JP2014111242A - Solid-liquid separator and pressure roller - Google Patents

Solid-liquid separator and pressure roller Download PDF

Info

Publication number
JP2014111242A
JP2014111242A JP2012266629A JP2012266629A JP2014111242A JP 2014111242 A JP2014111242 A JP 2014111242A JP 2012266629 A JP2012266629 A JP 2012266629A JP 2012266629 A JP2012266629 A JP 2012266629A JP 2014111242 A JP2014111242 A JP 2014111242A
Authority
JP
Japan
Prior art keywords
sludge
pressure roller
solid
belt
filter cloth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012266629A
Other languages
Japanese (ja)
Other versions
JP6017286B2 (en
Inventor
Yoshiyuki Sugawara
良行 菅原
Tadashi Kunitani
正 國谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2012266629A priority Critical patent/JP6017286B2/en
Publication of JP2014111242A publication Critical patent/JP2014111242A/en
Application granted granted Critical
Publication of JP6017286B2 publication Critical patent/JP6017286B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid-liquid separator which can smoothly and submissively rotate a pressure roller by using a belt, and can smoothly transport and dehydrate polluted mud, and to provide the pressure roller.SOLUTION: A solid-liquid separator 12 comprises: a filter cloth belt 16 which travels by using driving force from a driving source 17 and transports polluted mud; and a pressure roller 26 which is arranged so as to face a top face 16a of the filter cloth belt 16. The pressure roller 26 comprises: a rotary shaft 60 which is provided so as to freely rotate around a shaft center that is set in a direction orthogonal to a direction in which the polluted mud is transported by the filter cloth belt 16; and an elastic member 66 which is arranged at an outer peripheral side of the rotary shaft 60 and elastically supports an outer peripheral surface of the pressure roller 26.

Description

本発明は、ベルトの上面に対向配置されることにより、該ベルトとの間で汚泥を加圧脱水する加圧ローラ及び該加圧ローラを備える固液分離装置に関する。   The present invention relates to a pressure roller that pressurizes and dewaters sludge between the belt and an upper surface of the belt, and a solid-liquid separation device including the pressure roller.

従来より、ろ布ベルト上に加圧ローラを圧接させ、ろ布ベルトと加圧ローラとの間に下水や工場排水等の汚泥を導入して加圧脱水する固液分離装置が知られている。例えば、特許文献1には、加圧ローラと無端状のベルトとの間に汚泥を通して加圧脱水する固液分離装置が記載されている。   Conventionally, a solid-liquid separation device is known in which a pressure roller is pressed onto a filter cloth belt, and sludge such as sewage or factory wastewater is introduced between the filter cloth belt and the pressure roller to perform pressure dehydration. . For example, Patent Document 1 describes a solid-liquid separation device that depressurizes and dewaters sludge between a pressure roller and an endless belt.

特開平9−75619号公報Japanese Patent Laid-Open No. 9-75619

上記特許文献1記載の装置では、加圧ローラに駆動源を持たないため、構成が簡素で省エネルギ化が図られている。ところが、汚泥の性状によっては加圧ローラがベルト上で滑って空転し、十分な脱水処理を行うことができず、加圧ローラ手前で汚泥が滞留する可能性がある。また、ベルトは可撓性材料で形成されるため、汚泥の重みでベルトが撓んだ場合には、加圧ローラとベルトとの間に隙間が変動し、汚泥の濃縮濃度(含水率)にばらつきを生じる可能性もある。   In the apparatus described in Patent Document 1, since the pressure roller does not have a drive source, the configuration is simple and energy saving is achieved. However, depending on the properties of the sludge, the pressure roller slides on the belt and runs idle, so that sufficient dehydration cannot be performed, and sludge may stay in front of the pressure roller. In addition, since the belt is formed of a flexible material, when the belt is bent due to the sludge weight, the gap between the pressure roller and the belt fluctuates, and the sludge concentration (water content) is increased. Variations can also occur.

加圧ローラを個別の駆動源等によって直接的に回転駆動する構成も考えられるが、駆動源のコストが必要となり、また設備の大型化・複雑化を生じることになる。   A configuration is also conceivable in which the pressure roller is directly rotated by an individual drive source or the like. However, the cost of the drive source is required, and the equipment is increased in size and complexity.

本発明は、上記従来の問題を考慮してなされたものであり、簡素な構成で加圧ローラを円滑に回転させることができ、汚泥を円滑に搬送・脱水することができる固液分離装置及び加圧ローラを提供することを目的とする。   The present invention has been made in consideration of the above-mentioned conventional problems, and can be used to smoothly rotate a pressure roller with a simple configuration, and to smoothly convey and dewater sludge, An object is to provide a pressure roller.

本発明に係る固液分離装置は、駆動源からの駆動力によって走行して汚泥を搬送するベルトと、前記ベルトの上面に対向配置され、該上面を搬送される汚泥を該上面との間で加圧する加圧ローラとを備え、汚泥を脱水して固液分離する固液分離装置であって、前記加圧ローラは、前記ベルトによる汚泥の搬送方向と直交する方向を軸中心として回転自由に設けられる回転軸と、該回転軸の外周側に配置され、当該加圧ローラの外周表面を弾性支持する弾性部材とを有し、前記ベルトの上面に汚泥が載置されていない状態で、前記外周表面の少なくとも一部が前記ベルトの上面に接触する位置に設置されることを特徴とする。   The solid-liquid separation device according to the present invention includes a belt that travels by a driving force from a driving source and conveys sludge, and a sludge that is disposed opposite to the upper surface of the belt and that conveys the upper surface between the upper surface and the belt. A solid-liquid separation device that dehydrates sludge and separates it into solid and liquid, and the pressure roller is freely rotatable about a direction orthogonal to the sludge transport direction by the belt as an axis center. A rotating shaft provided; and an elastic member that is disposed on an outer peripheral side of the rotating shaft and elastically supports an outer peripheral surface of the pressure roller, and in a state where no sludge is placed on the upper surface of the belt, It is characterized in that at least a part of the outer peripheral surface is installed at a position in contact with the upper surface of the belt.

また、本発明に係る加圧ローラは、駆動源からの駆動力によって走行することで汚泥を搬送するベルトの上面に対向配置され、該上面を搬送される汚泥を該上面との間で加圧することで脱水する加圧ローラであって、回転軸と、該回転軸の外周側に配置され、当該加圧ローラの外周面を弾性支持する弾性部材とを有することを特徴とする。   The pressure roller according to the present invention is disposed opposite to the upper surface of the belt that conveys the sludge by running with the driving force from the driving source, and pressurizes the sludge conveyed on the upper surface between the upper surface. A pressure roller that dehydrates by this, characterized in that it has a rotary shaft and an elastic member that is disposed on the outer peripheral side of the rotary shaft and elastically supports the outer peripheral surface of the pressure roller.

このような構成によれば、加圧ローラは、汚泥を加圧脱水する際には弾性部材が弾性変形して汚泥を受け入れることができるため、汚泥を加圧する際にも、その外周表面の少なくとも一部のベルトへの接触状態が維持され、汚泥の有無に関わらず常にベルトによって安定して従動回転する。これにより、ベルトとの間に汚泥を挟み込んだことで加圧ローラがベルト上で滑って空転することが防止され、加圧ローラに個別の駆動源を設けない簡素な構成としても、汚泥を円滑に搬送・脱水することができる。   According to such a configuration, when the sludge is pressurized and dehydrated, the elastic member is elastically deformed to accept the sludge. Therefore, even when the sludge is pressurized, at least the outer peripheral surface of the pressure roller The contact state with some belts is maintained, and the belt is always driven stably by the belt regardless of the presence or absence of sludge. This prevents the pressure roller from slipping and slipping on the belt due to the sludge sandwiched between the belt and the sludge smoothly even if the pressure roller is not provided with a separate drive source. Can be transported and dehydrated.

本発明によれば、加圧ローラに弾性部材を設けたことにより、加圧ローラに個別の駆動源を設けずとも、汚泥を円滑に搬送・脱水することができる。   According to the present invention, since the elastic member is provided on the pressure roller, sludge can be smoothly conveyed and dehydrated without providing an individual drive source for the pressure roller.

図1は、本発明の一実施形態に係る固液分離装置を備えた汚泥脱水システムの全体構成を示す側面図である。FIG. 1 is a side view showing an overall configuration of a sludge dewatering system including a solid-liquid separator according to an embodiment of the present invention. 図2は、図1に示す固液分離装置の平面図である。FIG. 2 is a plan view of the solid-liquid separator shown in FIG. 図3は、図2に示す固液分離装置の移動機構周辺部を拡大した説明図である。FIG. 3 is an explanatory diagram enlarging the periphery of the moving mechanism of the solid-liquid separator shown in FIG. 図4は、本発明の一実施形態に係る加圧ローラの構成図であり、図4(A)は、一部断面正面図であり、図4(B)は、側面図である。FIG. 4 is a configuration diagram of a pressure roller according to an embodiment of the present invention, FIG. 4 (A) is a partially sectional front view, and FIG. 4 (B) is a side view. 図5は、図4に示す加圧ローラで汚泥を押し潰している状態を示す正面断面図である。FIG. 5 is a front sectional view showing a state in which sludge is crushed by the pressure roller shown in FIG. 4. 図6は、第1変形例に係る加圧ローラの構成図であり、図6(A)は、一部断面正面図であり、図6(B)は、側面図である。6 is a configuration diagram of a pressure roller according to a first modification, FIG. 6 (A) is a partially sectional front view, and FIG. 6 (B) is a side view. 図7は、図6に示す加圧ローラで汚泥を押し潰している状態を示す正面断面図である。FIG. 7 is a front sectional view showing a state in which sludge is crushed by the pressure roller shown in FIG. 図8は、第2変形例に係る加圧ローラの正面断面図である。FIG. 8 is a front sectional view of a pressure roller according to a second modification. 図9は、第3変形例に係る加圧ローラの構成図であり、図9(A)は、一部断面正面図であり、図9(B)は、側面図である。FIG. 9 is a configuration diagram of a pressure roller according to a third modification, FIG. 9 (A) is a partially sectional front view, and FIG. 9 (B) is a side view. 図10は、変形例に係る加圧部の構成図であり、図10(A)は、一部断面正面図であり、図10(B)は、側面図である。FIG. 10 is a configuration diagram of a pressurizing unit according to a modification, FIG. 10 (A) is a partially sectional front view, and FIG. 10 (B) is a side view. 図11は、図10に示す加圧部で汚泥を押し潰している状態を示す正面断面図である。FIG. 11 is a front sectional view showing a state in which sludge is crushed by the pressurizing unit shown in FIG. 10. 図12は、図4に示す加圧部で汚泥を押し潰している状態の一例を示す正面断面図である。FIG. 12 is a front sectional view showing an example of a state in which sludge is crushed by the pressurizing unit shown in FIG. 4. 図13は、第1変形例に係る固液分離装置の構成を示す側面図である。FIG. 13 is a side view showing the configuration of the solid-liquid separation device according to the first modification. 図14は、図13に示す固液分離装置の平面図である。FIG. 14 is a plan view of the solid-liquid separator shown in FIG. 図15は、第2変形例に係る固液分離装置の構成を示す側面図である。FIG. 15 is a side view showing the configuration of the solid-liquid separator according to the second modification. 図16は、図15に示す固液分離装置の平面図である。16 is a plan view of the solid-liquid separator shown in FIG. 図17は、第3変形例に係る固液分離装置の構成を示す側面図である。FIG. 17 is a side view showing the configuration of the solid-liquid separator according to the third modification. 図18は、図17に示す固液分離装置の平面図である。FIG. 18 is a plan view of the solid-liquid separator shown in FIG. 図19は、第4変形例に係る固液分離装置の構成を示す側面説明図である。FIG. 19 is an explanatory side view showing the configuration of the solid-liquid separation device according to the fourth modification. 図20は、第5変形例に係る固液分離装置の構成を示す側面説明図である。FIG. 20 is an explanatory side view showing the configuration of the solid-liquid separation device according to the fifth modification.

以下、本発明に係る加圧ローラを備えた固液分離装置について、この装置を適用した汚泥脱水システムとの関係で好適な実施の形態を挙げ、添付の図面を参照しながら詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, a solid-liquid separation apparatus including a pressure roller according to the present invention will be described in detail with reference to the accompanying drawings by giving preferred embodiments in relation to a sludge dewatering system to which the apparatus is applied.

1.汚泥脱水システムの全体構成の説明
図1は、本発明の一実施形態に係る固液分離装置12を備えた汚泥脱水システム10の全体構成を示す側面図であり、図2は、図1に示す固液分離装置12の平面図である。図1に示す汚泥脱水システム10は、上段の固液分離装置(濃縮装置)12で汚泥(例えば、下水汚泥)を重力ろ過して濃縮した後、下段の脱水装置14で加圧脱水することにより脱水ケーキとして排出する汚泥処理設備である。固液分離装置12は、このように脱水装置14と組み合わされたシステム以外にも適用可能であり、固液分離装置12を単独で使用しても勿論よい。
1. Description of Overall Configuration of Sludge Dewatering System FIG. 1 is a side view showing the overall configuration of a sludge dewatering system 10 including a solid-liquid separation device 12 according to an embodiment of the present invention, and FIG. 2 is shown in FIG. 3 is a plan view of the solid-liquid separator 12. FIG. The sludge dewatering system 10 shown in FIG. 1 is obtained by concentrating sludge (for example, sewage sludge) by gravity filtration with an upper solid-liquid separator (concentrator) 12 and then dehydrating under pressure with a lower dewaterer 14. This is a sludge treatment facility that discharges as dehydrated cake. The solid-liquid separator 12 can be applied to systems other than the system combined with the dehydrator 14 as described above, and the solid-liquid separator 12 may be used alone.

汚泥脱水システム10は、無端軌道で走行するろ布ベルト(ろ過体、ベルト)16の上面16aで汚泥を重力ろ過(重力濃縮)するろ過部18を備えた固液分離装置12と、固液分離装置12で固液分離されて濃縮された汚泥を一対のろ布ベルト20,22間で挟持しながら搬送し、加圧脱水する脱水装置14とを備える。固液分離装置12の直前には、当該汚泥脱水システム10の前段設備から搬送された汚泥中に高分子凝集剤(第1の薬剤)F1を混合するための凝集混和槽24が設けられている。高分子凝集剤F1としては、一般に公知のものを用いればよく、例えば、アニオン性高分子凝集剤やカチオン性高分子凝集剤が挙げられる。   The sludge dewatering system 10 includes a solid-liquid separation device 12 including a filtration unit 18 that gravity filters (gravity concentration) sludge on an upper surface 16a of a filter cloth belt (filter body, belt) 16 that travels in an endless track, and a solid-liquid separation. A dewatering device 14 that conveys the sludge that has been solid-liquid separated and concentrated by the device 12 while being sandwiched between the pair of filter cloth belts 20 and 22 and dehydrates under pressure is provided. Immediately before the solid-liquid separator 12, a coagulation mixing tank 24 is provided for mixing the polymer coagulant (first drug) F1 into the sludge transported from the preceding equipment of the sludge dewatering system 10. . As the polymer flocculant F1, generally known ones may be used, and examples thereof include an anionic polymer flocculant and a cationic polymer flocculant.

1.1 固液分離装置の説明
先ず、固液分離装置12について説明する。
1.1 Description of Solid-Liquid Separator First, the solid-liquid separator 12 will be described.

図1及び図2に示すように、本実施形態に係る固液分離装置12は、凝集混和槽24からろ布ベルト16の上面16aに投入された汚泥を重力ろ過するろ過部18と、ろ過部18で重力ろ過された汚泥を加圧ローラ(脱水用ローラ)26によって加圧脱水して下段の脱水装置14へと排出する加圧部28とを備える。ろ過部18の途中には、ろ布ベルト16による搬送方向と交差(図2では直交)する方向に汚泥を移動させる移動機構30が設けられている。   As shown in FIGS. 1 and 2, the solid-liquid separation device 12 according to the present embodiment includes a filtration unit 18 that gravity-filters sludge that has been input from the coagulation mixing tank 24 to the upper surface 16 a of the filter cloth belt 16, and a filtration unit And a pressure unit 28 that depressurizes and dewaters the sludge that has been gravity filtered in 18 by a pressure roller (dehydration roller) 26 and discharges the sludge to the lower dewatering device 14. A moving mechanism 30 that moves sludge in a direction that intersects (orthogonally in FIG. 2) the conveying direction by the filter cloth belt 16 is provided in the middle of the filtering unit 18.

ろ過部18は、複数のローラ19a,19b,19c,19d,19eに巻き掛けられ、一方向に周回駆動される無端状のろ布ベルト16の上面(外周面)16aで構成され、ローラ19a,19e間に張られたろ布ベルト16の上面16aに汚泥が載置されることで、該汚泥に含まれる水分を重力によってろ過分離する手段である。   The filtration unit 18 is composed of an upper surface (outer peripheral surface) 16a of an endless filter cloth belt 16 that is wound around a plurality of rollers 19a, 19b, 19c, 19d, and 19e and driven to rotate in one direction. The sludge is placed on the upper surface 16a of the filter cloth belt 16 stretched between 19e, so that water contained in the sludge is filtered and separated by gravity.

