JP6132974B2 - Exhaust valve rod for internal combustion engine and method for producing the same - Google Patents
Exhaust valve rod for internal combustion engine and method for producing the same Download PDFInfo
- Publication number
- JP6132974B2 JP6132974B2 JP2016510555A JP2016510555A JP6132974B2 JP 6132974 B2 JP6132974 B2 JP 6132974B2 JP 2016510555 A JP2016510555 A JP 2016510555A JP 2016510555 A JP2016510555 A JP 2016510555A JP 6132974 B2 JP6132974 B2 JP 6132974B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust valve
- valve rod
- resistant
- temperature corrosion
- contact surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 238000005260 corrosion Methods 0.000 claims description 126
- 239000000463 material Substances 0.000 claims description 126
- 230000007797 corrosion Effects 0.000 claims description 124
- 229910052751 metal Inorganic materials 0.000 claims description 99
- 239000002184 metal Substances 0.000 claims description 99
- 229910000601 superalloy Inorganic materials 0.000 claims description 72
- 239000002360 explosive Substances 0.000 claims description 69
- 229910000831 Steel Inorganic materials 0.000 claims description 46
- 239000010959 steel Substances 0.000 claims description 46
- 229910052804 chromium Inorganic materials 0.000 claims description 41
- 229910045601 alloy Inorganic materials 0.000 claims description 34
- 239000000956 alloy Substances 0.000 claims description 34
- 229910052759 nickel Inorganic materials 0.000 claims description 24
- 229910001220 stainless steel Inorganic materials 0.000 claims description 24
- 239000010935 stainless steel Substances 0.000 claims description 24
- 229910001235 nimonic Inorganic materials 0.000 claims description 19
- 238000004880 explosion Methods 0.000 claims description 18
- 238000003466 welding Methods 0.000 claims description 15
- 238000005304 joining Methods 0.000 claims description 11
- 229910000734 martensite Inorganic materials 0.000 claims description 5
- 239000010953 base metal Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 12
- 238000005336 cracking Methods 0.000 description 9
- 150000002739 metals Chemical class 0.000 description 8
- 230000008646 thermal stress Effects 0.000 description 8
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 6
- 229910001026 inconel Inorganic materials 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- 230000003746 surface roughness Effects 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 239000000295 fuel oil Substances 0.000 description 3
- 239000003502 gasoline Substances 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- SPSSULHKWOKEEL-UHFFFAOYSA-N 2,4,6-trinitrotoluene Chemical compound CC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O SPSSULHKWOKEEL-UHFFFAOYSA-N 0.000 description 2
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- TZRXHJWUDPFEEY-UHFFFAOYSA-N Pentaerythritol Tetranitrate Chemical compound [O-][N+](=O)OCC(CO[N+]([O-])=O)(CO[N+]([O-])=O)CO[N+]([O-])=O TZRXHJWUDPFEEY-UHFFFAOYSA-N 0.000 description 2
- 229910001347 Stellite Inorganic materials 0.000 description 2
- AHICWQREWHDHHF-UHFFFAOYSA-N chromium;cobalt;iron;manganese;methane;molybdenum;nickel;silicon;tungsten Chemical compound C.[Si].[Cr].[Mn].[Fe].[Co].[Ni].[Mo].[W] AHICWQREWHDHHF-UHFFFAOYSA-N 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- 238000005474 detonation Methods 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000000015 trinitrotoluene Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- POCJOGNVFHPZNS-ZJUUUORDSA-N (6S,7R)-2-azaspiro[5.5]undecan-7-ol Chemical compound O[C@@H]1CCCC[C@]11CNCCC1 POCJOGNVFHPZNS-ZJUUUORDSA-N 0.000 description 1
- XTFIVUDBNACUBN-UHFFFAOYSA-N 1,3,5-trinitro-1,3,5-triazinane Chemical compound [O-][N+](=O)N1CN([N+]([O-])=O)CN([N+]([O-])=O)C1 XTFIVUDBNACUBN-UHFFFAOYSA-N 0.000 description 1
- BSPUVYFGURDFHE-UHFFFAOYSA-N Nitramine Natural products CC1C(O)CCC2CCCNC12 BSPUVYFGURDFHE-UHFFFAOYSA-N 0.000 description 1
- SNIOPGDIGTZGOP-UHFFFAOYSA-N Nitroglycerin Chemical compound [O-][N+](=O)OCC(O[N+]([O-])=O)CO[N+]([O-])=O SNIOPGDIGTZGOP-UHFFFAOYSA-N 0.000 description 1
- 239000000006 Nitroglycerin Substances 0.000 description 1
- 239000000026 Pentaerythritol tetranitrate Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000003483 aging Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- -1 composed of 60% Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229960003711 glyceryl trinitrate Drugs 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- POCJOGNVFHPZNS-UHFFFAOYSA-N isonitramine Natural products OC1CCCCC11CNCCC1 POCJOGNVFHPZNS-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000002828 nitro derivatives Chemical class 0.000 description 1
- UZGLIIJVICEWHF-UHFFFAOYSA-N octogen Chemical compound [O-][N+](=O)N1CN([N+]([O-])=O)CN([N+]([O-])=O)CN([N+]([O-])=O)C1 UZGLIIJVICEWHF-UHFFFAOYSA-N 0.000 description 1
- 229960004321 pentaerithrityl tetranitrate Drugs 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L3/00—Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
- F01L3/02—Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/06—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of high energy impulses, e.g. magnetic energy
- B23K20/08—Explosive welding
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/056—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/058—Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/06—Alloys based on chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L3/00—Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
- F01L3/02—Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
- F01L3/04—Coated valve members or valve-seats
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2303/00—Manufacturing of components used in valve arrangements
- F01L2303/01—Tools for producing, mounting or adjusting, e.g. some part of the distribution
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2820/00—Details on specific features characterising valve gear arrangements
- F01L2820/01—Absolute values
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Description
本発明は、船舶の各種ディーゼル機関等の内燃機関の排気弁棒及びその製造方法に関する。 The present invention relates to an exhaust valve rod for an internal combustion engine such as various diesel engines for ships and a method for manufacturing the same.
従来、船舶の各種ディーゼル機関やガソリン機関の排気弁棒には、マルテンサイト系耐熱鋼のSUH1、3、4またはオーステナイト系耐熟鋼のSUH31、37、SNCrWの各種を使用し、弁棒材料のシート面にCo系ステライトまたはNi系でコルモノイ等の盛金材が使用されている。 Conventionally, various kinds of martensitic heat-resistant steels SUH1, 3, 4 or austenitic heat-resistant steels SUH31, 37, SNCrW are used as exhaust valve rods for various diesel engines and gasoline engines of ships. Coal stellite or Ni-based metal plating such as colmonoy is used on the sheet surface.
排気弁棒は、ディーゼル機関やガソリン機関の中で最重要な部品で、かつ高価な部品であり、排気弁棒の寿命で船主経済に占めるウェートはかなり大きいものがある。したがって、これまでに排気弁棒の寿命延長のための試みは常になされてきた。 The exhaust valve rod is the most important and expensive component in a diesel engine or a gasoline engine, and the weight of the exhaust valve rod in the shipowner's economy is considerably large. Thus, attempts have been made to extend the life of the exhaust valve rod so far.
過去に、焼結ステライト弁シートの高温強度を上げた実機試験で、16,000Hr経過後もそのシート面は健全で圧痕が無く、引き続き使用に供した実績があることから、排気弁棒はシート面の高温強度がある値以上であれば、メンテナンス時間も、弁の寿命も、現状よりさらに長くできるものと考えられていた。 In the past, in the actual machine test that increased the high temperature strength of the sintered stellite valve seat, the seat surface was healthy and without any indentation even after 16,000 hours, and the exhaust valve stem was used for the seat surface. If the high-temperature strength is higher than a certain value, it was considered that the maintenance time and the life of the valve can be made longer than the current situation.
また、20数年前から、以下の特許文献1(特開平5−222475号公報)に開示されるように、Ni基の耐熱鋼ナイモニック(Nimonic(( 登録商標) 以下同じ)80A) 材の排気弁棒が使用されるようになり、この弁材料は上記金属材料よりも、耐熱耐食性に優れており、使用耐用年数もかなり長寿命で、現状では大型ディーゼル機関では品質が安定している。 Further, as disclosed in the following Patent Document 1 (Japanese Patent Laid-Open No. Hei 5-222475), the exhaust of Ni-based heat-resistant steel Nimonic (Nimonic (registered trademark) 80A) material has been used since 20 years ago. A valve stem is used, and this valve material is superior in heat resistance and corrosion resistance to the metal material described above, has a long service life, and is currently stable in quality in large diesel engines.
さらに、排気弁棒に共通した弁傘触火面の高温腐食の多くは、始めに高温高圧排気ガスにより弁体に浸炭され、これが排気弁体の化学成分の内クロームと反応してクロームカーバイトを形成し、結晶粒界に析出、浸炭孔食を引き起こしていると考えられていた。 In addition, most of the high temperature corrosion of the valve umbrella contact surface common to the exhaust valve stem is first carburized by the high temperature and high pressure exhaust gas, which reacts with the chrome of the chemical component of the exhaust valve body and reacts with chrome carbide. It was thought that it was formed at the grain boundaries and caused carburizing pitting.
1984年頃に、鍛造製品ナイモニック(Nimonic80A)の排気弁シートを補修するにあたって、同種(Nimonic80A)の溶接材を使い、シート面に肉盛りの上、溶着部表面をピーニングして硬度を増加させ、さらに時効硬化熱処理を施し、高温での硬度をアップさせることにより、かなり使用寿命の延長が図られた。
一方、機関運転中における排気弁傘表面の温度は、880BHP/cyl機関の100%負荷で、600 ℃以上、シート部で500℃以上の記録がある。最近の燃料油性状を考えると、上記現象に加え、耐サルファーアタック、耐バナジュームアタックの高温耐食性に優れた排気弁棒とする必要がある。Around 1984, when repairing the exhaust valve seat of the forged product Nimonic80A, the welding material of the same kind (Nimonic80A) was used, and the surface of the weld was peened and the surface of the welded part was peened to increase the hardness. By using age-hardening heat treatment and increasing the hardness at high temperature, the service life was considerably extended.
On the other hand, the temperature of the exhaust valve umbrella surface during engine operation is recorded at 600 ° C. or higher and 100 ° C. or higher at 100% load of the 880BHP / cyl engine. Considering the recent fuel oil properties, in addition to the above phenomenon, it is necessary to provide an exhaust valve rod excellent in high-temperature corrosion resistance such as sulfur attack resistance and vanadium attack resistance.
以下の特許文献2(特開2004−285863号公報)には、Ni系析出硬化型超耐熱合金(ナイモニック80A)を排気弁棒の軸棒側外面部(シート)部に爆発圧着で接合したことが開示されている。 In the following Patent Document 2 (Japanese Patent Application Laid-Open No. 2004-285863), a Ni-based precipitation hardening super heat resistant alloy (Nymonic 80A) is joined to the outer surface (sheet) of the exhaust valve rod by explosion pressure bonding. Is disclosed.
