may contain one or more modifying groups such as hydroxyl groups and amino groups.

更にゴム成分としては、前記ゴム成分と1種類以上の樹脂とが複合された複合材料も使用できる。上記樹脂としては特に限定されず、例えば、ゴム工業分野で汎用されているものが挙げられ、例えば、C5系脂肪族石油樹脂、シクロペンタジエン系石油樹脂などの石油樹脂が挙げられる。 Furthermore, as the rubber component, a composite material in which the rubber component and one or more kinds of resins are combined can also be used. The resin is not particularly limited, and examples thereof include those widely used in the rubber industry field, and examples thereof include petroleum resins such as C5 aliphatic petroleum resins and cyclopentadiene petroleum resins.

ワックスとしては特に限定されず、石油系ワックス、天然系ワックスなどが挙げられる。石油系ワックスとしては、パラフィンワックス、マイクロクリスタリンワックス等が挙げられる。天然系ワックスとしては、キャンデリラワックス、カルナバワックスなどの植物系ワックス、ミツロウ、ラノリンなどの動物系ワックス、オゾケライトなどの鉱物系ワックスなどが挙げられる。 The wax is not particularly limited, and examples thereof include petroleum wax and natural wax. Examples of petroleum waxes include paraffin wax and microcrystalline wax. Examples of natural waxes include plant waxes such as candelilla wax and carnauba wax, animal waxes such as beeswax and lanolin, and mineral waxes such as ozokerite.

老化防止剤としては特に限定されず、ゴム分野で使用されているものが使用可能であり、例えば、アミン系(ナフチルアミン系、ジフェニルアミン系、p−フェニレンジアミン系など)、キノリン系、ヒドロキノン誘導体、フェノール系(モノフェノール系、ビスフェノール系、トリスフェノール系、ポリフェノール系など)、チオビスフェノール系、イミダゾール系(ベンゾイミダゾール系など)、チオウレア系、亜リン酸系、有機チオ酸系老化防止剤、カルバミン酸金属塩などが挙げられる。 The anti-aging agent is not particularly limited, and those used in the rubber field can be used. For example, amine-based (naphthylamine-based, diphenylamine-based, p-phenylenediamine-based, etc.), quinoline-based, hydroquinone derivatives, phenol Type (monophenol type, bisphenol type, trisphenol type, polyphenol type, etc.), thiobisphenol type, imidazole type (benzimidazole type, etc.), thiourea type, phosphorous acid type, organic thioacid type antioxidant, metal carbamate Examples include salt.

ゴム材料には、カーボンブラック、シリカなどの充填剤、シランカップリング剤、酸化亜鉛、ステアリン酸、オイル、加硫剤、加硫促進剤、架橋剤など、従来公知のゴム分野の配合物を適宜配合してもよい。このようなゴム材料(ゴム組成物)は、公知の混練方法などを用いて製造できる。このようなゴム材料としては、例えば、タイヤ用ゴム材料(タイヤ用ゴム組成物)などが挙げられる。 For rubber materials, conventionally known compounds in the rubber field such as fillers such as carbon black and silica, silane coupling agents, zinc oxide, stearic acid, oil, vulcanizing agents, vulcanization accelerators and crosslinking agents are appropriately used. You may mix | blend. Such a rubber material (rubber composition) can be produced using a known kneading method or the like. Examples of such rubber materials include tire rubber materials (tire rubber compositions).

ブルーム物の除去方法としては、ワックス、老化防止剤などからなるブルーム物を除去できる方法であれば特に限定されず、例えば、溶媒を用いる方法が挙げられる。なお、除去方法として、へらなどの道具を用いる方法も考えられるが、前述のウエスなどで表面を拭き取る方法と同様に、完全にブルーム物を除去することが困難と考えられ、また、ゴム自体の化学状態を変化させることも考えられるため、この方法は適さない。 The method for removing the bloom material is not particularly limited as long as it can remove the bloom material composed of wax, an antioxidant, and the like, and examples thereof include a method using a solvent. As a removal method, a method using a tool such as a spatula is conceivable. However, like the method of wiping the surface with the above-mentioned waste cloth or the like, it is considered difficult to completely remove the bloom, and the rubber itself This method is not suitable because it is possible to change the chemical state.

溶媒を用いてブルーム物を除去する方法としては、室温や加熱状態など、所定条件下において、溶媒への湿潤(含浸)する方法、ソックスレー抽出器等の抽出器具を用いて溶媒抽出を実施する等の抽出法(溶媒抽出法)などが挙げられる。なかでも、ブルーム物を効率的に除去できる点から、ソックスレー抽出などの抽出法が好ましく、ソックスレー抽出が特に好ましい。 As a method of removing blooms using a solvent, a method of wetting (impregnation) in a solvent under a predetermined condition such as room temperature or a heating state, a solvent extraction using an extraction device such as a Soxhlet extractor, etc. Extraction method (solvent extraction method). Of these, extraction methods such as Soxhlet extraction are preferred, and Soxhlet extraction is particularly preferred from the viewpoint of efficiently removing blooms.

