JP2014111260A - Internal combustion engine combustion chamber component and method for manufacturing the same - Google Patents

Internal combustion engine combustion chamber component and method for manufacturing the same Download PDF

Info

Publication number
JP2014111260A
JP2014111260A JP2012265886A JP2012265886A JP2014111260A JP 2014111260 A JP2014111260 A JP 2014111260A JP 2012265886 A JP2012265886 A JP 2012265886A JP 2012265886 A JP2012265886 A JP 2012265886A JP 2014111260 A JP2014111260 A JP 2014111260A
Authority
JP
Japan
Prior art keywords
mass
combustion chamber
alloy
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012265886A
Other languages
Japanese (ja)
Inventor
Yoshihiko Suemasa
義彦 末政
Kazuhiro Wakitani
和宏 脇谷
Nobuyuki Fuyama
伸行 府山
Akira Terayama
朗 寺山
Toshio Fujii
敏男 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIROKIKO CO Ltd
Hiroshima Prefecture
Original Assignee
HIROKIKO CO Ltd
Hiroshima Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIROKIKO CO Ltd, Hiroshima Prefecture filed Critical HIROKIKO CO Ltd
Priority to JP2012265886A priority Critical patent/JP2014111260A/en
Publication of JP2014111260A publication Critical patent/JP2014111260A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide welding material having corrosion resistance, durability, and good welding workability and composed of a single composition and with which multi-layer welding can be performed, and to provide an internal combustion engine combustion chamber component such as a valve rod on which build up welding is performed with the welding material, and to provide a method for manufacturing the internal combustion engine combustion chamber component.SOLUTION: On a combustion chamber side surface of an internal combustion engine combustion chamber component such as a valve rod and a cylinder cover, build up welding is performed with Ni-based powder alloy fo build up welding containing: 0.001 to 0.050 mass% of C; 0.01 to 0.50 mass% of Si; 0.01 to 0.50 mass% of Mn; 20.0 to 30.0 mass% of Cr; 4.0 to 12.0 mass% of Mo; 0.5 to 4.0 mass% of Nb; 0.1 to 6.0 mass% of Fe, greater than 0.8 mass% and less than or equal to 2.0 mass% in total of one or two of Al and Ti; and a remainder of Ni and unavoidable impurities.

Description

本発明は、内燃機関の燃焼室に面する弁棒、シリンダーカバー及びピストンの構成部品に関し、前記燃焼室構成部品の製造方法に関する。さらに詳しくは、内燃機関の燃焼室側に面する弁棒、シリンダーカバー及びピストン等の、内燃機関の燃焼室に面する構成部品に関し、燃焼室に面する前記燃焼室構成部品の製造方法に関する。   The present invention relates to a component part of a valve rod, a cylinder cover and a piston facing a combustion chamber of an internal combustion engine, and to a method of manufacturing the combustion chamber component part. More particularly, the present invention relates to a component facing the combustion chamber of the internal combustion engine, such as a valve rod, a cylinder cover, and a piston facing the combustion chamber side of the internal combustion engine, and to a method of manufacturing the combustion chamber component facing the combustion chamber.

内燃機関の燃焼室に面する各構成部品に関しては、例えば、舶用内燃機関の構成要素の一つである排気弁棒については、従来から使用されているものとして、SUH31などのオーステナイト系耐熱鋼の触火面に、インコネル625(登録商標、Cr:20〜23%、Fe:5%以下、Mo:8〜10%、Nb+Ta:3.15〜4.15%、C:0.1%以下、Mn:0.5%以下、P:0.015%以下、S:0.015%以下、Al:0.04%以下、Ti:0.4%以下、Co:1%以下、Ni:58%以上)を肉盛溶接する方法が知られている。   Regarding each component facing the combustion chamber of the internal combustion engine, for example, an exhaust valve rod, which is one of the components of a marine internal combustion engine, is conventionally used as an austenitic heat resistant steel such as SUH31. On the contact surface, Inconel 625 (registered trademark, Cr: 20 to 23%, Fe: 5% or less, Mo: 8 to 10%, Nb + Ta: 3.15 to 4.15%, C: 0.1% or less, Mn: 0.5% or less, P: 0.015% or less, S: 0.015% or less, Al: 0.04% or less, Ti: 0.4% or less, Co: 1% or less, Ni: 58% A method of overlay welding is known.

また、舶用内燃機関の構成要素の一つである排気弁棒を、ナイモニック80A(C:0.1%、Cr:18〜21%、Si:1.0%、Cu:0.2%、Fe:3.0%、Mn:1.0%、Ti:1.8〜2.7%、Al:1.0〜14.8%、Co:2.0%、B:0.008%、Zr:0.15%、L:0.003%、S:0.015%、Ni:残り)なる材質のみで鍛造により製造することが行われている。   Further, an exhaust valve rod which is one of the constituent elements of a marine internal combustion engine is made of Nimonic 80A (C: 0.1%, Cr: 18 to 21%, Si: 1.0%, Cu: 0.2%, Fe : 3.0%, Mn: 1.0%, Ti: 1.8 to 2.7%, Al: 1.0 to 14.8%, Co: 2.0%, B: 0.008%, Zr : 0.15%, L: 0.003%, S: 0.015%, Ni: remaining), and manufacturing by forging is performed.

他には、内燃機関の燃焼室に面して触火面を有する排気弁棒については、耐熱鋼よりなる舶用又は発電用ディーゼル機関用弁棒であって、その触火面に肉盛金属を有し、該肉盛金属の組成が、C:0.01〜0.50%、Si:0.1〜2.0%、Cr:35〜55%、Al+Ti:0.5〜2.5%、N:0.01〜0.6%を含有し、更にMn:2%以下、V:3%以下、Nb:0.2〜0.8%。Mo:5%以下、W:5%以下、Fe:5%以下の1種又は2種以上を含有し、残部が実質的にNi+Coと不可避的不純物からなる組織を有するディーゼル機関用弁棒の技術が開示されている(特許文献1参照)。   In addition, an exhaust valve rod having a contact surface facing the combustion chamber of the internal combustion engine is a valve shaft for a marine or power generation diesel engine made of heat-resistant steel, and a cladding metal is applied to the contact surface. And the composition of the overlay metal is C: 0.01 to 0.50%, Si: 0.1 to 2.0%, Cr: 35 to 55%, Al + Ti: 0.5 to 2.5% N: 0.01 to 0.6%, Mn: 2% or less, V: 3% or less, Nb: 0.2 to 0.8%. Diesel engine valve stem technology containing one or more of Mo: 5% or less, W: 5% or less, Fe: 5% or less, and the balance being substantially composed of Ni + Co and inevitable impurities Is disclosed (see Patent Document 1).

また、オーステナイト系耐熱鋼の鍛造材から成る弁棒の触火面に、Cr:20重量%、Mo:10重量%、Al+Ti:0.5重量%以下を含むNi基合金からなり、かつ硬さがHRCで25以下である下盛り層が盛金され、さらに前記下盛り層の上に、Cr、Al、Ti、Niを必須成分とし、Cr:10〜30重量%、AlとTi:合量で2.6〜4.6重量%、Co、Mo、W、Nb及びFeの群から選ばれる少なくとも2種:合量で0.2〜19重量%、及びNiをバランス成分とする時効硬化型のNi基合金が盛金され、その盛金層の硬さはHRCで30〜48である弁棒の技術が開示されている(特許文献2参照)。   Further, the contact surface of a valve stem made of a forged material of austenitic heat-resisting steel is made of a Ni-based alloy containing Cr: 20% by weight, Mo: 10% by weight, Al + Ti: 0.5% by weight or less, and hardness. The underlaying layer having an HRC of 25 or less is deposited, and on the underlaying layer, Cr, Al, Ti, Ni are essential components, Cr: 10 to 30% by weight, Al and Ti: total amount 2.6 to 4.6% by weight, at least two selected from the group consisting of Co, Mo, W, Nb and Fe: a total amount of 0.2 to 19% by weight, and age-hardening type containing Ni as a balance component A valve stem technique is disclosed in which a Ni-based alloy is deposited and the hardness of the deposited layer is 30 to 48 in HRC (see Patent Document 2).

特開平6―277876号公報Japanese Patent Laid-Open No. 6-277876 特開平11―50821号公報Japanese Patent Laid-Open No. 11-50821

内燃機関の燃焼室に面する部位には、弁棒の触火面、シリンダーカバーの燃焼室側面及びピストンヘッド等がある。例えば、舶用内燃機関の場合、シリンダーカバーに斜設された燃料噴射弁から燃料が噴射され燃焼室内で爆発が起こり燃焼室内の温度は、排気弁棒の触火面やシリンダーカバー燃焼室側面の燃料噴射弁周辺において最高温度で約700℃までになり、噴射される燃料の重油にはV(バナジウム)やS(サルファ)が多く含有されていることから、燃焼室側の面にはVやSによる高温環境下での腐食が進行する。   The parts facing the combustion chamber of the internal combustion engine include the contact surface of the valve rod, the side surface of the combustion chamber of the cylinder cover, and the piston head. For example, in the case of a marine internal combustion engine, fuel is injected from a fuel injection valve obliquely installed in a cylinder cover and an explosion occurs in the combustion chamber. The temperature in the combustion chamber is determined by the fuel on the exhaust valve rod and the fuel on the side of the cylinder cover combustion chamber. The maximum temperature in the vicinity of the injection valve is about 700 ° C., and heavy fuel oil to be injected contains a large amount of V (vanadium) and S (sulfur). Corrosion under high temperature environment progresses.