このように、排気弁棒の長寿命を達成するには、1)排気弁シート部の金属が高温時に高硬度が得られる材質であること、2)触火面側の金属が高温高圧腐食雰囲気の燃焼ガスに長時間耐える材質であること、ただし3)排気弁母材の金属Feべ一スのものは、1)、2)を構成する金属の析出共晶の中の金属間化合物にAlが入っていると、Feベースだと脆い化合物ができてよくないので、Niで縁を切らねばならない。 Thus, in order to achieve a long life of the exhaust valve rod, 1) the metal of the exhaust valve seat is a material that can obtain high hardness at high temperatures, and 2) the metal on the flaming surface side is in a high-temperature high-pressure corrosive atmosphere 3) Exhaust valve base metal that is based on metallic Fe is an intermetallic compound in the precipitated eutectic of the metals that constitute 1) and 2). If it is, it is not good to form a brittle compound if it is Fe-based, so the edge must be cut with Ni.
そこで、本発明者は、ディーゼル機関等の排気弁棒であって、その排気弁棒の母材に一般に使用されるSUH1、3、4、SUH31、ナイモニック80、81を含む弁材料の耐熱鋼を使用し、その触火面にP(燐)の成分を含まないインコネル(Inconel(登録商標)以下同じ)の耐高温耐蝕性のNi基金属を肉盛溶接し、その肉盛溶接した上面にNi40〜60%、Cr60〜40%を主成分とする超合金の耐高温耐蝕性のNi基金属を肉盛溶接し、これらの肉盛金属を希釈して溶着形成したディーゼル機関等の排気弁棒について、以下の特許文献3(実用新案登録第3175779号公報)を提案した。 Therefore, the present inventor is an exhaust valve rod of a diesel engine or the like, and is made of heat-resistant steel of valve material including SUH1, 3, 4, SUH31, Nimonic 80, 81, which is generally used as a base material of the exhaust valve rod. In-conel (Inconel (registered trademark) the same applies hereinafter) that does not contain a P (phosphorus) component on the flaming surface is overlay welded, and Ni40 is deposited on the top surface of the overlay weld. Exhaust valve rods for diesel engines, etc., welded and welded by high-temperature corrosion-resistant Ni-base metal of superalloy mainly composed of ~ 60%, Cr60 ~ 40% and diluting these overlay metals The following patent document 3 (utility model registration No. 3175777) has been proposed.
上記排気弁棒を所要のディーゼル機関に使用して数千時間を経過して点検したところ、触火面はほとんど腐蝕されていなく、まだ十分に利用できる状態で、所要の効果を奏するものであった。 When the exhaust valve rod was used for the required diesel engine and inspected for several thousand hours, the flaming surface was hardly corroded and the desired effect was achieved with the tank still fully usable. It was.
しかし、排気弁棒の触火面にこれらの耐高温耐蝕性合金を均一状に肉盛溶接するには多くの手間と時間がかかり、また所要の熱処理が必要で、簡単かつ短時間で一体的に接合することが課題であった。 However, it takes a lot of time and effort to uniformly weld these high temperature corrosion resistant alloys to the contact surface of the exhaust valve stem, and it requires a lot of time and heat treatment. It was a problem to join to.
前記課題を解決すべく、本願発明者らは、鋭意検討し実験を重ねた結果、従来の肉盛溶接を部分的に代えて、爆発圧着により耐高温耐蝕性合金を触火面に接合一体化させることよりかかる課題を解決しうることを見出し、本発明を完成するに至ったものである。
すなわち、本発明に以下の通りのものである。In order to solve the above-mentioned problems, the inventors of the present application have conducted intensive studies and experiments. As a result, the conventional overlay welding is partially replaced, and a high temperature corrosion resistant alloy is joined and integrated to the contact surface by explosive pressure bonding. As a result, the present inventors have found that such a problem can be solved, and have completed the present invention.
That is, the present invention is as follows.
[1]耐熱鋼を母材とする、内燃機関用の排気弁棒であって、該排気弁棒の母材からなる触火面に、Ni及びCrを含む第一の耐高温耐蝕性合金の板が圧着されており、波状の接合界面を呈し、該触火面の中心部では、Ni及びCrを含む第二の耐高温耐蝕性合金が肉盛溶接されていることを特徴とする前記排気弁棒。 [1] An exhaust valve rod for an internal combustion engine using heat-resistant steel as a base material, wherein a first high-temperature corrosion-resistant alloy containing Ni and Cr is formed on a contact surface made of the base material of the exhaust valve rod. The exhaust gas, wherein the plate is crimped, exhibits a wavy joining interface, and a second high-temperature corrosion-resistant alloy containing Ni and Cr is welded at the center of the flaming surface Valve stem.
[2]前記圧着が爆発圧着によるものである、前記[1]に記載の排気弁棒。 [2] The exhaust valve rod according to [1], wherein the pressure bonding is performed by explosion pressure bonding.
[3]前記Ni及びCrを含む第一の耐高温耐蝕性合金が、Ni40〜60%、Cr60〜30%を主成分とする超合金の耐高温耐蝕性Ni基金属である、前記[1]又は[2]に記載の排気弁棒。 [3] The above-mentioned [1], wherein the first high-temperature corrosion-resistant alloy containing Ni and Cr is a super-alloy high-temperature corrosion-resistant Ni-based metal mainly composed of Ni 40 to 60% and Cr 60 to 30%. Or the exhaust valve rod as described in [2].
[4]前記Ni及びCrを含む第一の耐高温耐蝕性合金が、前記Ni及びCrを含む第二の耐高温耐蝕性合金と同じである、前記[1]〜[3]のいずれかに記載の排気弁棒。 [4] In any one of the above [1] to [3], the first high-temperature corrosion-resistant alloy containing Ni and Cr is the same as the second high-temperature corrosion-resistant alloy containing Ni and Cr. Exhaust valve rod as described.
[5]前記母材としての耐熱鋼が、マルテンサイト系耐熱鋼であるSUH1、SUH3、及びSUH4、オーステナイト系耐熱鋼であるSUH31、SUH37、及びSNCrW系鋼、並びにNi基耐熱鋼ナイモニック80A(登録商標)、及びナイモニック81(登録商標)からなる群から選ばれる、前記[1]〜[4]のいずれかに記載の排気弁棒。 [5] The heat-resistant steel as the base material is martensitic heat-resistant steels SUH1, SUH3, and SUH4, austenitic heat-resistant steels SUH31, SUH37, SNCrW-based steel, and Ni-based heat-resistant steel Nimonic 80A (registered) Trademark) and the exhaust valve rod according to any one of [1] to [4], selected from the group consisting of Nimonic 81 (registered trademark).
[6]前記排気弁棒の母材からなる触火面に、SUS309、SUS310、及びSUS316からなる群から選ばれるステンレス耐熱用鋼金属板材料を介して、前記Ni及びCrを含む第一の耐高温耐蝕性合金の板が圧着されている、前記[1]〜[5]のいずれかに記載の排気弁棒。 [6] A first heat resistance containing Ni and Cr is formed on a contact surface made of a base material of the exhaust valve rod through a stainless steel plate material for heat-resistant stainless steel selected from the group consisting of SUS309, SUS310, and SUS316. The exhaust valve rod according to any one of [1] to [5], wherein a high-temperature corrosion-resistant alloy plate is pressure-bonded.
[7]排気弁棒の触火面に、Ni及びCrを含む第一の耐高温耐蝕性合金の板材料を所定の間隔を設けて重ね合わせ、該板材料に爆薬を装着して爆発圧着して排気弁棒の触火面に一体的に接合するステップ、及び
得られた排気弁棒の触火面の爆発圧着の不圧着部を除去して、Ni及びCrを含む第二の耐高温耐蝕性合金を肉盛溶着するステップ、
を含む、前記[1]〜[6]のいずれかに記載の排気弁棒の製造方法。[7] The plate material of the first high-temperature corrosion-resistant alloy containing Ni and Cr is placed on the contact surface of the exhaust valve rod at a predetermined interval, and an explosive is attached to the plate material and subjected to explosive pressure bonding. Step of integrally joining to the contact surface of the exhaust valve rod, and removing the non-bonded portion of the explosion contact pressure surface of the obtained exhaust valve rod, and the second high temperature corrosion resistance containing Ni and Cr A step of depositing a conductive alloy,
The method for manufacturing an exhaust valve rod according to any one of the above [1] to [6].
本発明の1の実施態様は、内燃機関の耐熱鋼を使用した排気弁棒の触火面の母材に超合金の耐高温耐蝕性のNi基金属の耐高温耐蝕性金属板材料を所定の間隔を設けて重ね合わせて爆発圧着し、排気弁棒の触火面の母材に超合金の耐高温耐蝕性のNi基金属の耐高温耐蝕性金属板材料を一体的に接合した排気弁棒の触火面の中心部の爆発圧着不圧着部を除去して超合金の耐高温耐蝕性金属を肉盛溶着して形成したことを特徴とする内燃機関の排気弁棒である。 According to one embodiment of the present invention, a high-temperature corrosion-resistant metal plate material of a superalloy, high-temperature corrosion-resistant Ni-based metal, is used as a base material for a contact surface of an exhaust valve rod using heat-resistant steel of an internal combustion engine. Exhaust valve rod with superposed high temperature and corrosion resistant Ni-based high temperature and corrosion resistant metal plate material integrally joined to the base material of the exhaust valve rod's flaming surface. An exhaust valve rod for an internal combustion engine, which is formed by depositing a superalloy high-temperature corrosion-resistant metal by removing an explosion-bonded non-bonded portion at the center of the flaming surface.
本発明の他の実施態様は、排気弁棒の母材にSUH1、3、4、SUH31、ナイモニック80、81(Nimonic(登録商標))のいずれかを含む弁材料の耐熱鋼を使用した内燃機関の排気弁棒であって、上記排気弁棒の触火面にNi40〜60%、Cr60〜30%を主成分とする超合金の耐高温耐蝕性のNi基金属の耐高温耐蝕性金属板材料を所定の間隔を設けて重ね合わせて爆発圧着して一体的に接合したことを特徴とする内燃機関の排気弁棒である。 Another embodiment of the present invention is an internal combustion engine using a heat resistant steel of a valve material containing any of SUH1, 3, 4, SUH31, Nimonic 80, 81 (Nimonic (registered trademark)) as a base material of an exhaust valve rod. An exhaust valve rod of the above-mentioned high temperature corrosion resistance Ni base metal of a superalloy which is a superalloy mainly composed of Ni 40-60% and Cr 60-30% on the contact surface of the exhaust valve rod. An exhaust valve rod for an internal combustion engine characterized in that they are integrally joined by overlapping with a predetermined interval and explosion-crimping.