ソックスレー抽出としては、JISK6229に準じたソックスレー抽出法による抽出操作などを実施できる。例えば、ソックスレー抽出器の最下部に設けた抽出フラスコに溶媒(溶剤)を満たし、中間部分に設けた紙又は焼結ガラス製容器内に、適当な大きさの試験片に調製した所定量のゴム材料を入れ、最上部に冷却管を結合することにより、実施できる。 As the Soxhlet extraction, an extraction operation by a Soxhlet extraction method according to JISK6229 can be performed. For example, an extraction flask provided at the bottom of a Soxhlet extractor is filled with a solvent (solvent), and a predetermined amount of rubber prepared as a test piece of an appropriate size in a paper or sintered glass container provided in the middle part. This can be done by putting the material and connecting a cooling tube at the top.

ソックスレー抽出などの抽出時間は、ブルーム物を除去でき、ゴムの化学状態を変化させない時間であれば特に限定されず、本発明に適用するゴム材料の構成成分などに応じて適宜設定すればよい。例えば、ソックスレー抽出の抽出時間は、10〜36時間が好ましい。10時間未満であると、表面のブルーム物を充分に除去できないおそれがあり、36時間を超えると、劣化して短くなったゴム分子まで除去されてしまうおそれがある。 The extraction time such as Soxhlet extraction is not particularly limited as long as it can remove the blooms and does not change the chemical state of the rubber, and may be appropriately set according to the components of the rubber material applied to the present invention. For example, the extraction time for Soxhlet extraction is preferably 10 to 36 hours. If it is less than 10 hours, the bloom on the surface may not be sufficiently removed, and if it exceeds 36 hours, rubber molecules that have deteriorated and become shorter may be removed.

溶媒を用いて除去(湿潤、抽出)において、使用可能な溶媒としては、有機溶媒が好適である。有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール等の1価アルコール類;エチレングリコール、プロピレングリコール、ブチレングリコール等の多価アルコール類;アセトン、メチルエチルケトン等のケトン類;酢酸メチル、酢酸エチル等のエステル類;テトラヒドロフラン、ジエチルエーテル等の鎖状及び環状エーテル類;ポリエチレングリコール等のポリエーテル類;ジクロロメタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類;ヘキサン、シクロヘキサン、石油エーテル等の炭化水素類;ベンゼン、トルエン等の芳香族炭化水素類;等が挙げられる。なかでも、表面のワックスなどのブルーム物を充分に除去可能である点から、高極性有機溶媒が好ましく、アセトン、エタノールがより好ましい。これらは単独で又は2種以上を組み合わせて使用できる。 In the removal (wetting and extraction) using a solvent, an organic solvent is suitable as a usable solvent. Examples of the organic solvent include monohydric alcohols such as methanol, ethanol, propanol and butanol; polyhydric alcohols such as ethylene glycol, propylene glycol and butylene glycol; ketones such as acetone and methyl ethyl ketone; esters such as methyl acetate and ethyl acetate. Linear and cyclic ethers such as tetrahydrofuran and diethyl ether; polyethers such as polyethylene glycol; halogenated hydrocarbons such as dichloromethane, chloroform and carbon tetrachloride; hydrocarbons such as hexane, cyclohexane and petroleum ether; Aromatic hydrocarbons such as benzene and toluene; Of these, highly polar organic solvents are preferred, and acetone and ethanol are more preferred from the viewpoint that the blooms such as wax on the surface can be sufficiently removed. These can be used alone or in combination of two or more.

本発明では、予めゴム材料の表面におけるブルーム物を除去した後、得られた試料(除去処理を施したゴム材料)にX線を用いた表面分析法が適用される。このような表面分析法としては、ゴム材料表面の化学状態を正確に測定できるという点から、XPS法(X線光電子分光法)、NEXAFS法(吸収端近傍X線吸収微細構造)などが好ましい。 In the present invention, the surface analysis method using X-rays is applied to the obtained sample (rubber material subjected to the removal treatment) after removing the bloom on the surface of the rubber material in advance. As such a surface analysis method, XPS method (X-ray photoelectron spectroscopy), NEXAFS method (X-ray absorption fine structure near absorption edge) and the like are preferable because the chemical state of the rubber material surface can be accurately measured.