そこで、高温腐食に耐えるようにするために、一般的には、SUH31などのオーステナイト系耐熱鋼からなる排気弁棒の触火面にインコネル625(登録商標)を肉盛溶接する方法と、排気弁棒全体をナイモニック80Aで鍛造加工によって製造する方法が用いられてきた。   Therefore, in order to withstand high temperature corrosion, generally, a method of overlay welding Inconel 625 (registered trademark) on the contact surface of an exhaust valve rod made of austenitic heat-resistant steel such as SUH31, and an exhaust valve A method has been used in which the entire bar is manufactured by forging with Nimonic 80A.

SUH31などのオーステナイト系耐熱鋼からなる排気弁棒の触火面にインコネル625(登録商標)を肉盛溶接した場合には、溶接施工性がよく、かつ耐Vアタック性や耐Sアタック性という耐食性を有するが、長期間使用する過程で触火面に摩耗が進行しやすいという問題があった。これは、燃焼室内で重油が燃焼して爆発が発生すると、硬質の粉塵が発生して勢いよく飛散するために、燃焼室に面する面に粉塵が衝突して摩耗が進行したためと考えられる。   When Inconel 625 (registered trademark) is welded on the contact surface of an exhaust valve rod made of austenitic heat-resistant steel such as SUH31, the weldability is good and the corrosion resistance is V-attack resistance and S-attack resistance. However, there has been a problem that wear on the flaming surface tends to progress during the long-term use. This is presumably because when heavy oil burns in the combustion chamber and an explosion occurs, hard dust is generated and scattered vigorously, so that the dust collides with the surface facing the combustion chamber and wear progresses.

また、排気弁棒全体をナイモニック80Aで鍛造加工によって製造した場合は、耐Sアタック性や耐Vアタック性という耐食性を有し摩耗も進行しにくいが、ナイモニック80Aという材料が高価格であり、かつ溶接施工性に難点があることから肉盛溶接することが困難である。よって、排気弁棒をすべてナイモニック80Aで造らざるを得ないことから大幅にコストアップになるという問題があった。   In addition, when the exhaust valve stem is manufactured by forging with the Nimonic 80A, it has corrosion resistance such as S-attack resistance and V-attack resistance, and wear hardly progresses, but the material Nimonic 80A is expensive, and It is difficult to build-up welding because there is a difficulty in welding workability. Therefore, since all the exhaust valve rods must be made of Nimonic 80A, there is a problem that the cost is greatly increased.

また、特許文献1に記載の発明は、特に舶用ディーゼル機関に使用される重油にはSやVが含有されているので、それらの化学成分による高温での腐食が進行しやすいことから、耐Vアタック性や耐Sアタック性が求められるが、特許文献1の表1に記載された「耐食性」は、耐Vアタック性を評価したものと推定されるが、段落[0041]の記載から、一般的に供される85%V+15%NaSOの合成灰を使用せず、腐食力が劣る20%V+80%NaSOの合成灰を使用して評価しているため、果たして耐食性を有するのかが懸念されるという問題があった。 Moreover, since the invention described in Patent Document 1 contains S and V in heavy oil used in marine diesel engines in particular, corrosion at high temperatures due to their chemical components is likely to proceed. Although attack resistance and S attack resistance are required, the “corrosion resistance” described in Table 1 of Patent Document 1 is presumed to have evaluated the V attack resistance, but from the description in paragraph [0041], The synthetic ash of 85% V 2 O 5 + 15% Na 2 SO 4 provided by the factory is not used, and the synthetic ash of 20% V 2 O 5 + 80% Na 2 SO 4 which is inferior in corrosive power is used for evaluation. Therefore, there is a problem that there is a concern whether it has corrosion resistance.

また、特許文献1の発明は、段落[0037]に、1層目の硬さが高くなって2層溶接時に割れが発生しやすくなることを発生させないために、1層目の肉盛材料と2層目の肉盛材料とは変えなければならないという記載があることから、作業者が肉盛溶接時に2つの肉盛材料の選択を誤る懸念があり、これによって溶接割れが生じやすいという問題があった。   In addition, in the invention of Patent Document 1, in order to prevent the paragraph [0037] from causing the hardness of the first layer to be high and causing cracking during the two-layer welding, Since there is a description that it must be changed from the second layer overlay material, there is a concern that the operator may mistakenly select the two overlay materials at the time of overlay welding. there were.

次に、特許文献2の発明は、段落[0029]に「オーステナイト系耐熱鋼とは互いの組成が大幅に相違しているので、盛金時に当該盛金層に割れなどの組織欠陥が発生しやすい。このような問題が発生することを防止するためには、オーステナイト系耐熱鋼弁棒の触火面に一旦下盛り層を形成した後、その上に前記した盛金層を形成することが好ましい。」と記載され、段落[0030]に「この下盛り層の形成に用いる材料としては、・・・、インコネル625からなり、肉盛り後の硬さがHRCで25以下になるNi基合金が好適である。」との記載がある。そして、段落[0023]に、下盛り層の上の層としてはナイモニック80A又はU520(特許文献2特有の表現)と受け取られる記載がある。「このことは、下盛り層である1層目の肉盛材料と2層目の肉盛材料とは変えなければならないということを意味し、このことは、作業者が肉盛溶接時に2つの肉盛材料の選択を誤る懸念があり、これによって溶接割れが生じやすいという問題があった。   Next, the invention of Patent Document 2 states in paragraph [0029] that “the composition of the austenitic heat-resistant steel is significantly different from that of the austenitic heat-resisting steel. In order to prevent such a problem from occurring, it is possible to form a deposit layer once on the contact surface of the austenitic heat-resistant steel valve rod, and then form the above-described deposit layer on it. In the paragraph [0030], “The material used for forming this underlayer is made of Inconel 625, and the Ni-base alloy has a hardness after build-up of 25 or less in HRC. Is preferred. " In paragraph [0023], there is a description received as nymonic 80A or U520 (expression specific to Patent Document 2) as the layer above the underlay layer. “This means that the overlay material of the first layer and the overlay material of the second layer must be changed. There is a concern that the selection of the overlay material may be wrong, which causes a problem that weld cracking is likely to occur.

したがって、本発明の目的は、耐食性を有するナイモニック80Aやインコネル625(登録商標)とほぼ同等の耐Sアタック性及び耐Vアタック性を有し、使用による摩耗等の耐久性に課題を残すインコネル625(登録商標)の硬度を超える硬度を有し、ナイモニック80Aが有する溶接施工性の難点を克服してインコネル625(登録商標)のように溶接施工性がよく、多層盛りの肉盛溶接が単一の成分からなる溶接材料を提供し、弁棒、シリンダーカバー及びピストンヘッドのうち1つ以上の構成部品の燃焼室側の面に対して前記溶接材料を肉盛溶接された内燃機関燃焼室構成部品を提供し、前記燃焼室構成部品の製造方法を提供することである。   Accordingly, an object of the present invention is to provide an S-containment resistance and a V-attack resistance that are almost the same as those of the Nimonic 80A and Inconel 625 (registered trademark) having corrosion resistance, and leave a problem in durability such as wear due to use. It has a hardness exceeding that of (Registered Trademark), overcomes the difficulty of weldability that Nimonic 80A has, has good weldability as in Inconel 625 (Registered Trademark), and has a single layer overlay welding. An internal combustion engine combustion chamber component in which welding material is welded to the combustion chamber side surface of one or more components of the valve stem, cylinder cover, and piston head And a method for manufacturing the combustion chamber component.

「発明が解決しようとする課題」に記載した課題を解決するために、請求項1に記載の内燃機関燃焼室構成部品1は、内燃機関の燃焼室7を構成する構成部品である、弁棒2、シリンダーカバー4及びピストンヘッド6のうちの少なくとも1種以上の構成部品の燃焼室7側面に、C:0.001〜0.050質量%、Si:0.01〜0.50質量%、Mn:0.01〜0.50質量%、Cr:20.0〜30.0質量%、Mo:4.0〜12.0質量%、Nb:0.5〜4.0質量%、Fe:0.1〜6.0質量%を含有し、かつ、Al及びTiのうちの1種又は2種で合計0.8質量%超〜2.0質量%を含有し、残部がNi及び不可避不純物からなるNi基肉盛用粉末合金が肉盛されたことを特徴とする。   In order to solve the problem described in “Problems to be Solved by the Invention”, the combustion chamber component 1 of the internal combustion engine according to claim 1 is a valve rod that is a component constituting the combustion chamber 7 of the internal combustion engine. 2, C: 0.001 to 0.050 mass%, Si: 0.01 to 0.50 mass% on the side of the combustion chamber 7 of at least one of the components of the cylinder cover 4 and the piston head 6; Mn: 0.01 to 0.50 mass%, Cr: 20.0 to 30.0 mass%, Mo: 4.0 to 12.0 mass%, Nb: 0.5 to 4.0 mass%, Fe: 0.1 to 6.0% by mass, and one or two of Al and Ti contain a total of more than 0.8% by mass to 2.0% by mass with the balance being Ni and inevitable impurities A Ni-based overlaying powder alloy is built up.