本発明の他の実施態様は、内燃機関の耐熱鋼を使用した排気弁棒の触火面の母材に3〜12mm厚さの超合金の耐高温耐蝕性のNi基金属の耐高温耐蝕性金属板材料を所定の間隔を設けて重ね合わせ、その中心部に5〜10mm径の雷管を設けて爆発圧着し、排気弁棒の触火面の母材に超合金の耐高温耐蝕性のNi基金属の耐高温耐蝕性金属板材料を一体的に接合した排気弁棒の触火面の中心部の5〜30mm径の爆発圧着不圧着部を除去して超合金の耐高温耐蝕性金属を肉盛溶着して形成したことを特徴とする内燃機関の排気弁棒である。 Another embodiment of the present invention is a high temperature corrosion resistance of a Ni-base metal of a superalloy of a superalloy thickness of 3 to 12 mm on a base material of a contact surface of an exhaust valve rod using heat resistant steel of an internal combustion engine. Metal plate materials are stacked at a predetermined interval, and a 5-10 mm diameter detonator is provided at the center for explosive pressure bonding, and a superalloy high temperature corrosion resistant Ni of superalloy is applied to the base material of the exhaust surface of the exhaust valve rod. Remove the 5-30 mm diameter explosive pressure bonding non-bonding part of the center of the contact surface of the exhaust valve rod integrally bonded with the base metal's high temperature corrosion resistance metal plate material. An exhaust valve rod of an internal combustion engine characterized by being formed by overlay welding.
本発明の他の実施態様は、内燃機関の耐熱鋼を使用した排気弁棒の触火面の母材に、SUS309、310、316のいずれかを含むステンレス耐熱用鋼金属板材料と、Ni40〜60%、Cr60〜30%を主成分とする超合金の耐高温耐蝕性のNi基金属板材料を重ね合わせて爆発圧着してこれらを一体的に接合したことを特徴とするとする内燃機関の排気弁棒である。 In another embodiment of the present invention, a stainless steel metal plate material for heat-resistant stainless steel containing any of SUS309, 310, and 316 as a base material of a contact surface of an exhaust valve rod using heat-resistant steel of an internal combustion engine, and Ni40 to Exhaust of an internal combustion engine characterized by superposing a superalloy mainly composed of 60% and Cr of 60 to 30%, high-temperature corrosion-resistant Ni-based metal plate materials and bonding them together by explosion bonding. It is a valve stem.
本発明の他の実施態様は、内燃機関の耐熱鋼を使用した排気弁棒の触火面の母材に超合金の耐高温耐蝕性のNi基金属の耐高温耐蝕性金属板材料を爆発圧着して一体的に接合することを特徴とする内燃機関の排気弁棒の製造方法である。 In another embodiment of the present invention, a high temperature corrosion resistant Ni-based high temperature corrosion resistant metal plate material of a superalloy is explosively bonded to a base material of a contact surface of an exhaust valve rod using heat resistant steel of an internal combustion engine. And an exhaust valve rod manufacturing method for an internal combustion engine.
本発明の他の実施態様は、排気弁棒の母材にSUH1、3、4、SUH31、ナイモニック80、81(Nimonic(登録商標))のいずれかを含む弁材料の耐熱鋼を使用した内燃機関の排気弁棒であって、上記排気弁棒の触火面にNi40〜60%、Cr60〜30%を主成分とする超合金の耐高温耐蝕性のNi基金属の耐高温耐蝕性金属板材料を所定の間隔を設けて重ね合わせて爆発圧着して一体的に接合することを特徴とする内燃機関の排気弁棒の製造方法である。 Another embodiment of the present invention is an internal combustion engine using a heat resistant steel of a valve material containing any of SUH1, 3, 4, SUH31, Nimonic 80, 81 (Nimonic (registered trademark)) as a base material of an exhaust valve rod. An exhaust valve rod of the above-mentioned high temperature corrosion resistance Ni base metal of a superalloy which is a superalloy mainly composed of Ni 40-60% and Cr 60-30% on the contact surface of the exhaust valve rod. Is a method of manufacturing an exhaust valve rod for an internal combustion engine, which is superposed at a predetermined interval and joined together by explosion pressure bonding.
本発明の他の実施態様は、排気弁棒の触火面に超合金の耐高温耐蝕性金属板材料を所定の間隔を設けて重ね合わせ、超合金の耐高温耐蝕性金属板材料に爆薬を装着して爆発圧着して排気弁棒の触火面に一体的に接合し、この排気弁棒の触火面の爆発圧着不圧着部を除去して超合金の耐高温耐蝕性金属を肉盛溶着することを特徴とする内燃機関の排気弁棒の製造方法である。 According to another embodiment of the present invention, a superalloy high-temperature corrosion-resistant metal plate material is superposed on a contact surface of an exhaust valve rod at a predetermined interval, and an explosive is applied to the superalloy high-temperature corrosion-resistant metal plate material. It is attached and explosively crimped, and it is integrally joined to the contact surface of the exhaust valve stem, and the explosive crimp non-bonded part of the exhaust surface of the exhaust valve rod is removed to build up the superalloy high-temperature corrosion-resistant metal. An exhaust valve rod manufacturing method for an internal combustion engine, characterized by welding.
本発明の他の実施態様は、内燃機関の耐熱鋼を使用した排気弁棒の触火面の母材に、SUS309、310、316のいずれかを含むステンレス耐熱用鋼金属板材料と、Ni40〜60%、Cr60〜30%を主成分とする超合金の耐高温耐蝕性のNi基金属板材料を爆発圧着してこれらを一体的に接合することを特徴とする内燃機関の排気弁棒の製造方法である。 In another embodiment of the present invention, a stainless steel metal plate material for heat-resistant stainless steel containing any of SUS309, 310, and 316 as a base material of a contact surface of an exhaust valve rod using heat-resistant steel of an internal combustion engine, and Ni40 to Manufacture of exhaust valve rod for internal combustion engine characterized by explosive pressure bonding of high-temperature corrosion-resistant Ni-based metal plate material of superalloy mainly composed of 60%, Cr 60-30% and integrally bonding them Is the method.
本発明に係る排気弁棒は、耐熱鋼を母材とする、内燃機関用の排気弁棒であって、該排気弁棒の該母材からなる触火面に、Ni及びCrを含む第一の耐高温耐蝕性合金の板が圧着されており、波状の接合界面を呈し、該触火面の中心部では、Ni及びCrを含む第二の耐高温耐蝕性合金が肉盛溶接されている。かかる波状の接合界面の存在により、母材とNi及びCrを含む第一の耐高温耐蝕性合金との接合は強固かつ均一であり、爆発圧着処理によれば、かかる圧着は瞬時に行うことができるので、以下に述べる他の実施形態の奏する効果に加え、本発明は、内燃機関の排気弁棒の触火面の全面に、手間と時間のかかる肉盛溶接する方法及び該方法により得る排気弁棒に比較して、高温による熱応力歪みや割れが生じるのを防止でき、表面粗度が良好で機械仕上げが簡単で、製造時間を短縮でき、品質を向上できて、価格も低減することができる。 An exhaust valve rod according to the present invention is an exhaust valve rod for an internal combustion engine that uses heat-resistant steel as a base material, and a contact surface made of the base material of the exhaust valve rod includes Ni and Cr. The high-temperature corrosion-resistant alloy plate is crimped and has a wavy joining interface, and a second high-temperature corrosion-resistant alloy containing Ni and Cr is overlay welded at the center of the contact surface. . Due to the presence of the wavy bonding interface, the bonding between the base material and the first high-temperature corrosion-resistant alloy containing Ni and Cr is strong and uniform. According to the explosive bonding process, the bonding can be performed instantaneously. Therefore, in addition to the effects of the other embodiments described below, the present invention provides a method of overlay welding that takes time and labor on the entire contact surface of the exhaust valve rod of an internal combustion engine, and the exhaust obtained by the method. Compared with valve stem, it can prevent thermal stress distortion and cracking due to high temperature, good surface roughness, easy machine finish, shorten production time, improve quality and reduce price Can do.
また、前記した他の実施形態によれば、内燃機関の耐熱鋼を使用した排気弁棒の触火面の母材に超合金の耐高温耐蝕性のNi基金属の耐高温耐蝕性金属板材料を所定の間隔を設けて重ね合わせて爆発圧着したことによって、所要の爆発圧着法を利用して爆発圧着処理することで、排気弁棒の触火面に一瞬にして超合金の耐高温耐蝕性のNi基金属の耐高温耐蝕性金属板材料を一体的に接合でき、接合面が波形状で強固に接合できて、耐蝕性よく利用できる。 In addition, according to the other embodiment described above, the high temperature corrosion resistance metal plate material of the superalloy high temperature corrosion resistance Ni-based metal is used as the base material of the contact surface of the exhaust valve rod using the heat resistant steel of the internal combustion engine. By superimposing them at predetermined intervals and performing explosive pressure bonding, the high pressure corrosion resistance of the superalloy is instantaneously applied to the contact surface of the exhaust valve rod by performing explosive pressure bonding using the required explosive pressure bonding method. The high-temperature corrosion-resistant metal plate material of the Ni-based metal can be integrally joined, and the joining surface can be firmly joined in a wave shape and can be used with good corrosion resistance.
また、前記した他の実施形態によれば、排気弁棒の触火面の母材に超合金の耐高温耐蝕性のNi基金属の耐高温耐蝕性金属板材料を一体的に接合した排気弁棒の触火面の中心部の爆発圧着不圧着部を除去して超合金の耐高温耐蝕性金属を肉盛溶着して形成したことによって、爆薬の爆発で排気弁棒の触火面に不圧着部が生じても、排気弁棒の触火面の爆発圧着不圧着部を除去して超合金の耐高温耐蝕性金属を肉盛溶着して触火面部の全面にわたって強固に仕上げられ、排気弁棒の触火面の全面にわたって溶接肉盛接合を行なわないため、従来のように手間と時間のかかる溶接肉盛接合をできるだけ行なわないようにでき、高温による熱応力歪みや割れが生じるのを防止でき、表面粗度が良好で機械仕上げが簡単で、製造時間を短縮でき、品質を向上できて、価格も低減することができる。 In addition, according to the other embodiment described above, an exhaust valve in which a super alloy high temperature corrosion resistance Ni-based high temperature corrosion resistance metal plate material is integrally joined to a base material of a contact surface of an exhaust valve rod. The explosive explosion non-crimped part at the center of the contact surface of the rod is removed and the superalloy high-temperature corrosion-resistant metal is formed by overlay welding, so that the explosion of the explosive does not affect the contact surface of the exhaust valve rod. Even if a crimped part occurs, the explosion-proof non-bonded part on the contact surface of the exhaust valve rod is removed, and the high-temperature corrosion-resistant metal of the superalloy is built up and firmly finished over the entire surface of the contact surface. Since weld overlay is not performed over the entire contact surface of the valve stem, it is possible to minimize weld overlay that is time-consuming and time consuming as in the past, and thermal stress distortion and cracking due to high temperatures occur. Can prevent, good surface roughness, easy machine finish, reduce production time, quality And it can be improved, the price can also be reduced.