ろ布ベルト16は、例えば、通水性を持った長尺帯状のろ布や、微細な孔部が網目状に複数形成された長尺帯状の金属スクリーン等によって構成される。ろ布ベルト16は、十分な張力で各ローラ19a〜19eに巻き掛けられており、モータ等で構成された駆動源(回転駆動源)17からの駆動力により、図1中に示す矢印の方向(図1では反時計方向)に走行可能である。図1及び図2において、右側(上流側)から左側(下流側)に向かう方向が固液分離装置12での汚泥の搬送方向となる。例えば、駆動源17は、その回転軸17aと、所定の駆動ローラ(本実施形態ではローラ19a)の回転軸23との間に駆動ベルト17b(例えば、ベルトやチェーン)を巻き掛けることにより、図示しない減速機構等を介してろ布ベルト16を所望の速度で走行させる。   The filter cloth belt 16 is constituted by, for example, a long band-shaped filter cloth having water permeability, a long band-shaped metal screen in which a plurality of fine holes are formed in a mesh shape, and the like. The filter cloth belt 16 is wound around each of the rollers 19a to 19e with sufficient tension, and the direction of the arrow shown in FIG. 1 by the driving force from the driving source (rotary driving source) 17 composed of a motor or the like. It can travel in the counterclockwise direction in FIG. 1 and 2, the direction from the right side (upstream side) to the left side (downstream side) is the sludge transport direction in the solid-liquid separator 12. For example, the drive source 17 is illustrated by winding a drive belt 17b (for example, a belt or a chain) between the rotation shaft 17a and the rotation shaft 23 of a predetermined drive roller (roller 19a in this embodiment). The filter cloth belt 16 is made to travel at a desired speed via a speed reduction mechanism that does not.

従って、ろ過部18の上流位置に凝集混和槽24の出口ポート24aから投入・載置された汚泥は、ろ布ベルト16によって下流側へと搬送されつつ、水分のみが重力によってろ布ベルト16を透過してろ過脱水され、ろ過された水分(分離液、ろ液)は、ろ液受皿32a,32bによって回収される(図1参照)。   Therefore, the sludge thrown in and placed from the outlet port 24a of the flocculation / mixing tank 24 at the upstream position of the filtration unit 18 is transported downstream by the filter cloth belt 16, while only the moisture passes through the filter cloth belt 16 by gravity. Permeated, filtered and dehydrated, the filtered water (separated liquid, filtrate) is collected by the filtrate receiving trays 32a and 32b (see FIG. 1).

ろ過部18を構成するろ布ベルト16の上面16aには、複数本(図2では、移動機構30の前後に合計12本の構成を例示)の棒体(プラウ)34が立設されている。棒体34は、その配置を適宜設定することにより、ろ布ベルト16上を搬送される汚泥に当接して分散させ或いは寄せて集め、その水切りを促進するための障害物であり、その設置位置や本数、形状等は、適宜変更可能である。なお、スクリュー40a,40bの上流側に設置されている棒体34については、その一部を一般的な脱水用として用いられるに硬質のローラ(図示せず)に置き換えてもよい。その場合、該ローラとろ布ベルト16の間には若干の隙間を設けるとよく、これにより、該ローラは脱水用としてではなく簡易的な水切り用として用いられる。該ローラは複数あっても構わない。   On the upper surface 16a of the filter cloth belt 16 constituting the filtration unit 18, a plurality of rod bodies (ploughs) 34 (in FIG. 2, a total of 12 configurations are illustrated before and after the moving mechanism 30) are provided upright. . The rod body 34 is an obstacle for promoting the draining of water by bringing the bar 34 into contact with the sludge transported on the filter cloth belt 16 and dispersing or gathering them by appropriately setting the arrangement thereof. The number, shape, etc. can be changed as appropriate. Note that a part of the rod body 34 installed on the upstream side of the screws 40a and 40b may be replaced with a hard roller (not shown) to be used for general dehydration. In that case, it is preferable to provide a slight gap between the roller and the filter cloth belt 16, so that the roller is used not for dehydration but for simple draining. There may be a plurality of the rollers.

ろ過部18における移動機構30の上流側には、搬送される汚泥に対して鉄系の無機凝集剤(第2の薬剤)F2を添加する第2薬注装置(薬注装置、薬剤添加装置)36が設けられている。第2薬注装置36は、無機凝集剤F2を貯留する薬品タンク36aと、薬品タンク36aの出口から2方弁36bで分岐した第1ライン36c及び第2ライン36dとを備える。無機凝集剤F2としては、一般に公知のものを用いればよく、例えば、鉄系やアルミ系のものが挙げられる。   A second chemical injection device (chemical injection device, chemical addition device) for adding an iron-based inorganic flocculant (second chemical) F2 to the sludge to be conveyed on the upstream side of the moving mechanism 30 in the filtration unit 18. 36 is provided. The second chemical injection device 36 includes a chemical tank 36a for storing the inorganic flocculant F2, and a first line 36c and a second line 36d branched from the outlet of the chemical tank 36a by a two-way valve 36b. As the inorganic flocculant F2, generally known ones may be used, and examples thereof include iron-based and aluminum-based ones.

図2に示すように、本実施形態では、第1ライン36aをさらに並列に2本に分岐させ、これら2本の第1ライン36c,36cを移動機構30の上流位置でろ布ベルト16の幅方向に渡って延在させ、ろ布ベルト16の両側部近傍にそれぞれ添加ノズル36eを設けている。勿論、第1ライン36aを分岐させずに1本のままで用いてもよい。図1中に破線で示すように、第2ライン36dは、凝集混和槽24へと投入される汚泥に無機凝集剤F2を添加可能に配設されており、図示はしないが第1ライン36cの添加ノズル36eと同様な構成でよい。本実施形態の通常の運転状態では、図示しない制御装置の制御下に、2方弁36bは第1ライン36c側に切換制御されている。   As shown in FIG. 2, in the present embodiment, the first line 36 a is further branched into two in parallel, and the two first lines 36 c and 36 c are arranged in the width direction of the filter cloth belt 16 at the upstream position of the moving mechanism 30. The addition nozzles 36e are provided in the vicinity of both side portions of the filter cloth belt 16, respectively. Of course, the first line 36a may be used as it is without branching. As indicated by a broken line in FIG. 1, the second line 36d is arranged so that the inorganic flocculant F2 can be added to the sludge charged into the flocculation mixing tank 24. Although not shown, the second line 36d The configuration may be the same as that of the addition nozzle 36e. In the normal operation state of the present embodiment, the two-way valve 36b is controlled to be switched to the first line 36c side under the control of a control device (not shown).

一方、上記した高分子凝集剤F1は、本実施形態の通常の運転状態では、第1薬注装置(薬剤添加装置)38によって凝集混和槽24に投入される直前の汚泥に添加される。第1薬注装置38は、高分子凝集剤F1を貯留する薬品タンク38aと、薬品タンク38aの出口から2方弁38bで分岐した第1ライン38c及び第2ライン38dとを備える。   On the other hand, the above-described polymer flocculant F1 is added to the sludge immediately before being put into the agglomeration mixing tank 24 by the first chemical injection device (drug addition device) 38 in the normal operation state of the present embodiment. The first chemical injection device 38 includes a chemical tank 38a for storing the polymer flocculant F1, and a first line 38c and a second line 38d branched from the outlet of the chemical tank 38a by a two-way valve 38b.

図1に示すように、第1ライン38cは、凝集混和槽24へと投入される汚泥に対し、第2薬注装置36の第2ライン36dの下流位置で高分子凝集剤F1を添加可能に配設されている。図2中に破線で示すように、第2ライン38dは、第2薬注装置36の第1ライン36dの上流位置でろ布ベルト16の幅方向に渡って延在し、ろ布ベルト16の両側部近傍にそれぞれ添加ノズル38eが設けられている。本実施形態の通常の運転状態では、図示しない制御装置の制御下に、2方弁38bは第1ライン38c側に切換制御されている。   As shown in FIG. 1, the first line 38c can add the polymer flocculant F1 to the sludge charged into the flocculation mixing tank 24 at a position downstream of the second line 36d of the second chemical injection device 36. It is arranged. As shown by a broken line in FIG. 2, the second line 38 d extends across the width direction of the filter cloth belt 16 at the upstream position of the first line 36 d of the second chemical injection device 36, and both sides of the filter cloth belt 16. An addition nozzle 38e is provided in the vicinity of each portion. In the normal operating state of the present embodiment, the two-way valve 38b is controlled to be switched to the first line 38c side under the control of a control device (not shown).

通常の運転時、第1薬注装置38からの高分子凝集剤F1が添加された汚泥が導入される凝集混和槽24は、汚泥が貯留されるタンク24bと、タンク24b内の汚泥をモータ24cを駆動源として攪拌する攪拌羽根24dとを備える。攪拌羽根24dによってタンク24b内で高分子凝集剤F1が十分に混合された汚泥は、出口ポート24aからろ布ベルト16の上面16aに投入される。   During normal operation, the coagulation mixing tank 24 into which the sludge to which the polymer flocculant F1 is added from the first chemical injection device 38 is introduced has a tank 24b in which the sludge is stored, and the sludge in the tank 24b to the motor 24c. And a stirring blade 24d for stirring. The sludge in which the polymer flocculant F1 is sufficiently mixed in the tank 24b by the stirring blade 24d is put into the upper surface 16a of the filter cloth belt 16 from the outlet port 24a.

次に、このようなろ過部18の途中に設けられる移動機構30は、ろ布ベルト16上を搬送される汚泥を交差方向に移動させつつ、その幅方向寸法を縮小すると同時に汚泥高さを高くすることで圧密し、第2薬注装置36によって添加された無機凝集剤F2を十分に混練する。これにより、固液分離装置12及び脱水装置14での汚泥のろ過効率を向上させ、汚泥濃度を高めることを可能とする。   Next, the moving mechanism 30 provided in the middle of the filtering unit 18 moves the sludge conveyed on the filter cloth belt 16 in the crossing direction, while reducing the width direction size and simultaneously increasing the sludge height. By doing so, the inorganic flocculant F2 added by the second chemical injection device 36 is sufficiently kneaded. Thereby, the filtration efficiency of the sludge in the solid-liquid separator 12 and the dehydrator 14 can be improved, and the sludge concentration can be increased.

移動機構(スクリューコンベア)30は、ろ布ベルト16の上面16aの上流側全面に向かって開口して汚泥を受け入れ可能となっており、ろ布ベルト16による搬送方向と直交する方向に汚泥を移動させる一対のスクリュー40a,40bと、スクリュー40a,40bの下流側に近接配置され、ろ布ベルト16の幅方向両端側にそれぞれ起立配置された一対の案内板42a,42bとを備える。移動機構30では、案内板42a,42b間の隙間(各スクリュー40a,40b間の隙間と略同一)が、当該移動機構30から下流側へと汚泥を排出するための通路(汚泥通路43)となっている。   The moving mechanism (screw conveyor) 30 opens toward the entire upstream surface of the upper surface 16a of the filter cloth belt 16 so as to accept the sludge, and moves the sludge in a direction perpendicular to the conveying direction by the filter cloth belt 16. And a pair of guide plates 42a and 42b that are disposed close to the downstream side of the screws 40a and 40b and are erected on both ends in the width direction of the filter cloth belt 16, respectively. In the moving mechanism 30, a gap between the guide plates 42 a and 42 b (substantially the same as the gap between the screws 40 a and 40 b) and a passage (sludge passage 43) for discharging sludge downstream from the moving mechanism 30. It has become.

スクリュー40a,40bは、ろ布ベルト16による汚泥の搬送方向と直交する方向に延びて該ろ布ベルト16を幅方向に渡るスクリュー軸44と、スクリュー軸44の中央付近を除く両側方の外周面にそれぞれらせん状に設けられたスクリュー羽根41a,41bとを有する。   The screws 40a and 40b extend in a direction orthogonal to the sludge transport direction by the filter cloth belt 16 and extend across the filter cloth belt 16 in the width direction, and outer peripheral surfaces on both sides except for the vicinity of the center of the screw shaft 44. And screw blades 41a and 41b provided in a spiral shape.

スクリュー軸44は、図示しない軸受によって両端部がろ布ベルト16の幅方向外側位置で軸支され、例えば、ろ布ベルト16を巻き掛けたローラ19aに対し、チェーンやベルト等の可撓性動力伝達部材39(図1中の2点鎖線参照)によって連係されることで、ろ布ベルト16の走行に伴って回転可能である。ろ布ベルト16の走行動作とスクリュー軸44の回転動作とを同期させる構成とすると、可撓性動力伝達部材39を巻き掛ける各軸の径を適宜設計し又は図示しない減速装置等を搭載することにより、ろ布ベルト16による汚泥の搬送速度と、スクリュー軸44の回転速度(つまり、スクリュー40a,40bによる汚泥の移動速度)との関係を容易に設定・制御することができる。勿論、スクリュー軸44を独自に回転駆動するモータ等の駆動源を設けてもよい。   Both ends of the screw shaft 44 are pivotally supported at positions outside the filter cloth belt 16 in the width direction by a bearing (not shown). For example, a flexible power such as a chain or a belt is applied to the roller 19a around which the filter cloth belt 16 is wound. By being linked by the transmission member 39 (see the two-dot chain line in FIG. 1), it can be rotated as the filter cloth belt 16 travels. When the traveling operation of the filter cloth belt 16 and the rotation operation of the screw shaft 44 are synchronized, the diameter of each shaft around which the flexible power transmission member 39 is wound is appropriately designed, or a reduction device (not shown) is mounted. Thus, the relationship between the sludge conveyance speed by the filter cloth belt 16 and the rotation speed of the screw shaft 44 (that is, the sludge movement speed by the screws 40a and 40b) can be easily set and controlled. Of course, a drive source such as a motor that independently rotates the screw shaft 44 may be provided.

各スクリュー40a,40bを構成するスクリュー羽根41a,41bは、ろ布ベルト16の幅方向両側方に寄った位置でスクリュー軸44の外周面にそれぞれ設けられ、互いの先端同士が案内板42a,42b間の隙間と同程度の隙間を介して対向している。各スクリュー羽根41a,41bのらせんの方向は、ろ布ベルト16の中心線で対照形状(逆向き)となっており、各スクリュー40a,40bによる汚泥の移動方向は、それぞれ反対方向に設定されている。このため、各スクリュー40a,40bは、互いにろ布ベルト16の幅方向で外側から内側(中央)に向かって汚泥を移動させ、その先端同士が前記隙間を介して離間した中央部では、両外側から移動された汚泥同士が互いに押し合って圧密され、無機凝集剤F2が汚泥中で十分に混練される(図3も参照)。各スクリュー40a,40bは、共通のスクリュー軸44を用いた構成ではなく、それぞれ個別のスクリュー軸を用いた構成としてもよい。   The screw blades 41a and 41b constituting the screws 40a and 40b are respectively provided on the outer peripheral surface of the screw shaft 44 at positions close to both sides in the width direction of the filter cloth belt 16, and the tip ends of the screw blades 41a and 41b are guide plates 42a and 42b. It faces through a gap of the same degree as the gap between them. The direction of the spiral of each screw blade 41a, 41b is a contrast shape (reverse direction) at the center line of the filter cloth belt 16, and the direction of sludge movement by each screw 40a, 40b is set in the opposite direction. Yes. For this reason, each screw 40a, 40b moves sludge from the outer side toward the inner side (center) in the width direction of the filter cloth belt 16, and at the center part where the tips are separated from each other via the gap, both outer sides The sludge moved from each other is pressed against each other and consolidated, and the inorganic flocculant F2 is sufficiently kneaded in the sludge (see also FIG. 3). Each screw 40a, 40b is good also as a structure using each screw shaft instead of the structure using the common screw shaft 44. FIG.

本実施形態の場合、スクリュー軸44の中央部、つまり各スクリュー40a,40b間で露出したスクリュー軸44の外周面に、ろ布ベルト16の幅方向中央側を搬送されてきた汚泥と、一対のスクリュー40a,40bによって中央に圧密された汚泥とを下流側へと円滑に排出するためのパドル45が複数枚設けられている。パドル45は、例えば、スクリュー軸44の外周面に周方向に沿って数枚一組で設けられた羽根車である。   In the case of the present embodiment, the sludge that has been conveyed on the center side in the width direction of the filter cloth belt 16 to the central portion of the screw shaft 44, that is, the outer peripheral surface of the screw shaft 44 exposed between the screws 40a and 40b, and a pair of A plurality of paddles 45 for smoothly discharging the sludge consolidated in the center by the screws 40a, 40b to the downstream side are provided. The paddle 45 is, for example, an impeller provided in pairs on the outer peripheral surface of the screw shaft 44 along the circumferential direction.