請求項2に記載の発明である内燃機関燃焼室構成部品1は、請求項1において、前記Ni基肉盛用粉末合金が肉盛された後に、600〜900℃で10〜20Hの時効処理を行い、その後の硬さがHV10=280以上であることを特徴とする。   An internal combustion engine combustion chamber component 1 according to a second aspect of the present invention is the combustion chamber component 1 according to the first aspect, wherein after the Ni-based overlaying powder alloy is built up, an aging treatment of 10 to 20 H is performed at 600 to 900 ° C. And the subsequent hardness is HV10 = 280 or more.

請求項3に記載の発明である内燃機関燃焼室構成部品1の製造方法は、内燃機関の燃焼室7に面する構成部品である、弁棒2、シリンダーカバー4及びピストンヘッド6のうちの少なくとも1種以上の構成部品の燃焼室7側の面に、肉盛溶接材料として、C:0.001〜0.050質量%、Si:0.01〜0.50質量%、Mn:0.01〜0.50質量%、Cr:20.0〜30.0質量%、Mo:4.0〜12.0質量%、Nb:0.5〜4.0質量%、Fe:0.1〜6.0質量%を含有し、かつ、Al及びTiのうちの1種又は2種で合計0.8質量%を超〜2.0質量を含有し、残部がNi及び不可避不純物からなるNi基肉盛用粉末合金を使用して粉体プラズマ溶接をし、前記粉体プラズマ溶接時に、予熱をすることなく前記溶接を開始し、同一の肉盛溶接材料で多層肉盛を実施し、前記粉体プラズマ溶接後に600〜900℃で10〜20Hの時効処理を行うことを特徴とする。   The method of manufacturing the internal combustion engine combustion chamber component 1 according to the third aspect of the present invention includes at least one of the valve stem 2, the cylinder cover 4, and the piston head 6 that are components facing the combustion chamber 7 of the internal combustion engine. As a build-up welding material, C: 0.001 to 0.050 mass%, Si: 0.01 to 0.50 mass%, Mn: 0.01 To 0.50 mass%, Cr: 20.0 to 30.0 mass%, Mo: 4.0 to 12.0 mass%, Nb: 0.5 to 4.0 mass%, Fe: 0.1 to 6 Ni base meat containing 0.0 mass% and containing 0.8 to 2.0 mass in total with one or two of Al and Ti, the balance being Ni and inevitable impurities Powder plasma welding is performed using prime powder alloy, and before the powder plasma welding, without preheating Start the welding, carried out multilayer buildup on the same overlay welding material, and performing aging treatment 10~20H at 600 to 900 ° C. After the powder plasma welding.

請求項1に記載の内燃機関燃焼室構成部品1は、請求項1に記載したNi基肉盛用粉末合金の溶接施工性が優れているため、例えば舶用内燃機関の排気弁棒2については、ナイモニック80Aのように排気弁棒2自体を一体的に鍛造成形加工しなくてもよく、SUH31等の耐熱鋼からなる排気弁棒2の触火面3に肉盛溶接ができるので、ナイモニック80Aによる排気弁棒2に比較して大幅にコストダウンできるという効果を奏する。   Since the internal combustion engine combustion chamber component 1 according to claim 1 is excellent in the weldability of the Ni-based overlaying powder alloy according to claim 1, for example, for an exhaust valve rod 2 of a marine internal combustion engine, The exhaust valve rod 2 itself does not have to be integrally formed by forging as in the case of Nimonic 80A, and overlay welding can be performed on the contact surface 3 of the exhaust valve rod 2 made of heat-resistant steel such as SUH31. As compared with the exhaust valve rod 2, the cost can be greatly reduced.

また、特許文献2の段落[0025]に記載されたSアタック値4.1mg/cm(41g/m)より約100倍の耐Sアタック性を有し、Vアタック値35.1mg/cm(351g/m)より約10倍の耐Vアタック性を有して、ナイモニック80Aの有するSアタック値やVアタック値とほぼ同等の耐食性を有するという効果を奏する。 Further, it has an S attack resistance about 100 times that of the S attack value 4.1 mg / cm 2 (41 g / m 2 ) described in paragraph [0025] of Patent Document 2, and a V attack value of 35.1 mg / cm 2. 2 (351 g / m 2 ), which has a V attack resistance approximately 10 times greater than that of 351 g / m 2, and has an effect of having a corrosion resistance substantially equal to the S attack value and V attack value of the mnemonic 80A.

請求項2に記載の内燃機関燃焼室構成部品1は、請求項1に記載の発明と同じ効果を奏する。そして、本願発明の硬度を、インコネル625(登録商標)の硬度HV10=224レベルよりは少なくともビッカース硬度で50超の高い硬度を有することができ、使用による摩耗を大幅に抑えることができるという効果を奏する。   The internal combustion engine combustion chamber component 1 according to claim 2 has the same effects as the invention according to claim 1. The hardness of the present invention can be at least 50 Vickers hardness higher than the hardness HV10 = 224 level of Inconel 625 (registered trademark), and the effect of significantly reducing wear due to use. Play.

請求項3に記載の内燃機関燃焼室構成部品1の製造方法は、単一の肉盛溶接材料で肉盛溶接できるので、作業者が誤って肉盛溶接材料を使用する懸念がなく、溶接割れが生じる懸念が生じないという効果を奏する。また、予熱をしないので、施工時間短縮や省エネができるという効果を奏する。   The method of manufacturing the internal combustion engine combustion chamber component 1 according to claim 3 is capable of build-up welding with a single build-up welding material, so there is no concern that an operator mistakenly uses the build-up welding material, and weld cracking occurs. There is an effect that there is no concern about the occurrence of. In addition, since preheating is not performed, the construction time can be shortened and energy can be saved.

本発明の内燃機関の燃焼室を構成する構成部品の概要図である。It is a schematic diagram of the component which comprises the combustion chamber of the internal combustion engine of this invention. (a)は本発明合金Aのミクロ組織を示す顕微鏡写真で、(b)は比較合金2のミクロ組織を示す顕微鏡写真である。(A) is a micrograph showing the microstructure of the alloy A of the present invention, and (b) is a micrograph showing the microstructure of the comparative alloy 2. 肉盛溶接した合金マトリックス中のAlとNbと硬さとの関係を示す説明図である。It is explanatory drawing which shows the relationship between Al, Nb, and hardness in the overlay-welded alloy matrix. 肉盛溶接した合金マトリックス中のTiとNbと硬さとの関係を示す説明図である。It is explanatory drawing which shows the relationship between Ti, Nb, and hardness in the overlay-welded alloy matrix. 時効処理前及び後における肉盛厚さとビッカース硬度を示す説明図である。It is explanatory drawing which shows the build-up thickness and Vickers hardness before and after an aging treatment.

本発明である内燃機関の燃焼室7を構成する構成部品は、図1に示すように、内燃機関の燃焼室7を構成する構成部品である、弁棒2、シリンダーカバー4及びピストンヘッド6のうちの少なくとも1種以上の構成部品の燃焼室7側面に、C:0.001〜0.050質量%、Si:0.01〜0.50質量%、Mn:0.01〜0.50質量%、Cr:20.0〜30.0質量%、Mo:4.0〜12.0質量%、Nb:0.5〜4.0質量%、Fe:0.1〜6.0質量%を含有し、かつ、Al及びTiのうちの1種又は2種で合計0.8質量%を超〜2.0質量%を含有し、残部がNi及び不可避不純物からなるNi基肉盛用粉末合金(以下、本発明合金と記載することがある。)が肉盛されている。   As shown in FIG. 1, the components constituting the combustion chamber 7 of the internal combustion engine according to the present invention are the components constituting the combustion chamber 7 of the internal combustion engine, such as the valve stem 2, the cylinder cover 4, and the piston head 6. C: 0.001 to 0.050 mass%, Si: 0.01 to 0.50 mass%, Mn: 0.01 to 0.50 mass on the side of the combustion chamber 7 of at least one of the components. %, Cr: 20.0-30.0 mass%, Mo: 4.0-12.0 mass%, Nb: 0.5-4.0 mass%, Fe: 0.1-6.0 mass% A Ni-based overlaying powder alloy containing 0.8% by mass or more and 2.0% by mass in total of one or two of Al and Ti, the balance being Ni and inevitable impurities (Hereinafter, it may be described as an alloy of the present invention).

本発明は、内燃機関を構成する弁棒2、シリンダーカバー4及びピストンヘッド6のうちの少なくとも1種以上の燃焼室7側の面に、本発明合金を肉盛溶接した内燃機関燃焼室構成部品1である。   The present invention is an internal combustion engine combustion chamber component in which at least one of the valve rod 2, the cylinder cover 4 and the piston head 6 constituting the internal combustion engine is welded to the surface on the combustion chamber 7 side. 1.