また、前記した他の態様によれば、排気弁棒の母材にSUH1、3、4、SUH31、ナイモニック80、81(Nimonic(登録商標))のいずれかを含む弁材料の耐熱鋼を使用した内燃機関の排気弁棒であって、上記排気弁棒の触火面にNi40〜60%、Cr60〜30%を主成分とする超合金の耐高温耐蝕性のNi基金属の耐高温耐蝕性金属板材料を所定の間隔を設けて重ね合わせて爆発圧着して一体的に接合したことによって、排気弁棒の母材を一般に使用されるSUH1、3、4、37、ナイモニック80、81等の弁材料の耐熱鋼を使用し、耐サルファーアタック、耐バナジュームアタックの耐高温耐蝕性に優れた超合金のNi基金属を組み合わせて、高温―耐腐食性に優れた耐久性を有するものとし、粗悪重油を燃料としている低速ディーゼル機関等の排気弁棒の長期寿命を維持することが期待でき、メンテナンス間隔を大幅に延長でき、顧客の経費の削減に寄与することができるとともに、上記のように製造時間を短縮でき、品質を向上できて、価格も低減することができる。 Further, according to the other aspect described above, the heat resistant steel of the valve material including any of SUH1, 3, 4, SUH31, Nimonic 80, 81 (Nimonic (registered trademark)) is used as the base material of the exhaust valve rod. An exhaust valve rod of an internal combustion engine, a high temperature corrosion resistant Ni-based metal of a superalloy of a superalloy mainly composed of Ni 40 to 60% and Cr 60 to 30% on the contact surface of the exhaust valve rod. Valves such as SUH1, 3, 4, 37, Nimonic 80, 81, etc., which are generally used as the base material of the exhaust valve rod, are obtained by stacking plate materials at a predetermined interval and integrally bonding them by explosive pressure bonding. Using heat-resistant steel as a material, combined with Ni-base metal of superalloy excellent in high temperature corrosion resistance of sulfur attack and vanadium attack, it has durability with excellent high temperature-corrosion resistance. Low speed fuel It can be expected to maintain the long life of exhaust valve rods of diesel engines, etc., greatly extending the maintenance interval, contributing to the reduction of customer expenses, and shortening manufacturing time as described above, quality The price can be reduced.
また、前記した他の実施態様によれば、内燃機関の耐熱鋼を使用した排気弁棒の触火面の母材に3〜12mm厚さの超合金の耐高温耐蝕性のNi基金属の耐高温耐蝕性金属板材料を所定の間隔を設けて重ね合わせ、その中心部に5〜10mm径の雷管を設けて爆発圧着し、排気弁棒の触火面の母材に超合金の耐高温耐蝕性のNi基金属の耐高温耐蝕性金属板材料を一体的に接合した排気弁棒の触火面の中心部の5〜30mm径の爆発圧着不圧着部を除去して超合金の耐高温耐蝕性金属を肉盛溶着して形成したことによって、従来の溶接肉盛接合のものと比して3mm以上の3〜12mm位の分厚いものを使用できて耐久性を高められ、また、爆薬の爆発で排気弁棒の触火面の中心部に不圧着部が生じても、触火面の中心部の5 〜30mm径の爆発圧着不圧着部を除去して超合金の耐高温耐蝕性金属を肉盛溶着して触火面部の全面にわたって強固に仕上げられ、排気弁棒の触火面の全面にわたって溶接肉盛接合を行なわないため、耐蝕性よく使用できるとともに、上記のように製造時間を短縮でき、品質を向上できて、価格も低減することができる。 Further, according to another embodiment described above, the high temperature corrosion resistance Ni-base metal resistance of a superalloy of 3-12 mm thickness is used for the base material of the contact surface of the exhaust valve rod using the heat resistant steel of the internal combustion engine. High-temperature corrosion-resistant metal plate materials are stacked at a predetermined interval, and a 5-10 mm diameter detonator is provided at the center for explosive pressure-bonding. High temperature corrosion resistance of superalloys by removing the 5-30 mm diameter explosive pressure-bonded non-crimped part of the center of the contact surface of the exhaust valve rod integrally bonded with the high temperature, corrosion-resistant metal plate material of the basic Ni-base metal By depositing a porous metal, it is possible to use a thicker 3 to 12 mm thicker than the conventional welded joint, increasing durability, and explosive explosives Even if a non-crimped part occurs in the center of the flaming face of the exhaust valve rod, the diameter of 5 to 30 mm in the center of the flaming face Explosive pressure bonding and non-pressure bonding parts are removed and superalloy high-temperature corrosion-resistant metal is overlaid and welded over the entire surface of the flaming surface. Therefore, it can be used with good corrosion resistance, the manufacturing time can be shortened as described above, the quality can be improved, and the price can be reduced.
また、前記した他の実施態様によれば、内燃機関の耐熱鋼を使用した排気弁棒の触火面の母材に、SUS309、310、316のいずれかを含むステンレス耐熱用鋼金属板材料と、Ni40〜60%、Cr60〜30%を主成分とする超合金の耐高温耐蝕性のNi基金属板材料を重ね合わせて爆発圧着してこれらを一体的に接合したことによって、排気弁棒の触火面に一瞬にしてSUS309、310、316等のステンレス耐熱用鋼金属板材料と、Ni40〜60%、Cr60〜30%を主成分とする超合金の耐高温耐蝕性のNi基金属板材料を一体的に強固に接合できて、耐蝕性よく利用できる。特に、排気弁棒の使用による損傷した触火面の補修用に利用できて、従来に比して短時間に補修できて、耐蝕性よく再利用することができる。 Further, according to the other embodiment described above, the stainless steel heat-resistant steel metal plate material including any one of SUS309, 310, and 316 as the base material of the contact surface of the exhaust valve rod using the heat-resistant steel of the internal combustion engine, By superimposing high temperature corrosion resistant Ni-based metal plate materials of superalloys mainly composed of Ni 40-60% and Cr 60-30% and explosively pressure-bonding them, they are integrally joined to each other. A stainless steel plate material for heat resistance of stainless steel such as SUS309, 310, 316, etc. and a superalloy mainly composed of Ni 40-60%, Cr 60-30%, and high temperature corrosion resistance Ni-based metal plate material on the flaming surface Can be joined together firmly and can be used with good corrosion resistance. In particular, it can be used for repairing a damaged flaming surface due to the use of an exhaust valve rod, can be repaired in a shorter period of time than conventional, and can be reused with good corrosion resistance.
そして、上記のようにして爆発圧着して一体的に接合した排気弁棒の触火面部を熱処理して所要の機械仕上げを行い、爆発圧着した触火面を耐腐食性に優れ、強度にすぐれて割れ防止をはかれた金属組織として、内燃機関の排気弁棒の長期寿命をはかるようにできるとともに、排気弁棒の触火面の爆発圧着不圧着部の超合金の耐高温耐蝕性金属を肉盛溶着による高温による熱応力による歪みや割れが生じるのを防止でき、上記のように製造時間を短縮でき、品質を向上できて、価格も低減することができるものである。 Then, the contact surface of the exhaust valve rod joined by explosion pressure bonding as described above is heat-treated to perform the required mechanical finish, and the explosion pressure contact surface has excellent corrosion resistance and excellent strength. As a metal structure that has been prevented from cracking, the exhaust valve rod of the internal combustion engine can be made to have a long service life. It is possible to prevent the occurrence of distortion and cracking due to thermal stress due to high temperature due to overlay welding, to shorten the manufacturing time as described above, to improve the quality, and to reduce the price.
また、前記した他の実施態様によれば、排気弁棒の母材にSUH1、3、4、SUH31、ナイモニック80、81(Nimonic(登録商標))のいずれかを含む弁材料の耐熱鋼を使用した内燃機関の排気弁棒の製造方法であって、上記排気弁棒の触火面にNi40〜60%、Cr60〜30%を主成分とする超合金の耐高温耐蝕性のNi基金属の耐高温耐蝕性金属板材料を所定の間隔を設けて重ね合わせて爆発圧着して一体的に接合することによって、排気弁棒の母材を一般に使用されるSUH1、3、4、37、ナイモニック80、81等の弁材料の耐熱鋼を使用し、耐サルファーアタック、耐バナジュームアタックの耐高温耐蝕性に優れた超合金のNi基金属を組み合わせて、高温―耐腐食性に優れた耐久性を有するものとし、粗悪重油を燃料としている低速ディーゼル機関等の排気弁棒の長期寿命を維持することが期待でき、メンテナンス間隔を大幅に延長でき、顧客の経費の削減に寄与することができるとともに、上記のように製造時間を短縮でき、品質を向上できて、価格も低減することができる。 Further, according to the other embodiment described above, the heat-resistant steel of the valve material containing any of SUH1, 3, 4, SUH31, Nimonic 80, 81 (Nimonic (registered trademark)) is used as the base material of the exhaust valve rod. A method of manufacturing an exhaust valve rod for an internal combustion engine, comprising: a high temperature corrosion resistance Ni-base metal of a superalloy mainly composed of Ni 40 to 60% and Cr 60 to 30% on the contact surface of the exhaust valve rod. By superposing high-temperature corrosion-resistant metal plate materials at a predetermined interval and integrally bonding them by explosive pressure bonding, the base material of the exhaust valve rod is generally used as SUH1, 3, 4, 37, Nimonic 80, Uses heat resistant steel of valve material such as 81, combined with Ni-base metal of superalloy excellent in high temperature corrosion resistance of sulfur attack and vanadium attack, and has excellent durability in high temperature-corrosion resistance With bad heavy oil as fuel It can be expected to maintain the long life of exhaust valve rods of low-speed diesel engines, etc., and the maintenance interval can be greatly extended, which can contribute to the reduction of customer expenses and can shorten the manufacturing time as described above. Quality can be improved and price can be reduced.
また、前記した他の実施態様によれば、排気弁棒の触火面に超合金の耐高温耐蝕性金属板材料を所定の間隔を設けて重ね合わせ、超合金の耐高温耐蝕性金属板材料に爆薬を装着して爆発圧着して排気弁棒の触火面に一体的に接合し、この排気弁棒の触火面の爆発圧着不圧着部を除去して超合金の耐高温耐蝕性金属を肉盛溶着することによって、爆薬の爆発で排気弁棒の触火面に不圧着部が生じても、排気弁棒の触火面の爆発圧着不圧着部を除去して超合金の耐高温耐蝕性金属を肉盛溶着して触火面部の全面にわたって強固に仕上げられ、排気弁棒の触火面の全面にわたって溶接肉盛接合を行なわないため、耐蝕性よく使用できるとともに、上記のように製造時間を短縮でき、品質を向上できて、価格も低減することができる。 Further, according to the other embodiment described above, the superalloy high-temperature corrosion-resistant metal plate material is superposed at a predetermined interval on the contact surface of the exhaust valve rod, and the superalloy high-temperature corrosion-resistant metal plate material is superposed. Attach explosive and attach it to the contact surface of the exhaust valve rod, and integrally bond it to the contact surface of the exhaust valve rod. If the non-crimped part of the contact surface of the exhaust valve rod is generated by the explosion of the explosive, the explosion-proof non-crimped part of the contact surface of the exhaust valve rod is removed and the high temperature resistance of the superalloy is removed. Since the corrosion-resistant metal is welded and welded over the entire surface of the flaming surface, the welded surface of the exhaust valve rod is not welded over the entire surface, so it can be used with good corrosion resistance. Manufacturing time can be shortened, quality can be improved, and price can be reduced.