案内板42a,42bは、スクリュー40a,40bの下流側であって該スクリュー40a,40bと近接する位置で起立した壁部46と、壁部46の下端をろ布ベルト16による汚泥の搬送方向で上流側へと湾曲させて突出させることでスクリュー40a,40bの下方略半分を覆う底部47とを有する。各案内板42a,42bの中央側の端部には、ろ布ベルト16による汚泥の搬送方向に沿って下流側へと延びた一対の通路板48a,48bがそれぞれ設けられている。各案内板42a,42b間の隙間は、各スクリュー40a,40bによる汚泥の移動方向で前方側に位置しており、この隙間が下流側へと汚泥を排出するための汚泥通路43を形成している。   The guide plates 42a and 42b are provided on the downstream side of the screws 40a and 40b and at a position close to the screws 40a and 40b. It has a bottom portion 47 that covers the lower half of the screws 40a and 40b by curving and projecting toward the upstream side. A pair of passage plates 48a and 48b extending downstream along the sludge transport direction by the filter cloth belt 16 are provided at the center ends of the guide plates 42a and 42b, respectively. The gap between the guide plates 42a and 42b is located on the front side in the direction of sludge movement by the screws 40a and 40b, and this gap forms a sludge passage 43 for discharging the sludge downstream. Yes.

壁部46は、スクリュー40a,40bの高さと同程度の高さに設定される板状部材であり、その高さは適宜変更可能である。底部47は、図1に示すように、壁部46の下端から搬送方向で上流側に向かって、スクリュー40a,40bの略中心となる位置まで突出形成される板状部材であり、その長さは適宜変更可能である。案内板42a,42bを構成する壁部46や底部47には、微細な孔部を多数形成したスクリーン等を用いてもよい。   The wall portion 46 is a plate-like member set to a height approximately equal to the height of the screws 40a and 40b, and the height can be changed as appropriate. As shown in FIG. 1, the bottom portion 47 is a plate-like member that protrudes from the lower end of the wall portion 46 toward the upstream side in the transport direction to a position that is approximately the center of the screws 40 a and 40 b, and has a length. Can be appropriately changed. For the wall portion 46 and the bottom portion 47 constituting the guide plates 42a and 42b, a screen or the like in which many fine holes are formed may be used.

各通路板48a,48bは、スクリュー羽根41a,41b間や案内板42a,42b間に形成される隙間と同幅の隙間を挟んで互いに対面するように起立設置されている。通路板48a,48bは、スクリュー40a,40bによってろ布ベルト16の中央付近に圧密された汚泥を、下流側への円滑に排出するための通路を形成する壁部材であり、壁部46と同程度の高さに設定される。なお、実際上、スクリュー40a,40bによって中央に圧密された汚泥は、ろ布ベルト16の走行により、一対の案内板42a,42b(壁部46)間に形成された汚泥通路43から下流側へと搬送されるため、通路板48a,48bは省略することもできるが、通路板48a,48bを設けると、中央に圧密され、高さを増した汚泥を下流側へとより円滑に搬送することができる。   The passage plates 48a and 48b are erected so as to face each other with a gap having the same width as the gap formed between the screw blades 41a and 41b and between the guide plates 42a and 42b. The passage plates 48a and 48b are wall members that form a passage for smoothly discharging sludge, which is compacted near the center of the filter cloth belt 16 by the screws 40a and 40b, to the downstream side. Set to a height of about. In practice, the sludge consolidated in the center by the screws 40a and 40b is moved downstream from the sludge passage 43 formed between the pair of guide plates 42a and 42b (wall portion 46) by the traveling of the filter cloth belt 16. The passage plates 48a and 48b can be omitted. However, if the passage plates 48a and 48b are provided, the sludge that has been consolidated in the center and increased in height can be more smoothly conveyed to the downstream side. Can do.

次に、加圧部28は、固液分離装置12の下方に配置された脱水装置14の前段脱水部(1次脱水部)を構成するものであり、ろ布ベルト16に対してその外周面が圧接配置される加圧ローラ26を備える。   Next, the pressurizing unit 28 constitutes a front dewatering unit (primary dewatering unit) of the dewatering device 14 disposed below the solid-liquid separation device 12, and the outer peripheral surface of the filter cloth belt 16. Is provided with a pressure roller 26 arranged in pressure contact.

ろ過部18でろ過濃縮されると共に、移動機構30で無機凝集剤F2が十分に混練され、圧密によって厚みを増した汚泥は、加圧部28において加圧ローラ26とろ布ベルト16との間で加圧脱水された後、加圧部28の出口(固液分離装置12の出口)から排出・落下され、次工程の脱水装置14に投入される。加圧部28は、移動機構30で圧密されて中央に集合させられた汚泥を潰し、ろ布ベルト16の幅方向に再び広げた状態で脱水装置14に送り出すことにより、該脱水装置14に投入される汚泥の脱水面積を拡大させ、ここでの脱水効率を向上させる機能も有する。   The sludge that has been filtered and concentrated by the filtration unit 18 and has been sufficiently kneaded with the inorganic flocculant F2 by the moving mechanism 30 and has been increased in thickness by the compaction is between the pressure roller 26 and the filter cloth belt 16 in the pressure unit 28. After dehydrating under pressure, it is discharged / dropped from the outlet of the pressurizing unit 28 (exit of the solid-liquid separation device 12) and put into the dehydrator 14 in the next step. The pressurizing unit 28 crushes the sludge that has been consolidated by the moving mechanism 30 and gathered in the center, and sends it to the dehydrating device 14 in a state where it is spread again in the width direction of the filter cloth belt 16, and put into the dehydrating device 14. It also has a function of increasing the dewatering area of the sludge and improving the dewatering efficiency here.

図4は、本発明の一実施形態に係る加圧ローラ26の構成図であり、図4(A)は、一部断面正面図であり、図4(B)は、側面図である。   FIG. 4 is a configuration diagram of the pressure roller 26 according to an embodiment of the present invention, FIG. 4 (A) is a partially sectional front view, and FIG. 4 (B) is a side view.

図2、図4(A)及び図4(B)に示すように、加圧ローラ26は、その軸中心に金属や樹脂等の硬質部材からなる回転軸60を有する。回転軸60は、例えば左右両端部がそれぞれ軸受ブラケット62,62によって軸支され、ろ布ベルト16による汚泥の搬送方向と直交する方向を軸中心として回転自由に設置される。回転軸60の外周面の両端側には、金属や樹脂等を円筒形状に形成した左右一対の硬質部材64,64が設けられ、これら両端側の硬質部材62,62間に、スポンジやゴム等を円筒形状に形成した弾性部材(弾性体)66が設けられている。   As shown in FIG. 2, FIG. 4 (A) and FIG. 4 (B), the pressure roller 26 has a rotating shaft 60 made of a hard member such as metal or resin at the center thereof. For example, the left and right ends of the rotating shaft 60 are pivotally supported by bearing brackets 62 and 62, respectively. The rotating shaft 60 is freely installed around a direction perpendicular to the sludge conveyance direction by the filter cloth belt 16. A pair of left and right hard members 64, 64 in which a metal, a resin, or the like is formed in a cylindrical shape is provided on both ends of the outer peripheral surface of the rotating shaft 60. Sponges, rubber, etc. are provided between the hard members 62, 62 on both ends. An elastic member (elastic body) 66 having a cylindrical shape is provided.

左右の硬質部材64及び中央の弾性部材66で形成された外周面には、可撓性のシート状部材であるろ布68が巻回されており、このろ布68が加圧ローラ26の外周表面を形成している。ろ布68は、例えば、ろ布ベルト16と同一素材で構成される。ろ布68は、回転軸60の軸方向で両端部の内面が硬質部材64によって強固に支持される一方、その間となる中央部の内面が弾性部材66によって弾性支持されている。この弾性部材66により、加圧ローラ26は、その外周表面が弾性を有する弾性ローラとして構成される。   A filter cloth 68, which is a flexible sheet-like member, is wound around the outer peripheral surface formed by the left and right hard members 64 and the central elastic member 66, and the filter cloth 68 is wound around the outer periphery of the pressure roller 26. The surface is formed. The filter cloth 68 is made of the same material as the filter cloth belt 16, for example. In the filter cloth 68, the inner surfaces of both ends in the axial direction of the rotary shaft 60 are firmly supported by the hard member 64, while the inner surface of the central portion between them is elastically supported by the elastic member 66. By this elastic member 66, the pressure roller 26 is configured as an elastic roller having an outer peripheral surface having elasticity.

図4(A)に示すように、加圧ローラ26は、ろ布ベルト16の上面16aに汚泥が載置されていない状態で、その外周表面(ろ布68の外面)の少なくとも軸方向一部(図4では軸方向全部)がろ布ベルト16の上面16aに接触する位置に設置され、ろ布ベルト16の走行によって従動回転する。   As shown in FIG. 4A, the pressure roller 26 has at least a part in the axial direction of the outer peripheral surface (the outer surface of the filter cloth 68) in a state where no sludge is placed on the upper surface 16a of the filter cloth belt 16. 4 (all in the axial direction in FIG. 4) is installed at a position in contact with the upper surface 16 a of the filter cloth belt 16, and is driven to rotate as the filter cloth belt 16 runs.

図1に戻り、加圧部28と、下段の脱水装置14との間には、傾斜板49が配設されている。傾斜板49は、固液分離装置12から排出・落下した汚泥を、脱水装置14の投入位置となるろ布ベルト22上へと円滑に導くためのガイドである。   Returning to FIG. 1, an inclined plate 49 is disposed between the pressurizing unit 28 and the lower dewatering device 14. The inclined plate 49 is a guide for smoothly guiding the sludge discharged / dropped from the solid-liquid separator 12 onto the filter cloth belt 22 that is the input position of the dehydrator 14.

1.2 脱水装置の説明
次に、脱水装置14について説明する。
1.2 Description of Dehydration Device Next, the dehydration device 14 will be described.

図1に示すように、脱水装置14は、固液分離装置12の出口から傾斜板49を介して投入された汚泥を一対のろ布ベルト20,22間で搬送しながら加圧脱水する脱水部50と、脱水部50で脱水された汚泥をさらに加圧し圧搾する圧搾部52とを備え、一般的なベルトプレス型脱水機と略同様な構成である。   As shown in FIG. 1, the dehydrating device 14 is a dehydrating unit that depressurizes and dewaters sludge introduced from the outlet of the solid-liquid separator 12 via the inclined plate 49 while being transported between the pair of filter cloth belts 20 and 22. 50 and a squeezing part 52 that further pressurizes and squeezes the sludge dehydrated by the dehydrating part 50, and has substantially the same configuration as a general belt press type dehydrator.

下側のろ布ベルト20は、例えば、通水性を持った長尺帯状のろ布や、微細な孔部が網目状に複数形成された長尺帯状の金属スクリーン等によって構成される。ろ布ベルト20は、十分な張力で複数のローラ21a,21b,21c,21d,21e,21f,21g,21h,21i,21j,21k,21l,21m,21n間に巻き掛けられており、図示しないモータ等の駆動源により、図1中に示す矢印の方向(図1では時計方向)に走行可能である。   The lower filter cloth belt 20 is configured by, for example, a long band-shaped filter cloth having water permeability, a long band-shaped metal screen in which a plurality of fine holes are formed in a mesh shape, and the like. The filter cloth belt 20 is wound between a plurality of rollers 21a, 21b, 21c, 21d, 21e, 21f, 21g, 21h, 21i, 21j, 21k, 21l, 21m, 21n with sufficient tension, not shown. A drive source such as a motor can travel in the direction of the arrow shown in FIG. 1 (clockwise in FIG. 1).

略同様に、上側のろ布ベルト22についても、例えば、通水性を持った長尺帯状のろ布や、微細な孔部が網目状に複数形成された長尺帯状の金属スクリーン等によって構成される。ろ布ベルト22は、十分な張力で複数のローラ21o,21b,21c,21d,21e,21f,21g,21h,21i,21j,21p,21q間に巻き掛けられており、図示しないモータ等の駆動源により、図1中に示す矢印の方向(図1では反時計方向)に走行可能である。   In a similar manner, the upper filter cloth belt 22 is constituted by, for example, a long belt-like filter cloth having water permeability, a long belt-like metal screen in which a plurality of fine holes are formed in a mesh shape, and the like. The The filter cloth belt 22 is wound between a plurality of rollers 21o, 21b, 21c, 21d, 21e, 21f, 21g, 21h, 21i, 21j, 21p, and 21q with sufficient tension, and is driven by a motor or the like (not shown). The vehicle can travel in the direction of the arrow shown in FIG. 1 (counterclockwise in FIG. 1).

ローラ21b〜21i間での下のろ布ベルト20と上のろ布ベルト22との外周面(表面)同士を上下に蛇行させながら当接(又は近接)配置した部分が、脱水部50を構成しており、この間で汚泥は十分に加圧脱水される。また、ローラ21j,21p間での下のろ布ベルト20と上のろ布ベルト22との外周面(表面)同士を当接(又は近接)配置した部分が、圧搾部52を構成しており、圧搾ローラとなるローラ21j,21p間で汚泥はさらに加圧されて圧搾され、所望の水分率の脱水ケーキとなって外部に排出される。   A portion where the outer peripheral surfaces (surfaces) of the lower filter cloth belt 20 and the upper filter cloth belt 22 between the rollers 21b to 21i are in contact (or close) while meandering up and down constitutes the dewatering unit 50. During this time, the sludge is sufficiently pressurized and dehydrated. Moreover, the part which contact | abutted (or adjoined) the outer peripheral surface (surface) of the lower filter cloth belt 20 and the upper filter cloth belt 22 between the rollers 21j and 21p comprises the pressing part 52. The sludge is further pressurized and pressed between the rollers 21j and 21p serving as pressing rollers, and is discharged to the outside as a dehydrated cake having a desired moisture content.

脱水装置14の入口付近には、固液分離装置12の出口からろ布ベルト20上へと落下・投入された汚泥の高さをある程度均一化させ、ろ布ベルト20,22間に形成された脱水部50の入口50aへと円滑に導入するための均し板51が設けられている。均し板51は、固液分離装置12からろ布ベルト20上への汚泥の落下位置のやや下流側上方に配置され、入口50aに向かって次第に下方に傾斜したプレート部材であり、汚泥を下方に押さえつける方向に付勢された板ばね部材で形成してもよい。   In the vicinity of the inlet of the dehydrator 14, the height of sludge dropped and introduced from the outlet of the solid-liquid separator 12 onto the filter cloth belt 20 is made uniform to some extent, and is formed between the filter cloth belts 20 and 22. A leveling plate 51 is provided for smooth introduction into the inlet 50a of the dewatering unit 50. The leveling plate 51 is a plate member that is disposed slightly above the downstream side of the sludge falling position from the solid-liquid separator 12 onto the filter cloth belt 20, and is gradually inclined downward toward the inlet 50a. You may form with the leaf | plate spring member urged | biased in the direction pressed against.

脱水装置14の出口には、ローラ21jの外周面を走行するろ布ベルト20に近接するように、後端下がりの傾斜姿勢で排出トレイ54が設置されている。脱水ケーキは排出トレイ54上を滑りながら排出される。排出トレイ54の上方には、ローラ21pの外周面を走行するろ布ベルト22に近接するように、後端上がりの傾斜姿勢でスクレバ(掻き取り板)56が設置されている。ローラ21j,21p間から排出トレイ54へと排出されず、上のろ布ベルト22に付着したままの汚泥は、スクレバ56によって掻き取られて排出トレイ54へと排出される。なお、下のろ布ベルト20に付着したままの汚泥は、排出トレイ54によって掻き取られ、そのまま排出トレイ54上を滑り落ちる。   At the outlet of the dewatering device 14, a discharge tray 54 is installed in an inclined posture with the rear end lowered so as to be close to the filter cloth belt 20 running on the outer peripheral surface of the roller 21 j. The dehydrated cake is discharged while sliding on the discharge tray 54. Above the discharge tray 54, a scraper (scraping plate) 56 is installed in an inclined posture with the rear end raised so as to be close to the filter cloth belt 22 running on the outer peripheral surface of the roller 21p. The sludge that is not discharged to the discharge tray 54 from between the rollers 21j and 21p but remains attached to the upper filter cloth belt 22 is scraped off by the scriber 56 and discharged to the discharge tray 54. The sludge that remains attached to the lower filter cloth belt 20 is scraped off by the discharge tray 54 and slides down on the discharge tray 54 as it is.

このような脱水装置14では、固液分離装置12からろ布ベルト20上に投入された汚泥は、入口50aから脱水部50を構成するろ布ベルト20,22間に引き込まれて挟持・加圧された状態で下流側へと搬送される。この間、水分のみが両ろ布ベルト20,22による加圧力によってろ布ベルト20を透過してろ過脱水され、さらに圧搾部52で圧搾された後、脱水ケーキとして排出トレイ54上に排出される。これら脱水部50及び圧搾部52でろ過された水分は、ろ布ベルト20を透過して落下し、ろ液受皿58によって回収される。   In such a dewatering device 14, the sludge introduced onto the filter cloth belt 20 from the solid-liquid separator 12 is drawn between the filter cloth belts 20 and 22 constituting the dewatering unit 50 from the inlet 50 a and is sandwiched and pressurized. In this state, it is conveyed downstream. During this time, only moisture passes through the filter cloth belt 20 by the pressure applied by the two filter cloth belts 20 and 22, and is filtered and dehydrated. Further, after being squeezed by the squeezing unit 52, it is discharged onto the discharge tray 54 as a dehydrated cake. The water filtered by the dewatering unit 50 and the pressing unit 52 passes through the filter cloth belt 20 and falls, and is collected by the filtrate receiving tray 58.