また、本発明である内燃機関の燃焼室7の構成部品は、前記Ni基肉盛用粉末合金が肉盛された後に、600〜900℃で10〜20Hの時効処理を行い、その後の硬さをHV10=280以上有する。   Further, the components of the combustion chamber 7 of the internal combustion engine according to the present invention are subjected to aging treatment at 600 to 900 ° C. for 10 to 20 H after the Ni-based overlaying powder alloy is built up, and the hardness thereafter HV10 = 280 or more.

本発明である内燃機関の燃焼室7の構成部品は、舶用や自動車用などの内燃機関の燃焼室7に面する、触火面3を有する弁棒2、燃料噴射弁5周辺域を含む燃焼室7側面を有するシリンダーカバー4、及びピストンヘッド6とからなる。   The components of the combustion chamber 7 of the internal combustion engine according to the present invention include a valve rod 2 having a contact surface 3 facing the combustion chamber 7 of an internal combustion engine for ships, automobiles, etc., and combustion including the area around the fuel injection valve 5. It consists of a cylinder cover 4 having a side surface of the chamber 7 and a piston head 6.

そして、前記各構成部品の少なくとも1種以上の構成部品の燃焼室7側面には、重油等の石油から得られる燃料油の燃焼や爆発によって発生するVやSによる高温環境下での耐食性を有し、重油等の石油から得られる燃料油の燃焼や爆発によって発生する硬質の粉塵衝突による摩耗を生じにくくする硬度を有するNi基肉盛用粉末合金(本発明合金)を肉盛溶接する。   In addition, the side surface of the combustion chamber 7 of at least one component of each component has corrosion resistance in a high-temperature environment due to V or S generated by combustion or explosion of fuel oil obtained from petroleum such as heavy oil. Then, build-up welding is performed on a Ni-based overlaying powder alloy (the alloy of the present invention) having a hardness that makes it difficult to cause wear due to hard dust collision caused by combustion or explosion of fuel oil obtained from petroleum such as heavy oil.

前記Ni基肉盛用粉末合金(本発明合金)の各化学成分の含有量の範囲を限定した理由をそれぞれ以下に記載する。   The reasons for limiting the range of the content of each chemical component of the Ni-based overlaying alloy (invention alloy) will be described below.

C:0.001〜0.50質量%。CはCr、Ti、Nbと結合して炭化物を形成し、高温強度を高めるとともに耐摩耗性をもたらす効果を有する。合金中に0.001質量%未満では前記効果が得られなく、0.50質量%超では耐食性や耐熱性を劣化させるために、Cの含有量を0.001〜0.50質量%とする。   C: 0.001 to 0.50 mass%. C combines with Cr, Ti, and Nb to form carbides, and has the effect of increasing high temperature strength and providing wear resistance. If the amount is less than 0.001% by mass in the alloy, the above effect cannot be obtained. If the content exceeds 0.50% by mass, the corrosion resistance and heat resistance are deteriorated, so the C content is 0.001 to 0.50% by mass. .

Si:0.01〜0.50質量%。Siは脱酸材として添加するが、溶接性を劣化させるため上限を0.50質量%とし、Siの含有量を0.01〜0.50質量%とする。   Si: 0.01-0.50 mass%. Si is added as a deoxidizing material, but in order to deteriorate weldability, the upper limit is made 0.50% by mass and the Si content is made 0.01 to 0.50% by mass.

Mn:0.01〜0.50質量%。Mnは脱酸材として添加するが、増量添加してもその効果は飽和し、逆に材料内に介在物として酸化物を形成する傾向があるため、上限を0.50質量%とし、Siの含有量を0.01〜0.50質量%とする。   Mn: 0.01 to 0.50 mass%. Mn is added as a deoxidizing material, but the effect is saturated even when added in an increased amount, and conversely, there is a tendency to form oxides as inclusions in the material, so the upper limit is 0.50% by mass, The content is 0.01 to 0.50 mass%.

Cr:20.0〜30.0質量%。Crについては、緻密なCrの酸化膜を形成し、耐酸化性を向上させる元素であるため添加する。20.0質量%未満ではその効果は十分でないため下限を20.0質量%とし、30.0質量%超添加すると有害な金属間化合物を生成するため上限を30.0質量%とする。   Cr: 20.0-30.0 mass%. Since Cr is an element that forms a dense Cr oxide film and improves oxidation resistance, it is added. If the amount is less than 20.0% by mass, the effect is not sufficient, so the lower limit is 20.0% by mass, and if added over 30.0% by mass, a harmful intermetallic compound is produced, so the upper limit is 30.0% by mass.

Mo:4.0〜12.0質量%。Moは耐食性向上元素及び固溶強化元素として添加する。4.0質量%未満では効果が十分でないため下限を4.0質量%とし、12.0質量%超添加すると溶接性を劣化させ固溶量が飽和し、マトリックス中にネット状の金属間化合物を形成して耐食性を劣化させるため上限を12.0質量%とする。   Mo: 4.0-12.0 mass%. Mo is added as a corrosion resistance improving element and a solid solution strengthening element. If the amount is less than 4.0% by mass, the effect is not sufficient, so the lower limit is set to 4.0% by mass, and if added over 12.0% by mass, the weldability is deteriorated and the solid solution amount is saturated. The upper limit is made 12.0% by mass in order to form corrosion and deteriorate the corrosion resistance.

Nb:0.5〜4.0質量%。Nbは固溶強化、析出強化及びC元素を固定するための元素として添加する。0.5質量%未満では効果が十分でないので下限を0.5質量%とし、増量すると固溶量が飽和し、マトリックス中にネット状の金属間化合物を形成して耐食性を劣化させるため上限を4.0質量%とする。   Nb: 0.5-4.0 mass%. Nb is added as an element for solid solution strengthening, precipitation strengthening, and fixing C element. If the amount is less than 0.5% by mass, the effect is not sufficient, so the lower limit is set to 0.5% by mass. When the amount is increased, the solid solution amount is saturated, and a net-like intermetallic compound is formed in the matrix to deteriorate the corrosion resistance. 4.0% by mass.

Fe:0.1〜6.0質量%。Feは時効析出を促進し、Niの代替としてコストダウンに寄与する元素である。0.1質量%未満では効果が十分でないので下限を0.1質量%とし、増量添加すると耐食性や耐酸化性を劣化させるため上限を6.0質量%とする。   Fe: 0.1-6.0 mass%. Fe is an element that promotes aging precipitation and contributes to cost reduction as an alternative to Ni. If the amount is less than 0.1% by mass, the effect is not sufficient, so the lower limit is set to 0.1% by mass, and when added in an increased amount, the corrosion resistance and oxidation resistance are deteriorated, so the upper limit is set to 6.0% by mass.

Al+Ti:0.8質量%超〜2.0質量%。Al又はTiはともに時効処理によりγ’相すなわちNi+AlやNi+Tiを析出させ、材料に硬化をもたらす。添加量がわずかではγ’相の析出が少なく、期待する効果が得られないので、下限をAl及び/又はTiの合計で0.5質量%とする。一方、AlやTiの過大な添加はマトリックス中のNbの固溶量を減少させて硬さと耐食性の低下を招くとともに、γ’相とマトリックスとの整合性を高め、整合歪が減少し、整合歪に起因する硬化が不十分になるため、上限をAl及び/又はTiの合計で2.0質量%とする。   Al + Ti: more than 0.8% by mass to 2.0% by mass. Both Al and Ti precipitate the γ ′ phase, that is, Ni + Al or Ni + Ti, by aging treatment, thereby causing hardening of the material. If the addition amount is small, the precipitation of the γ ′ phase is small and the expected effect cannot be obtained, so the lower limit is made 0.5 mass% in total of Al and / or Ti. On the other hand, excessive addition of Al or Ti reduces the solid solution amount of Nb in the matrix, leading to a decrease in hardness and corrosion resistance, and also increases the consistency between the γ 'phase and the matrix, reducing the matching strain and matching. Since hardening due to strain becomes insufficient, the upper limit is made 2.0 mass% in total with Al and / or Ti.

次に、内燃機関の燃焼室7を構成する構成部品である、弁棒2、シリンダーカバー4及びピストンヘッド6うちの少なくとも1種以上の構成部品の燃焼室7側面に、前記Ni基肉盛用粉末合金を肉盛溶接する方法を、舶用内燃機関燃焼室構成部品1である排気弁棒2を対象として説明する。   Next, on the side surface of the combustion chamber 7 of at least one of the valve rod 2, the cylinder cover 4, and the piston head 6, which are components constituting the combustion chamber 7 of the internal combustion engine, A method for overlay welding a powder alloy will be described with respect to the exhaust valve rod 2 which is the combustion chamber component 1 for a marine internal combustion engine.