また、前記した他の実施態様によれば、内燃機関の耐熱鋼を使用した排気弁棒の触火面の母材に、SUS309、310、316のいずれかを含むステンレス耐熱用鋼金属板材料と、Ni40〜60%、Cr60〜30%を主成分とする超合金の耐高温耐蝕性のNi基金属板材料を爆発圧着してこれらを一体的に接合することによって、排気弁棒の触火面に一瞬にしてSUS309、310、316等のステンレス耐熱用鋼金属板材料と、Ni40〜60%、Cr60〜30%を主成分とする超合金の耐高温耐蝕性のNi基金属板材料を一体的に強固に接合できて、耐蝕性よく利用できる。 Further, according to the other embodiment described above, the stainless steel heat-resistant steel metal plate material including any one of SUS309, 310, and 316 as the base material of the contact surface of the exhaust valve rod using the heat-resistant steel of the internal combustion engine, The explosive pressure bonding of high-temperature corrosion-resistant Ni-based metal plate materials of superalloys mainly composed of Ni 40 to 60% and Cr 60 to 30%, and integrally bonding them together, makes the contact surface of the exhaust valve rod SUS309, 310, 316 and other stainless steel heat-resistant steel metal plate materials and Ni-based metal plate materials with high-temperature corrosion resistance of superalloys mainly composed of Ni 40-60% and Cr 60-30% Can be firmly joined to each other and can be used with good corrosion resistance.
そして、上記のようにして爆発圧着して一体的に接合した排気弁棒の触火面部を熱処理して所要の機械仕上げを行い、爆発圧着した触火面を耐腐食性に優れ、強度にすぐれて割れ防止をはかれた金属組織として、内燃機関の排気弁棒の長期寿命をはかるようにできるとともに、排気弁棒の触火面の爆発圧着不圧着部の超合金の耐高温耐蝕性金属を肉盛溶着による高温による熱応力による歪みや割れが生じるのを防止でき、上記のように製造時間を短縮でき、品質を向上できて、価格も低減することができるものである。 Then, the contact surface of the exhaust valve rod joined by explosion pressure bonding as described above is heat-treated to perform the required mechanical finish, and the explosion pressure contact surface has excellent corrosion resistance and excellent strength. As a metal structure that has been prevented from cracking, the exhaust valve rod of the internal combustion engine can be made to have a long service life. It is possible to prevent the occurrence of distortion and cracking due to thermal stress due to high temperature due to overlay welding, to shorten the manufacturing time as described above, to improve the quality, and to reduce the price.
本発明に係る排気弁棒は、耐熱鋼を母材とする、内燃機関用の排気弁棒であって、該排気弁棒の母材からなる触火面に、Ni及びCrを含む第一の耐高温耐蝕性合金の板が圧着されており、波状の接合界面を呈し、該触火面の中心部では、Ni及びCrを含む第二の耐高温耐蝕性合金が肉盛溶接されていることを特徴とする前記排気弁棒である。 An exhaust valve rod according to the present invention is an exhaust valve rod for an internal combustion engine that uses heat-resistant steel as a base material, and a contact surface made of the base material of the exhaust valve rod includes Ni and Cr. The high-temperature corrosion-resistant alloy plate is crimped and has a wavy joint interface, and the second high-temperature corrosion-resistant alloy containing Ni and Cr is overlay welded at the center of the contact surface. It is the said exhaust valve rod characterized by these.
1の実施形態の内燃機関の排気弁棒は、内燃機関の耐熱鋼を使用した排気弁棒の触火面の母材に超合金の耐高温耐蝕性のNi基金属の耐高温耐蝕性金属板材料を所定の間隔を設けて重ね合わせて爆発圧着し、排気弁棒の触火面の母材に超合金の耐高温耐蝕性のNi基金属の耐高温耐蝕性金属板材料を一体的に接合した排気弁棒の触火面の中心部の爆発圧着不圧着部を除去して超合金の耐高温耐蝕性金属を肉盛溶着して形成したことを特徴としている。 An exhaust valve rod of an internal combustion engine according to one embodiment is a super-alloy high-temperature corrosion-resistant Ni-based metal with a high-temperature corrosion-resistant metal plate as a base material of a contact surface of an exhaust valve rod using heat-resistant steel of the internal-combustion engine. Superposed high temperature and corrosion resistant metal plate material of superalloy and high temperature corrosion resistance Ni base metal is integrally bonded to the base material of the exhaust valve rod contact surface. The explosive pressure-bonding non-crimped portion at the center of the contact surface of the exhaust valve rod is removed, and a superalloy high-temperature corrosion-resistant metal is deposited and deposited.
舶用ディーゼル機関等の内燃機関の排気弁棒1は、図1のようにマッシュルーム状に形成されているもので、ピストンシリンダーの排気ガスの排出用の弁として機能し、弁棒本体2の母材としてディーゼル機関用として一般的に便用されているマルテンサイト系耐熱鋼のSUH1、3、4、またはオーステナイト系耐熟鋼のSUH31、37、SNCrW系、さらにナイモニック80、81のNi基の耐熱鋼の弁材料を使用できる。これらの化学成分(%)は、表1のとおりである。 An exhaust valve rod 1 of an internal combustion engine such as a marine diesel engine is formed in a mushroom shape as shown in FIG. 1 and functions as a valve for exhaust gas exhaust of a piston cylinder. Martensitic heat resistant steels SUH1, 3, 4 or austenitic heat resistant steels SUH31, 37, SNCrW, and Nimonic 80, 81 Any valve material can be used. These chemical components (%) are shown in Table 1.
表1 排気弁棒の化学成分表
排気弁棒1の触火面3には、表2のようにNi40〜60%、Cr60〜30%、Mo0〜残量の超合金のSUPER ALLOY ( 三菱金属MCアロイ)やSUPER ALLOY FM72(インコネルフィラーメタル72(SPECIAL METALS Welding Products Company FM72))等のNi40〜60%、Cr60〜30%を主成分とする超合金のNi基金属の耐高温耐蝕性金属板材料4を使用して接合し、耐サルファーアタック、耐バナジュームアタックの耐高温耐食性に優れて耐久性を有するものとし、粗悪重油を燃料としている低速ディーゼル機関等の排気弁棒の長期寿命を維持することができ、メンテナンス間隔を大幅に延長可能にしている。
尚、Ni及びCrを含む第一の耐高温耐蝕性合金、及びNi及びCrを含む第二の耐高温耐蝕性合金は、各々、以下のNi基金属の耐高温耐蝕性金属板材料のいずれか1であることができる。As shown in Table 2, superficial alloy SUPER ALLOY (Mitsubishi Metals MC Alloy) and SUPER ALLOY FM72 (Inconel filler) of Ni 40-60%, Cr 60-30%, Mo0-remaining amount as shown in Table 2 Metal 72 (SPECIAL METALS Welding Products Company FM72)) and other superalloy Ni-based high-temperature corrosion-resistant metal plate materials 4 consisting mainly of Ni 40-60% and Cr 60-30% are used for joining and resistance. Sulfur attack and vanadium attack resistance are excellent in high temperature corrosion resistance and durability, and can maintain the long-term life of exhaust valve rods of low speed diesel engines that use crude heavy oil as fuel, greatly extending maintenance intervals It is possible.
The first high-temperature corrosion-resistant alloy containing Ni and Cr and the second high-temperature corrosion-resistant alloy containing Ni and Cr are each one of the following Ni-based high-temperature corrosion-resistant metal plate materials. Can be 1.
表2 Ni基金属の耐高温耐蝕性金属板材料の化学成分表
尚、MCアロイとは、特許第4151061号に記載されるように、Cr:43超〜50%、Mo:0.1〜2%、Mg:0.001〜0.05%、N:0.001〜0.04%、Mn:0.05〜0.5%を含有し、残部がNiおよび不可避不純物からなり、不可避不純物として含まれるC量を0.05%以下に調整した組成を有することを特徴とする無機酸含有超臨界水環境に対する耐食性に優れたNi基合金である。MCアロイは、おおよそ、Cr45%、Mo1%、Ni残部(54%程度)である。
上記排気弁棒1の触火面3に超合金の耐高温耐蝕性金属板材料4を接合するのに、爆発圧着法を利用するもので、たとえば図2のように頑丈な箱体5に充填した砂6の中央部に排気弁棒1の弁棒本体2を埋設し、図3のようにその排気弁棒1の触火面3との間に所要の間隔を小さな突起等で設けたりして、触火面3の大きさとほぼ同じ位の所要厚さのシートの超合金の耐高温耐蝕性金属板材料4を重ね合わせ、この超合金の耐高温耐蝕性金属板材料4の上面に硝安を主成分とする粉末状の爆薬7を所要の厚さに均一状に配置し、その中央部に4 〜10mm径の雷管8を取付け、雷管8により爆薬7を爆発させて爆発圧着するようにしている。As described in Japanese Patent No. 4151061, MC alloy is Cr: more than 43 to 50%, Mo: 0.1 to 2%, Mg: 0.001 to 0.05%, N: 0.00. 001 to 0.04%, Mn: 0.05 to 0.5%, the balance is made of Ni and inevitable impurities, and the amount of C contained as inevitable impurities is adjusted to 0.05% or less. This is a Ni-base alloy having excellent corrosion resistance against an inorganic acid-containing supercritical water environment. The MC alloy is approximately 45% Cr, 1% Mo, and the remaining Ni (about 54%).
Explosive pressure bonding is used to join a superalloy high-temperature corrosion-resistant metal plate material 4 to the contact surface 3 of the exhaust valve rod 1, for example, filling a sturdy box 5 as shown in FIG. The valve stem body 2 of the exhaust valve stem 1 is embedded in the center of the sand 6 and a required gap is provided with a small protrusion between the exhaust valve stem 1 and the contact surface 3 as shown in FIG. In addition, a superalloy high-temperature corrosion-resistant metal sheet material 4 of a superalloy of a sheet having a required thickness approximately the same as the size of the flaming surface 3 is superposed, and the surface of the superalloy high-temperature corrosion-resistant metal sheet material 4 is overlaid with ammonium nitrate. The powdery explosive 7 containing the main component is uniformly arranged in the required thickness, and a detonator 8 having a diameter of 4 to 10 mm is attached to the center thereof. ing.