図1に示すように、本実施形態に係る汚泥脱水システム10では、従来より一般的に用いられているシステムと異なり、固液分離装置12のろ布ベルト16と脱水装置14のろ布ベルト20,22とを兼用とせず、それぞれを独立した無端軌道で走行させる構成としている。このため、前段の固液分離装置12のろ布ベルト16の走行速度と、後段の脱水装置14のろ布ベルト20,22の走行速度とを異なる速度に容易に制御することができる。この場合、固液分離装置12のろ布ベルト16の走行速度よりも、脱水装置14のろ布ベルト20,22の走行速度を遅く設定制御することが好ましい。すなわち、当該汚泥脱水システム10では、固液分離装置12に移動機構30を搭載しているため、従来の濃縮装置に比べて脱水率が大幅に高まっており、その結果、脱水装置14に投入される汚泥の量(ケーキ量)を大幅に減少させることができ、脱水装置14でのろ布ベルト20,22の走行速度を遅くしても、投入される汚泥全量を十分に脱水処理することが可能となっている。そして、脱水装置14でのろ布ベルト20,22の走行速度を遅くすることにより、その脱水時にろ布ベルト20,22間を通る時間を長くすることができ、脱水装置14をコンパクトな構成としつつも、高い脱水性能を得ることができる。   As shown in FIG. 1, in the sludge dewatering system 10 according to the present embodiment, unlike the system generally used conventionally, the filter cloth belt 16 of the solid-liquid separator 12 and the filter cloth belt 20 of the dewaterer 14 are used. , 22 are not used together, and each of them is configured to travel on an independent endless track. For this reason, it is possible to easily control the traveling speed of the filter cloth belt 16 of the front-stage solid-liquid separator 12 and the traveling speed of the filter cloth belts 20 and 22 of the rear-stage dewatering apparatus 14 to different speeds. In this case, it is preferable to set and control the traveling speeds of the filter cloth belts 20 and 22 of the dehydrator 14 to be slower than the traveling speed of the filter cloth belt 16 of the solid-liquid separator 12. That is, in the sludge dewatering system 10, since the moving mechanism 30 is mounted on the solid-liquid separation device 12, the dewatering rate is greatly increased as compared with the conventional concentrating device. The amount of sludge to be produced (the amount of cake) can be greatly reduced, and even if the traveling speed of the filter cloth belts 20 and 22 in the dewatering device 14 is slowed, the total amount of sludge to be charged can be sufficiently dehydrated. It is possible. Then, by slowing the traveling speed of the filter cloth belts 20 and 22 in the dehydrator 14, the time required to pass between the filter cloth belts 20 and 22 during the dehydration can be lengthened, and the dehydrator 14 has a compact configuration. However, high dewatering performance can be obtained.

2.汚泥脱水システムの動作及び作用効果の説明
次に、以上のように構成される汚泥脱水システム10の動作及び作用効果について説明する。
2. Next, the operation and effect of the sludge dewatering system 10 will be described.

先ず、当該汚泥脱水システム10で濃縮・脱水する処理対象物である汚泥は、第1薬注装置38の第1ライン38cによって所定の高分子凝集剤F1が添加された状態で凝集混和槽24に導入される。凝集混和槽24のタンク24b内に導入された汚泥は、攪拌羽根24dによって十分に攪拌・混合されてフロック化し、出口ポート24aからろ布ベルト16の上面16aの上流側、つまり固液分離装置12の入口へと投入される。   First, the sludge that is the object to be concentrated and dewatered by the sludge dewatering system 10 is added to the flocculation mixing tank 24 with the predetermined polymer flocculant F1 added by the first line 38c of the first chemical injection device 38. be introduced. The sludge introduced into the tank 24b of the agglomeration mixing tank 24 is sufficiently stirred and mixed by the stirring blade 24d to form a floc, and from the outlet port 24a to the upstream side of the upper surface 16a of the filter cloth belt 16, that is, the solid-liquid separator 12. To the entrance.

固液分離装置12に投入された汚泥は、走行するろ布ベルト16によってろ過部18を搬送され、途中で棒体34による水切り促進作用を受けながら重力ろ過(重力脱水)される。この間、図2及び図3に示すように、ろ布ベルト16の幅方向で両側方を搬送される汚泥に対し、第2薬注装置36の添加ノズル36eから所定の無機凝集剤F2が滴下されつつ、該汚泥は移動機構30に到達する。   The sludge thrown into the solid-liquid separator 12 is transported through the filter unit 18 by the traveling filter cloth belt 16 and is gravity filtered (gravity dehydration) while receiving a draining promoting action by the rod body 34 on the way. During this time, as shown in FIGS. 2 and 3, a predetermined inorganic flocculant F2 is dripped from the addition nozzle 36e of the second chemical injection device 36 to the sludge conveyed on both sides in the width direction of the filter cloth belt 16. Meanwhile, the sludge reaches the moving mechanism 30.

図3に示すように、移動機構30では、ろ布ベルト16の幅方向で両側方を搬送され、無機凝集剤F2が搬送方向に連続する帯状に添加された汚泥は、各スクリュー40a,40bの回転に巻き込まれると、案内板42a,42bによって案内されつつ、中央部に向かって押し込まれながら移動する。この際、回転するスクリュー羽根41a,41bによって一定間隔で切断されつつ移動される小さな汚泥の各塊には、それぞれ無機凝集剤F2が付着している。   As shown in FIG. 3, in the moving mechanism 30, the sludge that is transported on both sides in the width direction of the filter cloth belt 16 and added with the inorganic flocculant F <b> 2 in a continuous belt shape in the transport direction is supplied to each screw 40 a, 40 b. When it is caught in the rotation, it moves while being pushed toward the center while being guided by the guide plates 42a and 42b. At this time, the inorganic flocculant F2 is attached to each lump of small sludge that is moved while being cut at regular intervals by the rotating screw blades 41a and 41b.

無機凝集剤F2を伴いながらスクリュー40a,40bで移動された汚泥は、ろ布ベルト16の中央部(中心部)を搬送されてきた汚泥と混合される。同時に、各スクリュー40a,40bによる押出力によってろ布ベルト16の中央部で汚泥同士が押し潰され合って圧密される。これにより、汚泥は、その幅方向寸法が縮小して高さ(嵩)が増加した状態で、パドル45の回転力も付与されながら汚泥通路43を通って通路板48a,48b間から下流側へと排出され、この間にも、ろ布ベルト16による重力ろ過が継続されて所望の濃縮濃度まで濃縮される。なお、スクリュー40a,40bの前後位置においてもろ布ベルト16が走行しているため、パドル45を省略した構成としても、スクリュー40a,40bによって圧密された汚泥を、案内板42a,42b間の開口部である汚泥通路43から下流側へと円滑に排出することは勿論可能である。   The sludge moved by the screws 40a and 40b with the inorganic flocculant F2 is mixed with the sludge that has been transported through the central portion (center portion) of the filter cloth belt 16. At the same time, sludges are crushed and consolidated in the center of the filter cloth belt 16 by the pressing force of the screws 40a and 40b. As a result, the sludge is passed through the sludge passage 43 from the passage plates 48a and 48b to the downstream side while the rotational force of the paddle 45 is applied while the width direction dimension is reduced and the height (bulk) is increased. During this time, gravity filtration by the filter cloth belt 16 is continued and concentrated to a desired concentration. In addition, since the filter cloth belt 16 is running at the front and rear positions of the screws 40a and 40b, even if the paddle 45 is omitted, the sludge compacted by the screws 40a and 40b is used as the opening between the guide plates 42a and 42b. Of course, it is possible to discharge smoothly from the sludge passage 43 to the downstream side.

このような固液分離装置12による濃縮過程において、例えば、図1及び図2に示すように、ろ過部18の入口側にろ布ベルト16の幅方向で幅W1に広がって高さh1で投入された汚泥は、移動機構30から排出される際には、幅W1より狭い幅W2に縮小されるため、その平面視での表面積の低下分だけ高さ方向寸法が増して高さh2となり、十分に圧密された状態となっている。このため、汚泥の濃縮濃度は、一般的な濃縮装置で通常の重力ろ過のみを受けた場合に比べて大幅に高まる。また、移動機構30より下流側では汚泥高さが増しているため、その自重によって重力ろ過の効率が一層向上し、しかも無機凝集剤F2がスクリュー40a,40bによって十分に混練されている。従って、移動機構30までの時点で十分に脱水され濃縮された汚泥であっても、さらに重力ろ過による濃縮を促進することができる。さらに、スクリュー40a,40bで汚泥を中央部へと移動させる際に、案内板42a,42bとスクリュー羽根41a,41bの回転力とによって汚泥が移動しながら圧搾されるため、汚泥の濃縮がさらに高まることになる。この際、スクリュー40a,40bによって圧搾された汚泥の水分は、壁部46から底部47を伝って流れ、ろ布ベルト16によってろ過される。   In such a concentration process by the solid-liquid separator 12, for example, as shown in FIGS. 1 and 2, the filter cloth belt 16 extends to the width W 1 in the width direction of the filter cloth belt 16 and enters at a height h 1. When the sludge is discharged from the moving mechanism 30, the sludge is reduced to a width W2 that is narrower than the width W1, so the height direction dimension increases to a height h2 by the reduction in the surface area in plan view, It is in a fully consolidated state. For this reason, the concentration concentration of sludge increases significantly compared with the case where it receives only normal gravity filtration with a general concentration apparatus. Further, since the sludge height is increased on the downstream side from the moving mechanism 30, the gravity filtration efficiency is further improved by its own weight, and the inorganic flocculant F2 is sufficiently kneaded by the screws 40a and 40b. Therefore, even the sludge that has been sufficiently dehydrated and concentrated up to the moving mechanism 30 can further promote concentration by gravity filtration. Further, when the sludge is moved to the central portion by the screws 40a and 40b, the sludge is compressed while being moved by the rotational force of the guide plates 42a and 42b and the screw blades 41a and 41b, so that the concentration of the sludge is further increased. It will be. At this time, the moisture of the sludge compressed by the screws 40 a and 40 b flows from the wall portion 46 through the bottom portion 47 and is filtered by the filter cloth belt 16.

移動機構30によって圧密された汚泥は、その下流側の棒体34によって水切り促進作用を受けつつ、さらに下流側へと搬送されて加圧部28に導入される。加圧部28に導入された汚泥は、加圧ローラ26とろ布ベルト16との間で挟持加圧されることで幅W2から幅W3へと広がり、高さh2より低い高さh3となりながら加圧脱水されて排出・落下し、傾斜板49上を滑って脱水装置14に投入される。移動機構30で一旦圧密された汚泥を再び加圧部28で扁平に広げることにより、後工程である脱水装置14での汚泥の脱水面積を拡大し、その脱水効率を向上させることができる。   The sludge consolidated by the moving mechanism 30 is transported further downstream and introduced into the pressurizing unit 28 while receiving drainage promoting action by the rod 34 on the downstream side. The sludge introduced into the pressurizing unit 28 is sandwiched and pressed between the pressure roller 26 and the filter cloth belt 16 to spread from the width W2 to the width W3, and is added while the height h3 is lower than the height h2. After being dewatered by pressure, it is discharged and dropped, and it slides on the inclined plate 49 and is put into the dehydrator 14. The sludge once consolidated by the moving mechanism 30 is flattened again by the pressurizing unit 28, whereby the dewatering area of the sludge in the dewatering device 14 which is a subsequent process can be expanded and the dewatering efficiency can be improved.

この場合、加圧ローラ26は、ろ布ベルト16の上面16aに汚泥が載置されていない状態で、その外周表面が長手方向に渡ってろ布ベルト16の上面16aに接触する位置に設置され、ろ布ベルト16の走行によって従動回転可能である(図4(A)及び図4(B))。図5に示すように、この加圧ローラ26とろ布ベルト16との間に移動機構30から排出され、ろ布ベルト16の中央付近に圧密された汚泥Sが巻き込まれると、硬質部材64で支持されたろ布68の両端部がろ布ベルト16に接触した状態のまま、弾性部材66で弾性支持されたろ布68の中央部が汚泥Sによって内側に弾性的に凹みつつ、該汚泥Sを平坦に押し潰して加圧脱水する。   In this case, the pressure roller 26 is installed at a position where the outer peripheral surface of the pressure roller 26 is in contact with the upper surface 16a of the filter cloth belt 16 in the longitudinal direction with no sludge placed on the upper surface 16a of the filter cloth belt 16. The filter cloth belt 16 can be driven to rotate by traveling (FIGS. 4A and 4B). As shown in FIG. 5, when the sludge S discharged from the moving mechanism 30 and compacted near the center of the filter cloth belt 16 is caught between the pressure roller 26 and the filter cloth belt 16, it is supported by the hard member 64. While the both ends of the filter cloth 68 are in contact with the filter cloth belt 16, the center part of the filter cloth 68 elastically supported by the elastic member 66 is elastically recessed inward by the sludge S, and the sludge S is flattened. Squeeze and dehydrate under pressure.

加圧部28を経て脱水装置14の入口側に落下・投入された汚泥は、走行するろ布ベルト22で搬送されつつ均し板51で均された後、先ず、入口50aから脱水部50へと導入される。脱水部50において、汚泥は、蛇行する上下一対のろ布ベルト20,22間で挟持・加圧されて効率よく脱水されながら搬送され、次に圧搾部52に導入される。圧搾部52において、汚泥は、一対のろ布ベルト20,22間に挟持されつつ、圧搾ローラとなるローラ21j,21p間で強く加圧されて圧搾されて所望の水分率の脱水ケーキとなり、排出トレイ54からシステム外部へと排出される。   The sludge dropped and introduced to the inlet side of the dewatering device 14 through the pressurizing unit 28 is transported by the traveling filter cloth belt 22 and leveled by the leveling plate 51, and then first from the inlet 50a to the dewatering unit 50. And introduced. In the dewatering unit 50, the sludge is nipped and pressurized between a pair of upper and lower filter cloth belts 20, 22 that meander and is transported while being efficiently dehydrated, and then introduced into the pressing unit 52. In the squeezing section 52, the sludge is sandwiched between the pair of filter cloth belts 20 and 22, and is strongly pressed and squeezed between the rollers 21j and 21p serving as squeezing rollers to form a dehydrated cake having a desired moisture content, and discharged. The paper is discharged from the tray 54 to the outside of the system.

以上のように、本実施形態に係る固液分離装置12は、駆動源17からの駆動力によって走行して汚泥を搬送するろ布ベルト16と、ろ布ベルト16の上面16aに対向配置され、該上面16aを搬送される汚泥を該上面16aとの間で加圧する加圧ローラ26とを備え、汚泥を脱水して固液分離する装置である。ここで、加圧ローラ26は、回転軸60と、該回転軸60の外周側に配置され、当該加圧ローラ26の外周面を弾性支持する弾性部材66とを有し、ろ布ベルト16の上面16aに汚泥が載置されていない状態で、前記外周表面の少なくとも一部がろ布ベルト16の上面に接触する位置に設置される。   As described above, the solid-liquid separation device 12 according to the present embodiment is disposed so as to face the filter cloth belt 16 that travels by the driving force from the drive source 17 and conveys sludge, and the upper surface 16a of the filter cloth belt 16. The apparatus includes a pressure roller 26 that pressurizes the sludge conveyed on the upper surface 16a with the upper surface 16a, and dewaters the sludge to separate it into solid and liquid. Here, the pressure roller 26 includes a rotary shaft 60 and an elastic member 66 that is disposed on the outer peripheral side of the rotary shaft 60 and elastically supports the outer peripheral surface of the pressure roller 26. In a state where no sludge is placed on the upper surface 16 a, at least a part of the outer peripheral surface is installed at a position in contact with the upper surface of the filter cloth belt 16.

加圧ローラ26は、汚泥を加圧脱水する際には、弾性部材66が弾性変形して汚泥を受け入れることができるため、その外周表面の少なくとも一部(本実施形態では、両端部の硬質部材64で支持された部位及びその近接部位)のろ布ベルト16への接触状態が維持されることになり、汚泥の有無に関わらず常にろ布ベルト16によって安定して従動回転する(図4及び図5参照)。   When the pressure roller 26 pressurizes and dewaters sludge, the elastic member 66 can be elastically deformed to accept the sludge. Therefore, at least a part of the outer peripheral surface of the pressure roller 26 (in this embodiment, hard members at both ends) The contact state of the portion supported by 64 and its adjacent portion to the filter cloth belt 16 is maintained, and the driven belt 16 is always stably driven by the filter cloth belt 16 regardless of the presence or absence of sludge (see FIGS. 4 and 4). (See FIG. 5).

従って、従来技術のように、ろ布ベルト16との間に汚泥を挟み込んだことで加圧ローラ26がろ布ベルト16上で滑って空転することが回避され、当該加圧ローラ26に個別の駆動源を設けない簡素な構成としても、十分な脱水処理を施すことができ、ローラ手前での汚泥の滞留も防止できる。なお、加圧ローラ26のための個別の駆動源を設けた構成としてもよく、この場合にも、加圧ローラ26とろ布ベルト16との間の隙間を常に略一定に維持し、汚泥の濃縮濃度(含水率)を安定させることができる等の効果を得ることができる。   Therefore, as in the prior art, the pressure roller 26 is prevented from slipping and slipping on the filter cloth belt 16 by inserting sludge between the filter cloth belt 16 and the pressure roller 26 is individually separated. Even with a simple configuration in which no drive source is provided, sufficient dehydration can be performed, and sludge can be prevented from staying in front of the roller. A separate drive source for the pressure roller 26 may be provided. In this case as well, the gap between the pressure roller 26 and the filter cloth belt 16 is always kept substantially constant, and the sludge is concentrated. Effects such as stabilization of the concentration (water content) can be obtained.