舶用内燃機関燃焼室構成部品1である排気弁棒2はSUH31等の耐熱鋼からなり、前記排気弁棒2の触火面3に対して、前記Ni基肉盛用粉末合金を使用して粉体プラズマ溶接を、前記触火面3を予熱せずに行う。そのときの粉体プラズマ溶接のビードの形成方法は、3層盛を施工する場合には、触火面3の中心部から外側方向に向かってビードを渦巻き状に施工し、1層目が完了したら、その上に2層目を、前記Ni基肉盛用粉末合金を使用して触火面3の中心部から外側方向に向かってビードを渦巻き状に施工し、さらに2層目が完了したら、その上に3層目を、前記Ni基肉盛用粉末合金を使用して触火面3の中心部から外側方向に向かってビードを渦巻き状に施工する。4層目、5層目そして6層目の肉盛溶接する場合においても前記Ni基肉盛用粉末合金を使用して同じようにビードを渦巻き状にする施工を繰り返す。   An exhaust valve rod 2 which is a combustion chamber component 1 for a marine internal combustion engine is made of heat-resistant steel such as SUH31, and the Ni-based overlaying powder alloy is used for the contact surface 3 of the exhaust valve rod 2 to form a powder. Body plasma welding is performed without preheating the contact surface 3. At the time, the method of forming the bead of powder plasma welding is to form a bead in a spiral shape from the center of the flaming surface 3 toward the outer side when the three-layer construction is performed, and the first layer is completed. Then, on the second layer, using the Ni-based overlaying powder alloy, a bead is constructed in a spiral shape from the center of the flaming surface 3 toward the outer side, and when the second layer is completed On the third layer, a bead is spirally applied from the center of the flaming surface 3 toward the outer side using the Ni-based overlaying powder alloy. In the case of overlay welding of the fourth layer, the fifth layer, and the sixth layer, the above-described Ni-based overlaying powder alloy is similarly used to make the beads spiral.

また、他の構成部品であるピストンヘッド6に対しては燃焼室7側の面の中心を軸に外側方向に向かってビードを渦巻き状に多層盛の施工を行い、シリンダーカバー4に対しては燃料噴射弁5周囲に直線状のビードを横方向に並列にかつ多層盛に形成したり、シリンダーカバー4の燃焼室7側の内壁面に下部から上方に向けて内周壁面に沿って螺旋状に積層していき1層目が完了したら、2層目を下部から上方に向けて螺旋状に積層していき、これをくり返しながら多層盛に施工する。   In addition, for the piston head 6 which is another component, a bead is spirally wound in an outward direction around the center of the surface on the combustion chamber 7 side, and for the cylinder cover 4 A linear bead is formed around the fuel injection valve 5 in parallel in a lateral direction and in a multi-layered manner, or spirally along the inner peripheral wall surface of the cylinder cover 4 on the inner wall surface on the combustion chamber 7 side from the bottom upward. When the first layer is completed, the second layer is spirally laminated from the bottom upward, and this is repeated and applied to the multilayer pile.

前記Ni基肉盛用粉末合金を、舶用や自動車用等の内燃機関の燃焼室7の構成部品の燃焼室7側の面に前記溶接施工方法に従って肉盛溶接することによって、前記各構成部品の耐食性をナイモニック80Aやインコネル625(登録商標)とほぼ同等のSアタック値及びVアタック値を有することができた。   The Ni-based overlaying powder alloy is overlay welded to the combustion chamber 7 side surface of the combustion chamber 7 component of an internal combustion engine for ships, automobiles, etc. according to the welding method, so that Corrosion resistance was able to have S attack value and V attack value almost equivalent to those of Nimonic 80A and Inconel 625 (registered trademark).

さらに、前記Ni基肉盛用粉末合金が肉盛された後に、600〜900℃の条件下で時効処理を行うことから、その後の硬さをHV10=280以上有すること可能となり、インコネル625(登録商標)の硬度を超え、硬質の粉塵の衝突に対する摩耗を進行しにくくすることができた。   Furthermore, since the aging treatment is performed under conditions of 600 to 900 ° C. after the Ni-based overlaying powder alloy is built up, it is possible to have a subsequent hardness of HV10 = 280 or more, and Inconel 625 (registered) The hardness of the trademark) was exceeded, and the wear against the collision of hard dust could be made difficult to progress.

次に、実施例及び比較例をあげて本発明を説明する。   Next, the present invention will be described with reference to examples and comparative examples.

実施例又は比較例に供した試験片の成分を表1に示す。表1において、実施例としての試験片を本発明合金A〜Fとして示し、比較例としての試験片を比較合金1〜8として示している。   Table 1 shows the components of the test pieces used in Examples or Comparative Examples. In Table 1, the test piece as an Example is shown as this invention alloy AF, and the test piece as a comparative example is shown as Comparative Alloys 1-8.

比較合金4はインコネル625(登録商標)とほぼ同等の成分を有する試験片であり、比較合金7又は8はナイモニック80Aとほぼ同等の成分を有する試験片である。   Comparative alloy 4 is a test piece having substantially the same components as Inconel 625 (registered trademark), and comparative alloy 7 or 8 is a test piece having substantially the same components as Nimonic 80A.

表1において、本発明合金A〜F、及び、比較合金1〜7のいずれかに供した試験片は、SUH31からなる外径250mm×厚み50mmの円柱形の肉盛用基板に、Ni基肉盛用粉末合金(本発明合金)を使用して、厚さ約6〜9mmからなる3層盛の粉体プラズマ溶接による肉盛溶接を行い製作した。そして、比較合金8はNi基肉盛用粉末合金(本発明合金)の粉末を肉盛溶接をせずに前記粉末を型に投入し溶解して固めた試験片である。   In Table 1, the test piece provided for any of the alloys A to F of the present invention and the comparative alloys 1 to 7 is formed on a columnar overlaying substrate made of SUH31 and having an outer diameter of 250 mm × thickness of 50 mm. Using a building powder alloy (alloy of the present invention), overlay welding was performed by three-layered powder plasma welding having a thickness of about 6 to 9 mm. The comparative alloy 8 is a test piece in which the powder of the Ni-based overlaying powder alloy (the alloy of the present invention) is poured into a mold without melting and solidified and solidified.

また、表1において、数字にアンダーラインのある箇所は本発明合金の含有量を規定した範囲外の量であることを示す。各成分の含有量の単位は質量%である。   Moreover, in Table 1, the part with an underline in a number shows that it is the quantity outside the range which prescribed | regulated content of this invention alloy. The unit of the content of each component is mass%.

Figure 2014111260
Figure 2014111260

ここで、ナイモニック80Aからなる粉末を溶解して固めた比較合金8を除く全ての粉末合金の溶接性を評価するために、肉盛溶接した試験片を切断し、断面観察を行なって溶接性を評価した。割れが確認されなければ溶接性がよいとして表2に「○」表示し、割れが確認された場合は溶接性が悪いとして表2に「×」表示した。   Here, in order to evaluate the weldability of all powder alloys except the comparative alloy 8 in which the powder made of Nimonic 80A was melted and hardened, the weld-welded test pieces were cut and the cross-sectional observation was performed to improve the weldability. evaluated. If cracks were not confirmed, “◯” was displayed in Table 2 because the weldability was good, and “X” was displayed in Table 2 because the weldability was poor when cracks were confirmed.

硬さの評価としては、肉盛溶接部から試験片を割り出し、本発明合金A乃至F、及び比較合金1乃至7に対しは1080℃で8時間保持し空冷させた固溶化処理と、700℃で16時間保ては、600〜900℃で10〜20H保持した後に空冷する時効処理を施工し、また比較合金8持し空冷させた時効処理を施工し、ビッカース硬さで確度測定を実施
した。本発明合金A乃至Fおよび比較合金1乃至7に施した時効処理条件は、本発明合金AおよびDならびに比較合金1および2に対しては600℃で20時間保持後空冷、本発明合金Fならびに比較合金6および7に対しては700℃で10時間保持後空冷、本発明合金BおよびEならびに比較合金4および5に対しては750℃で10時間保持後空冷、本発明合金Cならびに比較合金3に対しては900℃で10時間保持後空冷である。
For the evaluation of hardness, a test piece was indexed from the weld overlay, and the inventive alloys A to F and comparative alloys 1 to 7 were kept at 1080 ° C. for 8 hours and air-cooled, and 700 ° C. In the case of maintaining for 16 hours, an aging treatment for air cooling after holding at 600 to 900 ° C. for 10 to 20 H was applied, and an aging treatment for holding the comparative alloy 8 and air cooling was applied, and the accuracy was measured by Vickers hardness. . The aging treatment conditions applied to the alloys A to F of the present invention and the comparative alloys 1 to 7 were as follows: the alloys A and D of the present invention and the comparative alloys 1 and 2 were kept at 600 ° C. for 20 hours and then air-cooled. Air cooling after holding at 700 ° C. for 10 hours for comparative alloys 6 and 7, Alloys B and E of the present invention and air cooling after holding for 10 hours at 750 ° C. for comparative alloys 4 and 5, Alloy C and comparative alloy of the present invention 3 is air cooling after holding at 900 ° C. for 10 hours.

次に、耐食性の評価として、肉盛溶接部から試験片を割り出し、上述と同じ熱処理を施し、Sアタック及びVアタックによる耐食性評価試験に供した。これらの評価は腐食減量による定量評価である。   Next, as an evaluation of the corrosion resistance, a test piece was determined from the overlay welded portion, subjected to the same heat treatment as described above, and subjected to a corrosion resistance evaluation test using an S attack and a V attack. These evaluations are quantitative evaluations by corrosion weight loss.