上記超合金の耐高温耐蝕性金属板材料4は、排気弁棒1の触火面3の100〜600mm径、10〜60mm厚さに対して、1〜16mm厚さのものが排気弁棒1の大きさに対応して適宜な厚さとして使用でき、従来の溶接肉盛接合のものと比して3mm以上の3〜16mm位のものを使用して耐久性を高められるが、3 〜12mm位、より好ましくは4〜12mm位が耐久性および爆発圧着性から望ましい。 The superalloy high-temperature corrosion-resistant metal plate material 4 is 1 to 16 mm thick with respect to the 100 to 600 mm diameter and 10 to 60 mm thickness of the flaming surface 3 of the exhaust valve rod 1. It can be used as an appropriate thickness corresponding to the size of steel, and the durability can be improved by using a 3-16 mm or more 3 mm or more compared to the conventional weld overlay welding, but 3-12 mm From the viewpoint of durability and explosive pressure-bonding properties, a thickness of about 4 to 12 mm is more desirable.
爆発圧着とは、爆薬の高い圧力を利用した金属接合方法の1つであり、特に異種金属同士を強固に接合することのできる技術である。爆発圧着は、接合界面が波形状を呈し、さらに加熱・圧延など素材の金属組織に影響を与える工程がないことから、接合界面の強度が高いほか、素材の特性を活かせるという特徴をもつ。また、金属素材に熱をほとんど負荷させることなく、接合させることができるので、通常の方法では接合できない金属同士の組み合わせでも強固に接合することができる。さらに、強固に接合されるメカニズムとして、爆発圧着によって接合された金属の接合界面は、特有の波状を呈することが知られており、直線の接合界面より接合面積が大きいことに起因するとも言われている。但し、この波状界面の大きさが大きくなるにつれ、接合時の塑性変形や熱的影響が大きくなるため、接合界面の合金層化につながる。接合界面に合金層が生成すると、接合部が硬く・脆くなる傾向にあるため、接合界面にミクロクラックが生じやすい。 Explosive pressure bonding is one of the metal joining methods using the high pressure of explosives, and is a technique that can particularly strongly bond dissimilar metals together. Explosive bonding is characterized by the fact that the bonding interface exhibits a wave shape and there is no process that affects the metal structure of the material, such as heating and rolling, so the strength of the bonding interface is high and the characteristics of the material can be utilized. Further, since the metal material can be joined with almost no heat applied, even a combination of metals that cannot be joined by a normal method can be firmly joined. Furthermore, it is known that the metal bonding interface bonded by explosive pressure bonding has a unique wavy shape as a mechanism for strong bonding, and is said to be due to the fact that the bonding area is larger than the straight bonding interface. ing. However, as the size of the wavy interface increases, plastic deformation and thermal influence during bonding increase, leading to an alloy layer at the bonding interface. When an alloy layer is formed at the joint interface, the joint tends to become hard and brittle, and microcracks are likely to occur at the joint interface.
爆発圧着に用いる爆薬とは、爆轟波を発生する火薬類である。金属板を強固に接合させるためには、爆速が1000m毎秒以上の爆薬を用いることが好ましく、より最適な接合力とするために、爆轟速度が音速の1/3〜1/2となる1500m〜3000m/秒の爆薬を用いることが更に好ましい。爆薬としては、具体的には硝酸アンモニウムや硝酸エステル類のPETN(ペンタエリスリトールテトラナイトレート)やニトログリセリン、ニトロ化合物のTNT(トリニトロトルエン)、ニトラミンのシクロトリメチレントリニトラミンやシクロテトラメチレンテトラニトラミンなどが挙げられ、これらを単独又はその他爆薬成分あるいはその他爆薬以外の成分を混合したものを用いてもよい。 Explosives used for explosive pressure bonding are explosives that generate detonation waves. In order to bond metal plates firmly, it is preferable to use explosives with an explosion speed of 1000 m / s or more, and in order to obtain a more optimal bonding force, the detonation speed is 1500 m, which is 1/3 to 1/2 of the speed of sound. More preferably, an explosive of ˜3000 m / sec is used. Specific explosives include ammonium nitrate and nitrate esters PETN (pentaerythritol tetranitrate), nitroglycerin, nitro compound TNT (trinitrotoluene), nitramine cyclotrimethylenetrinitramine and cyclotetramethylenetetranitramine. These may be used alone or in combination with other explosive components or other components other than explosives.
排気弁棒の母材からなる触火面に、Ni及びCrを含む第一の耐高温耐蝕性合金の板が圧着した箇所は、波状の接合界面を呈し、直線状の状態を呈する接合界面に比べて接合面積が増加しているため、接合強度が高くなる。一方、波状界面の波長や波高が大きくなると接合界面への金属間化合物が生成しやすくなるため、接合界面は硬くて脆くなる恐れがある。従って、異種金属間における波状の接合界面の波長と波高がそれぞれ1mm以下であることが好ましい。 The location where the plate of the first high-temperature corrosion-resistant alloy containing Ni and Cr is crimped to the contact surface made of the base material of the exhaust valve rod exhibits a wavy joint interface and a joint interface that exhibits a linear state. Compared with the increased bonding area, the bonding strength is increased. On the other hand, if the wavelength or wave height of the wavy interface is increased, an intermetallic compound is likely to be generated at the bonding interface, so that the bonding interface may be hard and brittle. Therefore, it is preferable that the wavelength and wave height of the wavy bonding interface between different metals are each 1 mm or less.
本明細書中、接合界面における「波高」とは、図7に示すように、波の頂上から谷までの高さの差を示す。本発明において、波高は、爆発圧着した排気弁棒1を所要の形状に加工し、接合部を含む断面を電子顕微鏡を用いて測定した。測定は、接合界面の任意の10点を計測し、その平均値を求めた。 In this specification, the “wave height” at the bonding interface indicates a difference in height from the top of the wave to the valley, as shown in FIG. In the present invention, the wave height was measured using an electron microscope by processing the explosive pressure-bonded exhaust valve rod 1 into a required shape and including a joint. In the measurement, 10 arbitrary points on the bonding interface were measured, and the average value was obtained.
上記した排気弁棒1の触火面3の中央部には、爆発圧着により5〜30mm径程の爆発圧着不圧着部が生じることがあるが、この場合には図4のように爆発圧着不圧着部を切削したりして除去し、上記した超合金の耐高温耐蝕性金属板材料4と同一ないし同一系列の超合金の耐高温耐蝕性金属9を使用して肉盛溶接し、希釈して一体的に形成できる。なお、爆発圧着不圧着部は、より細い径の4〜5mm径位の雷管8を使用することにより、できるだけ少なくすることが可能である。
そして、これらの爆発圧着した排気弁棒1を所要の形状に切削し、600〜700℃等の所要の焼鈍等の熱処理をし、機械仕上げして成形できる。At the center of the contact surface 3 of the exhaust valve rod 1 described above, an explosive pressure-bonding non-crimped part having a diameter of about 5 to 30 mm may occur due to explosive pressure bonding. The crimping part is cut or removed, and overlay welding is performed using a superalloy high-temperature corrosion-resistant metal plate 9 of the same or the same series as the superalloy high-temperature corrosion-resistant metal plate material 4 described above, and diluted. Can be formed integrally. The explosive pressure bonding / non-bonding portion can be reduced as much as possible by using a detonator 8 having a smaller diameter of about 4 to 5 mm.
The exhaust valve rod 1 subjected to explosive pressure bonding can be cut into a required shape, subjected to a heat treatment such as a required annealing at 600 to 700 ° C., etc., and machine finished to be molded.
このように排気弁棒1の触火面3に超合金の耐高温耐蝕性のNi基金属の耐高温耐蝕性金属板材料4を爆発圧着すると、弁棒本体2の触火面3に一瞬にして超合金の耐高温耐蝕性のNi基金属の耐高温耐蝕性金属板材料4を一体的に接合でき、接合面が波形状で強固に接合できて、耐蝕性よく利用できる。そして、従来のように手間と時間のかかる溶接肉盛接合を排気弁棒1の触火面3の全面にわたって行なわなくてよいため、高温による熱応力歪みや割れが生じるのを防止でき、表面粗度が良好で機械仕上げが簡単で、製造時間を短縮でき、品質を向上できて、価格も低減することができる。 Thus, when the superalloy high-temperature corrosion-resistant Ni-based high-temperature corrosion-resistant metal plate material 4 is explosively bonded to the contact surface 3 of the exhaust valve stem 1, the contact surface 3 of the valve stem body 2 is instantaneously pressed. Thus, the high-temperature corrosion-resistant metal plate material 4 of the Ni-base metal, which is a high-temperature corrosion resistance of the superalloy, can be integrally joined, and the joining surface can be firmly joined in a wave shape, so that it can be used with good corrosion resistance. In addition, since it is not necessary to perform weld overlay joining that takes time and labor as in the prior art over the entire contact surface 3 of the exhaust valve rod 1, it is possible to prevent the occurrence of thermal stress distortion and cracking due to high temperature, and the surface roughness. Good degree, easy machine finish, shorten production time, improve quality and reduce price.
また、爆発圧着して一体的に接合した排気弁棒1の触火面3部を熱処理して所要の機械仕上げをし、上記した爆発圧着した触火面3部を耐腐食性に優れ、強度にすぐれて割れ防止をはかれた金属組織として、内燃機関の排気弁棒の長期寿命をはかるようにできるとともに、排気弁棒1の触火面3の爆発圧着不圧着部の超合金の耐高温耐蝕性金属9の肉盛溶着による高温による熱応力歪みや割れが生じるのを防止できる。 In addition, 3 parts of the contact surface of the exhaust valve rod 1 joined by explosion pressure bonding are heat-treated to perform the required mechanical finish, and the above-mentioned 3 parts of explosion contact pressure surface have excellent corrosion resistance and strength. As a metal structure excellent in crack prevention, it can extend the long-term life of the exhaust valve rod of the internal combustion engine, and the high temperature resistance of the superalloy of the explosive pressure bonding non-bonded portion of the contact surface 3 of the exhaust valve rod 1 It is possible to prevent thermal stress distortion and cracking due to high temperature due to build-up welding of the corrosion-resistant metal 9.
また、図5のように、内燃機関の耐熱鋼を使用した排気弁棒1の触火面3の母材に、表3のようなSUS309、310、316のいずれかを含むステンレス耐熱用鋼金属板材料10と、上記のようなNi40〜60%、Cr60〜30%を主成分とする超合金の耐高温耐蝕性のNi基金属板材料11を配設し、爆発圧着して一体的に接合するようにしている。その爆薬7は、上記した硝安を主成分とする粉末状の爆薬にて爆発圧着することができる。 Further, as shown in FIG. 5, stainless steel metal for heat-resistant stainless steel containing any one of SUS309, 310, and 316 as shown in Table 3 on the base material of the contact surface 3 of the exhaust valve rod 1 using heat-resistant steel of an internal combustion engine. The plate material 10 and the high-temperature corrosion-resistant Ni-based metal plate material 11 of the superalloy mainly composed of Ni 40 to 60% and Cr 60 to 30% as described above are disposed and integrally bonded by explosion pressure bonding. Like to do. The explosive 7 can be explosively pressure-bonded with the above-described powdered explosive mainly composed of ammonium nitrate.