さらに、加圧ローラ26は、汚泥を挟み込んだ際の圧力によって外周表面を弾性支持する弾性部材66が弾性変形するため、例えば、汚泥の重み等によってろ布ベルト16が撓んだ場合であっても、加圧ローラ26とろ布ベルト16との間の隙間が常に略一定に保たれ、汚泥の濃縮濃度(含水率)を安定させることができる。しかも、ろ布ベルト16と加圧ローラ26の外周表面を形成するろ布68とは、互いに同一素材で構成されるため、互いを損傷させることを可及的に防止できる。なお、ろ布68を設けず、加圧ローラ26の外周表面を弾性部材66及びその両端の硬質部材64で形成し、実質的に弾性部材66の外周面が直接的に当該加圧ローラ26の外周表面を弾性支持する構造としてもよく、以下で説明する加圧ローラ26a〜26cについても同様である。すなわち、ろ布68がない場合であっても、ろ布ベルト16と加圧ローラ26は同じ速度で回転するので、ろ布ベルト16の上に来る加圧ローラ26は常に固定された状態となり、ろ布ベルト16に対して摩擦等による損傷を与える事はない。   Furthermore, since the elastic member 66 elastically supporting the outer peripheral surface is elastically deformed by the pressure when the sludge is sandwiched in the pressure roller 26, for example, when the filter cloth belt 16 is bent due to the sludge weight or the like. In addition, the gap between the pressure roller 26 and the filter cloth belt 16 is always kept substantially constant, and the concentrated concentration (water content) of the sludge can be stabilized. Moreover, since the filter cloth belt 16 and the filter cloth 68 forming the outer peripheral surface of the pressure roller 26 are made of the same material, it is possible to prevent damage to each other as much as possible. Note that the filter cloth 68 is not provided, and the outer peripheral surface of the pressure roller 26 is formed by the elastic member 66 and the hard members 64 at both ends thereof, and the outer peripheral surface of the elastic member 66 is substantially directly connected to the pressure roller 26. The outer peripheral surface may be elastically supported, and the same applies to the pressure rollers 26a to 26c described below. That is, even when there is no filter cloth 68, the filter cloth belt 16 and the pressure roller 26 rotate at the same speed, so that the pressure roller 26 on the filter cloth belt 16 is always fixed. The filter cloth belt 16 is not damaged by friction or the like.

図4及び図5に示すように、加圧ローラ26は、回転軸60の両端部に設けられた硬質部材64を有し、該両端部の硬質部材64の間に弾性部材66を設けた構成となっている。このため、加圧ローラ26とろ布ベルト16との間に巻き込まれた汚泥により、中央部の弾性部材66で支持した外周表面は弾性的に凹む一方、その両脇の硬質部材64で支持した外周表面は安定してろ布ベルト16との接触状態を確実に維持するため、汚泥の挟み込みによる加圧ローラ26の空転等をより確実に防止できる。   As shown in FIGS. 4 and 5, the pressure roller 26 has a hard member 64 provided at both ends of the rotating shaft 60, and an elastic member 66 is provided between the hard members 64 at both ends. It has become. For this reason, the outer peripheral surface supported by the elastic member 66 at the center portion is elastically recessed by sludge entrained between the pressure roller 26 and the filter cloth belt 16, while the outer periphery supported by the hard members 64 on both sides thereof. Since the surface stably maintains the contact state with the filter cloth belt 16, it is possible to more reliably prevent idling of the pressure roller 26 due to the sludge being caught.

固液分離装置12では、加圧ローラ26の上流側に、前記ベルトによる汚泥の搬送方向と交差する方向に延び、その回転によって汚泥を前記ベルトによる搬送方向と交差する方向に移動させるスクリュー40a,40bを備える。このため、汚泥をスクリュー40a,40bによって移動させることで圧密し、その濃縮濃度を一層高めることができる。また、スクリュー40a,40bによって中央に集合させられた汚泥を加圧ローラ26を備えた加圧部28で扁平に広げることにより、後工程である脱水装置14での汚泥の脱水面積を拡大し、その脱水効率を向上させることができる。   In the solid-liquid separator 12, a screw 40a that extends upstream of the pressure roller 26 in a direction that intersects the conveying direction of the sludge by the belt and moves the sludge in a direction that intersects the conveying direction by the belt by rotation thereof. 40b. For this reason, it can compact by moving sludge with screws 40a and 40b, and can raise the concentration concentration further. Further, the sludge collected in the center by the screws 40a, 40b is flattened by the pressurization unit 28 provided with the pressure roller 26, thereby expanding the dewatering area of the sludge in the dewatering device 14 which is a subsequent process, The dehydration efficiency can be improved.

この際、固液分離装置12では、ろ布ベルト16による汚泥の搬送方向でスクリュー40a(40b)の下流側であって該スクリュー40a(40b)と近接する位置に、スクリュー40a(40b)による汚泥の移動を案内する案内板42a,42bを起立させている。従って、案内板42a,42bでせき止めながら汚泥をスクリュー40a,40bによって移動させることができるため、汚泥を一層均一に混練することができ、さらに、汚泥を圧搾することで、その濃縮濃度を一層高めることができる。   At this time, in the solid-liquid separator 12, the sludge by the screw 40 a (40 b) is positioned downstream of the screw 40 a (40 b) in the sludge conveyance direction by the filter cloth belt 16 and close to the screw 40 a (40 b). The guide plates 42a and 42b that guide the movement of are raised. Accordingly, the sludge can be moved by the screws 40a and 40b while being dammed by the guide plates 42a and 42b, so that the sludge can be kneaded more uniformly, and further, the concentrated concentration can be further increased by pressing the sludge. be able to.

また、このような固液分離装置12を備える汚泥脱水システム10では、固液分離装置12から排出される汚泥を加圧脱水する脱水装置14を備え、固液分離装置12には、第1の薬剤(例えば、高分子凝集剤F1)が添加された汚泥を重力ろ過するろ過部18と、ろ過部18を搬送される汚泥に第2の薬剤(例えば、無機凝集剤F2)を添加する第2薬注装置36と、第2の薬剤が添加された汚泥をろ布ベルト16による搬送方向と交差する方向に移動させる移動機構30とを設けている。   The sludge dewatering system 10 including such a solid-liquid separator 12 includes a dehydrator 14 that depressurizes and dehydrates sludge discharged from the solid-liquid separator 12, and the solid-liquid separator 12 includes the first A filtration unit 18 that gravity-filters sludge to which a drug (for example, polymer flocculant F1) has been added, and a second drug (for example, inorganic flocculant F2) that is added to the sludge transported through the filter unit 18 A chemical injection device 36 and a moving mechanism 30 that moves the sludge to which the second chemical is added in a direction intersecting the conveying direction by the filter cloth belt 16 are provided.

従って、汚泥脱水システム10では、固液分離装置12において、第1の薬剤が添加され、ろ過部18で重力ろ過されることである程度濃縮された汚泥に第2の薬剤を添加した後、移動機構30でろ布ベルト16の搬送方向と交差する方向に汚泥を移動させることにより、この移動時に汚泥を第2の薬剤と十分に混練し、さらに圧密することができ、固液分離装置12での汚泥の濃縮・脱水率を向上させ、濃縮濃度を高めることができる。さらに、第1の薬剤を添加して濃縮した後に、第2の薬剤を添加する第2薬注装置36と、この第2の薬剤を混練する移動装置30と、汚泥を加圧脱水する弾性ローラである加圧ローラ26を備えた加圧部28とを固液分離装置12に設け、その後段に汚泥を加圧脱水する脱水装置14を設けたことにより、高分子凝集剤F1や無機凝集剤F2の使用量を少なくしながらも、コンパクトな構成で汚泥の含水率を大幅に低下させ、汚泥の濃縮濃度をさらに高めることが可能となっている。   Therefore, in the sludge dewatering system 10, the first chemical is added in the solid-liquid separator 12, and the second chemical is added to the sludge concentrated to some extent by gravity filtration in the filtration unit 18, and then the moving mechanism. By moving the sludge in the direction crossing the conveying direction of the filter cloth belt 16 at 30, the sludge can be sufficiently kneaded with the second chemical during this movement and further consolidated, and the sludge in the solid-liquid separator 12 can be further consolidated. The concentration / dehydration rate can be improved, and the concentration can be increased. Furthermore, after adding and concentrating the first chemical, the second chemical injection device 36 for adding the second chemical, the moving device 30 for kneading the second chemical, and the elastic roller for pressure-dehydrating sludge And the pressure roller 28 provided with the pressure roller 26 are provided in the solid-liquid separation device 12, and the dehydration device 14 for pressure-dehydrating sludge is provided at the subsequent stage, whereby the polymer flocculant F1 and the inorganic flocculant While reducing the amount of F2 used, it is possible to greatly reduce the moisture content of the sludge with a compact configuration and further increase the concentration concentration of the sludge.

3.加圧ローラの変形例の説明
3.1 第1変形例に係る加圧ローラの説明
上記した加圧ローラ26は、その両端部に硬質部材64を配置してろ布ベルト16との接触状態をより確実に維持可能な構造としたが、図6(A)及び図6(B)に示すように、硬質部材である回転軸60の外周面に直接的に又は図示しない硬質部材を介在させて、円筒状の弾性部材66を設けた構造の加圧ローラ26aとして構成してもよい。
3. 3. Description of Modification Example of Pressure Roller 3.1 Description of Pressure Roller According to First Modification Example The above-described pressure roller 26 has a hard member 64 disposed at both ends thereof so that the contact state with the filter cloth belt 16 is further improved. Although it has a structure that can be reliably maintained, as shown in FIGS. 6 (A) and 6 (B), a hard member (not shown) is interposed directly on the outer peripheral surface of the rotating shaft 60 that is a hard member, You may comprise as the pressure roller 26a of the structure where the cylindrical elastic member 66 was provided.

加圧ローラ26aは、図4に示す加圧ローラ26と同様に、ろ布ベルト16の上面16aに汚泥が載置されていない状態で、その外周表面が長手方向に渡ってろ布ベルト16の上面16aに接触する位置に設置され、ろ布ベルト16の走行によって従動回転可能である(図6(A)及び図6(B))。そして、図7に示すように、加圧ローラ26aとろ布ベルト16との間に汚泥Sが巻き込まれると、汚泥Sから離れた位置にあるろ布68の両端部がろ布ベルト16に接触した状態のまま、弾性部材66で弾性支持されたろ布68の中央部が汚泥Sによって内側に弾性的に凹みつつ、該汚泥Sを平坦に押し潰して加圧脱水する。   Similar to the pressure roller 26 shown in FIG. 4, the pressure roller 26 a has an outer peripheral surface extending in the longitudinal direction on the upper surface 16 a of the filter cloth belt 16, and the upper surface of the filter cloth belt 16. It is installed at a position in contact with 16a and can be driven and rotated by traveling of the filter cloth belt 16 (FIGS. 6A and 6B). Then, as shown in FIG. 7, when the sludge S is caught between the pressure roller 26 a and the filter cloth belt 16, both ends of the filter cloth 68 at a position away from the sludge S are in contact with the filter cloth belt 16. While the state is maintained, the central portion of the filter cloth 68 elastically supported by the elastic member 66 is elastically recessed inward by the sludge S, and the sludge S is flattened and dehydrated under pressure.

このように、加圧ローラ26aは、その両端部に硬質部材64を配置せず、簡素な構造でありながらも、加圧ローラ26と略同等な作用を十分に果たすことができる。特に、加圧ローラ26aは、当該固液分離装置12のように、その上流側に移動機構30を設け、導入される汚泥が常にろ布ベルト16の中央に集合する構成の装置に適用すれば、その外周表面の一部をろ布ベルト16に常に安定して接触させておくことができるため、コスト面等の点で図4に示す加圧ローラ26より有利である。なお、回転軸60の一端部にのみ加圧ローラ26のものと同様な硬質部材64を設けた構成としてもよいことは勿論である。   In this way, the pressure roller 26a does not have the hard members 64 disposed at both ends thereof, and can sufficiently perform substantially the same operation as the pressure roller 26 while having a simple structure. In particular, the pressure roller 26 a is provided with a moving mechanism 30 on the upstream side thereof, like the solid-liquid separator 12, and applied to an apparatus having a configuration in which the introduced sludge is always gathered at the center of the filter cloth belt 16. 4 is advantageous over the pressure roller 26 shown in FIG. 4 in terms of cost and the like because a part of the outer peripheral surface can be always kept in stable contact with the filter cloth belt 16. Needless to say, the hard member 64 similar to that of the pressure roller 26 may be provided only at one end of the rotating shaft 60.

3.2 第2変形例に係る加圧ローラの説明
上記した加圧ローラ26は、図8に示すように、加圧ローラ26aと組み合わせたような構造からなる加圧ローラ26bとして構成してもよい。
3.2 Description of Pressure Roller According to Second Modification As shown in FIG. 8, the pressure roller 26 may be configured as a pressure roller 26b having a structure combined with the pressure roller 26a. Good.

加圧ローラ26bは、図4に示す加圧ローラ26の両端の硬質部材64,64の外径を小さくし、その外周面に円筒状の弾性部材(第2弾性部材)65,65を配置した構成となっている。これにより、加圧ローラ26bでは、その外周表面全体が図6に示す加圧ローラ26aと同様に弾性部材65,66によって弾性支持される。従って、加圧ローラ26bは、ろ布ベルト16の上面16aに対し、その全面が弾性的に接触するため、図6に示す加圧ローラ26aと同様、図4に示す加圧ローラ26と比べて、ろ布ベルト16との接触をより強固なものとすることができる。これら加圧ローラ26,26a,26bの選択は、汚泥の性状や処理量、巻き込み位置等によって適宜選定すればよい。なお、弾性部材65は汚泥を押し潰すための弾性部材66とは異なる性状でも同じ性状でもよく、厚みが異なっても同じでも勿論よい。   In the pressure roller 26b, the outer diameters of the hard members 64 and 64 at both ends of the pressure roller 26 shown in FIG. 4 are reduced, and cylindrical elastic members (second elastic members) 65 and 65 are arranged on the outer peripheral surface thereof. It has a configuration. Thereby, in the pressure roller 26b, the whole outer peripheral surface is elastically supported by the elastic members 65 and 66 similarly to the pressure roller 26a shown in FIG. Accordingly, since the entire surface of the pressure roller 26b is elastically contacted with the upper surface 16a of the filter cloth belt 16, the pressure roller 26b is similar to the pressure roller 26a shown in FIG. 6 as compared with the pressure roller 26 shown in FIG. Further, the contact with the filter cloth belt 16 can be made stronger. The pressure rollers 26, 26a, and 26b may be selected as appropriate depending on the properties of sludge, the processing amount, the entrainment position, and the like. The elastic member 65 may have a different property or the same property as the elastic member 66 for crushing sludge, and may be the same or different in thickness.

3.3 第3変形例に係る加圧ローラの説明
上記した加圧ローラ26(26a,26b)は、図9に示すように、ろ布68で形成した外周表面の長手方向一部(又は全部)に凸部70を設けた加圧ローラ26cとして構成することもできる。
3.3 Description of Pressure Roller According to Third Modification As shown in FIG. 9, the pressure roller 26 (26 a, 26 b) described above is partially (or entirely) in the longitudinal direction of the outer peripheral surface formed by the filter cloth 68. ) Can be configured as a pressure roller 26c provided with a convex portion 70.

図9に示すように、加圧ローラ26cは、加圧ローラ26(26a,26b)と比べて、その外周表面に周方向に並ぶ凸部70を設けた以外は、これら加圧ローラ26(26a,26b)と同様な構成である。凸部70は、例えば、回転軸60の軸方向に延びた短尺な角棒や丸棒からなる棒状部材72を、ろ布68の外面に周方向で等間隔に1周分固着させた構成である。凸部70を設けたことにより、加圧ローラ26cでは、ろ布ベルト16との間に汚泥を巻き込んだ際、回転する凸部70がろ布ベルト16や汚泥に食い込んで引っ掛かるため、その回転(従動回転)が一層確実なものとなり、空転を一層確実に防止できる。凸部70は横方向に複数あってもよく、千鳥状に配置されていてもよい。また、凸部70の形状、大きさ、長等がそれぞれ異なっていてもよい。   As shown in FIG. 9, the pressure roller 26c is different from the pressure roller 26 (26a, 26b) except that the pressure roller 26 (26a) is provided with a convex portion 70 arranged in the circumferential direction on the outer peripheral surface thereof. , 26b). The convex portion 70 has a configuration in which, for example, a rod-like member 72 made of a short square bar or a round bar extending in the axial direction of the rotary shaft 60 is fixed to the outer surface of the filter cloth 68 for one round at equal intervals in the circumferential direction. is there. By providing the convex portion 70, when the sludge is caught between the pressure roller 26 c and the filter cloth belt 16, the rotating convex portion 70 bites into the filter cloth belt 16 and the sludge and gets caught. (Driven rotation) becomes more reliable and idling can be prevented more reliably. There may be a plurality of convex portions 70 in the lateral direction, or they may be arranged in a staggered manner. Further, the shape, size, length, and the like of the convex portion 70 may be different from each other.