Sアタック及びVアタックによる耐食性評価試験として、Sアタック試験は、90%NaSO+10%NaClの合成灰中に16mm×12mm×4mmの大きさの試験片を埋め込み、次いで800℃で20時間保持して腐食減量を測定して求め、結果を表2に示す。また、Vアタック試験は、85%V+10%NaSOの合成灰中に16mm×12mm×4mmの大きさの試験片を埋め込み、次いで800℃で20時間保持して腐食減量を測定して求め、結果を表2に示す。 As a corrosion resistance evaluation test by S attack and V attack, the S attack test was performed by embedding a test piece of 16 mm × 12 mm × 4 mm in synthetic ash of 90% Na 2 SO 4 + 10% NaCl, and then at 800 ° C. for 20 hours. The results are shown in Table 2. In the V attack test, a test piece having a size of 16 mm × 12 mm × 4 mm was embedded in 85% V 2 O 5 + 10% Na 2 SO 4 synthetic ash, and then maintained at 800 ° C. for 20 hours to reduce the corrosion weight. The results are shown in Table 2.

Figure 2014111260
Figure 2014111260

表2より、溶接性評価をみると、本発明合金である合金名A乃至Fのいずれの試験片においても溶接性は良好であった。比較合金ではナイモニック80Aと同等成分であり、C含有量が0.50質量%を超えている比較合金7の溶接性が悪い評価であった。ここで、比較合金8は肉盛溶接を施工していないので溶接性の評価対象外である。   From Table 2, when the weldability evaluation is seen, the weldability was good in any of the test pieces of alloy names A to F which are the alloys of the present invention. The comparative alloy was a component equivalent to Nimonic 80A, and the weldability of comparative alloy 7 having a C content exceeding 0.50% by mass was evaluated as poor. Here, since the comparative alloy 8 is not subjected to overlay welding, it is out of the evaluation target of weldability.

表2より、耐食性である耐Vアタック性をみると、本発明合金A乃至F、及び、比較合金1乃至8のいずれの合金とも、インコネル625(登録商標)と同等の成分からなる比較合金4、又はナイモニック80Aと同等の成分からなる比較合金8の耐Vアタック性と同等の耐Vアタック性を有することが示されている。   From Table 2, it can be seen that the corrosion resistance, V attack resistance, is compared to Inconel 625 (Registered Trademark) in any of Alloys A to F of the present invention and Comparative Alloys 1 to 8. In addition, it is shown that the comparative alloy 8 made of the same component as the Nimonic 80A has the V attack resistance equivalent to the V attack resistance.

次に、耐Sアタック性をみると、表2より、本発明合金A乃至Fのいずれも、インコネル625(登録商標)と同等の成分からなる比較合金4、又はナイモニック80Aと同等の成分からなる比較合金8と同等の耐Sアタック性を有することが示されている。一方比較合金をみると、Mo含有量が12.0質量%以下でNb含有量が4.0質量%以下でAl+Tiの合計含有量が2.0質量%を超える比較合金1、2、3又は7、Nb含有量が4.0質量%以下でAl+Tiの合計含有量が2.0質量%を以下でMo含有量が12.0質量%を超える比較合金5、又はMo含有量が12.0質量%以下でAl+Tiの合計含有量が2.0質量%以下でNb含有量が4.0質量%を超える比較合金6は、いずれも耐Sアタック性が本発明合金A〜Fのいずれかに比較して約10倍から約100倍のレベルで劣る評価が示されている。   Next, looking at the S-attack resistance, from Table 2, all of the alloys A to F of the present invention are composed of the comparative alloy 4 composed of the same component as Inconel 625 (registered trademark) or the component equivalent to the Nimonic 80A. It has been shown to have S attack resistance equivalent to that of Comparative Alloy 8. On the other hand, looking at the comparative alloy, comparative alloys 1, 2, 3 or Mo whose Mo content is 12.0% by mass or less, Nb content is 4.0% by mass or less and the total content of Al + Ti exceeds 2.0% by mass 7. Comparative alloy 5 having a Nb content of 4.0% by mass or less, a total content of Al + Ti of 2.0% by mass or less and a Mo content of more than 12.0% by mass, or a Mo content of 12.0% The comparative alloy 6 in which the total content of Al + Ti is 2.0% by mass or less and the Nb content is more than 4.0% by mass is less than 5% by mass, and the S-attack resistance is any of the alloys A to F of the present invention. Inferior evaluation is shown at a level of about 10 times to about 100 times.

硬度をみると、表2より、Al+Tiの合計含有量が0.5質量%以上の本発明合金A乃至F、比較合金1〜3、及び比較合金5〜8のいずれの合金も、Al+Tiの合計含有量が0.5質量%未満の比較合金4の硬度HV10=224を少なくともビッカース硬度で50以上硬度が高まった評価が得られたことが示されている。また、肉盛溶接したナイモニック80Aよりビッカース硬度(HV10)で30ほど硬度が高い。これらのことから、本発明合金A〜FのいずれもAl+Tiの合計含有量を0.5質量%以上とすることによって、長期使用による摩耗の進行で耐久性に課題があったインコネル625(登録商標)と同等成分を有する比較合金4に比較して耐久性を改善させることができた。   Looking at the hardness, from Table 2, the alloys Al to Ti of the present invention having a total Al + Ti content of 0.5% by mass or more, Comparative Alloys 1 to 3, and Comparative Alloys 5 to 8 are all Al + Ti. It is shown that an evaluation that the hardness HV10 = 224 of the comparative alloy 4 having a content of less than 0.5% by mass is increased by at least 50 Vickers hardness is obtained. Further, the hardness is higher by about 30 in terms of Vickers hardness (HV10) than the welded Nimonic 80A. From these facts, in all of the alloys A to F of the present invention, by setting the total content of Al + Ti to 0.5% by mass or more, Inconel 625 (registered trademark) has a problem in durability due to the progress of wear due to long-term use. The durability could be improved as compared with Comparative Alloy 4 having the same component as).

次に、600〜900℃で10〜20Hの時効処理による硬化をみるために、熱処理前と熱処理後のビッカース硬度を測定し、その結果を表3又は図5に示す。表3に本発明合金Aのビッカース硬度を示し、そのビッカース硬度の単位は、HV10である。   Next, in order to observe hardening by aging treatment at 600 to 900 ° C. and 10 to 20 H, Vickers hardness before and after heat treatment was measured, and the result is shown in Table 3 or FIG. Table 3 shows the Vickers hardness of the alloy A of the present invention, and the unit of the Vickers hardness is HV10.

Figure 2014111260
Figure 2014111260

表3又は図5より、肉盛厚さが異なっても熱処理によって、ビッカース硬度は、熱処理前のビッカース硬度eに対して熱処理後のビッカース硬度fの方が約100ほど硬度が高くなったことが示されている。   From Table 3 or FIG. 5, it was found that the Vickers hardness after the heat treatment was higher by about 100 in the Vickers hardness e after the heat treatment than in the Vickers hardness e before the heat treatment even when the build-up thickness was different. It is shown.

次に、C、Si、Mn、Cr、Nb及びMoのそれぞれの含有量をほぼ同じように設定し、Al及びTiのそれぞれの含有量を異なるように設定した本発明合金と比較合金との粉末状態、肉盛溶接し時効硬化後のSEMによる組織観察によるマトリックス15、粒状化合物16又はネット状金属間化合物(網状化合物とも記載する。)17の化学成分の分析を行った。表3に、本発明合金A、比較合金1及び2のマトリックス15、粉末化合物16又はネット状金属間化合物17の化学成分を表示し、図2(a)に本発明合金Aについて、及び図2(b)に比較合金2について、SEMによる組織観察によるそれぞれのミクロ組織写真を示している。表4の単位は質量%である。   Next, powders of the alloys of the present invention and comparative alloys in which the respective contents of C, Si, Mn, Cr, Nb and Mo are set to be substantially the same, and the respective contents of Al and Ti are set to be different. The chemical components of the matrix 15, the granular compound 16 or the net-like intermetallic compound (also referred to as a network compound) 17 were analyzed by state observation, structure welding by age-hardening and SEM observation after age hardening. Table 3 shows the chemical components of the matrix A, the powder compound 16 or the net-like intermetallic compound 17 of the alloy A of the present invention, the comparative alloys 1 and 2, and the alloy A of the present invention in FIG. (B) shows a microstructural photograph of the comparative alloy 2 by observation of the structure by SEM. The unit of Table 4 is mass%.