この場合、排気弁棒1の使用による損傷した触火面3の補修用に利用でき、損傷した触火面3部を所要量だけ切削して肉盛溶接し、表面仕上げして上記したように所要の金属板材料を爆発圧着でき、従来に比して短時間に補修できて、耐蝕性よく再利用することができる。 In this case, it can be used for repairing the damaged flaming surface 3 due to the use of the exhaust valve rod 1, and the damaged flaming surface 3 is cut by a required amount, overlay welded, and surface-finished as described above. The required metal plate material can be explosively pressure-bonded, repaired in a shorter time than before, and reused with good corrosion resistance.
このような排気弁棒1の触火面3に、ステンレス耐熱用鋼金属板材料10と超合金の耐高温耐蝕性のNi基金属板材料11を爆発圧着する場合、図6(a)のように先ず排気弁棒1の触火面3にステンレス耐熱用鋼金属板材料10を爆発圧着し、その後に図6(b)のように超合金の耐高温耐蝕性のNi基金属板材料11を爆発圧着することもでき、排気弁棒1に対応して行なうことができる。 When explosively press-bonding a stainless steel plate material for heat resistance 10 and a superalloy high temperature corrosion resistance Ni-based metal plate material 11 to the contact surface 3 of the exhaust valve rod 1 as shown in FIG. First, a stainless steel plate material 10 for heat resistant stainless steel is explosively pressure-bonded to the contact surface 3 of the exhaust valve rod 1, and then a Ni-based metal plate material 11 of superalloy, which is resistant to high temperatures and corrosion, as shown in FIG. Explosive pressure bonding can also be performed, and can be performed corresponding to the exhaust valve rod 1.
表3 ステンレス耐熱用鋼金属の化学成分表
このように排気弁棒1の触火面3に所要の金属板材料を一層ないし複数層を重ね合わせ、1回または複数回に分けて爆発圧着して一体化することができる。
排気弁棒1としては、1)使用実績効果が評価できる材料、2)経済的に見合うことができる材料、3)弁シート部は高温で硬度が保たれて、耐食性に優れていること、4)触火面は耐サルファーアタック、耐バナジュームアタック、耐高圧高温に優れた材料、を選択する必要がある。このような条件を、上記したように1種類や複数種類の材料で相互に補う方策の排気弁棒1に爆発圧着することができる。In this way, a single layer or a plurality of layers of a required metal plate material can be superposed on the contact surface 3 of the exhaust valve rod 1 and integrated by explosive pressure bonding in one or a plurality of times.
The exhaust valve stem 1 includes: 1) a material that can be used to evaluate the effects of actual use; 2) a material that can be economically matched; 3) the valve seat has high hardness and high corrosion resistance; 4 ) For the flaming surface, it is necessary to select a material that is resistant to sulfur attack, vanadium attack, and high pressure and temperature. Such a condition can be explosively pressure-bonded to the exhaust valve rod 1 which is a policy of mutually compensating with one or more kinds of materials as described above.
従来、肉盛溶接の場合、排気弁棒1の母材の金属がFeべ一スのものは、溶着金属の析出共晶の中の金属間化合物にA1が入っており、排気弁棒母材のFeと脆い化合物を作る可能性があるので、上記のように中間溶着金属材として、インコネルのNiで縁を切る必要があった。しかし、本発明の爆発圧着の場合、原則的に肉盛溶接をしないので、インコネルのNiで縁を切る必要がなく、所要の超合金の耐高温耐蝕性金属板材料を接合して使用することができる。 Conventionally, in the case of overlay welding, if the base metal of the exhaust valve stem 1 is Fe-based, the intermetallic compound in the deposited eutectic of the deposited metal contains A1, and the exhaust valve stem base material As described above, it was necessary to cut the edges with Inconel Ni as an intermediate weld metal material. However, in the case of the explosive pressure bonding of the present invention, since overlay welding is not performed in principle, it is not necessary to cut the edge with Ni of Inconel, and the required superalloy high-temperature corrosion-resistant metal plate material should be joined and used. Can do.
図1以下は、本発明の実施例を示すものである。舶用ディーゼル機関の排気弁棒1は、図1のようにマッシュルーム状に形成され、オーステナイト系耐熟鋼のSUH31の排気弁棒1の弁棒本体2の機械仕上げした200mm径、35mm厚さの触火面3に超合金のSUPER ALLOY ( 三菱金属MCアロイ)の耐高温耐蝕性金属板材料4を、図2のように爆発圧着法を利用し、図3のように触火面3に所要の間隔を設けて、触火面3の大きさとほぼ同じ位の円板状の超合金の耐高温耐蝕性金属板材料4を重ね合わせ、この超合金の耐高温耐蝕性金属板材料4の上面に硝安を主成分とする粉末状の爆薬7を所要の厚さに均一状に配置し、6mm径の雷管8により爆薬7を爆発させて爆発圧着するようにしたものである。
上記超合金の耐高温耐蝕性金属板材料4は、4mm厚さであり、その上面に硝酸アンモニウムを主成分とする粉末状の爆薬7を所要の厚さに均一状に装填した。FIG. 1 and the following figures show examples of the present invention. An exhaust valve rod 1 of a marine diesel engine is formed in a mushroom shape as shown in FIG. 1 and has a 200 mm diameter and 35 mm thickness of a mechanically finished valve stem body 2 of an exhaust valve rod 1 of an austenitic stainless steel SUH31. A superalloy SUPER ALLOY (Mitsubishi Metal MC Alloy) high-temperature corrosion-resistant metal plate material 4 is applied to the fire surface 3 using the explosive pressure bonding method as shown in FIG. A disk-shaped superalloy high-temperature corrosion-resistant metal plate material 4 of approximately the same size as the size of the flaming surface 3 is overlapped, and the upper surface of the superalloy high-temperature corrosion-resistant metal plate material 4 is overlapped. A powdery explosive 7 containing ammonium nitrate as a main component is uniformly arranged in a required thickness, and the explosive 7 is exploded by a 6 mm diameter detonator 8 to be subjected to explosive pressure bonding.
The superalloy high-temperature corrosion-resistant metal sheet material 4 is 4 mm thick, and a powdery explosive 7 mainly composed of ammonium nitrate is uniformly loaded to a required thickness on the upper surface thereof.
そして、雷管8を作動させて爆薬7を爆発し、爆発圧着した結果、排気弁棒1の触火面3の中央部には、爆発圧着により30mm径程の爆発圧着不圧着部が生じた。そこで、図4のように爆発圧着不圧着部を切削して除去し、上記した超合金の耐高温耐蝕性金属板材料4と同一の超合金の耐高温耐蝕性金属9を使用して肉盛溶接し、希釈して一体的に形成した。 Then, the detonator 8 was activated to explode the explosive 7 and subjected to explosive pressure bonding. As a result, an explosive pressure bonding non-crimped portion having a diameter of about 30 mm occurred at the center of the contact surface 3 of the exhaust valve rod 1. Therefore, as shown in FIG. 4, the explosive pressure bonding non-bonding portion is cut and removed, and overlaying is performed using the same superalloy high temperature corrosion resistance metal plate 9 as the superalloy high temperature corrosion resistance metal plate material 4 described above. It was welded and diluted to form a single piece.
爆発圧着して製作した操作弁棒1について、引張試験およびせん断試験の試験サンプルを各2片ずつ切出して強度試験した。試験の結果、表4のとおり、引張強度が857.1MPa、845.6MPaで、規格値の760MPa以上、せん断強度が509.7MPa、444.4MPa(JIS G 0601)で、規格値の150MPa以上で、共に十分な強度を有し、十分に耐蝕性、耐用性を有するものと判断できる。
また、接合界面における波高は、55μmであった。About the operation valve rod 1 manufactured by explosive pressure bonding, two test samples of a tensile test and a shear test were cut out each for strength test. As a result of the test, as shown in Table 4, the tensile strength is 857.1 MPa, 845.6 MPa, the standard value is 760 MPa or more, the shear strength is 509.7 MPa, 444.4 MPa (JIS G 0601), and the standard value is 150 MPa or more. Both have sufficient strength and can be judged to have sufficient corrosion resistance and durability.
The wave height at the bonding interface was 55 μm.
表4 爆発圧着して製作した排気弁棒の強度試験結果表
このように排気弁棒1の触火面3に所要厚さ(入手可能な4mm、6mmm、12mm等も可能)の超合金の耐高温耐蝕性のNi基金属の耐高温耐蝕性金属板材料4を一瞬にして爆発圧着して排気弁棒1の変形もなく接合でき、その接合面が波形状で高い接合強度で接合できて、耐蝕性、耐久性よく利用できる。そのため、従来のように手間と時間のかかる溶接肉盛接合を行なわなくてよくなり、また、溶接肉盛の高温による熱応力による歪みや割れ等が生じるのを防止でき、表面粗度が良好で機械仕上げが簡単で、製造時間を短縮でき、品質を向上できて、価格も低減化できる。 In this way, the high-temperature corrosion-resistant metal plate material 4 of the superalloy of the superalloy of the required thickness (available 4 mm, 6 mm, 12 mm, etc.) is provided on the contact surface 3 of the exhaust valve rod 1. Can be bonded without any deformation of the exhaust valve rod 1 and can be bonded with a corrugated shape with high bonding strength, and can be used with good corrosion resistance and durability. This eliminates the need for time-consuming and time-consuming weld overlay joining, and prevents the weld overlay from being distorted or cracked by thermal stress due to high temperatures, resulting in good surface roughness. Machine finishing is simple, manufacturing time can be shortened, quality can be improved, and price can be reduced.
また、図5は本考案の他の実施例で、内燃機関の耐熱鋼を使用した排気弁棒1の触火面3の母材に、表3のようなSUS309等のステンレス耐熱用鋼金属板材料10と、上記のようなNi40〜60%、Cr60〜30%を主成分とする超合金の耐高温耐蝕性のNi基金属板材料11を所要の間隔を設けて重ね合わせ、上記したように硝安を主成分とする粉末状の爆薬7にて爆発させて爆発圧着して一体的に接合するようしたものである。 FIG. 5 shows another embodiment of the present invention. In the base material of the contact surface 3 of the exhaust valve rod 1 using the heat resistant steel of the internal combustion engine, a stainless steel metal plate for stainless heat resistant such as SUS309 as shown in Table 3. The material 10 is superposed on the Ni-based metal plate material 11 of the above-described superalloy mainly composed of Ni 40 to 60% and Cr 60 to 30% at a predetermined interval, as described above. It is made to explode with a powdery explosive 7 containing ammonium nitrate as a main component and explosively pressure-bonded to be integrally joined.