4.加圧部の変形例の説明
図10は、変形例に係る加圧部28aの構成図であり、図10(A)は、一部断面正面図であり、図10(B)は、側面図である。また、図11は、図10に示す加圧部28aで汚泥Sを押し潰している状態を示す正面断面図である。
4). Description of Modified Example of Pressurizing Unit FIG. 10 is a configuration diagram of the pressurized unit 28a according to the modified example, FIG. 10 (A) is a partially sectional front view, and FIG. 10 (B) is a side view. It is. FIG. 11 is a front sectional view showing a state in which the sludge S is crushed by the pressurizing unit 28a shown in FIG.

上記のように、本実施形態に係る加圧ローラ26(26a〜26c)は、弾性部材66を内装しているため、その外周表面が弾性変形し、汚泥をろ布ベルト16の幅方向で均一に加圧することができる。ところで、加圧ローラ26(26a〜26c)と対向配置されるろ布ベルト16は可撓性部材で構成され、互いに離間して配設されたローラ19a,19e間に張設されている。このため、汚泥の性状や処理量等によっては、図12に示すように、汚泥Sの自重や加圧ローラ26からの加圧力により、ろ布ベルト16が幅方向や走行方向に撓み、汚泥Sを均一に且つ平坦に押し潰すことができず、押し潰し後の汚泥Sの形状にばらつきを生じ、脱水性にむらを生じる可能性がある。   As described above, since the pressure roller 26 (26a to 26c) according to the present embodiment includes the elastic member 66, the outer peripheral surface thereof is elastically deformed, and sludge is uniformly distributed in the width direction of the filter cloth belt 16. Can be pressurized. By the way, the filter cloth belt 16 disposed to face the pressure roller 26 (26a to 26c) is formed of a flexible member, and is stretched between rollers 19a and 19e disposed apart from each other. For this reason, depending on the sludge properties, processing amount, etc., as shown in FIG. 12, the filter cloth belt 16 bends in the width direction and the running direction due to the weight of the sludge S or the pressure applied from the pressure roller 26. Cannot be crushed uniformly and flatly, and the shape of the sludge S after crushing may vary, resulting in uneven dewaterability.

そこで、図10(A)及び図10(B)に示すように、上記した加圧部28に代えて、加圧ローラ26(26a〜26c)と対向する位置のろ布ベルト16の下面側を、該ろ布ベルト16の幅方向に沿って延びた支持部材74で支持する構成とした加圧部28aを用いてもよい。   Therefore, as shown in FIGS. 10A and 10B, the lower surface side of the filter cloth belt 16 at a position facing the pressure roller 26 (26a to 26c) is used instead of the pressure unit 28 described above. The pressurizing unit 28a configured to be supported by a support member 74 extending along the width direction of the filter cloth belt 16 may be used.

支持部材74は、加圧ローラ26をその全幅に渡って受け止め可能な幅寸法(長さ)と、加圧ローラ26とろ布ベルト16との接触部を十分にカバーできる程度の厚さ(板厚)とを有する板状部材であり、その上端面74aでろ布ベルト16の下面を支持することができる。上端面74aの四辺の角部は、ろ布ベルト16の円滑な走行を考慮してR形状に形成してもよい。   The support member 74 has a width (length) that can receive the pressure roller 26 over its entire width, and a thickness (plate thickness) that can sufficiently cover the contact portion between the pressure roller 26 and the filter cloth belt 16. The lower surface of the filter cloth belt 16 can be supported by the upper end surface 74a. The corners of the four sides of the upper end surface 74a may be formed in an R shape in consideration of smooth running of the filter cloth belt 16.

加圧部28aでは、ろ布ベルト16の下面に、その当て板となる支持部材74を設けたことにより、図11に示すように、汚泥Sの自重や加圧ローラ26からの加圧力がろ布ベルト16に付与された場合であっても、該ろ布ベルト16が幅方向や走行方向に撓むことを防止でき、汚泥Sを均一に且つ平坦に押し潰すことができる。このため、加圧部28aを用いると、押し潰し後の汚泥Sの形状が安定し、その脱水性にむらを生じることを有効に回避することができる。   In the pressure unit 28a, the support member 74 serving as a backing plate is provided on the lower surface of the filter cloth belt 16, so that the weight of the sludge S and the pressure applied from the pressure roller 26 are filtered as shown in FIG. Even when it is applied to the cloth belt 16, the filter cloth belt 16 can be prevented from bending in the width direction and the traveling direction, and the sludge S can be crushed uniformly and flatly. For this reason, if the pressurization part 28a is used, it can avoid effectively that the shape of the sludge S after crushing is stabilized and the dehydrating property is uneven.

5.固液分離装置の変形例の説明
5.1 第1変形例に係る固液分離装置の説明
図13は、第1変形例に係る固液分離装置12aの構成を示す側面図であり、図14は、図13に示す固液分離装置12aの平面図である。図13では、汚泥脱水システム10のうち、固液分離装置12aのみを図示し、脱水装置14の図示を省略しており、図15及び図17についても同様としている。
5. 5. Description of Modification of Solid-Liquid Separation Device 5.1 Description of Solid-Liquid Separation Device According to First Modification FIG. 13 is a side view showing the configuration of the solid-liquid separation device 12a according to the first modification. FIG. 14 is a plan view of the solid-liquid separator 12a shown in FIG. In FIG. 13, only the solid-liquid separator 12a is shown in the sludge dewatering system 10, the illustration of the dewatering device 14 is omitted, and the same applies to FIGS.

図13及び図14に示すように、固液分離装置12aは、図1及び図2に示す固液分離装置12と比べて、移動機構30より下流側の構成が異なっている。固液分離装置12aは、移動機構30と加圧部28との間に、ろ布ベルト16の上面16aを搬送される汚泥を加圧して平坦化する1次加圧部80を備える。1次加圧部80は、スクリュー40a,40bによって中央に集合され、汚泥通路43から排出された汚泥を押し潰して平坦に均し、ろ布ベルト16の幅方向へと広げるものである。1次加圧部80は、例えば、上記した加圧部28(28a)と同様な構成とされ、その外周表面に弾性を有する加圧ローラ26(26a〜26c)を備える。   As shown in FIGS. 13 and 14, the solid-liquid separation device 12 a is different from the solid-liquid separation device 12 shown in FIGS. 1 and 2 in the configuration on the downstream side of the moving mechanism 30. The solid-liquid separator 12 a includes a primary pressurizing unit 80 that pressurizes and flattens sludge conveyed on the upper surface 16 a of the filter cloth belt 16 between the moving mechanism 30 and the pressurizing unit 28. The primary pressurizing unit 80 is gathered at the center by the screws 40 a and 40 b, crushes the sludge discharged from the sludge passage 43, flattenes it flatly, and spreads it in the width direction of the filter cloth belt 16. The primary pressure unit 80 has, for example, the same configuration as the pressure unit 28 (28a) described above, and includes the pressure roller 26 (26a to 26c) having elasticity on the outer peripheral surface thereof.

固液分離装置12aでは、スクリュー40a,40bで中央に圧密集合されて塊状となった汚泥を、第1加圧ローラとなる1次加圧部80の加圧ローラ26で平板状に均した後、第2加圧ローラとなる加圧部28の加圧ローラ26で加圧脱水してから下段の脱水装置14へと排出する。固液分離装置12aによれば、スクリュー40a,40bで圧密した汚泥を、1次脱水部80及び加圧部28の2段の加圧ローラで押し潰して脱水することで汚泥の濃縮濃度を一層高めることができる。また、1次加圧部80を構成する加圧ローラを弾性ローラである加圧ローラ26(26a〜26c)としたことにより、その駆動源はろ布ベルト16の走行動力を利用することができ、新たな駆動源等を追加する必要がなく、コストを抑えつつ、装置の脱水性能を向上させることができる。   In the solid-liquid separator 12a, the sludge which is aggregated and consolidated in the center by the screws 40a and 40b is flattened into a flat plate shape by the pressure roller 26 of the primary pressure unit 80 serving as the first pressure roller. Then, the pressure is dehydrated by the pressure roller 26 of the pressure unit 28 serving as the second pressure roller, and then discharged to the lower dewatering device 14. According to the solid-liquid separator 12a, the sludge concentrated by the screws 40a and 40b is crushed by the two-stage pressure rollers of the primary dewatering unit 80 and the pressure unit 28 and dehydrated to further increase the concentrated concentration of sludge. Can be increased. In addition, since the pressure roller constituting the primary pressure unit 80 is the pressure roller 26 (26a to 26c) which is an elastic roller, the drive source can use the traveling power of the filter cloth belt 16, It is not necessary to add a new drive source or the like, and the dehydrating performance of the apparatus can be improved while reducing costs.

図13及び図14では、1次脱水部80及び加圧部28(28a)に共に弾性ローラである加圧ローラ26(26a〜26c)を用いた構成を例示したが、いずれか一方については、従来一般的に用いられているものと同様、その外周表面が樹脂や金属で硬質(非弾性)に構成され、専用の駆動源等が付設されるローラを用いてもよい。   13 and 14 exemplify a configuration in which the pressure roller 26 (26a to 26c), which is an elastic roller, is used for the primary dewatering unit 80 and the pressure unit 28 (28a). A roller having an outer peripheral surface made of resin or metal that is hard (non-elastic) and provided with a dedicated drive source or the like may be used in the same manner as conventionally used.

なお、固液分離装置12aについて、図13では、図1に示す構成と比べて、ろ布ベルト16を支持するローラ19aの上流側にローラ19fを増設し、このローラ19fより下流側でろ布ベルト16を下方に向けて傾斜させた構成を例示している。ろ布ベルト16を傾斜させたことにより、汚泥を加圧部28へと一層円滑に導入することができ、さらに1次加圧部80から排出された平坦な汚泥を斜面を転がる衝撃で再び嵩上げしてから加圧部28に導入し、加圧部28での脱水性能を向上させることもできる。ローラ19fを設けて加圧部28を一段下げる構成は、図1に示す固液分離装置12に適用しても勿論よい。   As for the solid-liquid separator 12a, in FIG. 13, compared to the configuration shown in FIG. 1, a roller 19f is added upstream of the roller 19a that supports the filter cloth belt 16, and the filter cloth belt is downstream of the roller 19f. A configuration in which 16 is inclined downward is illustrated. By tilting the filter cloth belt 16, sludge can be introduced more smoothly into the pressurizing unit 28, and the flat sludge discharged from the primary pressurizing unit 80 is raised again by the impact of rolling on the slope. Then, it can be introduced into the pressurizing unit 28 to improve the dehydrating performance in the pressurizing unit 28. Of course, the configuration in which the roller 19f is provided to lower the pressure unit 28 by one step may be applied to the solid-liquid separator 12 shown in FIG.

5.2 第2変形例に係る固液分離装置の説明
図15は、第2変形例に係る固液分離装置12bの構成を示す側面図であり、図16は、図15に示す固液分離装置12bの平面図である。
5.2 Description of Solid-Liquid Separation Apparatus According to Second Modification FIG. 15 is a side view showing the configuration of the solid-liquid separation apparatus 12b according to the second modification, and FIG. 16 shows the solid-liquid separation shown in FIG. It is a top view of the apparatus 12b.

図15及び図16に示すように、固液分離装置12bは、ろ布ベルト16がローラ19fから下流側に向かって傾斜する部分より上流側であって1次加圧部80の下流側となる位置に棒体34を立設させた以外は、図13及び図14に示す固液分離装置12aと同様な構成である。棒体34は、例えば、1次加圧部80を構成する加圧ローラ26(26a〜26c)の幅方向に沿って3個設けられる。   As shown in FIGS. 15 and 16, the solid-liquid separator 12 b is upstream of the portion where the filter cloth belt 16 is inclined toward the downstream side from the roller 19 f and downstream of the primary pressurizing unit 80. The structure is the same as that of the solid-liquid separator 12a shown in FIG. 13 and FIG. For example, three rod bodies 34 are provided along the width direction of the pressure rollers 26 (26a to 26c) constituting the primary pressure unit 80.

固液分離装置12bでは、スクリュー40a,40bで中央に圧密集合されて塊状となった汚泥を、第1加圧ローラとなる1次加圧部80の加圧ローラ26で平板状に均した後、各棒体34で再び寄せて集めることができる。そして、棒体34で寄せて集められた汚泥は、ローラ19fから下方へと傾斜したろ布ベルト16上を滑り落ちながら落下する過程でその向きや塊の形状が変化し、より厚みのある汚泥となって第2加圧ローラとなる加圧部28(28a)の加圧ローラ26(26a〜26c)に導入されて加圧脱水される。このように、スクリュー40a,40bで圧密した汚泥を1次加圧部80及び加圧部28の2段の加圧ローラで押し潰して脱水すると共に、これら2段の加圧ローラの間で一旦平坦化された汚泥を再び寄せ集める棒体34を設けたことにより、汚泥の濃縮濃度をより一層高めることができる。しかも、棒体34の下流側のろ布ベルト16を下方へと傾斜させたことにより、棒体34で集めた汚泥の厚みを傾斜面を落下させながら一層増加させることができ、加圧部28での脱水性能を一層高めることができる。   In the solid-liquid separator 12b, the sludge that has been aggregated and consolidated in the center by the screws 40a and 40b is flattened by the pressure roller 26 of the primary pressure unit 80 serving as the first pressure roller into a flat plate shape. , Each bar 34 can be collected again. The sludge collected by the rod body 34 changes its direction and the shape of the lump in the process of falling while sliding down on the filter cloth belt 16 inclined downward from the roller 19f, and the thicker sludge. Then, it is introduced into the pressure roller 26 (26a to 26c) of the pressure unit 28 (28a) serving as the second pressure roller and dehydrated under pressure. In this way, the sludge compacted by the screws 40a and 40b is crushed and dehydrated by the two-stage pressure rollers of the primary pressure section 80 and the pressure section 28, and once between these two stages of pressure rollers. By providing the rod body 34 that collects the flattened sludge again, the concentrated concentration of the sludge can be further increased. Moreover, by inclining the filter cloth belt 16 on the downstream side of the rod body 34 downward, the thickness of the sludge collected by the rod body 34 can be further increased while the inclined surface is dropped, and the pressurizing portion 28. The dehydration performance can be further enhanced.

固液分離装置12bにおいても、1次加圧部80及び加圧部28(28a)のうちのいずれか一方の加圧ローラ26(26a〜26c)を、従来一般的に用いられているものと同様に硬質のローラで構成しても勿論よい。   Also in the solid-liquid separator 12b, one of the pressure rollers 26 (26a to 26c) of the primary pressure unit 80 and the pressure unit 28 (28a) is generally used conventionally. Of course, it may be constituted by a hard roller.

5.3 第3変形例に係る固液分離装置の説明
図17は、第3変形例に係る固液分離装置12cの構成を示す側面図であり、図18は、図17に示す固液分離装置12cの平面図である。
5.3 Description of Solid-Liquid Separation Apparatus According to Third Modification FIG. 17 is a side view showing the configuration of the solid-liquid separation apparatus 12c according to the third modification, and FIG. 18 shows the solid-liquid separation shown in FIG. It is a top view of the apparatus 12c.

図17及び図18に示すように、固液分離装置12cは、移動機構30の上流側に前加圧部82を設けた以外は、図15及び図16に示す固液分離装置12bと同様な構成である。前加圧部82は、ろ布ベルト16上を搬送される汚泥を平坦に押し潰して均し、ろ布ベルト16の幅方向に広げてから移動機構30へと導入するものであり、汚泥に無機凝集剤F2を添加する添加ノズル36eより上流側に配設されることが好ましい。前加圧部82は、上記した加圧部28(28a)や1次脱水部80と同様な構成とされ、その外周表面に弾性を有する加圧ローラ26(26a〜26c)を備える。   As shown in FIGS. 17 and 18, the solid-liquid separation device 12 c is the same as the solid-liquid separation device 12 b shown in FIGS. 15 and 16 except that a pre-pressurization unit 82 is provided on the upstream side of the moving mechanism 30. It is a configuration. The pre-pressurizing unit 82 flatly crushes and smooths the sludge transported on the filter cloth belt 16, spreads it in the width direction of the filter cloth belt 16, and introduces it into the moving mechanism 30. It is preferable to be disposed upstream of the addition nozzle 36e for adding the inorganic flocculant F2. The pre-pressurizing unit 82 has the same configuration as the pressurizing unit 28 (28a) and the primary dehydrating unit 80, and includes the pressure roller 26 (26a to 26c) having elasticity on the outer peripheral surface thereof.

前加圧部82の直前には棒体(第2棒体)34が立設される。棒体34は、例えば、3本設けられ、ろ布ベルト16の幅方向中央に1本設けられた棒体34の下流側に2本が所定間隔を介して配置されることにより、図18に示す平面視で3本の棒体34が略三角形状に配置される。これにより、前加圧部82に導入される汚泥を円滑に寄せ集めて嵩上げすることができる。   A rod (second rod) 34 is erected immediately before the pre-pressurizing unit 82. For example, three rod bodies 34 are provided, and two rod bodies 34 are disposed at a predetermined interval on the downstream side of the rod body 34 provided at the center in the width direction of the filter cloth belt 16. In the plan view shown, the three rods 34 are arranged in a substantially triangular shape. Thereby, the sludge introduced into the pre-pressurization part 82 can be collected and raised smoothly.