ここで、XPS法は従来公知の方法を使用でき、例えば、炭素1s軌道付近のスペクトルを測定することで表面の化学状態が調べられる。また、NEXAFS法は、例えば、特開2012−141278号公報記載の手法によって表面の化学状態を調べることが可能であり、具体的には、炭素K殻吸収端近傍のスペクトルなどを測定して調べられる。 Here, as the XPS method, a conventionally known method can be used. For example, the chemical state of the surface can be examined by measuring a spectrum near the carbon 1s orbit. The NEXAFS method can examine the chemical state of the surface by, for example, the method described in JP2012-141278A. Specifically, the NEXAFS method can be examined by measuring a spectrum near the carbon K-shell absorption edge. It is done.

本発明では、溶媒抽出などを用いて表面のブルーム物を充分に除去したゴム材料(試料)にXPS法を適用することで、ワックスや老化防止剤による影響を充分に抑制した正確な化学状態を測定できる。従って、劣化前及び劣化後のゴム材料のXPSスペクトルにおいて、ワックスに帰属されるC−C結合やC−H結合のピークが現れることなく、ゴムのC=C結合のピークが現れることから、劣化前後共、ゴム材料表面におけるゴムの正確な化学状態が調べられる。更に、劣化前後のC=C結合のピーク強度や面積の比較により、劣化状態(劣化度合)も調べられる。 In the present invention, by applying the XPS method to a rubber material (sample) from which surface blooms have been sufficiently removed by solvent extraction or the like, an accurate chemical state in which the influence of wax or an antioxidant is sufficiently suppressed can be obtained. It can be measured. Therefore, in the XPS spectrum of the rubber material before and after deterioration, the peak of the C═C bond of rubber appears without the appearance of the C—C bond or C—H bond peak attributed to the wax. Before and after, the exact chemical state of the rubber on the rubber material surface is examined. Furthermore, the deterioration state (degree of deterioration) can also be examined by comparing the peak intensity and area of the C = C bond before and after deterioration.

また、同様に試料にNEXAFS法を適用しても表面の正確な化学状態を測定できる。従って、同様に劣化の前後共にゴム材料表面におけるゴムの正確な化学状態を調べることができ、劣化前後のピーク強度や面積の比較により劣化状態(劣化度合)を調べることも可能である。 Similarly, the accurate chemical state of the surface can be measured by applying the NEXAFS method to the sample. Therefore, the exact chemical state of the rubber on the surface of the rubber material can be similarly examined before and after deterioration, and the deterioration state (degradation degree) can also be examined by comparing the peak intensity and area before and after deterioration.

なお、NEXAFS法は絶対値測定が困難であるため、試料間の測定結果を単純に比較できない。そのため、例えば、以下の手法により、電子収量法を用いてゴム材料のX線吸収スペクトル測定を行い解析することで、劣化度合(%)、酸素劣化及びオゾン劣化の寄与率(%)、酸素・オゾンが結合した量(劣化指標)を正確に分析できる。 Since the NEXAFS method is difficult to measure absolute values, the measurement results between samples cannot be simply compared. Therefore, for example, by measuring and analyzing the X-ray absorption spectrum of the rubber material using the electron yield method by the following method, the degree of deterioration (%), the contribution rate of oxygen deterioration and ozone deterioration (%), oxygen · The amount of ozone combined (degradation index) can be analyzed accurately.

詳しくは、上記高輝度X線のエネルギーを260〜400eVの範囲において炭素原子のK殻吸収端の必要な範囲を走査することによって得られるX線吸収スペクトルに基づいて下記(式1)により規格化定数α及びβを算出し、該規格化定数α及びβを用いて補正された炭素原子のK殻吸収端のX線吸収スペクトルを波形分離し、得られた285eV付近のπ遷移に帰属されるピーク面積を用いて下記(式2)により劣化度合を求めることが可能である。
(式1)
[劣化前の試料における測定範囲のX線吸収スペクトルの全面積]×α=1
[劣化後の試料における測定範囲のX線吸収スペクトルの全面積]×β=1
(式2)
[1−[(劣化後のπのピーク面積)×β]/[(劣化前のπのピーク面積)×α]]×100=劣化度合(%)
Specifically, the energy of the high-intensity X-ray is normalized by the following (Equation 1) based on the X-ray absorption spectrum obtained by scanning the necessary range of the K-shell absorption edge of the carbon atom in the range of 260 to 400 eV. The constants α and β are calculated, and the X-ray absorption spectrum of the K-shell absorption edge of the carbon atom corrected using the normalized constants α and β is separated into waveforms, and the resulting π * transition near 285 eV is attributed. It is possible to obtain the degree of deterioration by the following (Equation 2) using the peak area.
(Formula 1)
[Total area of X-ray absorption spectrum of measurement range in sample before deterioration] × α = 1
[Total area of X-ray absorption spectrum in the measurement range of the sample after deterioration] × β = 1
(Formula 2)
[1-[(Peak area of π * after degradation) × β] / [(Peak area of π * before degradation) × α]] × 100 = Degree of degradation (%)