図2(a)は本発明合金AのSEM写真10を示している。Al+Tiの合計含有量が2.0質量以下の本発明合金Aの図2(a)において、薄灰色の部分がマトリックス15で、黒色の粒状の部分が粒状化合物16の出現した箇所を示しており、該粒状化合物16の周囲のわずかな範囲が腐食していって脱落すると推定される。一方、図2(b)は比較合金2のSEM写真11を示している。Al+Tiの合計含有量が2.0質量超の比較合金2の図2(b)において、濃灰色の部分がマトリックス15で、薄灰色の縞状の部分がネット状金属間化合物17の出現した範囲を示しており、該ネット状金属間化合物17の広い範囲が腐食されて脱落すると推定される。したがって、本発明合金Aは粒状化合物16が生成されて脱落する範囲が狭く、比較合金2はネット状金属間化合物17が生成されて脱落する範囲が広いことから、比較合金2の方が摩耗の進行が早いと推定されるので、ネット状金属間化合物17を出現させないことが望ましく、そのためにはAl+Tiの合計含有量が2.0質量以下とするのがよい。   FIG. 2A shows an SEM photograph 10 of the alloy A of the present invention. In FIG. 2A of the alloy A of the present invention having a total content of Al + Ti of 2.0 mass or less, the light gray portion is the matrix 15 and the black granular portion is the portion where the granular compound 16 appears. It is estimated that a small area around the granular compound 16 is corroded and dropped off. On the other hand, FIG. 2B shows an SEM photograph 11 of the comparative alloy 2. In FIG. 2B of the comparative alloy 2 having a total content of Al + Ti exceeding 2.0 mass, the dark gray portion is the matrix 15 and the light gray striped portion is the range in which the net-like intermetallic compound 17 appears. It is estimated that a wide range of the net-like intermetallic compound 17 is corroded and dropped off. Accordingly, the alloy A of the present invention has a narrow range in which the particulate compound 16 is generated and drops off, and the comparative alloy 2 has a wider range in which the net-like intermetallic compound 17 is generated and drops off. Since the progress is presumed to be fast, it is desirable not to allow the net-like intermetallic compound 17 to appear. For that purpose, the total content of Al + Ti is preferably 2.0 mass or less.

Figure 2014111260
Figure 2014111260

表4から、本発明合金A、比較合金1及び2のいずれにおいても、マトリックス15中にはNbやMoの固溶量が少なく、粒状化合物16又はネット状金属間化合物17はNi、Cr、Mo及びNbからなる化合物で構成されている。このことから、粒状化合物16又はネット状金属間化合物17は、マトリックス15中に固溶しきれなかったNbやMoによって生成されたものと考えられる。   From Table 4, in both the alloy A of the present invention and the comparative alloys 1 and 2, the solid solution amount of Nb and Mo is small in the matrix 15, and the granular compound 16 or the net intermetallic compound 17 is Ni, Cr, Mo. And a compound consisting of Nb. From this, it is considered that the granular compound 16 or the net-like intermetallic compound 17 is generated by Nb or Mo that could not be completely dissolved in the matrix 15.

また、表4から、本発明合金A、比較合金1及び2のいずれにおいてもマトリックス15中の固溶しているMo含有量はAlとTiの合計含有量が異なるのにかかわらず約8〜9質量%でありほぼ同じ含有量を示している。一方、マトリックス15中のNbの含有量は、粉末状態では3.86質量%であったものが、AlとTiの合計含有量が1.64質量%の本発明合金Aの場合が2.50質量%となり、AlとTiの合計含有量が3.09質量%の比較合金1の場合が2.09質量%となり、AlとTiの合計含有量が5.01質量%の比較合金2の場合が1.42質量%となることから、マトリックス15中のNbの固溶度は添加するAlやTiに依存し、前記添加量が多いほどNbの固溶量が減じられる傾向が示された。マトリックス15中に固溶しきれなかった前記Nbが粒状化合物16、又は網状化合物17であるネット状金属間化合物を生成すると考えられる。また、図2から、Al+Tiの合計含有量が2.0質量以下の場合は粒状化合物16が生成され、Al+Tiの合計含有量が2.0質量超の場合はネット状金属間化合物17が生成され、さらにAl+Tiの合計含有量が増加するにしたがいネット状金属間化合物17の範囲が広くなる。このことから、Al+Tiの合計含有量が3.09質量%の比較合金1のネット状金属間化合物の範囲は小であり、Al+Tiの合計含有量が5.01質量%の比較合金2のネット状金属間化合物の範囲は大となる。   Further, from Table 4, the Mo content in the matrix 15 in the alloy A and the comparative alloys 1 and 2 is about 8 to 9 regardless of the total content of Al and Ti. It is the mass% and has shown almost the same content. On the other hand, the Nb content in the matrix 15 was 3.86% by mass in the powder state, but 2.50% in the case of the alloy A of the present invention in which the total content of Al and Ti is 1.64% by mass. In the case of Comparative Alloy 1 with a total content of Al and Ti of 2.09% by mass and Comparative Alloy 2 with a total content of Al and Ti of 5.01% by mass 1.42% by mass, the solid solubility of Nb in the matrix 15 depends on Al and Ti to be added, and the amount of Nb solid solution tends to decrease as the amount added increases. It is considered that the Nb that cannot be completely dissolved in the matrix 15 generates a net-like intermetallic compound in which the granular compound 16 or the network compound 17 is formed. Further, from FIG. 2, when the total content of Al + Ti is 2.0 mass or less, a granular compound 16 is generated, and when the total content of Al + Ti is more than 2.0 mass, a net-like intermetallic compound 17 is generated. Furthermore, as the total content of Al + Ti increases, the range of the net-like intermetallic compound 17 becomes wider. From this, the range of the net intermetallic compound of the comparative alloy 1 having a total content of Al + Ti of 3.09% by mass is small, and the net shape of the comparative alloy 2 having a total content of Al + Ti of 5.01% by mass. The range of intermetallic compounds is large.

表4から、粒状化合物16又はネット状金属間化合物17が成分分析結果からNi+Cr+Mo+Nb系化合物であることが示されたことから、Al+Tiの合計含有量が2.0質量%超になると、マトリックス15中のNbの固溶量が減少し、Nbが他の元素と結びついて化合物として分布しNi+Cr+Mo+Nb系化合物を析出させていることを示している。   Table 4 shows that the granular compound 16 or the net-like intermetallic compound 17 is a Ni + Cr + Mo + Nb-based compound from the result of component analysis. Therefore, when the total content of Al + Ti exceeds 2.0% by mass, the matrix 15 This indicates that the amount of Nb solid solution decreases, Nb is combined with other elements and distributed as a compound, and a Ni + Cr + Mo + Nb compound is precipitated.

また、表2において、本発明合金Aの硬度はHV10=320に対して、比較合金1はHV10=409で、比較合金2はHV10=585が示されている。また、表2において、本発明合金AのSアタック腐食量は0.34g/m/Hに対して、比較合金1は216.49g/m/Hで、比較合金2は387.69g/m/Hであることが示されている。これらのことから、AlとTiの合計含有量が2.0質量%を超えると、ネット状金属間化合物16が多く析出し、硬度が高くなるが、Sアタック腐食量が増加することが示された。 In Table 2, the hardness of the alloy A of the present invention is HV10 = 320, the comparative alloy 1 is HV10 = 409, and the comparative alloy 2 is HV10 = 585. In Table 2, the S attack corrosion amount of the alloy A of the present invention is 0.34 g / m 2 / H, the comparative alloy 1 is 216.49 g / m 2 / H, and the comparative alloy 2 is 387.69 g / H. It is shown to be m 2 / H. From these facts, it is shown that when the total content of Al and Ti exceeds 2.0% by mass, a large amount of net-like intermetallic compound 16 precipitates and the hardness increases, but the S attack corrosion amount increases. It was.

図3に、マトリックス15中のAl含有量とマトリックス15中のNb含有量との関係を線aで示し、マトリックス15中のAl含有量と時効硬さとの関係を線bで示して、マトリックス15中のAlとNbと硬さの関係を示している。また、図4に、マトリックス15中のTi含有量とマトリックス15中のNb含有量との関係を線cで示し、マトリックス15中のTi含有量と時効硬さとの関係を線dで示して、マトリックス15中のTiとNbと硬さの関係を示している。図3又は図4から、Al又はTiが増加すると、合金の時効硬さは高くなるが、マトリックス15中のNbの固溶量が減少する傾向が示されている。このことは、AlやTiの増加は、網状化合物17であるネット状金属間化合物16の生成を促し、耐Sアタック性等の耐食性を悪化させるものと考えられる。   In FIG. 3, the relationship between the Al content in the matrix 15 and the Nb content in the matrix 15 is indicated by a line a, and the relationship between the Al content in the matrix 15 and the aging hardness is indicated by a line b. The relationship between Al, Nb, and hardness is shown. Further, in FIG. 4, the relationship between the Ti content in the matrix 15 and the Nb content in the matrix 15 is indicated by a line c, and the relationship between the Ti content in the matrix 15 and the age hardness is indicated by a line d. The relationship between Ti and Nb in the matrix 15 and the hardness is shown. FIG. 3 or FIG. 4 shows that when Al or Ti increases, the age hardness of the alloy increases, but the amount of Nb in the matrix 15 tends to decrease. This is considered that the increase in Al and Ti promotes the formation of the net-like intermetallic compound 16 which is the network-like compound 17 and deteriorates the corrosion resistance such as S attack resistance.