固液分離装置12cでは、上記のように、スクリュー40a,40bの上流側に棒体34を起立配置し、該棒体34とスクリュー40a,40bとの間に、ろ布ベルト16上を搬送される汚泥を加圧して脱水する第3加圧ローラ(前加圧ローラ)となる加圧ローラ26(26a〜26c)を備える前加圧部82を設けている。このため、汚泥を棒体34で集めた後、前加圧部82で平坦化させてからスクリュー40a,40bに導入でき、汚泥の濃縮濃度をより一層高めることができる。すなわち、棒体34で整列されて集められた汚泥は、前加圧部82の加圧ローラ26で平板状に均され、無機凝集剤F2が添加された後、スクリュー40a,40bで混練されつつ中央に圧密集合され、塊状となる。続いて、この塊状の汚泥は、第1加圧ローラとなる1次加圧部80の加圧ローラ26(26a〜26c)で再び平板状に均された後、各棒体34で再び寄せ集められ、ローラ19fから下方へと傾斜したろ布ベルト16上を滑り落ちて、第2加圧ローラとなる加圧部28(28a)の加圧ローラ26(26a〜26c)に導入されて加圧脱水される。   In the solid-liquid separator 12c, as described above, the rod body 34 is erected on the upstream side of the screws 40a and 40b, and the filter cloth belt 16 is conveyed between the rod body 34 and the screws 40a and 40b. A pre-pressurizing unit 82 including a pressure roller 26 (26a to 26c) serving as a third pressure roller (pre-pressure roller) that pressurizes and dehydrates the sludge is provided. For this reason, after collecting sludge with the rod 34, it can introduce | transduce into screw 40a, 40b, after making it flat with the pre-pressurization part 82, and can raise the concentration density | concentration of sludge further. That is, the sludge collected by being aligned by the rods 34 is leveled by the pressure roller 26 of the pre-pressing section 82, and after the inorganic flocculant F2 is added, the sludge is kneaded by the screws 40a and 40b. It is consolidated in the center and becomes a lump. Subsequently, the lump sludge is leveled again by the pressure roller 26 (26a to 26c) of the primary pressure unit 80 serving as the first pressure roller, and then gathered again by the rods 34. Then, it slides down on the filter cloth belt 16 inclined downward from the roller 19f, and is introduced into the pressure roller 26 (26a to 26c) of the pressure unit 28 (28a) serving as the second pressure roller and pressurized. Dehydrated.

固液分離装置12cにおいても、前加圧部82、1次加圧部80及び加圧部28(28a)のうちのいずれか1つの加圧ローラ26(26a〜26c)を、従来一般的に用いられているものと同様に硬質のローラで構成しても勿論よい。   Also in the solid-liquid separation device 12c, any one of the pressure roller 26 (26a to 26c) of the pre-pressure unit 82, the primary pressure unit 80, and the pressure unit 28 (28a) is conventionally conventionally used. Of course, it may be composed of a hard roller similar to the one used.

5.4 第4変形例に係る固液分離装置の説明
図19は、第4変形例に係る固液分離装置12dの構成を示す側面説明図であり、ローラ19b,19c、ろ液受皿32a,32b、凝集混和槽24、第1薬注装置38及び第2薬注装置36等を省略して図示しており、図20についても同様である。
5.4 Description of Solid-Liquid Separation Device According to Fourth Modification FIG. 19 is an explanatory side view showing the configuration of the solid-liquid separation device 12d according to the fourth modification, and includes rollers 19b and 19c, a filtrate receiving tray 32a, 32b, the coagulation mixing tank 24, the first chemical injection device 38, the second chemical injection device 36, and the like are omitted, and the same applies to FIG.

図19に示すように、固液分離装置12dは、前加圧部82の上流側の棒体34に代えて初期加圧部84を設けた以外は、図17及び図18に示す固液分離装置12cと略同様な構成である。なお、固液分離装置12dでは、固液分離装置12c等と比べて、下流側の加圧部28及びローラ19aの配置が多少異なり、加圧部28を構成する加圧ローラ26より下流側にローラ19aを配置している。   As shown in FIG. 19, the solid-liquid separator 12 d has the solid-liquid separation shown in FIGS. 17 and 18 except that an initial pressurizing unit 84 is provided instead of the rod 34 on the upstream side of the prepressurizing unit 82. The configuration is substantially the same as that of the device 12c. It should be noted that the arrangement of the pressure unit 28 and the roller 19a on the downstream side is slightly different in the solid-liquid separation device 12d compared to the solid-liquid separation device 12c and the like, and is more downstream than the pressure roller 26 constituting the pressure unit 28. A roller 19a is disposed.

初期加圧部84は、ろ布ベルト16上を搬送される汚泥を平坦に押し潰して均し、ろ布ベルト16の幅方向に広げてから前加圧部82へと導入するものであり、上記した加圧部28(28a)、1次脱水部80及び前加圧部82と同様な構成とされ、その外周表面に弾性を有する加圧ローラ26(26a〜26c)を備える。   The initial pressurizing unit 84 flatly crushes and smoothes the sludge conveyed on the filter cloth belt 16 and spreads it in the width direction of the filter cloth belt 16 before introducing it to the pre-pressurizing unit 82. The pressure unit 28 (28a), the primary dehydration unit 80, and the pre-pressurization unit 82 are configured in the same manner, and the pressure roller 26 (26a to 26c) having elasticity is provided on the outer peripheral surface thereof.

固液分離装置12dでは、前加圧部82の上流側に、ろ布ベルト16上を搬送される汚泥を加圧して脱水する第4加圧ローラ(初期加圧ローラ)となる加圧ローラ26(26a〜26c)を備える初期加圧部84を設けている。このため、汚泥を初期加圧部84である程度平坦化させた後、前加圧部82でさらに平坦化させてからスクリュー40a,40bに導入できるため、汚泥の濃縮濃度をより一層高めることができる。   In the solid-liquid separator 12d, the pressure roller 26 serving as a fourth pressure roller (initial pressure roller) that pressurizes and dewaters the sludge conveyed on the filter cloth belt 16 on the upstream side of the pre-pressure unit 82. An initial pressurizing unit 84 including (26a to 26c) is provided. For this reason, since the sludge can be introduced to the screws 40a and 40b after being flattened to some extent by the initial pressurizing unit 84 and further flattened by the pre-pressurizing unit 82, the concentrated concentration of sludge can be further increased. .

固液分離装置12dにおいても、初期加圧部84、前加圧部82、1次加圧部80及び加圧部28(28a)のうちのいずれか1つの加圧ローラ26(26a〜26c)を、従来一般的に用いられているものと同様に硬質なローラで構成しても勿論よい。   Also in the solid-liquid separator 12d, any one of the pressure rollers 26 (26a to 26c) of the initial pressure unit 84, the pre-pressure unit 82, the primary pressure unit 80, and the pressure unit 28 (28a). Of course, it may be constituted by a hard roller in the same manner as conventionally used.

5.5 第5変形例に係る固液分離装置の説明
図20は、第5変形例に係る固液分離装置12eの構成を示す側面説明図である。
5.5 Description of Solid-Liquid Separation Device According to Fifth Modification FIG. 20 is an explanatory side view showing the configuration of the solid-liquid separation device 12e according to the fifth modification.

図20に示すように、固液分離装置12eは、前加圧部82の上流側の初期加圧部84に代えて、前移動機構86を設けた以外は、図19に示す固液分離装置12dと略同様な構成である。前移動機構86は、ろ布ベルト16上を搬送される汚泥をその搬送方向と交差する方向に移動させ、中央に圧密してから前加圧部82へと導入するものであり、上記した移動機構30と同様な構成とされ、スクリュー40a,40bを備える。   As shown in FIG. 20, the solid-liquid separation device 12 e is the same as the solid-liquid separation device shown in FIG. 19 except that a front moving mechanism 86 is provided instead of the initial pressurization unit 84 upstream of the pre-pressurization unit 82. The configuration is substantially the same as 12d. The front moving mechanism 86 moves the sludge transported on the filter cloth belt 16 in a direction crossing the transport direction, consolidates it in the center, and introduces it into the pre-pressurizing unit 82. It is set as the structure similar to the mechanism 30, and is provided with screws 40a and 40b.

固液分離装置12eでは、前加圧部82の上流側に、ろ布ベルト16上を搬送される汚泥を移動させて圧密するスクリュー40a,40bを備える前移動機構86を設けることにより、スクリュー40a,40bと弾性ローラ(加圧ローラ26)の組み合わせを複数(図20では2組)設けている。これにより、汚泥を前移動機構86で圧密した後、前加圧部82でさらに平坦化させてからスクリュー40a,40bに導入できるため、汚泥の濃縮濃度をより一層高めることができる。   In the solid-liquid separation device 12e, a screw 40a is provided by providing a front moving mechanism 86 including screws 40a and 40b that move and compact sludge conveyed on the filter cloth belt 16 on the upstream side of the pre-pressurizing unit 82. , 40b and a plurality of combinations (two in FIG. 20) of elastic rollers (pressure roller 26). As a result, after the sludge is consolidated by the front moving mechanism 86, the sludge can be introduced into the screws 40a and 40b after further flattening by the pre-pressurizing unit 82, and thus the concentrated concentration of sludge can be further increased.

ところで、図19及び図20中に矢印を用いた説明図で図示しているように、固液分離装置12d,12eにおいて、ろ布ベルト16の走行方向で上流側では、汚泥の含水率が高いため汚泥量(容積)が多く、下流側に向かって次第に汚泥量が少なくなり、他の固液分離装置12,12a〜12cでも同様である。   By the way, as shown in the explanatory diagrams using arrows in FIGS. 19 and 20, in the solid-liquid separators 12d and 12e, the moisture content of the sludge is high on the upstream side in the traveling direction of the filter cloth belt 16. Therefore, the amount (volume) of sludge is large, and the amount of sludge gradually decreases toward the downstream side, and the same applies to the other solid-liquid separators 12 and 12a to 12c.

そこで、このような搬送方向での汚泥量の変化を考慮して、図13〜図20に示す固液分離装置12a〜12eのように、弾性ローラとなる加圧ローラ26(26a〜26c)をろ布ベルト16の走行方向で複数並べた構成の場合、各加圧ローラ26毎に外周表面の弾性(弾性部材66の弾性率又はローラ外面全体としての弾性率)を変えてもよく、例えば、上流側より下流側のものの弾性率を大きくし、その弾性を硬くするとよい。汚泥量が多い上流側の加圧ローラ26、例えば、図19に示す固液分離装置12dにおける初期加圧部84の加圧ローラ26では、弾性率を小さくし弾性を柔らかくすることにより、その外周表面を十分に弾性変形させながら汚泥を受け入れ、確実に潰すことができる。一方、汚泥量が少ない下流側の加圧ローラ26、例えば図19に示す固液分離装置12dにおける加圧部28の加圧ローラ26では、弾性率を大きくし弾性を硬くすることにより、少ない量の汚泥であっても十分な加圧力を持って潰すことができる。   Therefore, in consideration of such a change in the amount of sludge in the conveying direction, pressure rollers 26 (26a to 26c) serving as elastic rollers are provided as in the solid-liquid separators 12a to 12e shown in FIGS. In the case of a configuration in which a plurality of filter cloth belts 16 are arranged in the running direction, the elasticity of the outer peripheral surface (the elastic modulus of the elastic member 66 or the elastic modulus of the entire roller outer surface) may be changed for each pressure roller 26, for example, It is preferable to increase the elastic modulus of the downstream side from the upstream side and harden the elasticity. In the upstream pressure roller 26 with a large amount of sludge, for example, the pressure roller 26 of the initial pressure unit 84 in the solid-liquid separator 12d shown in FIG. 19, the outer circumference is reduced by reducing the elastic modulus and softening the elasticity. The sludge can be received and reliably crushed while sufficiently elastically deforming the surface. On the other hand, in the downstream pressure roller 26 with a small amount of sludge, for example, the pressure roller 26 of the pressure unit 28 in the solid-liquid separator 12d shown in FIG. 19, a small amount is obtained by increasing the elastic modulus and hardening the elasticity. Even sludge can be crushed with sufficient pressure.

略同様に、図13〜図20に示す固液分離装置12a〜12eのように、弾性ローラとなる加圧ローラ26(26a〜26c)を複数並べた構成の場合、各加圧ローラ26毎にローラ径(外径)を変えてもよく、例えば、上流側より下流側のもののローラ径を小さくするとよい。汚泥量が多くて潰すために大きな加圧力が必要な上流側の加圧ローラ26、例えば、図19に示す固液分離装置12dにおける初期加圧部84の加圧ローラ26では、外径を大きくすることにより、大きなトルクによる十分な加圧力を持って汚泥を潰すことができる。一方、汚泥量が少なくなり潰すための加圧力が小さくてよい下流側の加圧ローラ26、例えば図19に示す固液分離装置12dにおける加圧部28の加圧ローラ26では、外径を小さくすることにより、ろ布ベルト16による従動回転時に該ろ布ベルト16の駆動源17に与える負荷を小さくしつつ、汚泥を十分に潰すことができ、駆動源17を小型化することができる。   In a similar manner, in the case of a configuration in which a plurality of pressure rollers 26 (26a to 26c) serving as elastic rollers are arranged as in the solid-liquid separators 12a to 12e shown in FIGS. The roller diameter (outer diameter) may be changed. For example, the roller diameter on the downstream side may be smaller than that on the upstream side. The upstream pressure roller 26 that requires a large pressure to crush due to a large amount of sludge, such as the pressure roller 26 of the initial pressure unit 84 in the solid-liquid separator 12d shown in FIG. 19, has a large outer diameter. By doing so, the sludge can be crushed with sufficient pressurizing force by a large torque. On the other hand, in the pressure roller 26 on the downstream side where the amount of sludge is reduced and the pressure for crushing may be small, for example, the pressure roller 26 of the pressure unit 28 in the solid-liquid separator 12d shown in FIG. By doing so, sludge can be sufficiently crushed while reducing the load applied to the drive source 17 of the filter cloth belt 16 during the driven rotation by the filter cloth belt 16, and the drive source 17 can be reduced in size.

さらに、図13〜図20に示す固液分離装置12a〜12eのように、弾性ローラとなる加圧ローラ26(26a〜26c)を複数並べた構成の場合、各加圧ローラ26毎に加圧ローラ26とろ布ベルト16との間の隙間を変えてもよく、例えば、上流側より下流側のものの隙間を小さくするとよい。すなわち、汚泥量が多い上流側の加圧ローラ26、例えば、図19に示す固液分離装置12dにおける初期加圧部84の加圧ローラ26では、ろ布ベルト16の上面16aとの間の隙間を大きくすることにより、多い量の汚泥であっても確実に受け入れて潰すことができる。一方、汚泥量が少ない下流側の加圧ローラ26、例えば図19に示す固液分離装置12dにおける加圧部28の加圧ローラ26では、ろ布ベルト16の上面16aとの間の隙間を小さくすることにより、少ない量の汚泥であっても十分な加圧力を持って潰すことができる。   Further, as in the case of the solid-liquid separators 12a to 12e shown in FIGS. 13 to 20, when a plurality of pressure rollers 26 (26a to 26c) serving as elastic rollers are arranged, pressure is applied to each pressure roller 26. The gap between the roller 26 and the filter cloth belt 16 may be changed. For example, the gap on the downstream side from the upstream side may be made smaller. That is, in the upstream pressure roller 26 having a large amount of sludge, for example, the pressure roller 26 of the initial pressure unit 84 in the solid-liquid separator 12d shown in FIG. By enlarging, even a large amount of sludge can be reliably received and crushed. On the other hand, in the pressure roller 26 on the downstream side with a small amount of sludge, for example, the pressure roller 26 of the pressure unit 28 in the solid-liquid separator 12d shown in FIG. 19, the gap between the upper surface 16a of the filter cloth belt 16 is made small. By doing so, even a small amount of sludge can be crushed with sufficient pressure.

このような各弾性ローラでの弾性、ローラ径及び隙間の設定は、それぞれを組み合わせても用いてもよく、例えば、上流側より下流側の加圧ローラ26(26a〜26c)の弾性を硬くし、ローラ径を小さくし且つ隙間を小さくした構成としてもよい。   The settings of the elasticity, the roller diameter and the gap in each elastic roller may be used in combination. For example, the elasticity of the pressure roller 26 (26a to 26c) on the downstream side from the upstream side is hardened. The roller diameter may be reduced and the gap may be reduced.

また、図13〜図20に示す固液分離装置12a〜12eのように、弾性ローラである加圧ローラ26(26a〜26c)と、汚泥の混合装置となる移動機構30(スクリュー40a,40b及び案内板42a,42b)と、棒体34とを交互に並べた構成とし、この構成で、上流側の加圧ローラ26より下流側の加圧ローラ26の弾性を硬くし、ローラ径を小さくし且つ隙間を小さくした構成とすると、汚泥の濃縮濃度を一層効率よく高めることができる。   Moreover, like the solid-liquid separators 12a to 12e shown in FIGS. 13 to 20, the pressure roller 26 (26a to 26c) which is an elastic roller, and the moving mechanism 30 (screws 40a and 40b and the sludge mixing device). The guide plates 42a, 42b) and the rods 34 are alternately arranged. With this configuration, the pressure roller 26 on the downstream side is more elastic than the pressure roller 26 on the upstream side, and the roller diameter is reduced. And if it is set as the structure which made the clearance gap small, the concentration density | concentration of sludge can be raised still more efficiently.

なお、本発明は、上記した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で自由に変更できることは勿論である。   It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be freely changed without departing from the gist of the present invention.

例えば、図2では、移動機構30を構成するスクリュー40a,40b及び案内板42a,42bをろ布ベルト16による汚泥の搬送方向に直交する方向に設置した構成を例示したが、これらスクリュー40a,40b及び案内板42a,42bは汚泥の搬送方向に対して傾斜させた姿勢としてもよい。また、移動機構30は、ろ布ベルト16の幅方向に渡った1本のスクリューによって構成しても勿論よい。   For example, FIG. 2 illustrates a configuration in which the screws 40a and 40b and the guide plates 42a and 42b constituting the moving mechanism 30 are installed in a direction perpendicular to the sludge transport direction by the filter cloth belt 16, but these screws 40a and 40b are illustrated. And the guide plates 42a and 42b are good also as the attitude | position inclined with respect to the conveyance direction of sludge. Of course, the moving mechanism 30 may be configured by a single screw extending in the width direction of the filter cloth belt 16.

10 汚泥脱水システム
12,12a〜12e 固液分離装置
14 脱水装置
16,20,22 ろ布ベルト
17 駆動源
17a,23,60 回転軸
18 ろ過部
24 凝集混和槽
26,26a〜26c 加圧ローラ
28,28a 加圧部
30 移動機構
34 棒体
36 第2薬注装置
38 第1薬注装置
40a,40b スクリュー
42a,42b 案内板
43 汚泥通路
64 硬質部材
66 弾性部材
68 ろ布
70 凸部
72 棒状部材
74 支持部材
80 1次加圧部
82 前加圧部
DESCRIPTION OF SYMBOLS 10 Sludge dehydration system 12, 12a-12e Solid-liquid separator 14 Dehydrator 16, 20, 22 Filter cloth belt 17 Drive source 17a, 23, 60 Rotating shaft 18 Filtration part 24 Coagulation mixing tank 26, 26a-26c Pressure roller 28 , 28a Pressurizing unit 30 Moving mechanism 34 Rod body 36 Second medicine injection device 38 First medicine injection device 40a, 40b Screw 42a, 42b Guide plate 43 Sludge passage 64 Hard member 66 Elastic member 68 Filter cloth 70 Convex portion 72 Rod-like member 74 Support member 80 Primary pressurizing part 82 Pre-pressurizing part

Claims (15)

駆動源からの駆動力によって走行して汚泥を搬送するベルトと、前記ベルトの上面に対向配置され、該上面を搬送される汚泥を該上面との間で加圧する加圧ローラとを備え、汚泥を脱水して固液分離する固液分離装置であって、
前記加圧ローラは、前記ベルトによる汚泥の搬送方向と直交する方向を軸中心として回転自由に設けられる回転軸と、該回転軸の外周側に配置され、当該加圧ローラの外周表面を弾性支持する弾性部材とを有し、前記ベルトの上面に汚泥が載置されていない状態で、前記外周表面の少なくとも一部が前記ベルトの上面に接触する位置に設置されることを特徴とする固液分離装置。
A belt that travels by a driving force from a driving source and conveys sludge; and a pressure roller that is disposed opposite to the upper surface of the belt and presses the sludge conveyed on the upper surface between the upper surface and the sludge. A solid-liquid separation device for dehydrating and solid-liquid separation,
The pressure roller is disposed on the outer peripheral side of the rotary shaft, and is elastically supported on the outer peripheral side of the rotary shaft. The rotary shaft is freely rotatable about a direction orthogonal to the sludge conveyance direction by the belt. A solid liquid characterized in that at least a part of the outer peripheral surface is in contact with the upper surface of the belt in a state where no sludge is placed on the upper surface of the belt. Separation device.
請求項1記載の固液分離装置において、
前記加圧ローラは、前記回転軸の両端部に設けられた硬質部材を有し、該両端部の硬質部材の間に前記弾性部材を設けたことを特徴とする固液分離装置。
The solid-liquid separator according to claim 1,
The pressure roller has a hard member provided at both ends of the rotating shaft, and the elastic member is provided between the hard members at both ends.
請求項2記載の固液分離装置において、
前記硬質部材の外周面に第2弾性部材を設けたことを特徴とする固液分離装置。
The solid-liquid separator according to claim 2,
A solid-liquid separation device, wherein a second elastic member is provided on an outer peripheral surface of the hard member.
請求項1記載の固液分離装置において、
前記加圧ローラは、前記回転軸の外周面に前記弾性部材を設けたことを特徴とする固液分離装置。
The solid-liquid separator according to claim 1,
The pressure roller is a solid-liquid separator, wherein the elastic member is provided on an outer peripheral surface of the rotating shaft.
請求項1〜4のいずれか1項に記載の固液分離装置において、
前記加圧ローラの外周表面は、可撓性のシート状部材で形成されていることを特徴とする固液分離装置。
In the solid-liquid separation device according to any one of claims 1 to 4,
An outer peripheral surface of the pressure roller is formed of a flexible sheet-like member.
請求項5記載の固液分離装置において、
前記ベルトは、前記汚泥に含まれる水分をろ過可能なろ過体であり、
前記シート状部材は、前記ろ過体と同一素材で形成されていることを特徴とする固液分離装置。
The solid-liquid separator according to claim 5,
The belt is a filter body capable of filtering water contained in the sludge,
The said sheet-like member is formed with the same raw material as the said filter body, The solid-liquid separator characterized by the above-mentioned.
請求項1記載の固液分離装置において、
前記加圧ローラの上流側に、前記ベルトによる汚泥の搬送方向と交差する方向に延び、その回転によって汚泥を前記ベルトによる搬送方向と交差する方向に移動させるスクリューを備えることを特徴とする固液分離装置。
The solid-liquid separator according to claim 1,
A solid-liquid is provided on the upstream side of the pressure roller, and includes a screw that extends in a direction intersecting with the conveying direction of the sludge by the belt and moves the sludge in a direction intersecting with the conveying direction by the belt by the rotation thereof. Separation device.
請求項7記載の固液分離装置において、
前記加圧ローラの下流側に、前記ベルトの上面を搬送される汚泥を該上面との間で加圧する第2加圧ローラを備えることを特徴とする固液分離装置。
The solid-liquid separator according to claim 7,
A solid-liquid separation device comprising a second pressure roller that presses sludge conveyed on the upper surface of the belt between the upper surface and the lower surface of the pressure roller.
請求項8記載の固液分離装置において、
前記加圧ローラの下流側であって前記第2加圧ローラの上流側となる位置に、前記ベルトの上面を搬送される汚泥に接触する棒体を起立配置したことを特徴とする固液分離装置。
The solid-liquid separator according to claim 8,
A solid-liquid separation characterized in that a rod that comes into contact with the sludge conveyed on the upper surface of the belt is erected at a position downstream of the pressure roller and upstream of the second pressure roller. apparatus.
請求項7〜9のいずれか1項に記載の固液分離装置において、
前記スクリューの上流側に、前記ベルトの上面を搬送される汚泥に接触する第2棒体を起立配置し、該第2棒体と前記スクリューとの間に、前記ベルトの上面を搬送される汚泥を該上面との間で加圧する第3加圧ローラを備えることを特徴とする固液分離装置。
In the solid-liquid separation device according to any one of claims 7 to 9,
A second rod body that contacts the sludge conveyed on the upper surface of the belt is erected on the upstream side of the screw, and the sludge conveyed on the upper surface of the belt between the second rod body and the screw. A solid-liquid separation device comprising a third pressure roller that pressurizes between the upper surface and the upper surface.
請求項1〜4のいずれか1項に記載の固液分離装置において、
前記加圧ローラの外周表面に凸部を設けたことを特徴とする固液分離装置。
In the solid-liquid separation device according to any one of claims 1 to 4,
A solid-liquid separation device, wherein a convex portion is provided on an outer peripheral surface of the pressure roller.
請求項1〜4のいずれか1項に記載の固液分離装置において、
前記ベルトの下面側であって前記加圧ローラと対向する位置に、前記ベルトの幅方向に沿って延びて該ベルトの下面側を支持する支持部材を設けたことを特徴とする固液分離装置。
In the solid-liquid separation device according to any one of claims 1 to 4,
A solid-liquid separation device comprising a support member that extends along the width direction of the belt and supports the lower surface side of the belt at a position on the lower surface side of the belt facing the pressure roller. .
請求項1記載の固液分離装置において、
前記ベルトによる汚泥の搬送方向に沿って前記加圧ローラを複数設置し、
各加圧ローラ毎に、弾性、外径、又は該加圧ローラとベルトの上面との間の隙間を異ならせたことを特徴とする固液分離装置。
The solid-liquid separator according to claim 1,
A plurality of the pressure rollers are installed along the sludge transport direction by the belt,
A solid-liquid separator characterized in that elasticity, outer diameter, or a gap between the pressure roller and the upper surface of the belt is made different for each pressure roller.
請求項13記載の固液分離装置において、
各加圧ローラ毎に弾性を異ならせる場合には、上流側より下流側の加圧ローラの弾性率を大きくし、
各加圧ローラ毎に外径を異ならせる場合には、上流側より下流側の加圧ローラの外径を小さくし、
各加圧ローラ毎にベルトの上面との間の隙間を異ならせる場合には、上流側より下流側の加圧ローラとベルトの上面との間の隙間を小さくすることを特徴とする固液分離装置。
The solid-liquid separator according to claim 13,
When making the elasticity different for each pressure roller, increase the elastic modulus of the pressure roller on the downstream side from the upstream side,
When the outer diameter is different for each pressure roller, the outer diameter of the pressure roller downstream from the upstream side is reduced,
When the gap between the upper surface of the belt is different for each pressure roller, the solid-liquid separation is characterized in that the gap between the pressure roller downstream from the upstream side and the upper surface of the belt is reduced. apparatus.
駆動源からの駆動力によって走行することで汚泥を搬送するベルトの上面に対向配置され、該上面を搬送される汚泥を該上面との間で加圧することで脱水する加圧ローラであって、
回転軸と、該回転軸の外周側に配置され、当該加圧ローラの外周面を弾性支持する弾性部材とを有することを特徴とする加圧ローラ。
A pressure roller disposed opposite to the upper surface of the belt that conveys sludge by running with a driving force from a drive source, and dewatering by pressing the sludge conveyed on the upper surface with the upper surface;
A pressure roller comprising: a rotary shaft; and an elastic member that is disposed on an outer peripheral side of the rotary shaft and elastically supports an outer peripheral surface of the pressure roller.
JP2012266629A 2012-12-05 2012-12-05 Solid-liquid separator and pressure roller Active JP6017286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012266629A JP6017286B2 (en) 2012-12-05 2012-12-05 Solid-liquid separator and pressure roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012266629A JP6017286B2 (en) 2012-12-05 2012-12-05 Solid-liquid separator and pressure roller

Publications (2)

Publication Number Publication Date
JP2014111242A true JP2014111242A (en) 2014-06-19
JP6017286B2 JP6017286B2 (en) 2016-10-26

Family

ID=51168808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012266629A Active JP6017286B2 (en) 2012-12-05 2012-12-05 Solid-liquid separator and pressure roller

Country Status (1)

Country Link
JP (1) JP6017286B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102104043B1 (en) * 2018-11-14 2020-04-23 비엔지코리아(주) Sludge forming for belt dryer
CN114225520A (en) * 2021-12-09 2022-03-25 山西瑞光热电有限责任公司 Vacuum belt dehydrator
CN116534956A (en) * 2023-05-10 2023-08-04 南通成亮再生资源有限公司 Efficient electrolysis device for sewage treatment and electrolysis method thereof
CN118024538A (en) * 2024-04-12 2024-05-14 江苏君华特种高分子材料股份有限公司 PEEK plate production conveying cooling system and working method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55171497U (en) * 1979-05-29 1980-12-09
EP0020101A1 (en) * 1979-05-25 1980-12-10 Bateman Equipment Limited Vacuum belt filter including vacuum sealing means
JPS5610310A (en) * 1979-05-25 1981-02-02 Bateman Equip Belt filter
JPS59113998A (en) * 1983-12-02 1984-06-30 Mitsui Eng & Shipbuild Co Ltd Method and device for dehydrating sludge
JPS6094397U (en) * 1983-12-05 1985-06-27 石垣機工株式会社 Sealing device in belt press
JPS6112597U (en) * 1984-06-28 1986-01-24 積水化学工業株式会社 Sludge dewatering equipment
JPS6178598A (en) * 1984-09-27 1986-04-22 Kurita Water Ind Ltd Sludge dehydrating device
JPS6213296A (en) * 1985-07-09 1987-01-22 Tsukishima Kikai Co Ltd Method and apparatus for initial filtration of belt press dehydrator
JPS63286295A (en) * 1988-04-08 1988-11-22 Ngk Insulators Ltd Belt press machine
JPH02133291U (en) * 1989-04-10 1990-11-06
JPH0975619A (en) * 1995-09-08 1997-03-25 Amukon Kk Solid-liquid separator
JP2000117014A (en) * 1998-10-16 2000-04-25 Koken Boring Mach Co Ltd Solid-liquid separator

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0020101A1 (en) * 1979-05-25 1980-12-10 Bateman Equipment Limited Vacuum belt filter including vacuum sealing means
JPS5610310A (en) * 1979-05-25 1981-02-02 Bateman Equip Belt filter
JPS55171497U (en) * 1979-05-29 1980-12-09
JPS59113998A (en) * 1983-12-02 1984-06-30 Mitsui Eng & Shipbuild Co Ltd Method and device for dehydrating sludge
JPS6094397U (en) * 1983-12-05 1985-06-27 石垣機工株式会社 Sealing device in belt press
JPS6112597U (en) * 1984-06-28 1986-01-24 積水化学工業株式会社 Sludge dewatering equipment
JPS6178598A (en) * 1984-09-27 1986-04-22 Kurita Water Ind Ltd Sludge dehydrating device
JPS6213296A (en) * 1985-07-09 1987-01-22 Tsukishima Kikai Co Ltd Method and apparatus for initial filtration of belt press dehydrator
JPS63286295A (en) * 1988-04-08 1988-11-22 Ngk Insulators Ltd Belt press machine
JPH02133291U (en) * 1989-04-10 1990-11-06
JPH0975619A (en) * 1995-09-08 1997-03-25 Amukon Kk Solid-liquid separator
JP2000117014A (en) * 1998-10-16 2000-04-25 Koken Boring Mach Co Ltd Solid-liquid separator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102104043B1 (en) * 2018-11-14 2020-04-23 비엔지코리아(주) Sludge forming for belt dryer
CN114225520A (en) * 2021-12-09 2022-03-25 山西瑞光热电有限责任公司 Vacuum belt dehydrator
CN116534956A (en) * 2023-05-10 2023-08-04 南通成亮再生资源有限公司 Efficient electrolysis device for sewage treatment and electrolysis method thereof
CN116534956B (en) * 2023-05-10 2024-03-29 郑楷集团有限公司 Efficient electrolysis device for sewage treatment and electrolysis method thereof
CN118024538A (en) * 2024-04-12 2024-05-14 江苏君华特种高分子材料股份有限公司 PEEK plate production conveying cooling system and working method thereof

Also Published As

Publication number Publication date
JP6017286B2 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
JP6004382B2 (en) Sludge dewatering system
JP6109587B2 (en) Sludge dewatering system
JP6013205B2 (en) Concentrator
JP6271348B2 (en) Sludge dewatering system and control method of sludge dewatering system
JP6038679B2 (en) Sludge treatment system
US9675915B1 (en) Separator for dewatering particulate matter suspended in water
JP6017286B2 (en) Solid-liquid separator and pressure roller
JP4253353B1 (en) Sludge dewatering method and system
KR101644081B1 (en) Sludge condensing machine
JP4499955B2 (en) Dehydrated material dehydration system
JP6527014B2 (en) Sludge dewatering and drying system
JP2009247982A (en) Solid-liquid separator
JPS5927279B2 (en) Sludge dewatering equipment
JP6051082B2 (en) Sludge treatment system
CN201785297U (en) High-efficiency energy-saving belt type sludge concentrating and pressing integrated drying machine
JP5801687B2 (en) Belt press dehydrator
JP4129479B1 (en) Sludge treatment method and treatment system
JP5767087B2 (en) Dehydrator
JP5481654B2 (en) Sludge treatment method and treatment system
CN202322458U (en) Novel dual-belt filter press
KR20090076006A (en) Solid-liquid separator
JP5770599B2 (en) Belt press dehydrator
CN102489056A (en) Novel twin-belt filter press
JP2011218260A (en) Sludge treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160928

R150 Certificate of patent or registration of utility model

Ref document number: 6017286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250