ブルーム物を除去した試料を測定することで劣化前後共にゴム材料表面の正確な化学状態が調べられる。また、それぞれのスペクトルを比較することにより、劣化後のゴム材料の劣化度合(%)を算出でき、正確な劣化率の分析が可能になる。なお、具体的な解析は、特開2012−141278号公報記載の方法で実施できる。 By measuring a sample from which blooms have been removed, the exact chemical state of the rubber material surface can be examined both before and after deterioration. Further, by comparing the respective spectra, the degree of deterioration (%) of the rubber material after deterioration can be calculated, and an accurate deterioration rate analysis can be performed. Specific analysis can be performed by the method described in Japanese Patent Application Laid-Open No. 2012-141278.

また、上記高輝度X線のエネルギーを500〜600eVの範囲で走査することによって得られる酸素原子のK殻吸収端のX線吸収スペクトルを波形分離し、ピークトップのエネルギーが532〜532.7eVの範囲にある低エネルギー側ピークを酸素劣化、532.7〜534eVの範囲にある高エネルギー側ピークをオゾン劣化とし、下記(式3)によって酸素劣化とオゾン劣化の寄与率を算出することも可能である。
(式3)
[酸化劣化のピーク面積]/[(オゾン劣化のピーク面積)+(酸化劣化のピーク面積)]×100=酸素劣化寄与率(%)
[オゾン劣化のピーク面積]/[(オゾン劣化のピーク面積)+(酸化劣化のピーク面積)]×100=オゾン劣化寄与率(%)
Further, the X-ray absorption spectrum of the K-shell absorption edge of oxygen atoms obtained by scanning the high-intensity X-ray energy in the range of 500 to 600 eV is separated into waveforms, and the peak top energy is 532 to 532.7 eV. It is also possible to calculate the contribution rate of oxygen deterioration and ozone deterioration by the following (Equation 3), assuming that the low energy side peak in the range is oxygen deterioration and the high energy side peak in the range of 532.7 to 534 eV is ozone deterioration. is there.
(Formula 3)
[Peak area of oxidation degradation] / [(Peak area of ozone degradation) + (Peak area of oxidation degradation)] × 100 = Oxygen degradation contribution rate (%)
[Ozone degradation peak area] / [(ozone degradation peak area) + (oxidation degradation peak area)] × 100 = ozone degradation contribution rate (%)

劣化後の試料について、ブルーム物を除去した試料を測定することでゴム材料表面の正確な化学状態が調べられるので、劣化後のゴム材料における酸素劣化及びオゾン劣化の寄与率(%)を算出でき、それぞれの劣化要因の寄与率の正確な分析が可能になる。なお、具体的な解析は、特開2012−141278号公報記載の方法で実施できる。 Since the exact chemical state of the rubber material surface can be examined by measuring the sample after removing the bloom from the sample after deterioration, the contribution rate (%) of oxygen deterioration and ozone deterioration in the rubber material after deterioration can be calculated. Therefore, it is possible to accurately analyze the contribution rate of each deterioration factor. Specific analysis can be performed by the method described in Japanese Patent Application Laid-Open No. 2012-141278.

更に、劣化後の炭素原子のK殻吸収端のX線吸収スペクトルに基づいて下記(式4)により規格化定数γを求め、該規格化定数γを用いて下記(式5)により酸素原子のK殻吸収端の全ピーク面積を補正することにより、酸素及びオゾンがゴム材料に結合した量を求めることも可能である。
(式4)
[炭素原子のK殻吸収端のX線吸収スペクトルの全面積]×γ=1
(式5)
[酸素原子のK殻吸収端のピーク面積]×γ=酸素及びオゾンが結合した量(指数)
Further, based on the X-ray absorption spectrum of the K-shell absorption edge of the carbon atom after deterioration, the normalization constant γ is obtained by the following (formula 4), and the oxygen atom is It is also possible to determine the amount of oxygen and ozone bound to the rubber material by correcting the total peak area at the K shell absorption edge.
(Formula 4)
[Total area of X-ray absorption spectrum of K-shell absorption edge of carbon atom] × γ = 1
(Formula 5)
[Peak area of K-shell absorption edge of oxygen atom] × γ = Amount of oxygen and ozone combined (index)

劣化後の試料について、ブルーム物を除去した試料を測定することでゴム材料表面の正確な化学状態が調べられるので、劣化によりゴム材料に結合した酸素・オゾン量が正確に測定でき、劣化指標とすることが可能になる。なお、具体的な解析は、特開2012−141278号公報記載の方法で実施できる。 Since the exact chemical state of the rubber material surface can be examined by measuring the sample after removing the bloom from the sample after deterioration, the amount of oxygen / ozone bound to the rubber material due to deterioration can be measured accurately. It becomes possible to do. Specific analysis can be performed by the method described in Japanese Patent Application Laid-Open No. 2012-141278.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

<実施例及び比較例>
(ゴム試料)
以下の配合内容に従い、硫黄及び加硫促進剤以外の材料を充填率が58%になるように(株)神戸製鋼所製の1.7Lバンバリーミキサーに充填し、80rpmで140℃に到達するまで混練した(工程1)。工程1で得られた混練物に、硫黄及び加硫促進剤を以下の配合にて添加し、160℃で20分間加硫することでゴム試料を得た(工程2)。
<Examples and Comparative Examples>
(Rubber sample)
In accordance with the following blending contents, materials other than sulfur and vulcanization accelerator were charged into a 1.7 L Banbury mixer manufactured by Kobe Steel Co., Ltd. so that the filling rate was 58%, and until reaching 140 ° C. at 80 rpm. Kneaded (Step 1). A rubber sample was obtained by adding sulfur and a vulcanization accelerator to the kneaded product obtained in step 1 in the following composition and vulcanizing at 160 ° C. for 20 minutes (step 2).

(配合)
天然ゴム50重量部、ブタジエンゴム50重量部、カーボンブラック60重量部、オイル5重量部、老化防止剤2重量部、ワックス2.5重量部、酸化亜鉛3重量部、ステアリン酸2重量部、粉末硫黄1.2重量部、及び加硫促進剤1重量部(なお、比較例3は、ワックス及び老化防止剤を配合せず)
なお、使用材料は以下のとおりである。また、劣化ゴム試料は下記条件で劣化させたものである。
天然ゴム:TSR20
ブタジエンゴム:宇部興産(株)製BR150B
カーボンブラック:キャボットジャパン(株)製のショウブラックN351
オイル:(株)ジャパンエナジー製のプロセスX−140
老化防止剤:大内新興化学工業(株)製のノクラック6C(N−1,3−ジメチルブチル−N’−フェニル−p−フェニレンジアミン)
ワックス:日本精蝋(株)製のオゾエース0355
酸化亜鉛:東邦亜鉛(株)製の銀嶺R
ステアリン酸:日本油脂(株)製の椿
粉末硫黄(5%オイル含有):鶴見化学工業(株)製の5%オイル処理粉末硫黄(オイル分5質量%含む可溶性硫黄)
加硫促進剤:大内新興化学工業(株)製のノクセラーCZ(N−シクロヘキシル−2−ベンゾチアジルスルフェンアミド)
(劣化条件)
オゾン劣化:40℃ 50pphm(24時間)
酸素劣化:80℃ 酸素:窒素=5:1(168時間)
(Combination)
Natural rubber 50 parts, butadiene rubber 50 parts, carbon black 60 parts, oil 5 parts, anti-aging agent 2 parts, wax 2.5 parts, zinc oxide 3 parts, stearic acid 2 parts, powder 1.2 parts by weight of sulfur and 1 part by weight of a vulcanization accelerator (Comparative Example 3 does not contain a wax and an antioxidant)
The materials used are as follows. In addition, the deteriorated rubber sample was deteriorated under the following conditions.
Natural rubber: TSR20
Butadiene rubber: BR150B manufactured by Ube Industries, Ltd.
Carbon Black: Show Black N351 manufactured by Cabot Japan
Oil: Process X-140 manufactured by Japan Energy Co., Ltd.
Anti-aging agent: NOCRACK 6C (N-1,3-dimethylbutyl-N′-phenyl-p-phenylenediamine) manufactured by Ouchi Shinsei Chemical Co., Ltd.
Wax: Ozoace 0355 manufactured by Nippon Seiwa Co., Ltd.
Zinc oxide: Silver candy R made by Toho Zinc Co., Ltd.
Stearic acid: Koji powder sulfur manufactured by NOF Corporation (containing 5% oil): 5% oil-treated powder sulfur manufactured by Tsurumi Chemical Co., Ltd. (soluble sulfur containing 5% by mass of oil)
Vulcanization accelerator: Noxeller CZ (N-cyclohexyl-2-benzothiazylsulfenamide) manufactured by Ouchi Shinsei Chemical Co., Ltd.
(Deterioration conditions)
Ozone degradation: 40 ° C, 50 pphm (24 hours)
Oxygen degradation: 80 ° C. Oxygen: Nitrogen = 5: 1 (168 hours)

作製したゴム試料に表1に記載した前処理を施した後に、炭素K殻吸収端近傍におけるNEXAFS測定を実施し、X線吸収スペクトル(NEXAFSスペクトル)を得た。なお、実施例4及び比較例6では、XPS測定を実施し、XPSスペクトルを得た。図2は、実施例1及び比較例1〜3で得られたNEXAFSスペクトルを示している。 After the pretreatment described in Table 1 was performed on the produced rubber sample, NEXAFS measurement in the vicinity of the carbon K-shell absorption edge was performed to obtain an X-ray absorption spectrum (NEXAFS spectrum). In Example 4 and Comparative Example 6, XPS measurement was performed to obtain an XPS spectrum. FIG. 2 shows NEXAFS spectra obtained in Example 1 and Comparative Examples 1 to 3.

(使用装置)
NEXAFS:佐賀県立九州シンクロトロン光研究センターのBL12ビームライン付属のNEXAFS測定装置
XPS:Kratos社製 AXIS Ultra
(Device used)
NEXAFS: SEX Prefectural Kyushu Synchrotron Light Research Center NEXAFS measurement system attached to BL12 beam line XPS: AXIS Ultra manufactured by Kratos

〔NEXAFS測定〕
NEXAFSを使用して、各試料について、以下の劣化率分析、劣化寄与率分析、劣化指標測定の実施により劣化度合(%)、酸素及びオゾン劣化寄与率(%)、劣化指標(指数)を測定した。また、以下のゴム情報の実施により得られたスペクトルにおけるブルーム物の影響の有無を評価した。結果を表1に示した。なお、NEXAFSの測定条件は以下のとおりで、測定に際し、ゴム試料をミクロトームで100μm以下の厚みになるように加工し、その後、真空デシケータに保存した。
(NEXAFSの測定条件)
輝度:5×1012photons/s/mrad/mm/0.1%bw
光子数:2×10photons/s
[NEXAFS measurement]
Using NEXAFS, measure the degree of degradation (%), oxygen and ozone degradation contribution rate (%), and degradation index (index) by performing the following degradation rate analysis, degradation contribution rate analysis, and degradation index measurement for each sample. did. Moreover, the presence or absence of the influence of the bloom thing in the spectrum obtained by implementation of the following rubber information was evaluated. The results are shown in Table 1. The measurement conditions of NEXAFS were as follows. In the measurement, a rubber sample was processed with a microtome so as to have a thickness of 100 μm or less, and then stored in a vacuum desiccator.
(Measurement conditions for NEXAFS)
Luminance: 5 × 10 12 photons / s / mrad 2 / mm 2 /0.1% bw
Number of photons: 2 × 10 9 photons / s

(劣化率分析)
高輝度X線のエネルギーを260〜400eVの範囲で走査し、炭素原子のK殻吸収端のX線吸収スペクトルを得た。このスペクトルにおいて必要な範囲である260〜350eVの範囲をもとに(式1)から規格化定数α、βを算出し、この定数を用いてスペクトルを規格化(補正)した。規格化後のスペクトルを波形分離し、285eV付近のπ遷移に帰属されるピーク面積をもとに(式2)から劣化度合(%)を求めた。
(Deterioration rate analysis)
High energy X-ray energy was scanned in the range of 260 to 400 eV to obtain an X-ray absorption spectrum of the K-shell absorption edge of the carbon atom. Normalization constants α and β were calculated from (Equation 1) based on the necessary range of 260 to 350 eV in this spectrum, and the spectrum was normalized (corrected) using these constants. The normalized spectrum was separated into waveforms, and the degree of deterioration (%) was obtained from (Equation 2) based on the peak area attributed to the π * transition near 285 eV.

(劣化寄与率分析)
高輝度X線のエネルギーを500〜600eVの範囲で走査し、酸素原子のK殻吸収端のX線吸収スペクトルを得た。このスペクトルを波形分離し、ピークトップが532〜532.7eVにある低エネルギー側ピークを酸素劣化、532.7〜534eVにある高エネルギー側ピークをオゾン劣化として、(式3)から酸素劣化及びオゾン劣化の寄与率を算出した。
(Deterioration contribution analysis)
High energy X-ray energy was scanned in the range of 500 to 600 eV to obtain an X-ray absorption spectrum of the K-shell absorption edge of oxygen atoms. This spectrum is waveform-separated, and the low energy peak at the peak top of 532 to 532.7 eV is defined as oxygen degradation, and the high energy peak at 532.7 to 534 eV is defined as ozone degradation. The contribution rate of deterioration was calculated.

(劣化指標測定)
前記劣化率分析で得られた劣化後の炭素原子のK殻吸収端のX線吸収スペクトルをもとに(式4)から規格化定数γを求めた。この定数を用いて酸素原子のK殻吸収端の全ピーク面積を補正(規格化)し、(式5)から酸素及びオゾンがゴム材料に結合した量(劣化指標)を求めた。
(Deterioration index measurement)
Based on the X-ray absorption spectrum at the K-shell absorption edge of the deteriorated carbon atom obtained by the deterioration rate analysis, the normalization constant γ was determined from (Equation 4). Using this constant, the total peak area at the K-shell absorption edge of oxygen atoms was corrected (normalized), and the amount of oxygen and ozone bound to the rubber material (degradation index) was determined from (Equation 5).

(ゴム情報)
得られたNEXAFSスペクトル、XPSスペクトルについて、ワックス等、他の炭素汚染の影響なく、ゴムの情報を得られたか否かについて、以下の基準で評価した。
○:ゴム材料表面における正確な情報が得られた。
×:ゴム材料表面における正確な情報が得られなかった。
(Rubber information)
The obtained NEXAFS spectrum and XPS spectrum were evaluated according to the following criteria as to whether rubber information was obtained without being affected by other carbon contamination such as wax.
○: Accurate information on the surface of the rubber material was obtained.
X: Accurate information on the surface of the rubber material could not be obtained.

Figure 2014115101
Figure 2014115101

図2の比較例3のスペクトルでは、試料表面に炭素汚染物がブルームしない配合で製造したサンプルの測定であるため、ゴムのC=C結合が検出された。一方、前処理を施さなかった比較例1では、C=C結合が検出されず、その代わりにC−H結合が大きくなっており、この結果から、表面に覆われているワックスのC−H結合が検出され、ゴムのC=C結合は検出されないことが明らかとなった。ウエスで試料表面を拭いた比較例2では、C=C結合が若干増加し、C−H結合が若干減少したものの、比較例3に比べて検出されたC=C結合量が少ないため、表面にブルームしたワックスを取り除くことができず、正確な測定はできなかった。 In the spectrum of Comparative Example 3 in FIG. 2, the C = C bond of the rubber was detected because it was a measurement of a sample manufactured with a formulation in which carbon contaminants did not bloom on the sample surface. On the other hand, in Comparative Example 1 where no pretreatment was performed, C═C bond was not detected, and instead, C—H bond was increased. From this result, C—H of the wax covered on the surface was obtained. Bonding was detected, and it became clear that the C = C bond of rubber was not detected. In Comparative Example 2 in which the sample surface was wiped with waste, the C = C bond increased slightly and the C—H bond decreased slightly, but the amount of C═C bond detected was smaller than that in Comparative Example 3, so that the surface As a result, it was not possible to remove the wax that had bloomed, and accurate measurement was not possible.

これに対し、実施例1では、C=C結合及びC−H結合量が比較例3と同程度検出されていたため、表面にブルームしたワックスを充分に取り除くことができ、ゴム表面の化学状態を正確に測定できることが明らかとなった。また、実施例4のXPS測定でも同様に正確に測定できた。更に、前処理を施さなかった比較例4〜5の劣化ゴム試料では、劣化度合等を算出できなかったのに対し、前処理でブルーム物を除去した実施例2〜3の劣化ゴム試料では、算出が可能であった。 In contrast, in Example 1, the C═C bond and C—H bond amounts were detected to the same extent as in Comparative Example 3, so that the wax blooming on the surface could be sufficiently removed, and the chemical state of the rubber surface was changed. It became clear that it can be measured accurately. Further, the XPS measurement of Example 4 was able to be measured accurately in the same manner. Furthermore, in the deteriorated rubber samples of Comparative Examples 4 to 5 that were not subjected to pretreatment, the degree of deterioration and the like could not be calculated, whereas in the deteriorated rubber samples of Examples 2 to 3 in which the bloom was removed by pretreatment, Calculation was possible.

Claims (5)

ゴム材料表面におけるブルーム物を除去した後、X線を用いた表面分析法を適用することにより、ゴム材料表面における化学状態を測定する化学状態測定方法。 A chemical state measuring method for measuring a chemical state on the surface of a rubber material by applying a surface analysis method using X-rays after removing a bloom on the surface of the rubber material. ゴム材料の表面から生じる化学状態の変化を調べ、ゴム材料の劣化状態を測定する請求項1記載の化学状態測定方法。 The chemical state measuring method according to claim 1, wherein a deterioration state of the rubber material is measured by examining a change in a chemical state generated from the surface of the rubber material. 溶媒を用いてゴム材料表面におけるブルーム物を除去する請求項1又は2記載の化学状態測定方法。 The chemical state measuring method according to claim 1 or 2, wherein a bloom is removed from the surface of the rubber material using a solvent. 溶媒が有機溶媒である請求項3記載の化学状態測定方法。 The chemical state measuring method according to claim 3, wherein the solvent is an organic solvent. 溶媒抽出法を用いてゴム材料表面におけるブルーム物を除去する請求項1〜4のいずれかに記載の化学状態測定方法。 The chemical state measuring method according to any one of claims 1 to 4, wherein a bloom material on a rubber material surface is removed using a solvent extraction method.
JP2012267387A 2012-10-05 2012-12-06 Chemical state measurement method Active JP5731467B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012267387A JP5731467B2 (en) 2012-12-06 2012-12-06 Chemical state measurement method
CN201310429775.6A CN103712999B (en) 2012-10-05 2013-09-18 Deterioration analysis method and chemical state mensuration
RU2013142709A RU2639914C2 (en) 2012-10-05 2013-09-20 Method for analyzing aging and method of determining chemical state
EP15183317.5A EP2966437B1 (en) 2012-10-05 2013-10-04 Deterioration analysis method
US14/046,658 US9128077B2 (en) 2012-10-05 2013-10-04 Deterioration analysis method and chemical state measurement method
EP13187311.9A EP2717039B1 (en) 2012-10-05 2013-10-04 Chemical state measurement method of rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012267387A JP5731467B2 (en) 2012-12-06 2012-12-06 Chemical state measurement method

Publications (2)

Publication Number Publication Date
JP2014115101A true JP2014115101A (en) 2014-06-26
JP5731467B2 JP5731467B2 (en) 2015-06-10

Family

ID=51171273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012267387A Active JP5731467B2 (en) 2012-10-05 2012-12-06 Chemical state measurement method

Country Status (1)

Country Link
JP (1) JP5731467B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213122A (en) * 2002-01-22 2003-07-30 Nok Corp Surface treating agent for vulcanized rubber
JP2011141199A (en) * 2010-01-07 2011-07-21 Univ Of Yamanashi Sample surface contaminant removal method and device using charged droplet etching
JP2012141278A (en) * 2010-12-16 2012-07-26 Sumitomo Rubber Ind Ltd Deterioration analysis method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213122A (en) * 2002-01-22 2003-07-30 Nok Corp Surface treating agent for vulcanized rubber
JP2011141199A (en) * 2010-01-07 2011-07-21 Univ Of Yamanashi Sample surface contaminant removal method and device using charged droplet etching
JP2012141278A (en) * 2010-12-16 2012-07-26 Sumitomo Rubber Ind Ltd Deterioration analysis method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014003751; Wanwisa Pattanasiriwisawa, Jaruwan Siritapetawee, Orasa Patarapaiboolchai and Wantana Klysubun: '"Structural analysis of sulfur in natural rubber using X-ray absorption near-edge spectroscopy"' Journal of Synchrotron Radiation Vol. 15, No. 5, 200809, p. 510-513 *
JPN6015011382; 加藤 信子: '「ゴムの分析とものづくり」' 日本ゴム協会誌 Vol. 82, No. 4, 20090415, p. 142-149 *

Also Published As

Publication number Publication date
JP5731467B2 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
JP6657664B2 (en) Chemical state measurement method
JP2017201252A (en) Vulcanization material analysis method
JP6219607B2 (en) Chemical state measurement method
JP6544098B2 (en) Method of measuring crosslink density in sulfur-containing polymer composites
EP2717039B1 (en) Chemical state measurement method of rubber
Rajan et al. Recycling of NR based cured latex material reclaimed with 2, 2′‐dibenzamidodiphenyldisulphide in a truck tire tread compound
JP5731467B2 (en) Chemical state measurement method
Sarma et al. Properties of silica-filled rubber compounds vs. epoxidized oil content and degree of epoxidation
JP6374355B2 (en) Method for measuring crosslink density in sulfur-containing polymer composites
EP2995946B1 (en) Method of measuring crosslink densities in sulfur-containing polymer composite material
JP2018096905A (en) Abrasion proof performance prediction method
JP6294623B2 (en) Life prediction method for polymer materials
JP6769123B2 (en) Method for measuring crosslink density
JP7167546B2 (en) Crosslinked structure visualization method
JP6822160B2 (en) Evaluation method for sheet scraping of polymer composite materials
JP2015132518A (en) Method for investigating chemical state of sulfur
JP5805043B2 (en) Degradation analysis method
JP5814277B2 (en) Fracture energy prediction method and rubber composition
EP4249901A1 (en) Method for estimating abrasion resistance
JP6050174B2 (en) Degradation analysis method
JP6540337B2 (en) Method to evaluate the crack performance of polymeric materials
JP6769122B2 (en) Method for evaluating the degree of orientation of a polymer in a polymer composite material
JP7357839B2 (en) Method for evaluating reinforcing properties of silica
JP2014199188A (en) Deterioration test method for vulcanized rubber composition containing age resistor, rubber composition and pneumatic tire
JP6371174B2 (en) How to determine the chemical state of sulfur

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150409

R150 Certificate of patent or registration of utility model

Ref document number: 5731467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250