したがって、舶用や自動車用などの内燃機関の燃焼室7に面する、触火面3を有する弁棒2、燃料噴射弁5周辺域を含む燃焼室7側面を有するシリンダーカバー4、及びピストンヘッド6のうちの少なくとも1種以上の構成部品に本発明合金を肉盛溶接した内燃機関の燃焼室7の構成部品は、表2に示すように良好な溶接品質を有し、耐Vアタック性及び耐Sアタック性はインコネル625(登録商標)やナイモニック80Aと同等の耐食性を有し、硬度はインコネル625(登録商標)よりビッカース硬度(HV10)で少なくとも50以上硬度が高く、かつ肉盛溶接したナイモニック80Aよりビッカース硬度(HV10)で30ほど硬度が高いことが示された。   Therefore, the valve rod 2 having the flaming surface 3 facing the combustion chamber 7 of the internal combustion engine for marine use or automobile use, the cylinder cover 4 having the side surface of the combustion chamber 7 including the peripheral region of the fuel injection valve 5, and the piston head 6 As shown in Table 2, the components of the combustion chamber 7 of the internal combustion engine in which the alloy of the present invention is welded to at least one of the components of the present invention have good welding quality, V attack resistance and resistance. The S attack property is equivalent to the corrosion resistance of Inconel 625 (registered trademark) and Nimonic 80A, the hardness is at least 50 or more Vickers hardness (HV10) than Inconel 625 (registered trademark), and the Nimonic 80A is welded by overlay welding. A higher Vickers hardness (HV10) of 30 was shown.

1 内燃機関燃焼室構成部品
2 弁棒
3 触火面
4 シリンダーカバー
5 燃料噴射弁
6 ピストンヘッド
7 燃焼室
10 SEM写真
11 SEM写真
15 マトリックス
16 粒状化合物
17 網状化合物(ネット状金属間化合物)
DESCRIPTION OF SYMBOLS 1 Combustion chamber component of internal combustion engine 2 Valve rod 3 Contact surface 4 Cylinder cover 5 Fuel injection valve 6 Piston head 7 Combustion chamber 10 SEM photograph 11 SEM photograph 15 Matrix 16 Granular compound 17 Reticulated compound (net-like intermetallic compound)

Claims (3)

内燃機関の燃焼室を構成する構成部品である、弁棒、シリンダーカバー及びピストンヘッドのうちの少なくとも1種以上の構成部品の燃焼室側面に、C:0.001〜0.050質量%、Si:0.01〜0.50質量%、Mn:0.01〜0.50質量%、Cr:20.0〜30.0質量%、Mo:4.0〜12.0質量%、Nb:0.5〜4.0質量%、Fe:0.1〜6.0質量%を含有し、かつ、Al及びTiのうちの1種又は2種で合計0.8質量%超〜2.0質量%を含有し、残部がNi及び不可避不純物からなるNi基肉盛用粉末合金が肉盛されたことを特徴とする内燃機関燃焼室構成部品。   C: 0.001 to 0.050% by mass, Si on the side of the combustion chamber of at least one of the valve rod, cylinder cover, and piston head, which are components constituting the combustion chamber of the internal combustion engine : 0.01 to 0.50 mass%, Mn: 0.01 to 0.50 mass%, Cr: 20.0 to 30.0 mass%, Mo: 4.0 to 12.0 mass%, Nb: 0 0.5 to 4.0% by mass, Fe: 0.1 to 6.0% by mass, and a total of more than 0.8% by mass to 2.0% by mass of one or two of Al and Ti An internal combustion engine combustion chamber component comprising a Ni-based overlaying powder alloy comprising Ni and the balance of Ni and inevitable impurities. 前記Ni基肉盛用粉末合金が肉盛された後に、600〜900℃で10〜20Hの時効処理を行い、その後の硬さがHV10=280以上であることを特徴とする請求項1に記載の内燃機関燃焼室構成部品。   2. The aging treatment of 10 to 20 H is performed at 600 to 900 ° C. after the Ni-based overlaying powder alloy is built up, and the subsequent hardness is HV10 = 280 or more. Internal combustion engine combustion chamber components. 内燃機関の燃焼室に面する構成部品である、弁棒、シリンダーカバー及びピストンヘッドのうちの少なくとも1種以上の構成部品の燃焼室側の面に、肉盛溶接材料として、C:0.001〜0.050質量%、Si:0.01〜0.50質量%、Mn:0.01〜0.50質量%、Cr:20.0〜30.0質量%、Mo:4.0〜12.0質量%、Nb:0.5〜4.0質量%、Fe:0.1〜6.0質量%を含有し、かつ、Al及びTiのうちの1種又は2種で合計0.8質量%を超〜2.0質量を含有し、残部がNi及び不可避不純物からなるNi基肉盛用粉末合金を使用して粉体プラズマ溶接をし、前記粉体プラズマ溶接時に、予熱をすることなく前記溶接を開始し、同一の肉盛溶接材料で多層肉盛を実施し、前記粉体プラズマ溶接後に600〜900℃で10〜20Hの時効処理を行うことを特徴とする内燃機関燃焼室構成部品の製造方法。   As a build-up welding material, C: 0.001 is formed on the surface of the combustion chamber side of at least one of the valve rod, cylinder cover, and piston head, which are components facing the combustion chamber of the internal combustion engine. To 0.050 mass%, Si: 0.01 to 0.50 mass%, Mn: 0.01 to 0.50 mass%, Cr: 20.0 to 30.0 mass%, Mo: 4.0 to 12 0.0% by mass, Nb: 0.5 to 4.0% by mass, Fe: 0.1 to 6.0% by mass, and one or two of Al and Ti in total 0.8 Powder plasma welding is performed using a Ni-based overlaying powder alloy containing more than 2.0% by mass and the balance being Ni and inevitable impurities, and preheating is performed during the powder plasma welding. The welding is started, and multilayer overlaying is performed with the same overlay welding material, and the powder plasma welding is performed. Engine combustion chamber components manufacturing method, which comprises carrying out the aging treatment 10~20H at 600 to 900 ° C. to.
JP2012265886A 2012-12-05 2012-12-05 Internal combustion engine combustion chamber component and method for manufacturing the same Pending JP2014111260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012265886A JP2014111260A (en) 2012-12-05 2012-12-05 Internal combustion engine combustion chamber component and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012265886A JP2014111260A (en) 2012-12-05 2012-12-05 Internal combustion engine combustion chamber component and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2014111260A true JP2014111260A (en) 2014-06-19

Family

ID=51168819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012265886A Pending JP2014111260A (en) 2012-12-05 2012-12-05 Internal combustion engine combustion chamber component and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2014111260A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014111265A (en) * 2012-12-05 2014-06-19 Sanyo Special Steel Co Ltd Cladding powder alloy
JP2016053197A (en) * 2014-09-04 2016-04-14 日立金属株式会社 HIGH STRENGTH Ni-BASED ALLOY

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014111265A (en) * 2012-12-05 2014-06-19 Sanyo Special Steel Co Ltd Cladding powder alloy
JP2016053197A (en) * 2014-09-04 2016-04-14 日立金属株式会社 HIGH STRENGTH Ni-BASED ALLOY

Similar Documents

Publication Publication Date Title
US10577680B2 (en) Fabricable, high strength, oxidation resistant Ni—Cr—Co—Mo—Al alloys
JP5742447B2 (en) High hardness overlaying alloy powder
JP5353716B2 (en) Austenitic heat-resistant cast steel and exhaust system parts composed thereof
US7651575B2 (en) Wear resistant high temperature alloy
US20030005981A1 (en) Ni-base heat resistant alloy and welded joint thereof
EP2781612A1 (en) Seamless austenite heat-resistant alloy tube
JP6011098B2 (en) Manufacturing method of engine exhaust valve for large ship
JP6818978B2 (en) Exhaust valve rod repair method
JP2006225756A (en) Heat resistant alloy for exhaust valve enduring use at 900°c and exhaust valve using the alloy
US8883072B2 (en) Ni-base alloy, high-temperature member for steam turbine and welded rotor for turbine using the same, and method for manufacturing the same
JP5622165B2 (en) Powder alloy for overlay thermal spraying with excellent wear resistance and high temperature corrosion resistance
KR101563533B1 (en) Ni-Cr-Co-BASED ALLOY HAVING HIGH-TEMPERATURE CORROSION RESISTANCE PROPERTIES, AND POPPET VALVE HAVING SURFACE MODIFIED WITH SAME
JP2019531414A (en) Vermicular cast iron alloy and internal combustion engine head
US6852176B2 (en) Wear-resistant, corrosion-resistant cobalt-based alloys
JP2014111260A (en) Internal combustion engine combustion chamber component and method for manufacturing the same
JP2014111265A (en) Cladding powder alloy
CN113084457A (en) Metallographic strengthening manufacturing method of piston
JP3542702B2 (en) Valve stem for diesel engine
JP2010234397A (en) Welding material and welded rotor
JP3175779U (en) Exhaust valve rod for diesel engines, etc.
JP4823652B2 (en) Welding material and roll for continuous casting roll overlay
JP6132974B2 (en) Exhaust valve rod for internal combustion engine and method for producing the same
JP7476668B2 (en) Ni-based alloy, Ni-based alloy product and manufacturing method thereof
JP3191104U (en) Exhaust valve rod for internal combustion engine
JP2018149545A (en) Nickel alloy for padding