この場合、特に、排気弁棒1の使用による損傷した触火面3の補修用に利用できるもので、損傷した触火面3部を所要量切削して肉盛溶接し、従来のように手間と時間のかかる溶接肉盛接合を行なわなくてよくなり、また高温による熱応力歪みや割れが生じるのを防止でき、表面粗度が良好で機械仕上げが簡単で、上記したように爆発圧着して十分な強度を有する補修をすることができて、耐蝕性、耐久性よく再利用できる。 In this case, in particular, it can be used for repairing the damaged flaming surface 3 due to the use of the exhaust valve rod 1, and a required amount of the damaged flaming surface 3 is cut and overlay welded. This eliminates the need for time-consuming weld overlaying, prevents thermal stress distortion and cracking due to high temperatures, has a good surface roughness, and is easy to machine finish. It can be repaired with sufficient strength and can be reused with good corrosion resistance and durability.
このような排気弁棒1の触火面3に、ステンレス耐熱用鋼金属板材料10と超合金の耐高温耐蝕性のNi基金属板材料11を爆発圧着する場合、図6(a)のように先ず排気弁棒1の触火面3にステンレス耐熱用鋼金属板材料10を爆発圧着したり、その後に図6(b)のように超合金の耐高温耐蝕性のNi基金属板材料11を爆発圧着することもでき、排気弁棒1に対応して行なうことができる。 When explosively press-bonding a stainless steel plate material for heat resistance 10 and a superalloy high temperature corrosion resistance Ni-based metal plate material 11 to the contact surface 3 of the exhaust valve rod 1 as shown in FIG. First, a stainless steel plate material 10 for heat-resistant stainless steel is explosively pressure-bonded to the contact surface 3 of the exhaust valve rod 1, and thereafter, a Ni-based metal plate material 11 of a superalloy having a high temperature resistance and corrosion resistance as shown in FIG. Can be explosively pressure-bonded and can be performed corresponding to the exhaust valve rod 1.
なお、上記では、大気での爆発圧着について説明したが、水、液体を利用した衝撃波による爆発圧着も可能であり、実施例では、ディーゼル機関の排気弁棒1の母材をSUH31について説明したが、オーステナイト系のSUH37、SNCrW等や、マルテンサイト系のSUH1、3、4等の弁材料の耐熱鋼、ナイモニック80、81のNi基の耐熱鋼についても同様に選択して実施することができ、またインコネル601のNi基金属、インコネルフィラーメタル72の超合金のNi基金属、SUS310、316等の耐熱鋼用についても、本考案の趣旨にもとづいて実施可能であり、さらにこれらの適宜の組み合わせ、またこれらの変形態様を実施可能である。 In the above description, explosive pressure bonding in the atmosphere has been described. However, explosive pressure bonding using shock waves using water or liquid is also possible. In the embodiment, the base material of the exhaust valve rod 1 of the diesel engine has been described for the SUH 31. Austenitic SUH37, SNCrW, etc., martensitic SUH1, 3, 4, etc. heat resistant steel of valve materials, Nimonic 80, 81 Ni-based heat resistant steel can also be selected and implemented in the same manner, Further, the Ni-based metal of Inconel 601, the Ni-based metal of the superalloy of Inconel filler metal 72, and heat resistant steels such as SUS310, 316 can be implemented based on the spirit of the present invention, and further, an appropriate combination thereof, Moreover, these deformation modes can be implemented.
本発明は、船舶のディーゼル機関、ガソリン機関、その他のピストンをもって往復運動を司る航空機、機関車等のすべての内燃機関の排気弁棒に利用できる。 INDUSTRIAL APPLICABILITY The present invention can be used for exhaust valve rods of all internal combustion engines such as marine diesel engines, gasoline engines, and other pistons that control reciprocation with pistons.
1 排気弁棒
2 弁棒本体
3 触火面
4 耐高温耐蝕性金属板材料
7 爆薬
10 ステンレス耐熱用鋼金属板材料
11 Ni基金属板材料DESCRIPTION OF SYMBOLS 1 Exhaust valve stick 2 Valve stem main body 3 Catalytic surface 4 High temperature corrosion-resistant metal plate material 7 Explosive 10 Stainless steel heat-resistant steel metal plate material 11 Ni base metal plate material
Claims (7)
得られた排気弁棒の触火面の爆発圧着の不圧着部を除去して、Ni及びCrを含む第二の耐高温耐蝕性合金を肉盛溶着するステップ、
を含む、請求項1〜6のいずれか1項に記載の排気弁棒の製造方法。A plate material of the first high-temperature corrosion-resistant alloy containing Ni and Cr is placed on the contact surface of the exhaust valve rod at a predetermined interval, and an explosive is attached to the plate material to explode and pressure-bond the exhaust valve. The step of integrally joining to the contact surface of the rod, and the non-bonding part of the explosion contact of the obtained exhaust valve rod contact surface is removed, and a second high temperature corrosion resistant alloy containing Ni and Cr is formed. The step of welding,
The manufacturing method of the exhaust valve rod of any one of Claims 1-6 containing these.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014067296 | 2014-03-28 | ||
JP2014067296 | 2014-03-28 | ||
PCT/JP2015/059658 WO2015147272A1 (en) | 2014-03-28 | 2015-03-27 | Exhaust valve stem for internal combustion engine and method for manufacturing same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2015147272A1 JPWO2015147272A1 (en) | 2017-04-13 |
JP6132974B2 true JP6132974B2 (en) | 2017-05-24 |
Family
ID=54195776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016510555A Expired - Fee Related JP6132974B2 (en) | 2014-03-28 | 2015-03-27 | Exhaust valve rod for internal combustion engine and method for producing the same |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6132974B2 (en) |
KR (1) | KR101821082B1 (en) |
CN (1) | CN106103920B (en) |
WO (1) | WO2015147272A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109623125A (en) * | 2018-12-14 | 2019-04-16 | 安徽宝泰特种材料有限公司 | A kind of one-time formed Explosion composite method of valve inner wall |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS601310A (en) * | 1983-06-17 | 1985-01-07 | Mitsubishi Metal Corp | Manufacture of engine valve |
US5029020A (en) | 1989-11-17 | 1991-07-02 | Xerox Corporation | Scanner with slow scan image context processing |
DK0521821T3 (en) | 1991-07-04 | 1996-08-26 | New Sulzer Diesel Ag | Exhaust valve for a diesel combustion engine and method of manufacturing the valve |
DK173136B1 (en) * | 1996-05-15 | 2000-02-07 | Man B & W Diesel As | Movable wall element in the form of an exhaust valve stem or piston in an internal combustion engine. |
JP3038802U (en) * | 1996-12-17 | 1997-06-30 | ポールスター工業株式会社 | Exhaust valve rod repair surface |
JP3542702B2 (en) * | 1997-07-30 | 2004-07-14 | 株式会社エヌゼットケイ | Valve stem for diesel engine |
JP2970670B1 (en) * | 1998-02-25 | 1999-11-02 | トヨタ自動車株式会社 | Hardfacing alloys and engine valves |
JP3691494B2 (en) | 2003-03-20 | 2005-09-07 | 川崎重工業株式会社 | Exhaust valve for internal combustion engine, manufacturing method and regeneration method thereof |
DK177071B1 (en) * | 2009-10-30 | 2011-05-30 | Man Diesel & Turbo Deutschland | Exhaust valve spindle for an internal combustion engine and a method of manufacture thereof |
JP3175779U (en) * | 2012-02-06 | 2012-05-31 | 株式会社コカブ | Exhaust valve rod for diesel engines, etc. |
JP6090911B2 (en) * | 2013-01-29 | 2017-03-08 | 日立金属Mmcスーパーアロイ株式会社 | Ni-base alloy anticorrosion plate excellent in high temperature corrosion resistance and exhaust valve for diesel engine joined with the anticorrosion plate |
JP3191104U (en) * | 2014-03-28 | 2014-06-05 | 旭化成ケミカルズ株式会社 | Exhaust valve rod for internal combustion engine |
-
2015
- 2015-03-27 KR KR1020167025423A patent/KR101821082B1/en active IP Right Grant
- 2015-03-27 JP JP2016510555A patent/JP6132974B2/en not_active Expired - Fee Related
- 2015-03-27 CN CN201580014580.2A patent/CN106103920B/en not_active Expired - Fee Related
- 2015-03-27 WO PCT/JP2015/059658 patent/WO2015147272A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JPWO2015147272A1 (en) | 2017-04-13 |
KR20160119231A (en) | 2016-10-12 |
WO2015147272A1 (en) | 2015-10-01 |
CN106103920A (en) | 2016-11-09 |
KR101821082B1 (en) | 2018-01-22 |
CN106103920B (en) | 2018-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101663494B1 (en) | An exhaust valve for an internal combustion engine | |
JP6011098B2 (en) | Manufacturing method of engine exhaust valve for large ship | |
CN1179060C (en) | Nozzle for gas turbine, electric generation gas turbine, Co-based alloy and welding material | |
JP6818978B2 (en) | Exhaust valve rod repair method | |
Ajay et al. | A review on rotary and linear friction welding of Inconel alloys | |
JPS58215291A (en) | Aluminum base material with cured padding layer | |
US20100059572A1 (en) | Weld repair process and article repaired thereby | |
JP2007278064A (en) | Steam turbine welded rotor and method of manufacturing it, and steam turbine and power generating plant using it | |
US7108483B2 (en) | Composite gas turbine discs for increased performance and reduced cost | |
JP6132974B2 (en) | Exhaust valve rod for internal combustion engine and method for producing the same | |
JP3671271B2 (en) | Manufacturing method of engine exhaust valve | |
JP2014114817A (en) | Gas exchange valve and method for manufacturing the gas exchange valve | |
JP6090911B2 (en) | Ni-base alloy anticorrosion plate excellent in high temperature corrosion resistance and exhaust valve for diesel engine joined with the anticorrosion plate | |
JP4839388B2 (en) | Welding material and welding rotor | |
JP3191104U (en) | Exhaust valve rod for internal combustion engine | |
JP3542702B2 (en) | Valve stem for diesel engine | |
JP3175779U (en) | Exhaust valve rod for diesel engines, etc. | |
WO2014014069A1 (en) | Method of manufacturing engine exhaust valve for large vessel | |
JP3175033U (en) | Cr-Mo steel piston head for diesel engines, etc. | |
EP0568598B1 (en) | Valve with hard-facing | |
EP2564978B1 (en) | Filler metal chemistry for improved weldability of super alloys | |
JP6044997B2 (en) | Nickel-based alloy wastegate valve | |
JP5973870B2 (en) | Steam turbine rotor welding method | |
JP2001012202A (en) | Different kind materials welded turbine rotor and manufacture thereof | |
JPH06277876A (en) | Valve stem for diesel engine and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170411 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170418 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6132974 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |